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Abstract
Recently, a distribution-free approach for testing parametric hypotheses based on 
unitary transformations has been suggested in Khmaladze (Ann Stat 41:2979–2993, 
2013, Bernoulli 22:563–588, 2016) and further studied in Nguyen (Metrika 80:153–
170, 2017) and Roberts (Stat Probab Lett 150:47–53, 2019). In this paper, we show 
that the transformation takes very simple form in distribution-free testing of linear 
regression. Then, we extend it to the general parametric regression with vector-val-
ued covariates.

Keywords Regression empirical process · Unitary operators · Distribution-free 
residuals · Linear regression · Optimal transport

1  Introduction: an illustrative example with linear regression

The situation we consider in this paper is that of the classical parametric regression: 
given a sequence of pairs of random variables (Xi, Yi)

n
i=1

 , where Yi is the response 
variable, while Xi is the explanatory variable, or covariate, of this Yi , consider 
regression of Yi on Xi,

We assume that, given covariates (Xi)
n
i=1

 , the errors (�i)ni=1 are i.i.d. and have expected 
value zero and finite variance—for the sake of simplicity, we assume this variance 
equal 1.

We are interested in the classical problem of testing that the regression function 
m(x) belongs to a specified parametric family of functions (m(x, �), � ∈ Θ) , which 
depend on a finite-dimensional parameter � and which satisfy more or less usual 
regularity assumptions as functions of this �.

Yi = m(Xi) + �i.
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Our aim is to describe a new method to build asymptotically distribution-free 
theory for testing such hypotheses. More specifically, we will construct asymp-
totically distribution-free version of the regression empirical process, so that 
functionals from this process, used as test statistics, will be asymptotically distri-
bution-free. The core of the method consists of the application of unitary opera-
tors as described more or less recently in Khmaladze (2013), Khmaladze (2016), 
Khmaladze (2020) and studied in Roberts (2019) and Nguyen (2017).

Earlier, asymptotically distribution-free transformation of regression empiri-
cal process was suggested in Khmaladze and Koul (2004), see also for quantile 
regression Koenker (2005). For d-dimensional covariates, the limit distribution 
of the transformed process was that of standard Brownian motion on [0, 1]d . In 
this paper, the transformed process will converge to a standard projection of the 
standard Brownian motion on [0, 1]d , and the transformation will take surprisingly 
simple form, convenient in everyday practice. In the case of linear regression, it 
should be called elementary. As in Khmaladze and Koul (2004), this transforma-
tion is connected with no loss of statistical information.

The shortest way to show how the method works is to consider the most simple 
linear regression model. That is, in

the covariates Xi , and the coefficient � are one-dimensional. On probabilistic nature 
of the covariates (Xi)

n
i=1

 , we will make, practically, no assumptions. We only will use 
their empirical distribution function

and assume that, as number of observed pairs n increases, it weakly converges to 
some limiting distribution F—an assumption of ergodic nature. Whenever we use 
time transformation t = F(x) , we will also assume that F is continuous. All expecta-
tions below will be conditional expectations given the vector of numbers (Xi)

n
i=1

.
Consider estimated errors, or residuals,

where �̂� = ⟨Y ,X⟩∕⟨X,X⟩ denotes the least square estimator of � . It is convenient to 
re-write 𝜖 as

which represents the vector of residuals as projection of � orthogonal to the vector of 
normalised covariates z.

The natural object to base a goodness-of-fit test upon is given by the partial 
sums process (see, for example, Khmaladze and Koul 2004 and Stute 1997)

(1)Yi = Xi� + �i, i = 1,… , n, or in vector form, Y = X� + �,

Fn(x) =
1

n

n∑

i=1

�(Xi≤x)

𝜖 = Y − X�̂�,

𝜖 = Y − z⟨Y , z⟩ = 𝜖 − z⟨𝜖, z⟩, where z = X∕⟨X,X⟩1∕2,
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However, the distribution of the vector 𝜖 depends on covariates: its covariance 
matrix has the form

As to the limit in distribution for the process ŵn , it is a projection of some Brown-
ian motion, but it is not the Brownian bridge. Its distribution remains dependent on 
behaviour of the covariates. The limit distribution of omnibus statistics based on this 
process, and in particular, its supremum, will not be easy to calculate.

However, consider new residuals obtained from 𝜖 by unitary transformation

with n-dimensional vectors a and b of unit norm: ‖a‖ = ‖b‖ = 1 . If a = b , we take 
Ua,b = I . This operator is unitary, it maps a into b and b into a, and it maps any vec-
tor c, orthogonal to a and b, to itself (see, for example, Khmaladze 2013, Sec. 2). 
Now choose a = z and choose b equal r = (1,… , 1)T∕

√
n , the vector not depending 

on covariates at all. Since the vector of residuals 𝜖 is orthogonal to the vector z, we 
obtain:

These new residuals have covariance matrix

This would be the covariance matrix of the residuals in the problem of testing

which is completely free from covariates. Yet, the transformation of 𝜖 to ê is one-to-
one, and therefore, ê contain the same “statistical information”, whichever way we 
measure it, as 𝜖 . One could say that the problem of testing linear regression (1) and 
testing (2) is the same problem.

The partial sum process based on the new covariates,

will converge in distribution, with time transformation t = F(x) , to standard Brown-
ian bridge. Therefore, limit distribution for all classical statistics will be free from 
covariates and known (cf. Fig. 1).

Asymptotically distribution-free tests, even if only for the case of linear regres-
sion, have been of main interest from long ago. To achieve this distribution-freeness, 

ŵn(x) =
1√
n

n�

i=1

𝜖i�(Xi≤x).

E𝜖 𝜖T = I − zzT .

Ua,b = I −
⟨a − b, ⋅ ⟩
1 − ⟨a, b⟩ (a − b)

ê = Ur,z𝜖 = 𝜖 −
⟨𝜖, r⟩

1 − ⟨z, r⟩ (r − z).

EêêT = I − rrT .

(2)Yi = � + �i, i = 1, 2,… , n,

ŵn,e(x) =
1√
n

n�

i=1

êi�(Xi≤x),
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different forms of residuals have been suggested, various decompositions of z, espe-
cially when covariates Xi are multidimensional, have been studied and approxi-
mations for quadratic forms from 𝜖 have been developed. Assumption of normal-
ity, arbitrary as it is in many cases, has been made more or less casually. If one 
is allowed somewhat free speech, one could say that a mathematical lace has been 
created. Good source for this material is the book Cook and Weisberg (1982). In 
dry residue, only the Chi-square tests have been obtained. Distribution-free forms 
of other classical statistics have never been considered and constructed. We refer to 
McCullagh and Nelder (2008) for much of the existing theory for linear models. The 
most recent review on goodness-of-fit problems in regression which we know of is 
Gonzalez-Manteiga and Crujeiras (2013).

Note that the initial regression process of this paper, not yet asymptotically dis-
tribution-free, is different from what was used in previous work, including relatively 
recent ones. Although partial sum processes, like ŵn , form one of the main objects 
of asymptotic theory, it is often that a different form of such processes is considered, 
one simple example of which would be

(see more sophisticated form of the weight function in recent paper Chown and 
Müller 2018). Here the scanning over the values of the residuals is used. This is 
very natural way of scanning when the statistical problems considered pertain to 

(3)
1√
n

n�

i=1

(Xi − X̄n)�(𝜖i≤x),

0.5 1.0 1.5 2.0

0.
0
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Fig. 1  The smooth line is Kolmogorov distribution function. The two other ones are simulated distribu-
tions of max

x
|ŵ

n,e(x)| for two entirely different behaviour of covariates. In one case X
i
 -s have uniform 

distribution on [0, 2] while in the other they have Gaussian distribution N(1, 2). 200 replications of sam-
ples of size n = 200.
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distribution of errors. An example, studied in well-known papers Dette and Munk 
(1998), Dette and Hetzler (2009), Dette et al. (2007) and loc.cit. Chown and Müller 
(2018), is the problem of testing heterogeneity of errors. The same scanning is basi-
cally unavoidable in study of distribution of i.i.d. errors, cf. Koul et al. (2017), and 
in analysis of the distribution of innovations in autoregression models, see Müller 
et al. (2009).

In our current situation of testing the form of regression function, it is a natural wish 
to see, in the case there is a deviation from the model, for what region of values of the 
covariate the deviation takes place, and scanning in Xi -s will allow this. Even in the 
simple case when the covariate is just discrete time, taking values 1, 2,… , n , it would 
be strange not to examine the sequence 𝜖1,… , 𝜖n , in this time, but instead look on the 
order statistics based on them, which scanning as in (3) would imply. These considera-
tions motivate the form of the regression process ŵn and ŵn,e.

To make the illustrative example of this section more of immediate practical use 
and to explain better the asymptotic behaviour of the regression empirical process, 
in Sect. 2 we consider the general form of one-dimensional linear regression. Then 
in Sect. 3 we consider general parametric regression. In this case, the time transfor-
mation, considered in (iii) of Proposition 2 again leads to distribution-freeness if F 
is continuous. If F is discrete, then the method suggested in Khmaladze (2013), Sec. 
2, can be easily used. In Sect. 4, we consider multidimensional Xi s. Transformation 
of 𝜖 to ê will not change, but to standardise distribution of regressors one could use 
normalisation by f̂ 1∕2n  , where f̂n is an estimator of the density of F, cf., e.g., Einmahl 
and Khmaladze (2001), Can et al. (2020). Here, however, we consider an approach 
borrowed from the theory of optimal transportation, or Monge–Kantorovich trans-
portation problem, see, for example, Villani (2009). Very interesting probabilistic/
statistical applications of this theory have been recently given in del Barrio et  al. 
(2018) and de Valk and Segers (2018).

2  General linear regression on ℝ

Consider the standard linear regression on the real line,

The � here denotes a vector with all coordinates equal to the number 1. Instead of (4) 
consider its slightly modified and more convenient form

The least square estimations of �0 and �1 are

Using again notation r = �∕
√
n and notation

(4)Yi = �0 + �1Xi + �i, i = 1,… , n, or Y = �0� + �1X + �.

(5)
Yi = 𝜃0 + 𝜃1(Xi − X̄) + 𝜖i, i = 1,… , n, or in vector form,

Y = 𝜃0� + 𝜃1(X − X̄�) + 𝜖.

�̂�0 =
1

n

n�

j=1

Yj and �̂�1 =
1∑n

j=1
(Xj − X̄)2

n�

i=1

Yj(Xj − X̄).
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for normalised vector of centred covariates, one can write the residuals as

or in more succinct form

Substitution of the linear regression model (5) for Y produces representation of the 
vector of residuals 𝜖 through the vector of errors �:

This represents 𝜖 as projection of � orthogonal to r and z̃.
From this, it follows that the covariance matrix of 𝜖 is

and thus it still depends on the values of the covariates. The limit distribution of the 
regression process with these residuals,

will therefore have limit distribution which depends on z̃.
It is possible to say more about the geometric structure of ŵn and its limiting pro-

cess, and namely that the limiting process will be a double projection of Brownian 
motion orthogonal to the functions F(x) and

Here one can think of h as a continuous time version of z̃ : the latter can be calcu-
lated by the same formula as h, with F replaced by Fn and x restricted to points Xi-s.

To show this structure of ŵn denote �x , the vector with coordinates (�(Xi≤x))ni=1 . Then, 
we can write

For the first term on the right-hand side, considered as a process in x and denoted 
wn(x) , we see that

z̃ =
1�∑n

j=1
(Xj − X̄)2

(X − X̄),

𝜖 = Y − �̂�0� − �̂�1(X − X̄�)

𝜖 = Y − ⟨Y , r⟩r − ⟨Y , z̃⟩z̃.

(6)𝜖 = 𝜖 − ⟨𝜖, r⟩r − ⟨𝜖, z̃⟩z̃.

E𝜖𝜖T = I − rrT − z̃z̃T ,

ŵn(x) =
1√
n

n�

i=1

𝜖i�(Xi≤x),

H(x) = �
x

h(y)dF(y), with h(x) =
x − ∫ ydF(y)

√
∫ (z − ∫ ydF(y))2dF(z)

.

ŵn(x) =
1√
n
⟨𝜖, �x⟩ =

1√
n

�
⟨𝜖, �x⟩ − ⟨𝜖, r⟩⟨r, �x⟩ − ⟨𝜖, z̃⟩⟨z̃, �x⟩

�
.
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is the process of partial sums of i.i.d. random variables and Ew2
n
(x) = Fn(x) , while 

Fn → F . Therefore, wn converges in distribution to Brownian motion in time F, i.e. 
Ew2

F
(x) = F(x) . Now consider the second term:

The third term produces the following expression:

where

This function, obviously, has unit L2(Fn)-norm and is orthogonal to functions const. 
Overall, we see that

and the right-hand side of (8) is the orthogonal projector of wn , which annihilates Fn 
and Hn . As the consequence of this, if ∫ y2dF(y) < ∞ , then ŵn will converge to the 
corresponding projection of the Brownian motion wF.

What we propose now is, again, to replace the residuals 𝜖 by another residuals, 
ê , constructed as their unitary transformation. As a preliminary step, assume that 
the covariates are listed in increasing order, X1 < X2 < ⋯ < Xn . One can assume 
this without loss of generality: even if it will entail re-shuffling of our initial pairs 
of observations, the probability measure we work under will not change, because 
the re-shuffled errors will still be independent from permuted (Xi)

n
i=1

 and will still 
form an i.i.d. sequence.

Now introduce another vector r̃ , different from z̃ , which also has unit norm and 
is orthogonal to r. Define

(7)wn(x) =
1√
n
⟨�, �x⟩ =

1√
n

n�

i=1

�i�(Xi≤x)

1√
n
⟨�, r⟩⟨r, �x⟩ =

1√
n

n�

j=1

�j
1

n

n�

i=1

�(Xi≤x) = wn(∞)Fn(x).

1√
n

n�

j=1

𝜖j(Xj − X̄)
1∑n

j=1
(Xj − X̄)2

n�

i=1

(Xi − X̄)�(Xi≤x)

= � (y − X̄)wn(dy)
1

∫ (y − X̄)2dFn(y) �
x

(y − X̄)dFn(y)

= � hn(y)wn(dy)�
x

hn(y)dFn(y),

hn(x) =
x − X̄√

∫ (y − X̄)2dFn(y)

.

(8)ŵn(x) = wn(x) − wn(∞)Fn(x) − ∫ hn(y)wn(dy)∫
x

hn(y)dFn(y),
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The second equality here is true because the vector 𝜖 is orthogonal to the vector z̃ , 
see (6). Thus, calculation of new residuals is as simple as in the previous case of (1).

Let us summarise properties of ê in the following proposition. In this, for tran-
sition to the limit when n → ∞ , it is natural to assume that r̃i can be represented 
through some piece-wise continuous function r̃(t) on [0, 1]:

in which case we have convergence

and

Orthogonality of the vector r̃ to the vector r implies orthogonality of the function 
r̃(t) to functions equal constant, or Q(1) = 0 . For example, r̃ can be chosen as

Proposition 1 

 (i) Covariance matrix of ê is

and therefore does not incorporate covariates X as soon as r̃ does not incor-
porate X.

 (ii) If (9) is true, then the regression empirical process based on ê , 

has the covariance function

where Qn(t) =
∑nt

i=1
r̃(

i

n
)∕n . In the case of (10) 

ê = Uz̃,r̃𝜖 = 𝜖 −
⟨𝜖, r̃ − z̃⟩
1 − ⟨z̃, r̃⟩ (r̃ − z̃) = 𝜖 −

⟨𝜖, r̃⟩
1 − ⟨z̃, r̃⟩ (r̃ − z̃).

(9)r̃i =
1√
n
r̃(
i

n
),

1√
n

nt�

i=1

r̃i =
1

n

nt�

i=1

r̃(
i

n
) → ∫

t

0

r̃(s)ds = Q(t)

nt∑

i=1

r̃2
i
=

1

n

nt∑

i=1

r̃2(
i

n
) → ∫

t

0

r̃2(s)ds.

(10)r̃i =

√
12

n

[
i

n
−

n + 1

2n

]
.

EêêT = I − rrT − r̃r̃T

ŵn,e(x) =
1√
n

n�

i=1

êi�(Xi≤x),

Eŵn,e(x)ŵn,e(y) = Fn(min(x, y)) − Fn(x)Fn(y) − Qn(Fn(x))Qn(Fn(y)),
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 (iii) The process ŵn,e , with change of time t = F(x) , converges in distribution to 
projection of standard Brownian motion on [0, 1] orthogonal to functions 1 
and r̃.

The main step in the proof of (i) is to express ê through �:

where the second equality is correct because r ⟂ z̃, r̃ and Uz̃,r̃ z̃ = r̃ by the definition 
of Uz̃,r̃ . However, here the vector e = Uz̃,r̃𝜖 is the vector with independent standard 
normal coordinates,

because � has independent standard normal coordinates and Uz̃,r̃ is unitary and self-
adjoint. At the same time,

and

Therefore

which represents it as projection of e orthogonal to r and r̃ with covariance matrix 
given in (i).

To show (ii), use vector notation for ŵn,e:

Opening the brackets in the last expression, one can find that

while

Qn(Fn(x)) ∼ −
√
3Fn(x)(1 − Fn(x)), n → ∞.

Uz̃,r̃𝜖 = Uz̃,r̃𝜖 − ⟨𝜖, r⟩Uz̃,r̃r − ⟨𝜖, z̃⟩Uz̃,r̃ z̃

= Uz̃,r̃𝜖 − ⟨𝜖, r⟩r − ⟨𝜖, z̃⟩r̃,

EUz̃,r̃𝜖 𝜖
TUz̃,r̃ = Uz̃,r̃Uz̃,r̃ = I,

⟨𝜖, r⟩ = ⟨Uz̃,r̃𝜖,Uz̃,r̃r⟩ = ⟨e, r⟩

⟨𝜖, z̃⟩ = ⟨Uz̃,r̃𝜖,Uz̃,r̃ z̃⟩ = ⟨e, r̃⟩.

ê = Uz̃,r̃𝜖 = e − ⟨e, r⟩r − ⟨e, r̃⟩r̃,

Eŵn,e(x)ŵn,e(y) =
1

n
E⟨�x, ê⟩⟨ê, �y⟩ =

1

n
�
T
x
(I − rrT − r̃r̃T )�y.

1

n
⟨�x, �y⟩ = Fn(min(x, y)) and

1

n
⟨�x, r⟩⟨�y, r⟩ = Fn(x)Fn(y),

1

n
⟨�x, r̃⟩⟨�y, r̃⟩ =

1

n

n�

i=1

r̃(
i

n
)�(Xi≤x)

1

n

n�

i=1

r̃(
i

n
)�(Xi≤y)

=
1

n

nFn(x)�

i=1

r̃(
i

n
)
1

n

nFn(y)�

i=1

r̃(
i

n
) = Qn(Fn(x))Qn(Fn(y)),
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which proves (ii).
The statement (iii) follows if we note that the covariance function of ŵn,e(x) in 

time t = F(x) converges to min(t, s) − ts − Q(t)Q(s) and that orthogonality of func-
tion r̃(⋅) to the function identically equal 1 makes the last expression the covariance 
of the Gaussian process

which indeed is the projection described in (iii).   ◻

In both regression models (1) and (5), but let us speak first about model (5), the 
process ŵn turns out to be a two-dimensional projection of a Brownian motion. 
When the values of the covariates change, this projection will change. However, it 
is geometrically clear that it should be possible to rotate one projection into another, 
and this another into still another one, thus creating a class of equivalent projec-
tions—those which can be mapped into each other. Then, one can choose a single 
representative in each equivalence class, call it standard and rotate any other projec-
tion into this standard one. What was done in this and the previous section was that 
we selected two standard projections and constructed the rotation of the other ones 
into these two.

The practical usefulness of this approach depends on how simple the rotation is. 
For us, the transformations of 𝜖 into ê look very simple.

Finally, note that model (5) includes two estimated parameters, while model 
(1)—only one. However, since the vector r is already “standard”, independent from 
covariates, there is no need to “rotate” it to any other vector. Therefore, in both cases 
one-dimensional rotation is sufficient. The situation when one needs to rotate several 
vectors at once, as well as general form of parametric regression, will be considered 
in the next Sect. 3.

3  General parametric regression

Now consider testing regression model

where m�(X) denotes a vector with coordinates (m�(Xi))
n
i=1

 , and m� is regression 
function, depending on d-dimensional parameter � . We will assume some regular-
ity of m�(Xi) with respect to � , namely that m�(Xi) is continuously differentiable in 
� . Our first aim is to demonstrate that in general situation the regression empirical 
process ŵn asymptotically remains a projection of a Brownian process.

3.1  Regression empirical process with estimated parameters

The main steps in this subsection may, for some readers, sound familiar, and it would 
be better if it were possible to give simply a reference. However, the closest reference 

w(t) − tw(1) − Q(t)∫
1

0

r̃(s)w(ds),

(11)Yi = m�(Xi) + �i, i = 1,… , , n, or in vector form, Y = m�(X) + �,
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we know about is Section 2 in Khmaladze and Koul (2004), and, may be, now Sec-
tion 4 in Khmaladze (2020), yet both will require some work from a reader to match the 
situations in these papers and in here. It, therefore, is more convenient for readers to see 
the main steps given explicitly here.

Consider a d-dimensional vector function of the partial derivatives

where

Then (ṁ𝜃(Xi))
n
i=1

 is d × n-matrix, with d rows and n columns. We assume that for 
every � coordinates of ṁ𝜃(x) are linearly independent as functions of x, which heu-
ristically means that the model does not include unnecessary parameters.

Obvious example when this condition is true is given by polynomial regression

where pj(x), j = 1,… , d, may form a system of (orthogonal) polynomials, or splines 
(see, for example, Harrell 2015, Sec.2.4.3), or trigonometric polynomials. Being lin-
ear in parameters, this model is not essentially different from the model considered 
in the previous section. Its other form, also frequently used, is given by

There are many other examples where m�(x) satisfies differentiability assumption.
Let �̂� denote the least square estimator of � , which is an appropriate solution of the 

least squares’ equation

Without digressing to exact justification (which can be found, for example, in Bates 
and Watts 2007) assume that Taylor expansion in � is valid and that together with 
normalisation by 

√
n it leads to

with a non-degenerate d × d-matrix Rn,

where �n denotes a d-dimensional vector, such that E‖�n‖2 → 0, n → ∞ . From the 
previous display, we obtain asymptotic representation for �̂�:

ṁ𝜃(x) = (ṁ𝜃k(x))
d
k=1

,

ṁ𝜃k(x) =
𝜕

𝜕𝜃k
m𝜃(x), k = 1,… , d.

(12)m�(x) = �1p1(x) + �2p2(x) +⋯ + �dpd(x),

𝗆

(x) = exp[�1p1(x) + �2p2(x) +⋯ + �dpd(x)].

n∑

i=1

ṁ�̂�(Xi)
[
Yi − m�̂�(Xi)

]
= 0.

1√
n

n�

i=1

ṁ𝜃(Xi)
�
Yi − m𝜃(Xi)

�
− Rn

√
n(�̂� − 𝜃) + 𝜌n = 0

Rn =
1

n

n∑

i=1

ṁ𝜃(Xi)ṁ
T
𝜃
(Xi) = ∫ ṁ𝜃(x)ṁ

T
𝜃
(x)dFn(x),
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As the next step, expand the differences 𝜖i = Yi − m�̂�(Xi) in � up to linear term and 
substitute the expression for 

√
n(�̂� − 𝜃) to get

In vector form, this becomes

an expression directly analogous to (6). It also describes the vector of residuals as 
being asymptotically projection of the vector of errors � , parallel to n-dimensional 
vectors of derivatives

It will be notationally simpler, while computationally not difficult, to change these 
linearly independent vectors to orthonormal vectors. Namely, introduce the vector 
function

and then from each of its coordinate function ��k(x) form the vector

The two notations are convenient each in its place: ��k as a vector in ℝn will be use-
ful in expressions like (15), and ��k(⋅) as a function in L2(Fn) will be useful in inte-
gral expressions like (16). Their respective norms are equal:

Which of these two objects we use will be visible in notation and clear from the 
context.

Now we can write (13) as

where the non-vanishing part on the right-hand side is the projection of � orthogonal 
to vectors (��k)

d
k=1

 . As a consequence, one can show that the following analogue of 
the representation (8) is true:

√
n(�̂� − 𝜃) = R−1

n

1√
n

n�

i=1

ṁ𝜃(Xi)
�
Yi − m𝜃(Xi)

�
+ oP(1).

𝜖i = 𝜖i − ṁT
𝜃
(Xi)R

−1
n

1

n

n∑

j=1

ṁ𝜃(Xj)𝜖j + oP(1).

(13)𝜖 = 𝜖 − ṁT
𝜃
R−1
n

1

n
⟨ṁ𝜃 , 𝜖⟩ + oP(1),

(ṁ𝜃1(Xi))
n
i=1

,… , (ṁ𝜃d(Xi))
n
i=1

.

𝜇𝜃(x) = R−1∕2
n

ṁ𝜃(x),

(14)��k,i =
1√
n
��k(Xi), i = 1,… , n.

n∑

i=1

�2
�k,i

= ∫ �2
�k
(x)dFn(x).

(15)𝜖 = 𝜖 −

d�

k=1

𝜇𝜃k⟨𝜇𝜃k, 𝜖⟩ + oP(1),
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This, again, describes ŵn as asymptotically projection of wn orthogonal to the func-
tions (��k(⋅))

d
k=1

 . We are now ready to describe rotation of this projection to another, 
standard projection, and of 𝜖 to a vector of another residuals.

Coming back to the linear (in � ) example (12), one finds that (pk(⋅))dk=1 is the vector 
of partial derivatives and the matrix Rn becomes

and neither of them depend on �.

3.2  Unitary transformation of ŵ
n

With some freedom of speech, we say that one can choose the new residuals in any 
way one wishes; for example, choose them independent of any covariates. Indeed, 
it would be immediate to choose some d orthonormal n-vectors (rk)dk=1 and then use 
projection of � , orthogonal to these vectors as new residuals.

To construct the vectors (rk)dk=1 , it would be convenient to start with a system of 
orthonormal polynomials, say, on [0, 1], which are continuous and bounded func-
tions. It often will be convenient to choose the first function r1 to be identically equal 
1. Then choose rk as vectors with coordinates

Note, however, that the orthogonality condition

and boundedness and continuity of our functions imply

This means that the vectors (rk)dk=1 will not be exactly but only asymptotically 
orthogonal. Small corrections, asymptotically negligible for n → ∞ , will be needed, 
formally. If we insert these corrections in our notation, it will make the text more 
complicated without opening any new feature of the transformation we want to dis-
cuss. Therefore in notations we will identify orthogonal polynomials in continuous 
time with those, orthonormal on the grid {1∕n, 2∕n,… , 1}.

(16)

ŵn(x) =
1√
n

n�

i=1

[Yi − m�̂�(Xi)]�(Xi≤x)

= wn(x) −

d�

k=1
�z≤x

𝜇𝜃k(z)dFn(z)� 𝜇𝜃k(z)wn(dz) + oP(1).

Rn =

(

∫ pj(x)pk(x)dFn(x)

)

j,k=1,…,d

(17)rki =
1√
n
rk(

i

n
), i = 1,… , n.

∫
1

0

rk(s)rl(s)ds = ∫
1

0

rk(F(z))rl(F(z))dF(z) = �k,l,

∫
1

0

rk(Fn(z))rl(Fn(z))dFn(z) → �k,l, n → ∞.
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It is, certainly, easy to imagine a unitary operator which maps functions 
(��k(⋅))

d
k=1

 into functions (rk(⋅))dk=1 , but in practical regression problems we need 
to calculate it explicitly. We present the operator K below as a product of one-
dimensional unitary operators. This allows coding of K recursively, in a loop, 
which was tried for the case of contingency tables with about 30-dimensional 
parameter in Nguyen (2017).

Suppose in one-dimensional unitary operator Ua,b of Sect. 1 we choose a = ��1 
and b = r1 and apply the resulting operator U��1,r1

 to the vector r2:

Then, the product 

is unitary operator which maps vectors r1, r2 to vectors ��1,��2 and vice versa, and 
leaves vectors orthogonal to these four vectors unchanged. For a general k, define r̃k 
as

Lemma 1 The product 

is the unitary operator which maps (rk)dk=1 to (��k)
d
k=1

 , and leaves vectors orthogonal 
to (rk)dk=1 and (��k)

d
k=1

 unchanged.

The proof of this lemma was given, for example, in Khmaladze (2016),  Sec-
tion  3.4. It may be of independent interest for statistics of directional data, when 
explicit expression for rotations is needed. At the end of this section, we give an 
essentially shorter proof.

Thus, the adjoint operator KT
d
 is the inverse of Kd and in proposition below we 

denote

and recall that Xi -s are numbered in increasing order. We also say

in the sense that for any sequence of n-vectors bn , such that ⟨bn, bn⟩ → c < ∞

This notion of equivalence is used in the proposition below.

U𝜇𝜃1,r1
r2 = r̃2.

K2 = U𝜇𝜃2,r̃2
× U𝜇𝜃1,r1

Kk−1rk = r̃k, k = 2,… , d.

Kd = U𝜇𝜃d ,r̃d
×⋯ × U𝜇𝜃1,r1

(18)ê = KT
d
𝜖,

E𝜖𝜖T ∼ I −

d∑

k=1

𝜇𝜃k𝜇
T
𝜃k

E⟨bn, 𝜖⟩2 ∼ ⟨bn, bn⟩ −
d�

k=1

⟨bn,𝜇𝜃k⟩2, n → ∞.
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Proposition 2 Suppose the regression function m�(x) is regular, in the sense that, 
for every � , the matrix Rn is of full rank and converges to a matrix R of full rank, and 
(15) is true. Suppose the orthonormal functions rk(⋅), k = 1,… , d, are continuous 
and bounded on [0, 1].Then

 (i) for the covariance matrix of residuals ê the following is true: 

 (ii) for the empirical regression process, based on residuals ê of (18), 

the following convergence of the covariance function is true: 

where Qk(t) = ∫ t

0
rk(s)ds ; moreover,

 (iii) the process ŵn,e , with time change t = F(x) converges in distribution to 
projection of standard Brownian motion on [0, 1] orthogonal to functions 
rk(⋅), k = 1,… , d.

Proof To prove (i), we do not need the explicit form of the operator Kd , and instead 
note that according to (15), up to asymptotically negligible term, 𝜖 is projection of 
� , orthogonal to collection of n-vectors ��1,… ,��d . According to the lemma above, 
these vectors are mapped by operator KT

d
 to n-vectors r1,… , rd , and the operator Kd 

is unitary. Therefore, the vector 𝜖 will be mapped into the vector which, up to asymp-
totically negligible term, will behave as projection of � , orthogonal to r1,… , rd:

The covariance matrix of the main part on the right side here is the expression given 
in (i).

To prove (ii), replace ê by its main term in (19) in the expected value

Here, since every rk(⋅) is continuous and bounded,

EêêT ∼ I −

d∑

k=1

rkr
T
k
, n → ∞;

ŵn,e(x) =
1√
n

n�

i=1

êi�(Xi≤x),

Eŵn,e(x)ŵn,e(y) → F(min(x, y)) −

d∑

k=1

Qk(F(x))Qk(F(y)), as n → ∞,

(19)ê
d
=𝜖 −

d�

k=1

rk⟨rk, 𝜖⟩ + oP(1).

Eŵn,e(x)ŵn,e(y) =
1

n
E⟨�x, ê⟩⟨ê, �y⟩ ∼

1

n
�
T
x
(I −

d�

k=1

rkr
T
k
)�y.
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Statement (iii) of convergence in distribution follows not from unitarity property of 
Kd as such, but from simplicity of its structure, reflected by (19). We have

The first inner product on the right side, denoted wn(x) in (7), converges in distribu-
tion to F-Brownian motion. Expression for ⟨�x, rk⟩ we considered above, while

Thus, overall representation of ŵn,e through wn has the form

Since wn converges in distribution to the F-Brownian motion wF , which in time 
t = F(x) becomes a standard Brownian motion w on [0, 1], we see that the process 
ŵn,e converges in distribution to the Gaussian process given by the right-hand side of 
(20), which in time t = F(x) can be written as

This is an orthogonal projection of w orthogonal to the functions rj(⋅), j = 1,… , d. 
 ◻

Proof of Lemma 1 Suppose Kl−1rj = ��j, 1 ≤ j ≤ l − 1 ; then, it follows that r̃l ⟂ 𝜇𝜃j , 
because rl ⟂ rj , and operator Kl−1 is unitary. But then , by its construction,

while

Then the rest follows by induction.   ◻

To sum up the result of this section, consider testing the model

1√
n
�
T
x
rk =

1

n

n�

i=1

rk(
i

n
)�(Xi≤x)

= �z≤x
rk(Fn(z))dFn(z) ∼ �z≤x

rk(F(z))dF(z).

ŵn,e(x) ∼
1√
n
⟨�x, 𝜖 −

d�

j=1

rj⟨rj, 𝜖⟩⟩ =
1√
n
⟨�x, 𝜖⟩ −

1√
n

d�

k=1

⟨�x, rk⟩⟨rk, 𝜖⟩.

⟨rk, �⟩ =
1√
n

n�

i=1

rk(
i

n
)�i =

1√
n

n�

i=1

rk(Fn(Xi))�i = ∫ rk(Fn(x))wn(dx).

(20)ŵn,e(x) ∼ wn(x) −

d∑

k=1
�z≤x

rk(Fn(z))dFn(z)� rk(Fn(x))wn(dx).

ŵ(t) = w(t) −

d∑

k=1

Qk(t)∫ rk(s)w(ds).

Klrj = U𝜇𝜃l,r̃l
Kl−1rj = U𝜇𝜃l,r̃l

𝜇𝜃j = 𝜇𝜃j,

Klrl = U𝜇𝜃l,r̃l
r̃l = 𝜇𝜃l.
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Here errors � have the same distribution as errors � in the original problem, while 
(rk)

d
k=1

 are the same fixed n-vectors as the ones we considered above, and (�k)dk=1 
are unknown coefficients. There are no covariates, and therefore, it is not exactly 
a regression problem. However, any one of such problems can be used as a fixed 
“standard” problem for testing regression with regular regression functions m� . 
Indeed, suppose one uses least square estimators (�̂�k)dk=1 and then produces the 
residuals

Direct calculation shows that they have the same covariance matrix as the one given 
in (i) of Proposition 2. In other words, we construct residuals 𝜖 in the original prob-
lem of interest, transform them into ê and then use ê as if we have �̂�.

4  The case of multidimensional covariates

It is an important case when the covariate is a finite-dimensional vector. Let us use 
p for dimension of each Xi . Again, we will not assume anything about probabilistic 
nature of these covariates, except that

where F is an absolutely continuous distribution function in ℝp.
For p-dimensional time, we could have shown that (16) in the previous section is 

still correct: the regression empirical process ŵn asymptotically still is the projection 
of Brownian motion, with the functions ��k(⋅) -s defined in the same way.

For distribution-freeness of the vector of new residuals ê it does not matter how 
do we realise the vectors (rk)dk=1 . They only should stay unchanged no matter what 
is the regression function m� and, hence, the functions ��k-s, provided only that the 
regularity conditions used in Sect. 3.1 are still valid. They also should not depend on 
the values of the “physical” covariates Xi-s. Given this, we can come to the construc-
tion of the process ŵn,e with only minimal change. For example, one can construct 
(rk)

d
k=1

 in literary the same way as earlier, through the functions on [0, 1]. However, 
in p-dimensional case it will be very natural to use continuous and bounded orthog-
onal functions rk(⋅) of p variables instead. Therefore, we need to find a natural way, 
similar to (17), to connect functions rk(⋅) and vectors rk.

Even after this is done and we obtain distribution-free residuals, the limit in distribu-
tion of the process ŵn,e , cf. (ii) of Proposition 2, will not be distribution-free; it will be 
the corresponding projection of F-Brownian motion w, while now we do not have con-
venience of the time transformation t = F(x) . One can apply to ŵn,e the scanning mar-
tingale approach of Khmaladze (1993) or Khmaladze and Koul (2004) or use unitary 
transformation suggested in Khmaladze (2016) to map the projection (16) into another 
“standard” projection, in these cases one will need to use estimator of the density of F.

(21)Z = �1r1 +⋯ + �drd + �.

�̂� = Z − �̂�1r1 −⋯ − �̂�drd.

Fn(x) =
1

n

n∑

i=1

𝕀{Xi≤x} → F(x), x ∈ ℝ
p,
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However, it would be preferable to continue viewing covariates (Xi)
n
i=1

 just as given 
vectors, with not known F and with no probabilistic assumptions, like their i.i.d.-ness. 
Thus, we suggest to use the approach offered by the theory of optimal transport.

To do this, let us generate an i.i.d. sequence (�i)ni=1 of random variables uniformly 
distributed on [0, 1]p . One could speak here about some distribution G instead of the 
uniform distribution, but it will be a trite generality. The random variables (�i)ni=1 will 
not be used to randomise our procedure but to serve as an “anchor”, which covariates 
(Xi)

n
i=1

 will be connected to.
More specifically, consider a one-to-one map T of (Xi)

n
i=1

 to (�i)ni=1 , so that T(Xi) = �j 
for one and only one j, cf. Peyré and Cuturi (2019), Sec. 2.2. There are n! choices of T. 
Out of them choose the map T0 , which minimises the following sum

which is the “total distance travelled” of all Xi to T(Xi) . Suppose now the n-vectors 
(rk)

d
k=1

 are formed as

Here (rk(⋅))dk=1 is a system of orthonormal functions on L2[0, 1]p . With this choice of 
(rk)

d
k=1

 , define residuals ê again as (18).
For any map T,

so that Gn will converge to the uniform distribution function on [0, 1]p.
Using T0 , we can transform the process ŵn,e of Proposition 2 (ii) as follows:

where the construction of ê incorporates, as we said, T0(Xi)-s. The following com-
ment is intended as justification of the use of T0 . Namely, it is not necessary to use 
minimiser T0 to produce the version of regression empirical process with standard 
covariance operator—any T will achieve this. However, if the null hypothesis (11) 
on the form of the regression function is not correct, expected values of residuals ê 
are not zero, but will be, for each contiguous converging alternatives, close to some 
function, say, h, specific to the alternative (see, for example, Khmaladze and Koul 
2004, Sec. 1, or Hajek and Sidak 1967). It will be desirable that the shift of trans-
formed process T∗

0
ŵn,e preserves the main pattern present in the shift function h. For 

this, it is necessary that the transformation of ŵn,e be smooth. One can say that the T 
should minimise the sum

n�

i=1

‖Xi − T(Xi)‖,

(22)rk,i =
1√
n
rk(T0(Xi)), i = 1,… , n.

(23)Gn(x) =
1

n

n∑

i=1

�(T(Xi)≤x) =
1

n

n∑

i=1

�(�i≤x),

(24)T∗
0
ŵn,e(x) =

1√
n

n�

i=1

êi�(T0(Xi)≤x),
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However, very wide class of alternatives, and therefore, of functions h is apriori 
possible. The choice of T should not be hinged on a particular h but should be as 
“smooth” map of (Xi)

n
i=1

 into (�i)ni=1 as possible.
We formulate the next proposition for readers’ convenience. It does not require a 

new proof, and we will give only short comments at the end of it.

Proposition 3 Suppose the regression function m�(x) is regular, in the same sense 
as in Proposition 2. Suppose the orthonormal functions rk(⋅), k = 1,… , d, are con-
tinuous and bounded on [0, 1]p and residuals ê are constructed using the vectors 
rk, k = 1,… , d , defined in (22). Then, as n → ∞ , 

 (i) for the covariance matrix of the residuals ê of (18) the following is true: 

 (ii) for the empirical regression process, based on residuals ê , 

the following convergence of the covariance function is true: as n → ∞ , 

where Qk(x) = ∫
z≤x rk(z)dz;

   moreover,
 (iii) the process T∗

0
ŵn,e converges in distribution to projection of standard Brownian 

motion on [0, 1]p orthogonal to functions rk(⋅), k = 1,… , d.

Given two orthonormal systems of n-vectors (��k)
d
k=1

 and (rk)dk=1 , the operator Kd 
will rotate one system into another, regardless of how these systems have been con-
structed. Therefore, (19) is also true for p-dimensional time, and this implies (i).

To see that (iii) is true denote �T0,x the vector with coordinates �(T0(Xi)≤x) . Now we 
use (19) to write the process T∗

0
ŵn,e in the form

and then use the representation of (rk)dk=1 through functions (rk(⋅))dk=1:

n∑

i=1

|h(Xi) − h(T(Xi))|.

EêêT ∼ I −

d∑

j=1

rkr
T
k
;

T∗
0
ŵn,e(x) =

1√
n

n�

i=1

êi�(T0(Xi)≤x),

ET∗
0
ŵn,e(x)T

∗
0
ŵn,e(y) → G(min(x, y)) −

d∑

k=1

Qk(x)Qk(y),

T∗
0
ŵn,e(x) ∼

1√
n
⟨�T0,x, 𝜖 −

d�

k=1

rk⟨rk, 𝜖⟩⟩,
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so that

This altogether leads to

The process T∗
0
wn obviously converges to G-Brownian motion (that is, standard 

Brownian motion) on [0, 1]p , while T∗
0
ŵn,e differs from it by the term which involves 

only finitely many linear functionals from it.
We formulated (ii) for the sake of some symmetry of presentation. To see that (ii) is 

true, one can follow the proof of (ii) in Proposition 2 using (23) in place of �T
x
�y,

and using ∫
z≤x rk(z)dGn(z) in place of 1√

n
�
T
x
rk . On the other hand, it also follows from 

(iii).
For optimal transport method to work, one does not need that the points Xi and �j 

are in the same set. One only needs n × n matrix of “distances” ‖Xi − �j‖ , or “costs” 
of transporting Xi to �j . It is also not necessary that (�i)ni=1 be generated as random vari-
ables—they can be strategically placed to form a uniformly spread net. On the other 
hand, to find a minimiser T0 can be computationally costly, more so than the estimation 
of density based on Fn . More detailed comparison of the two methods is the subject of 
the paper Bancolita (2019). In the next section, we choose p = 2 and consider several 
configurations of covariates (Xi)

n
i=1

 in [0, 1]2 . We also use an approximation of T0 by 
computationally simpler transformation T̃ called Hungarian method, see, for example, 
Kuhn (1956), Tomizawa (1971).

1√
n
⟨�T0,x, �⟩ =

1√
n

n�

i=1

�(T0(Xi)≤x)�i = T∗
0
wn(x)

1√
n
⟨�T0,x, rk⟩ =

1

n

n�

i=1

�(T0(Xi)≤x)rk(T0(Xi)) = � r(z)dGn(z),

1√
n
⟨�T0,x, rk⟩⟨rk, �⟩ =

1

n

n�

i=1

�(T0(Xi)≤x)rk(T0(Xi))
1√
n

n�

i=1

r(T0(Xi))�i

= �
x

0

r(z)dGn(z)� rk(z)T
∗
0
wn(dz).

T∗
0
ŵn,e(x) ∼ T∗

0
wn(x) −

d∑

k=1
∫

x

0

rk(z)dGn(z)∫ rk(z)T
∗
0
wn(dz).

Gn(min(x, y)) =
1

n

n∑

i=1

�(T0(Xi)≤x)�(T0(Xi)≤y) =
1

n

n∑

i=1

�(T0(Xi)≤min(x,y)),



1083

1 3

Distribution-free testing of linear regression  

5  On power considerations

We do not advocate in this paper any particular test. Any test based on a functional 
from the transformed empirical process T∗

0
ŵn,e(x) is asymptotically distribution-free, 

and which particular functional will be chosen as test statistics remains in discretion of 
a user.

Figures  2 and  3 provide some illustration regarding distribution-free property of 
transformed process and statistics based on it. For this, we needed to choose statistics of 
some classical test; for example, two one-sided Kolmogorov–Smirnov statistics

One-sided statistics was quicker to calculate and otherwise the choice was imma-
terial. Figure  2 shows three cases with different distributions of covariates (Xi)

n
i=1

 , 
which produces scatterplots of different patterns, although the sample size was not 

D+
n
= max

x
ŵn(x) and D+

n,e
= max

x
T∗
0
ŵn,e(x).
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Fig. 2  In the three scatterplots, the covariates (X
i
)n
i=1

 are generated as 2-dimen-
sional iid random vectors, but in the first row coordinates of each X

i
 are not independ-

ent: they are X
i1 ∼ U[0, 1],X

i2 ∼ Beta(8(1 − X
i1), 8Xi1) on the left scatterplot, and 

X
i1 ∼ U[0, 1],X

i2 ∼ Beta(8X
i1, 8(1 − X

i1)) on the right one. On the third scatterplot the coordinates are 
independent, but have different Beta-distributions: X

i1 ∼ Beta(0.35, 0.35) and X
i2 ∼ Beta(0.2, 0.2)
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too big, n = 200 . Figure 3 shows that the distribution of statistic Dn in these three 
cases was quite different, while the distribution of statistic Dn,e , with covariates of 
the same three different distributions, is almost undistinguishable.

On the other hand, distribution-freeness can not be the only requirement on a 
statistic or an underlying empirical process, because trivial and useless choices 
are possible. The version of regression empirical process constructed in this 
paper satisfies two requirements, not one: a) under the null hypothesis its limit 
distribution does not depend on parametric family of regression functions or the 
true value of the parameter, and b) for any sequence of alternative regression 
functions bn , converging to m� at some � from the (functional) direction �,

the statistic of locally most powerful test for testing against the sequence bn is a 
functional of the transformed regression empirical process. So, it is asymptotically 
distribution-free and sensitive to all local alternatives at the same time.

Indeed, the last claim is true because the regression empirical process ŵn does 
have the property b), see, for example, Khmaladze and Koul (2004), and because 
the process T∗

0
ŵn,e is its “smooth” one-to-one transformation. The latter also 

implies that test statistics based on ŵn can be viewed as statistics based on T∗
0
ŵn,e , 

bn(x) = m�(x) +
1√
n
�n(x), ∫ [�n(x) − �(x)]2dF(x) → 0,

Fig. 3  On the left panel, we show three simulated distribution functions of statistic D+
n
= max

x
ŵ
n
(x) for 

X
i
 -s distributed as on the three scatterplots shown above. These distribution functions are indeed dif-

ferent. On the right panel, there are also three graphs of distribution functions of the statistic from the 
transformed process D+

n,e
= max

x
T
∗
0
ŵ
n,e(x) for the same three scatterplots. Sample size in all cases was 

n = 200 . Visually the graphs are indistinguishable.
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and vice versa. Therefore, at the first glance natural question on power behaviour 
of the “same test” from the two processes is actually a question of comparing 
two different tests from the same empirical process. This is the case, for example, 
for two Kolmogorov–Smirnov statistics above, with the second maximum taken 
from ŵn,e(x) if covariates are one-dimensional. For a reader with some experience 
in goodness-of-fit theory, it will be clear that both tests are admissible—neither 
dominates the other in statistical power.

Here is an illustration of this point in two more figures. The left panel in Fig. 4 
shows distribution functions of statistic D+

n
 under the null model (the one more to 

the left), with two-dimensional covariates and with

and under alternative m�(x) + x3
2
 , while the right panel shows the distributions of sta-

tistic D+
n,e

 in the same situation. Figure 5 shows what happens under the same model, 
but now with alternative m�(x) + sin(�x2∕2).

To complement short discussion in the previous section on why we need to 
use the optimal transport T0 note the following: as we remarked, the choice of the 
optimal transport map will transform the shape of the bias term � in a consistent 
way, but one needs to be sure that this consistency is preserved as n → ∞ . This lat-
ter is true, however, as it follows, for example, from Cuesta-Albertos et al. (1997) 
Theorem 3.2.

m𝜃(Xi) = 𝜃0 + 𝜃10(X1i −
̄X1n) + 𝜃01(X2i −

̄X2n) + 𝜃11(X1iX2i −
̄X1X2),
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Fig. 4  Here �(x) = x
3

2
 and sample size n = 200 . Although the uniform distance, and therefore the dis-

tance in total variation, between the two distributions on both panels are very similar, the overall impres-
sion well may be that D+

n
 , the KS statistic from unmodified regression process (left panel) reacts on the 

alternative somewhat better than D+
n,e

.
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