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Abstract
We provide finite sample properties of general regularized statistical criteria in the 
presence of pseudo-observations. Under the restricted strong convexity assumption of 
the unpenalized loss function and regularity conditions on the penalty, we derive non-
asymptotic error bounds on the regularized M-estimator. This penalized framework 
with pseudo-observations is then applied to the M-estimation of some usual copula-
based models. These theoretical results are supported by an empirical study.

Keywords Copulas · Non-convex regularizer · Pseudo-observations · Statistical 
consistency

1 Introduction

The need for a joint modelling for high-dimensional random vectors has fostered a 
flourishing research in sparse models. The application domains of sparse modelling 
have been substantially widened by the availability of massive data. For instance, 
when dealing with significantly large financial portfolio sizes, it is arduous to build a 
realistic model that is both statistically precise and provides intuitive insights among 
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asset relationships. This gave rise to sparse matrix precision estimation or sparse factor 
modelling, for example.

Nowadays, copulas constitute a standard way of modelling the joint distribution of 
a random vector. They are flexible in that they allow a separate modelling between the 
dependence structure and the marginal distributions of the vector components. Fully 
parametric copula-based models can be estimated by assuming parametric models for 
both the copula and the marginals and then performing maximum likelihood estima-
tion. As an alternative, the empirical cumulative distribution of each margin can be 
plugged at the maximization step of the likelihood function. This semi-parametric 
(CML, or canonical maximum likelihood) approach has been introduced first in Gen-
est et al. (1995) or Shi and Louis (1995), and it has become standard. Besides, nonpar-
ametric estimation of copulas treats both the copula and the marginals parameter-free 
and thus offers the greatest generality.

In this paper, we consider the semi-parametric approach for copula estimation. A 
typical problem that often arises is the model complexity in that the parameterization 
requires the estimation of a significantly large number of parameters. For instance, 
the variance–covariance matrix of a Gaussian copula involves the estimation of 
q(q − 1)∕2 components of the correlation matrix of a q-dimensional random vector. 
Mixtures of copulas may also involve numerous parameters. Hopefully, regularizing 
a copula-based model through a penalization procedure offers an interesting way to 
tackle the over-fitting issue.

Most of the theoretical analysis of sparsity-based estimators has been developed 
for i.i.d. variables and convex loss functions: see Knight and Fu (2000), Fan and Li 
(2001), Zou and Zhang (2009), concerning their asymptotic properties; see also van 
de Geer and Bühlmann (2009), for finite-sample properties, for instance. Recent stud-
ies proposed theoretical results for sparse estimators that explicitly manage potentially 
non-convex statistical criteria. For instance, Loh and Wainwright (2015) derive finite-
sample error bounds on penalized M-estimators, where the non-convexity potentially 
comes from the objective function or from the regularizer. Using the same setting, 
Loh and Wainwright (2017) provide the support recovery property for a broad range 
of penalized models such as the Gaussian graphical model, or the corrected LASSO 
for error-in-variables linear models. In both studies, the restricted strong convexity 
(Negahban et al. 2012) of the unpenalized loss function and suitable regularity condi-
tions on the penalty function enable us to prove that any local minimum of the penal-
ized function lies within statistical precision of the true sparse parameter, and to pro-
vide conditions for variable selection consistency. In our study, we propose to extend 
their framework to pseudo-observation-based models for some loss functions that sat-
isfy the restricted strong convexity condition. To do so, we state consistency results for 
very general penalization functions, in which we explicitly are able to manage pseudo-
observations. It is widely recognized that replacing “true” observations by estimated 
ones (typically after transformations by marginal empirical distributions) significantly 
complicates inference theory: see Ghoudi and Rémillard (1998, 2004), van der Vaart 
and Wellner (2007), for instance. Our framework encompasses both parametric and 
semi-parametric models. It is then applied to some usual copula models: Gaussian 
and Student copulas, mixtures, etc. To the best of our knowledge, this paper is the 
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first attempt to build bridges between general penalized (non-convex) M-estimators, 
pseudo-observations and the semi-parametric inference of copula models.

The remainder of the paper is organized as follows. In Sect.  2, we start with a 
description of the copula-based model framework and of our penalized statistical cri-
terion. Then, we provide some finite sample error bounds on the regularized estima-
tors for pseudo-observation-based models. Incidentally, we correct a mistake in the 
initial result (Theorem 1 in Loh and Wainwright 2015) that was stated in the usual 
case of “true” observations. Section 3 is dedicated to the application of these results 
to some usual semi-parametric copula models. Section 4 illustrates these theoretical 
results through a short simulated experiment. The main proofs and additional elements 
are postponed into the “Appendix”.

2  Nonconvex penalized criteria based on pseudo‑observations

2.1  Copula models

Let us start with a n sample of n realizations of a random vector X ∈ ℝq , 
X ∶= (X1,… ,Xq)

� . This sample is denoted as X = (X1,… ,Xn) . Note that the obser-
vations may be dependent or not. As usual in the copula world (or elsewhere), we are 
more interested in the “reduced” random variables Uk = Fk(Xk) , k = 1,… , q , where 
Fk denotes the cdf of Xk . When the underlying laws are continuous, the variables Uk 
are uniformly distributed on [0,  1] and the joint law of U ∶= (U1,… ,Uq) is the 
uniquely defined copula of X . This should imply we could work with the sample 
U = (U1,… ,Un) instead of X  . Nonetheless, since the marginal cdfs’ Xk are unknown, 
they have to be replaced by consistent estimates. Therefore, we rather build a sample 
of pseudo-observations Ûi = (Ûi,1,… , Ûi,q) , i = 1,… , n , obtained from the initial 
sample X  . For instance, it is a usual practice to set Ûi,k = F̂k(Xi,k) for every i = 1,… , n 
and every k = 1,… ,m , where F̂k denotes a consistent estimate of Fk . Obviously, the 
most straightforward estimate of Fk is given by the usual empirical cdf 
Fn,k(s) ∶= n−1

n∑
i=1

�Xi,k⩽s
 or one of its rescaled versions, but such choices are not manda-

tory hereafter. Indeed, we will state our results under some assumptions on the pseudo-
observations themselves. Since we consider parametric copula models, the law of U 
belongs to a family P ∶= {ℙ� , � ∈ �} , where � denotes a convex subset of ℝd . The 
“true” value of the parameter is denoted by �0.

2.2  The optimization program

We are interested in the finite-sample properties of regularized M-estimators for both 
parametric and semi-parametric models. The non-convexity in the statistical criterion 
can potentially come from the unpenalized loss function, from the regularizer, or even 
from both of them.

More precisely, consider a loss function �n from � × [0, 1]qn to ℝ . The value 
�n(�;u1,… , un) evaluates the quality of the “fit” when the sample U is given by 
(u1,… , un) , i.e. given Ui = ui for every i = 1,… , n and under ℙ� . Typically, with 
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i.i.d. data, �n(�;u1,… , un) is the empirical loss associated with a continuous function 
� ∶ � × [0, 1]q → R+ , i.e.

Typically, the function � is defined as a least square error, or minus a log-likelihood 
function, but our framework is more general for the moment.

The quantity �n(�,U) cannot be calculated since we do not observe realizations of 
U in practice. Therefore, denoting Û ∶= (Û1,⋯ , Ûn) , the loss function �n(�,U) will 
be approximated by �n(𝜃, Û) , a quantity called “pseudo-empirical” loss function. 
Then, the problem of interest becomes

where p(�n, .) ∶ ℝd
→ ℝ is a regularizer and �n ⩾ 0 is the regularization parameter, 

which depends on the sample size and enforces a particular type of sparse structure 
in the solution. Moreover, g ∶ ℝd

→ ℝ , a convex function, and a supplementary reg-
ularization parameter R > 0 ensure the existence of local/global optima (see Loh and 
Wainwright 2015). For technical reasons, we include the side condition g(�) ⩾ ‖�‖1 
for every � . The function � → E[�(�,U)] is supposed to be uniquely minimized at 
� = �0 so that E[∇��n(�0,U)] = 0.

We impose that g(�0) ⩽ R , so that �0 is a feasible point.
Hereafter, we will consider general losses and penalties, both being non-convex 

possibly. As a consequence, due to the potential optimal duality gap between primal 
and dual optimization programs, it would not be possible to remove the constraint 
g(�) ⩽ R by considering penalized losses (or the opposite).

2.3  Potentially non‑convex losses and regularization functions

This section provides the assumptions required for our theoretical setting. They mostly 
come from the framework of Loh and Wainwright (2015, 2017).

Assumption 1 Sparsity assumption: card(A) = k0 < d , A = {i ∶ �0,i ≠ 0}.

Assumption 2 We consider coordinate-separable penalty (or regularizer) functions 
p(., .) ∶ ℝ+ ×ℝd

→ ℝ , i.e. p(�n, �) =
∑d

k=1
p(�n, �k) . More over, for some � ⩾ 0 , the 

regularizer p(�n, .) is assumed to be �-amenable, in the sense that 

 (i) � ↦ p(�n, �) is symmetric around zero and p(�n, 0) = 0.
 (ii) � ↦ p(�n, �) is non-decreasing on ℝ+.
 (iii) � ↦ p(�n, �)∕� is non-increasing on ℝ+⧵{0}.
 (iv) � ↦ p(�n, �) is differentiable for any � ≠ 0.
 (v) lim

�→0+
p�(�n, �) = �n.

 (vi) � ↦ p(�n, �) + ��2∕2 is convex for some � ⩾ 0.

�n(�;u1,… , un) ∶=
1

n

n∑
i=1

�(�, ui).

(1)�̂� = arg min
𝜃∶g(𝜃)⩽R

{𝔾n(𝜃, Û) + p(𝜆n, 𝜃)},
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   The regularizer p(�n, .) is said to be (�, �)-amenable if, in addition,
 (vii) there exists � ∈ (0,∞) such that p�(�n, �) = 0 for � ⩾ �n�.

We denote by q ∶ ℝ+ ×ℝd
→ ℝ the function q(�n, �) = �n‖�‖1 − p(�n, �) so that the 

function �‖�‖2
2
∕2 − q(�n, �) is convex.

Assumption 1 implies that the true (unknown) support is sparse, that is the vector 
�0 contains some zero components. Note that �0 is independent of the sample size n. 
To derive our theoretical properties, Assumption 2 provides regularity conditions that 
potentially encompass non-convex functions. These regularity conditions are the same 
as in Loh and Wainwright (2015, 2017) or Loh (2017). In this paper, we focus on the 
LASSO, the SCAD due to Fan and Li (2001) and the MCP due to Zhang (2010), given 
by

where bscad > 2 and bmcp > 0 are fixed parameters for the SCAD and MCP, respec-
tively. The LASSO is a �-amenable regularizer, whereas the SCAD and the MCP 
regularizers are (�, �)-amenable. More precisely, � = 0 (resp. � = 1∕(bscad − 1) , 
resp. � = 1∕bmcp ) for the LASSO (resp. SCAD, resp. MCP).

As for many parametric models, numerous empirical log-likelihoods associated 
with copulas are not concave functions in their parameters, at finite distance and glob-
ally on � . Moreover, this is still the case for some popular regularizers, as SCAD. 
Therefore, we would like to weaken such convexity/concavity assumption so that �̂� 
would be a consistent estimate of �0 , for which we could evaluate its accuracy. To 
this goal, the restricted strong convexity is a key ingredient that allows the manage-
ment of non-convex loss functions. Intuitively, we would like to handle a loss function 
that locally admits some curvature. To do so, we will weaken the most often assumed 
local strong convexity property of the loss function. Remind that the strong convex-
ity of a differentiable loss function corresponds to a strictly positive lower bound on 
the eigenvalues of the Hessian matrix uniformly valid over a local region around the 
true parameter. The notion of restricted strong convexity weakens the (local) strong 
convexity by adding a tolerance term. A detailed explanation is provided in Negahban 
et al. (2012).

Being more specific and slightly extending the definition of Loh and Wainwright 
(2017), we say that an empirical loss function �n satisfies the restricted strong convex-
ity condition (RSC) at � if there exist two positive functions �1, �2 and two nonnega-
tive functions �1, �2 of (�, n, d) such that, for any � ∈ ℝd,

����� ∶ p(𝜆n, 𝜌) = 𝜆n�𝜌�,
��� ∶ p(𝜆n, 𝜌) = sign(𝜌)𝜆n ∫ �𝜌�

0
(1 − z∕(𝜆nbmcp))+dz,

���� ∶ p(𝜆n, 𝜌) =

⎧
⎪⎨⎪⎩

𝜆n�𝜌�, for �𝜌� ⩽ 𝜆n,

−(𝜌2 − 2bscad𝜆n�𝜌� + 𝜆2
n
)∕(2(bscad − 1)), for 𝜆n ⩽ �𝜌� ⩽ bscad𝜆n,

(bscad + 1)𝜆2
n
∕2, for �𝜌� > bscad𝜆n,

(2)⟨∇�𝕃n(� + �) − ∇�𝕃n(�),�⟩ ⩾�1‖�‖22 − �1‖�‖21, if ‖�‖2 ⩽ 1,

(3)⟨∇𝜃𝕃n(𝜃 + 𝛥) − ∇𝜃𝕃n(𝜃),𝛥⟩ ⩾𝛼2‖𝛥‖2 − 𝜈2‖𝛥‖1, if ‖𝛥‖2 > 1.
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 Note that the (RSC) property is fundamentally local and that �k, �k , k = 1, 2, depend 
on the chosen � . In Loh and Wainwright (2017), their so-called (RSC) condition is 
similar, but the latter coefficients do not depend on (n, d). This is not necessary in 
general, but we will need such extensions for some copula models of Sect. 3. In the 
latter section, we will apply the (RSC) condition with �n(�) = �n(�,U) ( U contain-
ing unfeasible observations, most of the time) and/or �n(𝜃) = �n(𝜃, Û) (with the so-
called pseudo-observations). Moreover, to weaken notations, we simply write �k and 
�k , k = 1, 2 , by skipping their implicit arguments (�, n, d).

Remark 1 In the latter (RSC) condition, the threshold “one” for ‖�‖2 has been cho-
sen for convenience. Actually, it is always possible to reparameterize the model with 
�̄� ∶= 𝜁𝜃 for some 𝜁 > 0 . Therefore, the criterion becomes �n(�̄�) ∶= �n(𝜁𝜃) . Since 
∇𝜃�n(𝜃) = 𝜁∇�̄��n(�̄�) , the (RSC) is rewritten as

with the new constants (�̄�1, �̄�1, �̄�2, �̄�2) ∶= (𝛼1∕𝜁
2, 𝜈1∕𝜁

2, 𝛼2∕𝜁 , 𝜈2∕𝜁).

2.4  Finite sample consistency results

Now, following Loh and Wainwright (2015), we provide some error bounds over 
the penalized parameters, assuming that the loss function satisfies the (RSC) condi-
tion and the penalty is �-amenable. This is the purpose of the next theorem, which is 
stated in a deterministic manner. The bounds can actually hold with a high probability, 
depending on the upper bound over the loss function �n(., Û) and the choice of �n : see 
the discussion in Sect. 2.5.

Theorem  1 Suppose the objective function 𝔾n(⋅, Û) ∶ ℝd
↦ ℝ satisfies the (RSC) 

condition at �0 . Moreover, p(�n, .) is assumed to be �-amenable, with 3𝜇 < 4𝛼1 and 
4R�2 ⩽ �2 . Assume

Then, for every n, any stationary point �̂� of (1) satisfies

The proof is provided in Appendix A.1. The latter result is an improvement in Th. 1 
in Loh (2017), since our bounds are sharper under similar assumptions.

In Theorem 1, Condition (4) is satisfied even for large n because, under such cir-
cumstances, �n and �1 both tend to zero. Indeed, the “constant” �1 is typically a func-
tion of (n, q, d, �0) and of O(n−1∕2) in many models.

⟨∇�̄�𝕃n(�̄� + 𝛥) − ∇�̄�𝕃n(�̄�),𝛥⟩ ⩾�̄�1‖𝛥‖22 − �̄�1‖𝛥‖21, ‖𝛥‖2 ⩽ 𝜁 ,

⟨∇�̄�𝕃n(�̄� + 𝛥) − ∇�̄�𝕃n(�̄�),𝛥⟩ ⩾�̄�2‖𝛥‖2 − �̄�2‖𝛥‖1, ‖𝛥‖2 ⩾ 𝜁 ,

(4)4max
�
‖∇𝜃𝔾n(𝜃0, Û)‖∞, 2R𝜈1

�
⩽ 𝜆n ⩽

𝛼2
6R

.

‖�̂� − 𝜃0‖2 ⩽
6𝜆n

√
k0

4𝛼1 − 3𝜇
, and ‖�̂� − 𝜃0‖1 ⩽

6(16𝛼1 − 9𝜇)

(4𝛼1 − 3𝜇)2
𝜆nk0.
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Remark 2 The result above is based on an optimization reasoning only, and not on 
probabilistic arguments. Then, the previous theorem could be rewritten exactly simi-
larly, replacing �n(𝜃, Û) by �n(�,U) or even by any empirical loss function �n(�) 
that satisfies the (RSC) condition. In particular, it is not necessary to deal with 
pseudo-observations.

Our proof of Theorem 1 follows the proof of Theorem 1 in Loh and Wainwright 
(2015) but is not identical. Indeed, a key argument of the latter authors comes from 
their Lemma 5, that would imply in our proof

where M denotes the index set of the k0 largest elements |�̂�i − 𝜃0,i| and 𝛥 ∶= �̂� − 𝜃0 
(see their Equation (25)). Unfortunately, this lemma is wrong. Indeed, with its nota-
tions, choose �∗ = (2, 0) , � = (a, b) , for some positive constants a and b < 1 . Moreo-
ver, set ��(�) = �|�| (with L = 1 ). Set � = 2 . Then, � = (a − 2, b) , �A = (a − 2, 0) and 
�Ac = (0, b) . The asserted result of this Lemma 5 is here 2|�∗| − |�| ⩽ 2|�A| − |�Ac | , 
or even 4 − a − b ⩽ 2|a − 2| − b. This is clearly false in general: set a = 3∕2 , for 
instance.

For the sake of completeness, let us state a corrected version of Th. 1 in Loh and 
Wainwright (2015), using their own assumptions. They have reparameterized the 
(RSC) assumption by setting �1 = �1 ln d∕n and �2 = �2(ln d∕n)

1∕2.

Corollary 1 Suppose the objective function 𝔾n(⋅, Û) ∶ ℝd
↦ ℝ satisfies the (RSC) con-

dition at �0 . Moreover, p(�n, .) is assumed to be �-amenable, with 3𝜇 < 4𝛼1 . Assume

and n ⩾ 16R2 max{�2
1
, �2

2
} ln d∕�2

2
 . Then, any stationary point �̂� of (1) satisfies

The proof can be deduced from a few straightforward modifications of Theo-
rem 1’s proof. Check that the assumptions of Corollary 1 are stronger than those of 
Theorem  1: indeed, n ⩾ 16R2�2

2
ln d∕�2

2
 is equivalent to our assumption �2 ⩾ 4R�2 

and n ⩾ 16R2�2
1
ln d∕�2

2
 means �2(ln d∕n)1∕2 ⩾ 4R�1 . The latter inequality and the 

assumed condition 2�n(ln d∕n)1∕2 ⩽ �n , that appears in (6), imply 8R�1 ⩽ �n , as in (4).

2.5  Discussion

To evaluate the scope of our result, consider again a general penalized M-estimator 
based on pseudo-observations: �̂� = arg min

𝜃∶g(𝜃)⩽R

{𝔾n(𝜃, Û) + p(𝜆n, 𝜃)}. Therefore, by 

usual differentiation, we have

(5)0 ⩽ 3p(𝜆n, 𝜃0) − p(𝜆n, �̂�) ⩽ 𝜆n(3‖𝛥M‖1 − ‖𝛥M
c‖1),

(6)4max
�
‖∇𝜃𝔾n(𝜃0, Û)‖∞,

𝛼2
2

�
ln d

n

�
⩽ 𝜆n ⩽

𝛼2
6R

,

‖�̂� − 𝜃0‖2 ⩽
6𝜆n

√
k0

4𝛼1 − 3𝜇
, and ‖�̂� − 𝜃0‖1 ⩽

6(16𝛼1 − 9𝜇)

(4𝛼1 − 3𝜇)2
𝜆nk0.
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with obvious notations. Assume that the (RSC) assumption applies with U , an unob-
servable i.i.d. sample (the “usual” situation): when ‖�‖2 ⩽ 1,

Working with pseudo-observations induces an additional amount of noise, summa-
rized through W2,n . But this noisy term, due to the discrepancy between the pseudo-
observations Ûi and their unobservable targets Ui , can be controlled. Indeed, if we 
evaluate our pseudo-observations with usual empirical cdfs’, the DKW inequality 
for i.i.d. observations yields

 Therefore, for any positive constant C0 , supi,k �Ûi,k − Ui,k� ⩽ C0∕
√
n with a prob-

ability larger than 1 − 2q exp(−2C2
0
) , yielding

We deduce ⟨∇𝜃𝔾n(𝜃 + 𝛥, Û) − ∇𝜃𝔾n(𝜃, Û),𝛥⟩ ⩾ 𝛼1‖𝛥‖22 − 𝜈�
1
‖𝛥‖2

1
, with

with the same probability as above. In Loh and Wainwright’s papers and usual 
samples, the constant �1 is rather of magnitude ln d∕n (when it is nonzero). Equa-
tion  (7) means that �′

1
 is larger than �1 , and the gap is OP(d

2p∕
√
n) when �n is a 

sample average, as usual. Thus, the (RSC) condition is satisfied more easily with 
�′
1
 than with �1 , but there is a price to be paid: this larger constant tends to increase 

�n , and then the upper bound of ‖�̂� − 𝜃0‖k , k ∈ {1, 2} . In particular, �n has to be at 
least of order d2p∕

√
n “in general” (i.e. without taking into account some particular 

model features). Coming back to (4), note that ‖∇𝜃�n(𝜃0, Û)‖∞ is typically of order 
OP(d

2pn−1∕2) too. Indeed, as above, a limited expansion yields

⟨∇𝜃�n(𝜃 + 𝛥, Û) − ∇𝜃�n(𝜃, Û),𝛥⟩ = ⟨∇𝜃�n(𝜃 + 𝛥,U) − ∇𝜃�n(𝜃,U),𝛥⟩
+ 𝛥�

�
∇𝜃�,𝜃,U�n(𝜃

∗,U∗) ⋅
�
Û − U

��
𝛥 ∶= W1,n +W2,n,

⟨∇�𝔾n(� + �,U) − ∇�𝔾n(�,U),�⟩ ⩾ �1‖�‖22 − �1‖�‖21.

ℙ

(
sup

k=1,…,q

sup
i=1,…,n

|Ûi,k − Ui,k|2 > 𝜖) ⩽ 2q exp
(
− 2n𝜖

)
.

�W2,n� ⩽
d�

k,l=1

�𝛥k𝛥l�‖𝜕2𝜃k ,𝜃l∇U𝔾n(𝜃
∗,U∗)‖1‖Û − U‖∞

⩽
C0√
n
sup
k,l

‖𝜕2
𝜃k ,𝜃l

∇U𝔾n(𝜃
∗,U∗)‖1‖𝛥‖21.

(7)��
1
∶= �1 +

C0√
n
sup
k,l

‖�2
�k ,�l

∇U�n(�
∗,U∗)‖1,

‖∇𝜃𝔾n(𝜃0, Û)‖∞ ⩽ ‖∇𝜃𝔾n(𝜃0,U)‖∞ +

d�
k=1

‖𝜕𝜃k∇U𝔾n(𝜃0,U
∗)‖1‖Û − U‖∞

⩽ ‖∇𝜃𝔾n(𝜃0,U)‖∞ +
C0d√

n
sup
k

‖𝜕𝜃k∇U𝔾n(𝜃0,U
∗)‖1,
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with a probability larger than 1 − 2q exp(−2C2
0
) . The first term on the r.h.s. is of 

order (ln d∕n)1∕2 most often (Loh, 2017, p.876), and the second one is OP(d
2p∕

√
n) , 

the same rate as for �′
1
 . Therefore, by working with pseudo-observations, the usual 

rate �n ≍ (ln d∕n)1∕2 will be replaced by the more demanding rate d2p∕
√
n , a rea-

sonable cost when d is not “too large”.

Remark 3 Alternatively, if we are able to bound from below the Hessian matrix 
∇𝜃,𝜃��n(𝜃, Û) by a positive definite matrix �0 uniformly w.r.t. � ∈ � , we obviously 
satisfy the (RSC) condition with �k = �min(�0) and �k = 0 , k = 1, 2 . The price to be 
paid is to restrain the domain � , sometimes excessively. We will see an example of 
such a situation in Sect. 3.1.

Among the numerous potential loss functions, a particularly interesting case 
is obtained through Bregman divergences (Bregman 1967; Censor and Zenios 
1998): let �(⋅) be a differentiable and strictly convex function defined on a con-
vex subset � of ℝd . The Bregman divergence between two vectors �1 and �2 in � is 
D(�1, �2) ∶= �(�1) − �(�2) − ∇�(�2)

�
(
�1 − �2

)
. The latter quantity is nonnegative, is 

zero when �1 = �2 , can be easily symmetrized, induces nice optimization algorithms 
and satisfies many interesting properties (see "Appendix A" in Ravikumar et al. 2011). 
Bregman divergence has been used in many areas, including clustering (Banerjee et al. 
2005), graphical models (Cai and Zhou 2012), speech processing (Gray et al. 1980), 
etc. The squared Euclidian norm, the Kullback–Leibler divergence or the Mahalano-
bis distance, among many others, are particular cases of Bregman divergences. In our 
case, we are interested in situations, where there exists some empirical counterpart of 
the model parameter � , called �n , and the empirical loss is given by

for some known constant � ∈ [0, 1] . This is an extension of the standard Bregman 
divergence framework as the loss is now a balance between D(�, �n) and its switched 
argument version. We skip the dependence of �n,� w.r.t. the sample or the pseudo-
sample, because both cases are similar here. For instance, in many copula models, 
there exists a one-to-one mapping between the parameter � and some dependence 
measures � (as Kendall’s tau, Spearman’s rho, typically). In other words, the model 
can be re-parameterized by � . Since there exist natural and rather simple empirical 
estimators for many dependence measures, we can estimate � by minimizing a diver-
gence between this vector and �n . Another example with matrices of parameters is 
given in Sect. 3.1.

Simple calculations yield

and this implies

�n,�(�) ∶= �D(�, �n) + (1 − �)D(�n, �)

= (2� − 1)
{
�(�) − �(�n)

}
−
{
�∇�(�n) − (1 − �)∇�(�)

}�(
� − �n

)
,

∇��n,�(�) = �
{
∇�(�) − ∇�(�n)

}
+ (1 − �)∇2�(�)

(
� − �n

)
,
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If � is strongly convex, then there exists a nonnegative constant �1 s.t.

and this constant �1 is smaller than the minimum eigenvalue of the Hessian matrix 
∇2�(�0) . If � is three times differentiable on the interior of � and its derivatives are 
bounded, then, for every � ∶= � − �0 s.t. �0 + � ∈ �,

by setting �1 ∶= 2(1 − �) sup�∈� ‖�‖1 supi,j,k sup�∈� ��3
�i,�j,�k

�(�)�. This provides 
another justification of the (RSC) condition (in particular the need for the constant 
�1 ), in the case of usual samples or pseudo-observations. Interestingly, �1 = 0 by 
choosing � = 1 and then �n(�) = D(�, �n).

Remark 4 As in Remark 3, it may be interesting to impose the (RSC) condition with 
�1 = 0 , by noticing that

for some vector �∗ between � and �0 , and under some conditions of regu-
larity on � . Then, by constraining � , it is sometimes possible to impose 
∇3�(�∗)(�∗ − �n) + ∇2�(�∗) ⪰ � , for some definite positive matrix � . This would 
imply

3  Application to some copula families

In this section, we provide some insights regarding the applicability of the finite sam-
ple results of Sects.  2.4–2.5 to some copula-based models. We restrict ourselves to 
i.i.d. samples hereafter. This means we choose a loss function �n that will be typically 
but not exclusively given by (minus) the log-likelihood: �(�, u) = − ln c(u, �) , where 
c(⋅, �) denotes the copula density of X (or U , equivalently), given the parameter value 
� . In particular, we will check when the (RSC) condition applies. Hereafter, we will 
denote by u1,… , un a set of n random vectors in [0, 1]q . This is a generic notation for 
a usual i.i.d. sample U or for a sample of n pseudo-observations Û (as defined above), 
unless explicitly stated otherwise. Therefore, we will simultaneously cover the two 

∇��n,�(�) − ∇��n,�(�0) = �
{
∇�(�) − ∇�(�0)

}

+ (1 − �)∇2�(�0)(� − �0) + (1 − �)
{
∇2�(�) − ∇2�(�0)

}
(� − �

n
).

(8)⟨∇�(�) − ∇�(�0), � − �0⟩ ⩾ �1‖� − �0‖22,

(9)

⟨∇�𝔾n,�(�0 + �) − ∇�𝔾n,�(�0),�⟩ ⩾ ��1‖�‖22 + (1 − �)��∇2�(�0)�

− (1 − �)���
�
∇2�(�0 + �) − ∇2�(�0)

�
(�0 + � − �n)�

⩾ �1‖�‖22 − �1‖�‖21,

∇2�(�)(� − �n) − ∇2�(�0)(�0 − �n) =
{
∇3�(�∗)(�∗ − �n) + ∇2�(�∗)

}
(� − �0),

⟨∇�𝔾n,�(�0 + �) − ∇�𝔾n,�(�0),�⟩ ⩾ ��1‖�‖22 + ���� ⩾
�
��1 + �min(�)

�‖�‖2
2
.
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cases of known and/or unknown margins. In other words, setting u⃗ ∶= (u1,… , un) as 
the second argument of �n , this means that u⃗ can represent U or Û.

Now, for every copula family, we will try to answer the following questions: what 
is the associated criterion �n ? Is the optimization program a concave function of � ? Is 
the (RSC) satisfied? And, finally, can Theorem 1 be applied?

3.1  Gaussian copula models

If the underlying copula of the random vectors X is Gaussian, this means this copula is

for any u ∈ (0, 1)q , where � and �� , respectively, denote the cdf of a standard uni-
variate Gaussian r.v. and of a centered Gaussian vector whose covariance matrix 
is � . Actually, there are ones in the diagonal of � , meaning that this is a correla-
tion matrix. Note that � is a q × q matrix, and the number of free parameters is 
d = q(q − 1)∕2.

The parameter � will be defined as the column vector of the �-components that 
are located below the main diagonal, excluding the diagonal. It could also be possible 
to include the ones of the diagonal into � (i.e. � = vech(�) ), or even to consider all 
the stacked coefficients of � itself (i.e. � = vec(�) ). We denote the total number of 
nonzero entries of � as k0 = |A| , with A = {(i, j) ∶ i > j and 𝛴0,(i,j) ≠ 0}. For conven-
ience and with a slight abuse of notation, we write the loss �n(�, ⋅) or �n(�, ⋅) alterna-
tively in this subsection. The objective is the estimation of a sparse correlation matrix 
� from the sample covariance matrix (of the pseudo-observations) �n . The latter is 
defined as �n = n−1

∑n

i=1
xix

�
i
 with xi = (�−1(ui,1),… ,�−1(ui,q))

� . Both � and �n can 
be linked through some Bregman divergences for matrices, defined for two nonnega-
tive conformable matrices �1 and �2 as

where �(⋅) is a differentiable and strictly convex function over the space of real 
and symmetric nonnegative matrices. As in Sect.  2.5 and for some fixed known 
� ∈ [0, 1] , our loss function will be

In this section, we propose three options for �(⋅) and hence D(⋅, ⋅) : 

 (i) �(�) = − log(|�|) , called the Burg divergence, yielding the loss function 

 When � = 0 , this is equivalent to the Canonical ML criterion.

C(u, �) = ��(�
−1(u1),… ,�−1(uq)),

D(�1,�2) ∶= �(�1) − �(�2) − tr
(
∇�(�2)

�(�1 − �2)
)
,

�n,�(�) ∶= �D(�,�n) + (1 − �)D(�n,�).

�n,�(�) = (1 − �)tr(�n�
−1) + �tr(��−1

n
) + (2� − 1) log(|�n�

−1|) − q.
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 (ii) �(�) = tr(�2) , whose symmetrized version is called Jeffreys divergence. Since 
the matrix derivative of �(�) is 2� and after some simple calculations, the 
associated loss is the least squares-based criterion 

 that does not depend on � . We have introduced the Frobenius matrix norm: 
‖A‖2

2
= Tr(AA�) =

∑q

i,j=1
a2
i,j

 for any squared matrix A ∶= [ai,j]1⩽i,j⩽q.
 (iii) �(�) = tr(� log(�) − �) , known as the von Neumann divergence. Since the 

matrix derivative of �(�) (see Magnus and Neudecker 2019, Chapter 9) is 
log(�) , the associated loss function is 

 In particular, when � = 1 , this loss function nicely becomes 

We are now in a position to check the conditions of applicability of Theorem 1 for 
several estimators of � . For the three loss functions we will consider, the function 
g(⋅) may simply be chosen as the L1-norm of the underlying parameter, meaning 
g(�) = ‖vech(�)‖1 for every correlation matrix �.

In case (i), �(�) = − log(|�|) provides a Gaussian-type estimator

Above, �1 denotes the convex subset of q × q-correlation matrices such as

 for some positive constants a� and R. Note that the function � ↦ �n,�(�, u1,…un) 
is convex on �1 for any values of u1,… , un (apply Boyd and Vandenberghe 2004, 
exercise 7.4).

Proposition 1 Suppose that �n is invertible and �n satisfies

Suppose that �0 belongs to the convex parameter set �1 and that 2a𝜔∕q3 − 3𝜇 > 0 . 
Then, for every n, any stationary point �̂� of (10) satisfies

The latter upper bounds actually depend on the dimension q, i.e. on the number of 
free parameters. The latter could depend on the sample size n too.

�n(�) = ‖�n − �‖2
2
= tr

�
(�n − �)2

�
,

�n,�(�) = � tr(� log�) − (� − 1)tr(�n log�n)

+ (2� − 1)tr(�n − �) − �tr(log�n�) − (1 − �)tr(�n log�).

�n,1(�) = tr(� log� − � + �n − � log�n).

(10)�̂�g ∶= arg min
𝛴∈𝛩1

{�n,𝜔(𝛴, u1,⋯ , un) + p(𝜆n,𝛴)}.

�1 = {� ∶ � = ��,Diag(�) = Id, �min(2(1 − �)�n − (1 − 2�)�) ⩾ a�, g(�) ⩽ R},

(11)4‖(1 − 2�)�−1
0

+ ��−1
n

− (1 − �)�−1
0
�n�

−1
0
‖∞ ⩽ �n ⩽

a�

12q3R
⋅

‖vech(�̂�g) − vech(𝛴0)‖2 ⩽
6𝜆n

√
k0

2a𝜔∕q
3 − 3𝜇

, ‖vech(�̂�g) − vech(𝛴0)‖1 ⩽
6(8a𝜔∕q

3 − 9𝜇)𝜆nk0

(2a𝜔∕q
3 − 3𝜇)2

⋅
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Proof To establish the (RSC) condition, use the differential operator w.r.t. � . Then, 
usual calculations provide

To check the (RSC) condition, we focus on the Hessian matrix of �n . Using the for-
mulas of Section 10.6.1. in Lütkepohl (1996), the Hessian is

For some �1 ∈ � and some t ∈ [0, 1] , let � ∶= �0 + t� , � ∶= �1 − �0 . Then,

because the spectrum of A⊗ B is the cross-product of the spectrums of A and B 
(Lütkepohl 1996,  Section  5.2.1), and �min(�) = infx x

��x∕‖x‖2
2
 . Therefore, since 

�max(�) ⩽ Tr(�) = q , we get

Here, the constraint �min(2(1 − �)�n − (1 − 2�)�) ⩾ a� is key to ensure that the 
minimum eigenvalue is strictly positive. Now recall that the true vector of param-
eters is not � nor vec(�) but rather the so-called vector � , that stacks all coeffi-
cients of � that are located strictly below the main diagonal of � . With obvious 
notations, note that ‖�‖2

2
= ‖� − �0‖22 = 2‖� − �0‖22 for any correlation matrix 

� . Moreover, note that en(𝛴) = 4(𝜃 − 𝜃0)
�∇2

𝜃,𝜃�
�n(𝛴, u⃗)(𝜃 − 𝜃0). We deduce 

(𝜃 − 𝜃0)
�∇2

𝜃,𝜃�
𝔾n(𝜃

∗, u⃗)(𝜃 − 𝜃0) ⩾ ||𝜃 − 𝜃0||22a𝜔∕(2q3), for any �∗ that lies between � 
and �0 . Thus, at �0 , the (RSC) condition is satisfied with �1 = a�∕(2q

3) and �2 = �1 , 
�1 = �2 = 0 , and the result follows from Theorem 1.   ◻

The constraint 𝜆min(2(1 − 𝜔)𝛴n − (1 − 2𝜔)𝛴) > 0 is easily satisfied when 
𝜔 > 1∕2 . In particular, when � = 1 , check that Proposition 1 applies, replacing a�∕q3 
by 1∕q2 . Otherwise, the definition of �1 may appear somewhat restrictive. Indeed, 
when �n has zero eigenvalues (the case of high-dimensional models q >> 1 , most 
often) and � ⩽ 1∕2 , the parameter set �1 is empty.

The choice of �n depends on the distance (in sup-norm) between the true correla-
tion (resp. precision) matrix �0 (resp. �−1

0
 ) and its empirical counterparts �n (resp. 

�−1
n

 ), once obtained with pseudo-observations. Indeed, deduce from (11) that a con-
venient choice would be

∇𝛴�n,𝜔(𝛴, u⃗) = (1 − 2𝜔)𝛴−1 + 𝜔𝛴−1
n

− (1 − 𝜔)𝛴−1𝛴n𝛴
−1.

∇2
vec(𝛴),vec(𝛴)�

�n,𝜔(𝛴, u⃗)

= (1 − 𝜔)
{
𝛴−1𝛴n𝛴

−1 ⊗𝛴−1 + 𝛴−1 ⊗𝛴−1𝛴n𝛴
−1
}
+ (2𝜔 − 1)𝛴−1 ⊗𝛴−1.

en(𝛴) ∶= vec(𝛥)�∇2
vec(𝛴),vec(𝛴)�

𝔾n(𝛴, u)vec(𝛥)

⩾ vec(𝛥)�
�
𝛴−1

�
(1 − 𝜔)𝛴n − (1∕2 − 𝜔)𝛴

�
𝛴−1 ⊗𝛴−1

+ 𝛴−1 ⊗𝛴−1
�
(1 − 𝜔)𝛴n − (1∕2 − 𝜔)𝛴

�
𝛴−1

�
vec(𝛥)

⩾ 2‖𝛥‖2
2
𝜆min((1 − 𝜔)𝛴n − (1∕2 − 𝜔)𝛴)𝜆min(𝛴

−1)3,

(12)
en(�) ⩾||�||2

2
�min(2(1 − �)�n − (1 − 2�)�)�max(�)−3

⩾||�||2
2
�min(2(1 − �)�n − (1 − 2�)�)∕q3 ⩾ ||�||2

F
a�∕q

3.
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From Liu et al. (2009), Corollary 5 & 6, and using their truncated empirical mar-
ginal cdfs’, ‖�0 − �n‖∞ = OP

�
ln n

√
ln q∕n1∕4

�
 , and

We deduce �n ≍ q2 ln n
√
ln q∕n1∕4 is acceptable to apply Proposition  1. Nonethe-

less, for small q and large n, this choice is not probably the best one (c.f. our discus-
sion in Sect. 2.5). The same conclusion applies for the two next loss estimators of � 
(Propositions 14 and 16 ).

Alternatively and to weaken the latter problem, we can check the (RSC) condition 
for another estimator

where �̃�1 ∶= {𝛴 ∶ 𝛴 = 𝛴�,Diag(𝛴) = Id, 𝜆min(2(1 − 𝜔)𝛴0 − (1 − 2𝜔)𝛴) > ã𝜔, g(𝛴) ⩽ R} , for 
some positive constants ã𝜔 . Indeed, invoke inequalities  (8) and  (9). Clearly, �̃�1 is 
generally larger than �1 when �0 is positive definite and when the considered matri-
ces � are “not too far” from �0 . The price to be paid is coming from nonzero coeffi-
cients �1 and �2 . Moreover, �0 is unknown in �̃�1 , contrary to �n in �1 . This is clearly 
a drawback.

Now, let us consider the case (ii), i.e. the Bregman divergence �(�) = tr(�2) . This 
provides a least squares-based estimator

with �n,�(�, u1,… , un) ∶= ‖�n − �‖2
2
 and the convex parameter space is

Proposition 2 Suppose that �n satisfies

Suppose that �0 belongs to the convex parameter set �2 and that 𝜇 < 4∕3 . Then, for 
every n, any stationary point �̂� ls of (14) satisfies

Proof Using the differential operator with respect to � , we easily obtain 
∇vec(𝛴)�n(𝛴, u⃗) = 2vec(𝛴 − 𝛴n) . This directly implies

�n ⩾ 4max
�‖�−1

0

�
�0 − �n

�
�−1

0
‖∞, ‖�−1

0
− �−1

n
‖∞

�
.

‖�−1
0

− �−1
n
‖∞ ⩽ ‖�−1

0
− �−1

n
‖Frob = OP

�
ln n

√
(k0 + q) ln q∕n1∕4

�
.

(13)�̃�g ∶= arg min
𝛴∈�̃�1

{�n(𝛴, u1,⋯ , un) + p(𝜆n,𝛴)},

(14)�̂� ls ∶= arg min
𝛴∈𝛩2

{�n,𝜔(𝛴, u1,… , un) + p(𝜆n,𝛴)},

�2 ∶= {� ∶ � = ��,Diag(�) = Id, g(�) ⩽ R}.

(15)8‖�n − �0‖∞ ⩽ �n ⩽ 1∕(6R)⋅

‖vech(�̂� ls) − vech(𝛴0)‖2 ⩽
6𝜆n

√
k0

4 − 3𝜇
, ‖vech(�̂� ls) − vech(𝛴0)‖1 ⩽

6(16 − 9𝜇)𝜆nk0

(4 − 3𝜇)2
⋅

⟨∇vec(𝛴)𝔾n(𝛴, u⃗) − ∇vec(𝛴)𝔾n(𝛴0, u⃗),𝛴 − 𝛴0⟩ ⩾ 2‖𝛴 − 𝛴0‖22.
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Since en(𝛴) = 4(𝜃 − 𝜃0)
�∇2

𝜃,𝜃�
�n(𝛴, u⃗)(𝜃 − 𝜃0) and ‖� − �0‖22 = 2‖� − �0‖22 , we get 

(𝜃 − 𝜃0)
�∇2

𝜃𝜃�
𝔾n(𝜃

∗, u⃗)(𝜃 − 𝜃0) ⩾ ‖𝜃 − 𝜃0‖22, for any �∗ between �0 and � . The (RSC) 
condition is satisfied for the parameters �1 = �2 = 1 and �1 = �2 = 0 . Hence, Theo-
rem 1 yields the desired upper bounds.   ◻

Finally, we turn to case (iii), when �(�) = tr(� log� − �) . Here, we define the 
logarithm of any squared matrix S by log S = −

∑
j⩾1(Id − S)j∕j . Such series are con-

veniently defined when the largest eigenvalue of S in absolute value is less than one. 
This can be satisfied replacing our “usual” correlation matrices � by �∕q . We prefer 
to directly control such a constraint in the parameter space: there will exist a constant 
b > 0 s.t. all the eigenvalues of our matrices � and �n will be less than b. Moreover, 
we restrict ourselves to the case � = 1 to simplify. The corresponding estimator of � 
is then

where �3 ∶= {� ∶ � = ��,Diag(�) = Id, Sp(�) ∈]0, b[, g(�) ⩽ R} , a subset of 
matrices in �2 with positive eigenvalues. Note that it is always possible to set b = q 
and the parameter �3 is then reduced to �2.

Proposition 3 Suppose that �0 and �n belong to �3 , 2∕(bq) > 3𝜇 and that �n satisfies

Then, for every n, any stationary point �̂�n of (16) satisfies

Proof Let us compute the gradient and Hessian of �n,1(., u⃗) . Since 
∇��(�) = log� , we get ∇vec(𝛴)�n,1(𝛴, u⃗) = vec

(
log(𝛴∕b) − log(𝛴n∕b)

)
∕b . Since 

log(S) = −
∑+∞

j=1
(I − S)j∕j , the Hessian matrix is given by

applying Lütkepohl (1996),  Section  10.5.1, Eq. (14). For some �1 ∈ �3 and 
u ∈ [0, 1] , define � = �0 + u� with � = �1 − �0 . Then,

from Lütkepohl (1996), Section 2.4, Eq. (15). Since the two nonnegative matrices �1 
and �0 can be diagonalized in the same basis, this is the case for � too. In the latter 

(16)
�̂�n ∶= arg min

𝛴∈𝛩3

{�n,1(𝛴, u1,⋯ , un) + p(𝜆n,𝛴)},

�n,1(𝛴, u1,… , un) = tr(log(𝛴∕b)𝛴 − 𝛴 + 𝛴n − log(𝛴n∕b)𝛴)∕b,

4‖ log(�0∕b) − log(�n∕b)‖∞ ⩽ �n ⩽ 1∕(12bqR).

‖vech(�̂�n) − vech(𝛴0)‖2 ⩽
6𝜆n

√
k0

2∕(bq) − 3𝜇
, ‖vech(�̂�n) − vech(𝛴0)‖1 ⩽

6(8∕(bq) − 9𝜇)𝜆nk0

2∕(bq) − 3𝜇)2
⋅

∇2
vec(𝛴)vec(𝛴)�

�n,𝜔(𝛴, u⃗) =

+∞∑
j=1

1

b2j

j−1∑
k=0

(I − 𝛴∕b)j−1−k ⊗ (I − 𝛴∕b)k,

en(𝛴) ∶= vec(𝛥)�∇2
vec(𝛴)vec(𝛴)�

�n,𝜔(𝛴, u⃗)vec(𝛥)

=

+∞∑
j=1

1

b2j

j−1∑
k=0

tr
(
(I − 𝛴∕b)j−1−k𝛥(I − 𝛴∕b)k𝛥

)
,
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basis, �0 and �1 are denoted as Diag(�0,1,… , �0,q) and Diag(�1,1,… , �1,q), respec-
tively, with positive spectrums. As a consequence,

This yields (𝜃 − 𝜃0)
�∇2

𝜃𝜃�
𝔾n,1(𝜃

∗, u⃗)(𝜃 − 𝜃0) ⩾ ‖𝜃 − 𝜃0‖22∕(2bq), for any �∗ 
between �0 and � . The (RSC) condition would thus be satisfied for the parameters 
�1 = �2 = 1∕(2bq) , �1 = �2 = 0 .   ◻

The latter results dedicated to the sparse estimation of � deserve a few comments. 
The error bounds are significantly altered by the choice of the loss function. Should we 
consider the Burg divergence (case (i)), the lack of smoothness of �n(⋅, u⃗) , reflected by 
small �k’s, especially once the dimension becomes larger—the denominator of the �1 
is of order q3 , which rapidly shrinks to zero with q -, enforces a small � , meaning less 
non-convexity of the penalty function. As a consequence, the theoretical upper bounds 
are less precise since their denominators are sensitive to the trade-off (�1,�) . For the 
von Neumann case (iii), the �i coefficients are improved compared to the previous case 
by two aspects: no constraint on the spectrum of 2�n − � , and the denominator of 
the upper bound is of order bq at most instead of q3 . Thus, we expect more informa-
tive theoretical upper bounds. For the least squares loss function (case (ii)), the RSC 
coefficients are dimension/sample free. This significantly improves the precision of the 
error bounds. Indeed, the trade-off (�1,�) is not altered by the dimension/sample and 
can accommodate sufficiently large � . Therefore, we promote the use of �̂� ls defined 
in  (14). For the latter estimator, it is tempting to evaluate the likelihood of satisfy-
ing Condition (15). In the case of usual empirical covariance matrices �n , that would 
be evaluated from the unobservable sample U , this can be done using the minimax 
bounds obtained by Bickel and Levina (2008), Cai et al. (2010), Cai and Zhou (2012), 
among others. Nonetheless, in the case of empirical covariance/correlation matrices 
calculated with pseudo-observations, we are not aware of similar results.

Alternatively, it would be tempting to parameterize this Gaussian copula model 
with the precision matrix S ∶= �−1 (or its lower diagonal components) instead of the 
correlation matrix � . Indeed, the coefficients of the precision matrix are partial cor-
relations, that are of interest by themselves. Therefore, this would make sense to penal-
ize partial-correlations instead of correlations. In the Gaussian loss case, the regular-
ized statistical criterion would become

tr
�
(I − �∕b)j−1−k�(I − �∕b)k�

�
= tr

�
(I − �∕b)j−1�2

�
, and

en(�) ⩾
1

b2

+∞�
j=1

q�
i=1

(1 − �i∕b)
j−1(�1,i − �0,i)

2 =

q�
i=1

(b�i)
−1(�1,i − �0,i)

2

⩾

q�
i=1

(�1,i − �0,i)
2∕max

�
b�max(�0), b�max(�1)

�
⩾ ‖�‖2

2
∕(bq).

�
Ŝ = arg min

S∈�̄�

{�n(S, u1,… , un) + p(𝜆n, S)}, with

�n(S, u1,… , un) = n ln(2𝜋)∕2 − ln �S�∕2 +∑n

i=1
x�
i
Sxi∕(2n),
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where �̄� is a convenient subset of q × q nonnegative matrices. Moreover, the deriva-
tives of such criteria wrt S are simpler than in the case of derivations wrt � (Corol-
lary 3 in Loh and Wainwright 2015). Unfortunately, we have to restrict ourselves 
to the inverse of correlation matrices, and then the corresponding parameter subset 
would not be convex. This explains why we have parameterized the Gaussian copula 
model with � instead of �−1.

3.2  Elliptical copula models

Elliptical copulas are generalizations of Gaussian copulas. They are defined by 
the density generator � of a centered elliptical distribution Y in ℝq and a cor-
relation matrix � . We recall that the density of such a q-random vector Y is 
given by fY(y) = |�|−1∕2�(y��−1y), for some function � that must satisfy 
∫ ∞

0
rq−1𝜓(r2) dr < ∞ . In particular, we recover Gaussian distributions by setting 

�(t) = exp(−t∕2) . See Section 4 in Cambanis et al. (1981) for a reminder about ellip-
tical distributions. We deduce that the elliptical copula density w.r.t. the Lebesgue 
measure in ℝq is

where F� (resp. f� ) denotes the cdf (resp. density) of any margin of a q-dimensional 
centered and reduced elliptical random vector whose density, generator is � , i.e.

See Cambanis et al. (1981) or Gómez et al. (2003).
We assume this generator � is known and that the single unknown parameter of the 

elliptical copula is the correlation matrix � . As for the case of Gaussian copulas and 
for the same reason, we parameterize the model by � instead of �−1 . Note that � is 
most often convex. Indeed, for most density generators, there exists a distribution F∞ 
on the positive real line s.t.

for any positive t. This is the case for elliptical distributions that have been obtained 
with “universal” (independent of the dimension q) characteristic generators: see 
Equation (24) in Cambanis et  al. (1981). Nonetheless,  (17) does not imply that 
� ↦ �n(�, y) is a convex function in general.

Therefore, with the same notations as in Sect. 3.1, we define the statistical criterion 
as

cg(u) =
𝜓
�
F⃗−1
𝜓
(u)�𝛴−1F⃗−1

𝜓
(u)

�

�𝛴�1∕2 ∏q

k=1
f𝜓 (F

−1
𝜓
(uk))

, F⃗−1
𝜓
(u) ∶= [F−1

𝜓
(u1),… ,F−1

𝜓
(uq)]

�,

F� (x) = ∫
x

−∞

�1(t
2) dt, �1(u) =

�(q−1)∕2

� ((q − 1)∕2) ∫
∞

0

�(u + s)s(q−3)∕2 ds.

(17)�(t) = ∫
∞

0

(2�r2)−q∕2 exp(−t∕2r2)F∞(dr),
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This is the “usual” penalized canonical maximum likelihood criterion. Denote by 
‖A‖s the usual spectral norm of any matrix. � will be the convex set of q × q-correla-
tion matrices such as

for some positive constants a and b. For an arbitrary correlation matrix, we have 
denoted

Note that Sn(�) is nonnegative because � is decreasing under  (17). Moreo-
ver, �0 , the true correlation matrix, is assumed to belong to � and satisfies 
E[∇vec(�)�n(�0,U)] = 0 . The true subset model A admits the same cardinality k0 as 
in the Gaussian copula case.

Under  (17), note that (� �)2 ⩽ � ��� by the Cauchy–Schwarz inequality. Then, we 
can set, for every i = 1,… , n,

Proposition 4 Let � = (b∕q3 − Vn)∕4 . Assume  (17), 4𝛼 > 3𝜇 , R ⩾ 1∕6 and that 
(�n,R) satisfies

Then, any stationary point �̂� of (18) satisfies

The proof has been postponed in Appendix A.2. Elliptical copulas provide an inter-
esting case where the constants �k , k = 1, 2 of the (RSC) condition are nonzero. When 
Sn(�) does not depend on � , as for the Gaussian copula, we recover Proposition 1.

Remark 5 The set � depends on the unknown matrix �0 . Then, it may appear as only 
theoretical. Actually, in the definition of � , the true matrix �0 can be replaced by any 
preliminary crude estimator �̄� that is not “too far” from �0 ( ‖𝛴0 − �̄�‖s < 1 , to be 
specific).

(18)

⎧
⎪⎨⎪⎩

�̂� = arg min
𝛴∈𝛩

{�n(𝛴, y) + p(𝜆n,𝛴)}, where

�n(𝛴, u⃗) = ln �𝛴�∕2 −∑n

i=1
ln𝜓(y�

i
𝛴−1yi)∕n,

yi ∶=
�
F−1
𝜓
(ui,1),… ,F−1

𝜓
(ui,q)

�
, i = 1,… , n.

(19)
𝛩 = {𝛴 ∶ 𝛴 = 𝛴�,Diag(𝛴) = Id, 𝜆min(𝛴) ⩾ a, 𝜆min(2Sn(𝛴0) − 𝛴) > b, g(𝛴) ⩽ R},

Sn(�) ∶=
(−2)

n

n∑
i=1

(� �

�

)
(y�

i
�−1yi)yiy

�
i
.

sup
�∈��

�� �

�

��

(yi�
−1yi) =∶ �2

i
and Vn ∶=

2

n

n�
i=1

�2
i
‖yi‖42.

2max
�
‖vec(�−1

0
Sn(�0)�

−1
0

− �−1
0
)‖∞, 8R

a3
‖Sn(�) − Sn(�0)‖s

�
⩽ �n ⩽

�

6R
⋅

‖vech(�̂� − 𝛴0)‖2 ⩽
6𝜆n

√
k0

4𝛼 − 3𝜇
, ‖vech(�̂� − 𝛴0)‖1 ⩽

6(16𝛼 − 9𝜇)𝜆nk0

(4𝛼 − 3𝜇)2
⋅
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Alternatively, there is another way of estimating � without calculating the marginal 
distribution F� , its derivative and the elliptical copula. Indeed, this is often a boring 
task in analytical terms, and the evaluation of F� usually requires numerical analysis 
routines. As it is well known (see Wegkamp and Zhao 2016, for example), there is a 
one-to-one mapping between the components of � = [�kl]1⩽k,l⩽q and all the bivariate 
Kendall’s tau �k,l associated with the underlying random vector X : for every couple of 
indices (k, l), k ≠ l , �k,l = sin(��k,l∕2) . Therefore, invoking empirical Kendall’s taus’, 
a statistical criterion may be based on a moment-based penalized method to estimate 
� . It is given by

Note that this way of working enables one to split the global criteria 
�n(𝛴, u⃗) + p(𝜆T ,𝛴) as a sum of univariate functions. Therefore, we would replace 
a global optimization in ℝq(q−1)∕2 by q(q − 1)∕2 univariate optimization programs, 
what is clearly a nice feature. Obviously, the (RSC) condition would apply in this 
case. Unfortunately, the obtained matrix �̂� ∶= [�̂�k,l] has no reasons to be nonnega-
tive definite. Even if it is always possible to project �̂� on the subset of correlation 
matrices, the associated theoretical properties of this final output are far from clear 
and we prefer not to develop more this idea here.

3.3  Mixtures of copula models

An easy way of building highly parameterized copula models is through mix-
tures. Indeed, consider a family of fixed q-dimensional copulas {Ck, k = 1,… ,m} . 
We can assume the true copula C is a linear combination of all the latter ones, 
i.e. C(u) =

∑m

k=1
�kCk(u), for every u ∈ [0, 1]q . Obviously, the parameter is 

� ∶= (�1,… ,�m)
� , with �k ∈ [0, 1] for every k = 1,… ,m and 

∑m

k=1
�k = 1 . The 

associated loss function is (minus) the corresponding log-likelihood. Denoting by ck 
the copula density associated with Ck , k = 1,… ,m , the statistical criterion is thus 
given by

𝛩 = {(𝜔1,… ,𝜔m) ∈ ℝm
+
,
∑m

k=1
𝜔k = 1, ‖𝜃 − 𝜃0‖2 < 𝜖, g(𝜃) ⩽ R}, for 𝜖 > 0.

For convenience, introduce the column vector c⃗(ui) ∶=
(
c1(ui),… , cm(ui)

)� for 
every i, and set 𝜇i,0 ∶=

�
𝜃�
0
c⃗(ui) + 𝜖‖c⃗(ui)‖2

�−1.

Proposition 5 For any � ≠ � , let 𝛼 = 𝜆min

�
n−1

∑n

i=1
𝜇2
i,0
c⃗(ui)c⃗(ui)

�
�
, and assume 

𝛼 > 3𝜇∕4 . Suppose that (�n,R) satisfy

(20)

⎧
⎪⎨⎪⎩

∀(k, l), �̂�k,l = arg min
𝜎k,l∶g(𝛴)⩽R

{𝔾n(𝜎k,l, u⃗) + p(𝜆n, 𝜎k,l)}, where

𝔾n(𝜎k,l, u⃗) =
�
𝜎k,l − sin(𝜋𝜏k,l∕2)

�𝛼
, 𝛼 ⩾ 1, with

𝜏k,l ∶= 2
∑

i<j

�
�(Xi,k ⩽ Xi,l,Xj,k ⩽ Xj,l) − �(Xi,k > Xi,l,Xj,k ⩽ Xj,l)

�
∕(n2 − n).

(21)

�
�̂� = arg min

𝜃∈𝛩

{�n(𝜃, u) + p(𝜆n, 𝜃)}, where

�n(𝜃, u⃗) = −
∑n

i=1
ln
�∑m

k=1
𝜔kck(ui)

�
∕n, with
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Then, any stationary point �̂� of (21) satisfies

Proof Since �n(𝜃, u⃗) = −
∑n

i=1
ln
�
𝜃�c⃗(ui)

�
∕n , simple calculations provide

Consider the parameter �1 ∈ � , and � = t�0 + (1 − t)�1 for some t ∈ [0, 1] . Since 
𝜃�c⃗(ui) is nonnegative for every t ∈ [0, 1] , we have

Therefore, this yields

so that 𝛼1 = 𝛼2 = 𝜆min

�
n−1

∑n

i=1
𝜇2
i,0
c⃗(ui)c⃗(ui)

�
�
 , �1 = �2 = 0 .   ◻

Remark 6 As in the case of elliptical copulas, the set � and the constants �i depend 
on the unknown parameter �0 . Nonetheless, it can be easily checked that the previous 
result holds, replacing �0 (in � and �i ) by any feasible and consistent parameter �̄�.

It is possible to extend the latter analysis towards mixtures of parametric copulas 
with unknown parameters. In this case, C(u) =

∑m

k=1
�kCk,�k

(u) for every u ∈ [0, 1]q . 
Now, for any k = 1,… ,m , Ck,�k

 belongs to a given parametric copula family 
Ck ∶= {Ck,𝜃k

copula on [0, 1]q;𝜃k ∈ 𝛩k ⊂ ℝdk}, and the associated copula densities 
are denoted by ck,�k . Now, the unknown parameter is � ∶= (�1,… ,�m, �1,… , �m), 
with �k ∈ [0, 1] for every k = 1,… ,m and 

∑m

k=1
�k = 1 . The statistical criterion is 

thus given by

4‖n−1
n�
i=1

𝜇ic⃗(ui)‖∞ ⩽ 𝜆n ⩽ 𝛼∕(6R)⋅

‖�̂� − 𝜃0‖2 ⩽
6𝜆n

√
k0

4𝛼 − 3𝜇
, ‖�̂� − 𝜃0‖1 ⩽

6(16𝛼 − 9𝜇)𝜆nk0

(4𝛼 − 3𝜇)2
⋅

∇𝜃�n(𝜃, u⃗) = −

n∑
i=1

c⃗(ui)

n𝜃�c⃗(ui)
, and ∇2

𝜃,𝜃�
�n(𝜃, u⃗) =

n∑
i=1

c⃗(ui)c⃗(ui)
�

n(𝜃�c⃗(ui))
2
⋅

𝜃�c⃗(ui) ⩽ 𝜃�
0
c⃗(ui) + ‖𝜃0 − 𝜃1‖2‖c⃗(ui)‖2 ⩽ 𝜇−1

i,0
.

(𝜃1 − 𝜃0)
�∇2

𝜃,𝜃�
𝔾n(𝜃, u⃗)(𝜃1 − 𝜃0) ⩾

n�
i=1

𝜇2
i,0
(𝜃1 − 𝜃0)

�c⃗(ui)c⃗(ui)
�(𝜃1 − 𝜃0)∕n

⩾ ‖𝜃1 − 𝜃0‖22𝜆min

�
n−1

n�
i=1

𝜇2
i,0
c⃗(ui)c⃗(ui)

�
�
,



21

1 3

Non-convex M-estimation with pseudo-observations

for some positive constant � . The dimension of � is then d ∶= m + d1 +⋯ , dm.
It is tempting to assume a (RSC)-type condition for every “component copula” 

model ck,�k , k = 1,… ,m and to deduce such a condition for the mixture model above. 
Unfortunately, the latter “componentwise” (RSC) conditions are not sufficient because 
they do not allow to control the terms that involve some products of ck,�k and cl,�l and 
their derivatives, when k ≠ l . Therefore, we will assume a stronger condition: a (RSC)-
type condition applies on every mixture model, for any given set of weights. For such 
models, the unknown vector of parameters becomes �̄� ∶= (𝜃1,… , 𝜃m) . Its dimension 
is denoted by d̄ and its true value implicitly depends on the chosen vector of weights. 
Then, we now assume that, for every � = [�1,… ,�m]

� , there exist some constants 
𝛼j,𝜔 > 0 and �j,� ⩾ 0 , j = 1, 2 , s.t.

 for every �̄� s.t. (𝜔, �̄�) ∈ 𝛩 . We will assume that, for j = 1, 2,

Denote c⃗𝜃(u) ∶=
(
c1,𝜃1 (u),… , cm,𝜃m (u)

)�
. For every i = 1,… , n and every � ∈ � , set 

𝜇i(𝜃) ∶= (𝜔�c⃗𝜃(ui))
−1 . We introduce the constants

Proposition 6 Assume that 4𝛼1 > 3𝜇 , and that (�n,R) satisfies

for some positive constant �2 . Then, if 4R�2 ⩽ �2 , any stationary point �̂� of (22) 
satisfies

(22)

(23)v̄�∇�̄�,�̄��𝔾n

�
(𝜔, �̄�), u⃗

�
v̄ ⩾ 𝛼1,𝜔‖v̄‖22 − 𝜈1,𝜔‖v̄‖21, ‖v̄‖2 ⩽ 1,

(24)v̄�∇�̄�,�̄��𝔾n

�
(𝜔, �̄�), u⃗

�
v̄ ⩾ 𝛼2,𝜔‖v̄‖2 − 𝜈2,𝜔‖v̄‖1, ‖v̄‖2 > 1,

(25)𝛼
j
∶= inf

𝜔
𝛼j,𝜔 > 0 and 𝜈j ∶= sup

𝜔
𝜈j,𝜔 < ∞.

𝛼1 ∶= min

�
inf
𝜃∈𝛩

𝜆min

�
1

n

n�
i=1

𝜇2
i
(𝜃)c⃗𝜃(ui)c⃗

�
𝜃
(ui)

�
;𝛼

1

�
, 𝛼2 ∶= min

�
𝛼1;𝛼2

�
,

𝜏0 ∶=
2

n
sup
𝜃∈𝛩

n�
i=1

�
𝜇i(𝜃)

2
� m�

k=1

𝜔k‖𝜕𝜃k ck,𝜃k (ui)‖∞
�
sup
l

cl,𝜃l (ui) + 𝜇i(𝜃) sup
k

‖𝜕𝜃k ck,𝜃k (ui)‖∞
�
,

𝜈1 ∶= 𝜈1 + 𝜏0, 𝜈2 ∶= max
�
𝜈2, 𝜈1

�
+ 𝜏0.

4max
�
‖∇𝜃𝔾n(𝜃, u⃗)‖∞, 2R𝜈1

�
⩽ 𝜆n ⩽ 𝛼2∕(6R),
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The proof is given in Appendix 6.

3.4  Archimedean copulas

Archimedean copulas are specified by their generator g ∶ [0, 1] ↦ ℝ+ ∪ {+∞} . Most 
often, this generator is assumed to belong to a parametric family Fgen ∶= {g� , � ∈ �} . 
Many popular copula families are obtained by conveniently choosing such families 
Fgen : Clayton, Gumbel, Frank, etc. Very often, � is a single number and the value 
� = 0 is related to the independence copula. Since this parameter � is easily and 
explicitly mapped to the underlying Kendall’s taus’, nice and simple GMM-type esti-
mation procedures are often available, as in the end of Sect. 3.2. And such criteria can 
be penalized, obviously.

Despite their popularity, highly flexible and highly parameterized Archimedean 
copulas are not available, to the best of our knowledge. This significantly decreases 
the interest of our penalized techniques in such particular cases, that are well suited 
when the dimension d is relatively large. At the opposite, hierarchical Archimedean 
copulas (HAC) are nice and richly parameterized generalizations. They allow asym-
metries and different dependencies for couples of variables, by combining a hierarchy 
of Archimedean copulas Cj , j = 1,… ,m , with different parameters �j . Obviously, the 
whole model is known once we have known/estimated � ∶= (�1,… , �m) . See McNeil 
(2008), Okhrin et al. (2013 a,b), Segers and Uyttendaele (2014), Górecki et al. (2016), 
among others. As a standard situation, all invoked copulas in a HAC are bivariate and 
belong to the same family, and the successive parameter values are ordered so that we 
get a true q-dimensional copula. Let us keep the latter framework, even if our tech-
niques apply in the case of more general HAC constructions.

The densities of (nested) HAC can be computed analytically (Hofert and Pham 
2013), but calculations and coding become rapidly very tedious when the underlying 
dimension is “large”. Therefore, a full MLE of the underlying parameters is feasible 
only when q is “small”. In any case, under our penalized point of view, there is no 
guarantee that the (RSC) condition is satisfied for most Archimedean families, neither 
for HAC models a fortiori.

Therefore, we promote an adaptation of the recursive maximum likelihood method 
(RMLE), as exposed in Okhrin et al. (2013b) for instance. If every underlying cop-
ula Cj that defines a given HAC structure satisfies the (RSC) condition, the penalized 
RMLE is rather simple: as explained in Okhrin et al. (2013b), successively estimate 
the parameter(s) associated with every copula with pseudo-observations that are built 
with the previously estimated parameters. The novelty would come here from the 
penalization.

Alternatively, if the (RSC) is not fulfilled for some of the underlying copulas Cj , we 
propose to adapt the methodology of Sect. 3.1. To simplify, assume that every cop-
ula Cj is bivariate, that its parameter �j is a real number and that there is an explicit 
one-to-one analytic relationship between the Kendall tau of Cj and �j : �j(�j) = �j , 

‖�̂� − 𝜃0‖2 ⩽
6𝜆n

√
k0

4𝛼1 − 3𝜇
, ‖�̂� − 𝜃0‖1 ⩽

6(16𝛼1 − 9𝜇)𝜆nk0

(4𝛼1 − 3𝜇)2
⋅
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j = 1,… ,m . The RMLE process is based on the fact that Cj is the copula between 
some random variables Zj,1 and Zj,2 that are functions of �1,… , �j−1 and some of the 
components of U . Therefore, using empirical counterparts and the previously esti-
mated values �k , k < j , we can build a “pseudo-sample” of (Zj,1, Zj,2) . Then, we are 
able to calculate the associated empirical Kendall’s tau, as in (20), denoted by 𝜏j , and 
to estimate �j as

And the process goes on, allowing the estimation of all parameters �k successively. 
Indeed, for most usual penalties, the latter program satisfies the (RSC) condition, 
as for penalized least-squares criteria ( � = 2 ). Note that any dependence measure 
can be applied here, once there exists a one-to-one mapping between such measure 
and the underlying parameter, that is univariate here. Nonetheless, we will not try to 
detail technical conditions to apply Theorem 1 for such models. This general task 
seems to be unfeasible, and analytic calculations have to be done for every particular 
parametric model.

Remark 7 Note that Okhrin et  al. (2015) have proposed a recursive penalized MLE 
procedure for HAC models. It can be seen as the natural alternative to (26), in particu-
lar when (RSC) is always satisfied.

4  Empirical study

In this section, we carry out a simulation study to illustrate the theoretical results of 
our method in the presence of pseudo-observations. To do so, we consider mixtures 
of copula models, as described in Sect.  3.3: the data generating process is induced 
by a linear combination of copulas with known parameters, where the combina-
tion depends on weights � , which are supposed to be sparse, so that the number of 
nonzero components is arbitrarily set. We consider the problem dimension m = 5 with 
� = (0, 0.2, 0.8, 0, 0)� and bivariate copulas ( q = 2 ). We select five Archimedean cop-
ulas for solving the problem (21) as follows: following the notations in Nelsen (2006), 
c1(ui) is Gumbel with parameter 30; c2(ui) is Clayton with parameter 0.5; c3(ui) is 
Gumbel with parameter 8; c4(ui) is Clayton with parameter 2; c5(ui) is Frank with 
parameter 15. Denote by �j , j = 1,… , 5 , the generators of the five latter Archimedean 
copulas. To generate a realization of U along our given mixture of copulas, we apply 
the following simulation procedure: 

 (i) randomly draw the identity of the copula (an index j ∈ {1,… , 5} ), the randomi-
zation being determined by the weights in �;

 (ii) draw Vj ∼ L−1(�j) , where L−1(�j) is the inverse of the Laplace transform of �j;
 (iii) simulate i.i.d. realizations Xk ∼

i.i.d.
U([0, 1]) , k = 1,… , q;

 (iv) set U ∶= (U1,⋯ ,Uq) where Uk = �j(− ln(Xk)∕Vj) , k = 1,… , q.

(26)𝜃j ∶= argmin
𝜃j

(𝜙j(𝜏j) − 𝜃j)
𝛼 + p(𝜆n, 𝜃j), 𝛼 ⩾ 1.
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In that case, the marginals are uniform on [0, 1] and the realizations Ui are i.i.d. When 
the margins of Ui are unknown, we compute pseudo-observations Ûi through the 
empirical ranks Ûik = Rik∕(n + 1) , i = 1,… , n , k = 1,… , q , where Rik is the rank of 
Ui,k among the kth univariate sample (Ui,k)i=1,…,n.

To recover the sparse support A with card(A) = 2 , we consider the regular-
ized problem as detailed in Sect.  3.3. Since the copula parameters are known here, 
denote � = � the vector of weights in our problem (21), and we set g(�) = ‖�‖1 . 
Our optimization procedure relies on a numerical scheme under the linear constraint ∑5

k=1
�k = 1 , carried out by the function fmincon(.) on MATLAB and based on the 

second-order information matrix. Note that the latter can encompass nonlinear con-
straints such as {𝛴 ∶ 𝜆min(2𝛴n − 𝛴) > a} when one considers problem (10). Alterna-
tively, in their section 4, Loh and Wainwright (2015) developed a composite gradient 
descent procedure, which consists in a three-step updating procedure of the optimized 
parameter value, to solve (1). This first-order-based algorithm can be adapted to the 
sparse estimation of matrix parameters under positive-definiteness constraints, such as 
the alternating direction method of multipliers devised by Bien and Tibshirani (2011): 
see their appendix 3.

As for the regularization parameters, since we work under the constraint ‖�‖1 = 1 , 
the specification of R can be left aside. Should we drop the weight condition on � , 
then following Loh and Wainwright (2015, 2017), we would select R = p(�n, �0)∕�n . 
Furthermore, we set �n = 4�

√
logm∕

√
n , where m = 5 is the problem dimension and 

� is the minimum eigenvalue of the Hessian ∇2
𝜃𝜃�

�n(𝜃0, u⃗) =
∑n

i=1
𝜇2
i
c⃗(ui)c⃗(ui)

�∕n . To 
obtain an estimated value of � provided in Proposition 5, we set � = 0.2 in �i and sim-
ulated a sample (Ui)i=1,…,n , n = 20, 000 , according to the mixing procedure previously 
described. We numerically obtained � = 0.0815 . Importantly, due to the constraints on 
the (RSC) coefficients, mainly 𝛼 > 3𝜇∕4 , where � = 1∕(bscad − 1) (resp. � = 1∕bmcp , 
resp. � = 0 ) in the SCAD case (resp. MCP, resp. LASSO), we considered the follow-
ing setting for � = 0.0815 : bscad = 22 (resp. bmcp = 18 ) so that 4� − 3� = 0.1831 
(resp. 0.1593) for the SCAD (resp. MCP) penalty. In the LASSO case, since � = 0 , we 
have 4� = 0.3260.

In addition to the estimated error ‖�̂� − 𝜃0‖l, l = 1, 2 , we reported on figures 1 and 
2 the theoretical upper bounds in case of known margins, for each norm and using 
the previous parameter setting. We also reported with the light grey line the values 
‖�0‖2 = 0.8246 and ‖�0‖1 = 1 . For each sample size, we replicated 200 times the sim-
ulation set-up and obtained 200 sparsity-based estimates �̂� . Figure 1a (resp. Fig. 1b), 
provided in the supplementary material, illustrates their ‖.‖2 (resp. ‖.‖1 ) consistency 
with respect to the sample size. As predicted in Proposition 5, the three curves for the 
MCP, SCAD and LASSO converge toward zero as the number of samples increases. 
Interestingly, each plot displays the sparsity-based estimation with U-samples or only 
pseudo-observations Û . Although the statistical error decreases with n in both cases, 
the estimation is less precise in the Û-case due to the nonparametric transform to each 
margin and its amount of additional noise. Note that the theoretical ‖.‖2-based upper 
bounds for parameter consistency are “informative” (in the sense they are not unrealis-
tic), at least when n is larger than several thousands. This illustrates the practical add-
in of such results. This is less the case with ‖.‖1-based upper bounds that are too wide. 
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In the latter of SCAD and MCP penalty cases, they do not appear on the figure: These 
bounds are, respectively, close to 1.29 and 1.57 for n = 10, 000.

Proofs

Proof of Theorem 1

Proof Let 𝛥 = �̂� − 𝜃0 . We first show that ‖�‖2 ⩽ 1 . If this is not satisfied, then we have

Moreover, we have

The true parameter �0 is feasible, so that we can chose � = �0 in (28) and using (27), 
we have

Then, by Hölder’s inequality, we have

where the last inequality follows from the bound in (4) with ‖∇𝜃𝔾n(𝜃0;Û)‖∞ ⩽ 𝜆n∕4 
and Lemma 4 of Loh and Wainwright (2015) implies ‖∇𝜃p(𝜆n, �̂�)‖∞ ⩽ 𝜆n . Hence, 
inequality (29) becomes

Using the bounds (4), the right-hand side is upper-bounded by 1, which means 
‖�‖2 ⩽ 1 . We may then apply the (RSC) condition for the case ‖�‖2 ⩽ 1 , that is

By convexity of p(�n, �) + �‖�‖2
2
∕2 , we obtain

which yields

(27)⟨∇𝜃𝔾n(�̂�;Û) − ∇𝜃𝔾n(𝜃0;Û),𝛥⟩ ⩾ 𝛼2‖𝛥‖2 − 𝜈2‖𝛥‖1.

(28)⟨∇𝜃𝔾n(�̂�;Û) + ∇𝜃p(𝜆n, �̂�), 𝜃0 − �̂�⟩ ⩾ 0.

(29)⟨−∇𝜃p(𝜆n, �̂�) − ∇𝜃𝔾n(𝜃0;Û),𝛥⟩ ⩾ 𝛼2‖𝛥‖2 − 𝜈2‖𝛥‖1.

⟨−∇𝜃p(𝜆n, �̂�) − ∇𝜃𝔾n(𝜃0;Û),𝛥⟩ ⩽ {‖∇𝜃p(𝜆n, �̂�)‖∞ + ‖∇𝜃𝔾n(𝜃0;Û)‖∞}‖𝛥‖1
⩽ {𝜆n + 𝜆n∕4}‖𝛥‖1,

(30)‖�‖2 ⩽
‖�‖1
�2

�5�n
4

+ �2
�
⩽

2R

�2

�5�n
4

+
�2
4R

�
.

(31)⟨∇𝜃𝔾n(�̂�;Û) − ∇𝜃𝔾n(𝜃0;Û),𝛥⟩ ⩾ 𝛼1‖𝛥‖22 − 𝜈1‖𝛥‖21.

p(𝜆
n
, 𝜃0) +

𝜇

2
‖𝜃0‖22 − p(𝜆

n
, �̂�) −

𝜇

2
‖�̂�‖2

2
⩾ ⟨∇𝜃{p(𝜆n, �̂�) +

𝜇

2
‖�̂�‖2

2
}, 𝜃0 − �̂�⟩

= ⟨∇𝜃p(𝜆n, �̂�) + 𝜇�̂�, 𝜃0 − �̂�⟩,

(32)⟨∇𝜃p(𝜆n, �̂�), 𝜃0 − �̂�⟩ ⩽ p(𝜆n, 𝜃0) − p(𝜆n, �̂�) +
𝜇

2
‖𝛥‖2

2
.
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Hence, using (31), (28) and (32), we obtain

By Hölder’s inequality, we get

Moreover, by assumption, we have

Using (33) and Lemma 4 of Loh and Wainwright (2015), we obtain

Note that, for any couple (t, t�) of positive numbers, t > t′ , and any 𝜆 > 0 , we have (
p(�, t) − p(�, t�)

)
∕(t − t�) ⩽ p(�, t)∕t ⩽ �, because t ↦ p(�, t)∕t is non-increasing. 

By assumption, 4�1∕3 ⩾ � . Thus, we have

Therefore, this provides

Consequently, we obtain the upper bound

Concerning the upper bound of ‖�̂� − 𝜃0‖1 , note that (35) implies

From Lemma 4 in Loh and Wainwright (2015), for every real number t, we have 
�nt ⩽ p(�n, t) + �t2∕2. Applying this identity for every �k , k ∉ A , this implies

𝛼1‖𝛥‖22 − 𝜈1‖𝛥‖21 ⩽ −⟨∇𝜃𝔾n(𝜃0, Û),𝛥⟩ + p(𝜆n, 𝜃0) − p(𝜆n, 𝜃) +
𝜇

2
‖𝛥‖2

2
.

(33)
(𝛼1 −

𝜇

2
)‖𝛥‖2

2
⩽ p(𝜆n, 𝜃0) − p(𝜆n, �̂�) + ‖∇𝜃𝔾n(𝜃0;Û)‖∞‖𝛥‖1 + 𝜈1‖𝛥‖21

⩽ p(𝜆n, 𝜃0) − p(𝜆n, �̂�) +
�‖∇𝜃𝔾n(𝜃0;Û)‖∞ + 2R𝜈1

�‖𝛥‖1.

‖∇𝜃𝔾n(𝜃0;Û)‖∞ + 2R𝜈1 ⩽
𝜆n

4
+

𝜆n

4
⩽

𝜆n

2
⋅

(𝛼1 −
𝜇

2
)‖𝛥‖2

2
⩽ p(𝜆n, 𝜃0) − p(𝜆n, �̂�) +

𝜆n

2

�p(𝜆n,𝛥)
𝜆n

+
𝜇

2𝜆n
‖𝛥‖2

2

�
.

(34)0 ⩽ (𝛼1 −
3𝜇

4
)‖𝛥‖2

2
⩽ p(𝜆n, 𝜃0) − p(𝜆n, �̂�) +

1

2
p(𝜆n,𝛥).

(35)

0 ⩽ (𝛼1 −
3𝜇

4
)‖𝛥‖2

2
⩽
�
k∈A

�
p(𝜆n, �𝜃0,k�) − p(𝜆n, ��̂�k�)

�
−
�
k∉A

p(𝜆n, ��̂�k�) + 1

2

�
k

p(𝜆n,𝛥)

⩽ 𝜆n
�
k∈A

�(�𝜃0,k� − ��̂�k�)� + 1

2

��
k∈A

p(𝜆n,𝛥) −
�
k∉A

p(𝜆n,𝛥)
�

⩽ 𝜆n‖𝛥A‖1 +
𝜆n

2
‖𝛥A‖1 − 0 ⩽

3𝜆n

2
‖𝛥A‖1 ⩽

3𝜆n
√
k0

2
‖𝛥‖2.

(36)‖�̂� − 𝜃0‖2 ⩽
6𝜆n

√
k0

4𝛼1 − 3𝜇
⋅

1

2

�
k∉A

p(𝜆n,𝛥) ⩽ 𝜆n
�
k∈A

(�𝜃0,k� − ��̂�k�) + 1

2

�
k∈A

p(𝜆n,𝛥) ⩽
3𝜆n

2
‖𝛥A‖1.
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We had proven above that (�1 − 3�∕4)‖�‖2
2
⩽ 3�n

√
k0‖�A‖2∕2, implying

We deduce from (37), ‖�A
c‖1 ⩽ 3‖�A‖1 + 3�

√
k0

(4�1−3�)
‖�A‖2. Invoking (36), this yields

proving the result.   ◻

Proof of Proposition 4.

Proof Let us establish that �n(., y) satisfies the (RSC) condition. By the chain rule and 
usual calculations (Lütkepohl 1996, 10.6.1, Eq. (1)), the first-order conditions are

By deriving (38), we obtain the Hessian matrix of �n

Note that the matrix (𝛴−1yi ⊗𝛴−1yi)(𝛴
−1yi ⊗𝛴−1yi)

� = 𝛴−1yiy
�
i
𝛴−1 ⊗𝛴−1yiy

�
i
𝛴−1 

is nonnegative. Thus, with obvious notations,

(37)�n
�
k∉A

��k� ⩽ 3�n‖�A‖1 +
�‖�A

c‖2
2

2
⋅

‖�A
c‖2

2
⩽

6�n
√
k0

(4�1 − 3�)
‖�A‖2.

‖�‖1 ⩽ ‖�A‖1 + ‖�A
c‖1 ⩽ 4‖�A‖1 +

3�
√
k0

(4�1 − 3�)
‖�‖2

⩽

�
4 +

3�

(4�1 − 3�)

�√
k0‖�‖2 ⩽

6(16�1 − 9�)

(4�1 − 3�)2
�nk0,

(38)

∇vec(𝛴)�n(𝛴, u⃗) = −
1

n

n∑
i=1

(𝜓 �

𝜓

)
(y�

i
𝛴−1yi)

𝜕y�
i
𝛴−1yi

𝜕vec(𝛴)
+

1

2

𝜕 ln |𝛴|
𝜕vec(𝛴)

=
1

n

n∑
i=1

(𝜓 �

𝜓

)
(y�

i
𝛴−1yi)

(
𝛴−1yi ⊗𝛴−1yi

)
+

vec(𝛴−1)

2
.

2∇2
vec(𝛴),vec(𝛴)�

�n(𝛴, u⃗) = −
2

n

n∑
i=1

(𝜓 ��

𝜓
−

(𝜓 �)2

𝜓2

)
(y�

i
𝛴−1yi)(𝛴

−1yi ⊗𝛴−1yi)(𝛴
−1yi ⊗𝛴−1yi)

�

+ 𝛴−1 ⊗𝛴−1
Sn(𝛴)𝛴−1 + 𝛴−1

Sn(𝛴)𝛴−1 ⊗𝛴−1 − 𝛴−1 ⊗𝛴−1.

2∇2
vec(𝛴),vec(𝛴)�

�n(𝛴, u⃗) = 𝛴−1 ⊗𝛴−1
(
Sn(𝛴0) − 𝛴∕2

)
𝛴−1 + 𝛴−1

(
Sn(𝛴0) − 𝛴∕2

)
𝛴−1 ⊗𝛴−1

+ 𝛴−1 ⊗𝛴−1
(
Sn(𝛴) − Sn(𝛴0)

)
𝛴−1 + 𝛴−1

(
Sn(𝛴) − Sn(𝛴0)

)
𝛴−1 ⊗𝛴−1

−
2

n

n∑
i=1

(𝜓 �

𝜓

)�

(yi𝛴
−1yi)𝛴

−1yiy
�
i
𝛴−1 ⊗𝛴−1yiy

�
i
𝛴−1 =∶ T1 + T2 + T3.
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Consider � ∶= �1 − �0 , �1 ∈ � , � = �0 + t� for some t ∈ [0, 1] and v = vec(�) . 
As in the proof of Proposition 1 (see (12)), we obtain

Since the spectrum of 𝛴−1 ⊗𝛴−1(Sn(𝛴) − Sn(𝛴0))𝛴
−1 is the product of eigenval-

ues of �−1 and of Sn(�) − Sn(�0) , we obtain

and then �v�T2v� ⩽ ‖v‖2
2
‖T2‖s ⩽ 2‖Sn(�) − Sn(�0)‖s‖v‖21∕a3.

Concerning T3,

Finally, this yields 2v∇2
vec(𝛴),vec(𝛴)�

𝔾n(𝛴, u⃗)v ⩾ ‖v‖2
2

�
b∕q3 − (1 + C𝜖)Vn

�
. Therefore, 

with the same reasoning as for the Gaussian copula case, the (RSC) condition is sat-
isfied with �1 = �2 = (b∕q3 − Vn)∕4 and �1 = 2‖Sn(�) − Sn(�0)‖s∕a3 , �2 = R�1 .  
 ◻

Proof of Proposition 6.

Proof By obvious calculations, we obtain ∇𝜃�n(𝜃) = −n−1
∑n

i=1
V𝜃(ui)∕

�
𝜔�c⃗𝜃(ui)

�
,

that is a d-dimensional column vector. To lighten notations, 𝜇i(𝜃) ∶= (𝜔�c⃗𝜃(ui))
−1 is 

simply written �i when there is no ambiguity. As usual, such a � belongs to the seg-
ment between the true parameter �0 and an arbitrarily chosen vector �1 ∈ � . In other 
words, � = �0 + t(�1 − �0) , for some t ∈ (0, 1) . Let us set v = � − �0 . Then, simple 
calculations provide ∇2

�,��
�n(�) = n−1

∑n

i=1

�
�2
i
V�V

�
�
− �iW�

�
(ui), and the “Hessian” 

matrix W�(u) = ���V�(u) is

(39)v�T1v ⩾ ||v||2
2
�min(2Sn(�0) − �)∕q3 ⩾ ||v||2

2
b∕q3.

‖T2‖s ⩽ 2‖�−1‖3
s
‖Sn(�) − Sn(�0)‖s ⩽ 2‖Sn(�) − Sn(�0)‖s∕�min(�)3,

�v�T3v� ⩽ 2

n

n�
i=1

����
�𝜓 �

𝜓

��

(yi𝛴
−1yi)

����v
�𝛴−1yiy

�
i
𝛴−1 ⊗𝛴−1yiy

�
i
𝛴−1v

⩽
2‖v‖2

2

n

n�
i=1

𝜃2
i
‖𝛴−1yiy

�
i
𝛴−1‖2

s
⩽

2‖v‖2
2

n

n�
i=1

𝜃2
i
‖yi‖42 = Vn‖v‖22.

V𝜃(ui) ∶=
[
c⃗𝜃(ui)

�,𝜔1𝜕𝜃�
1
c1,𝜃1 (ui),… ,𝜔m𝜕𝜃�

m
cm,𝜃m(ui)

]�
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 … … 0 ���
1
c1,�1

0 … 0

⋮ ⋮ ⋮ ⋮ 0 ���
2
c2,�2

⋱ ⋮

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋱ 0

0 … … 0 0 … 0 ���
m

c
m,�

m

��1c1,�1 0 … 0 �1�
2

�1,�
�
1

c1,�1
0 … 0

0 ��2c2,�2 ⋱ ⋮ 0 �2�
2

�2,�
�
2

c2,�2
⋱ ⋮

⋮ ⋱ ⋱ 0 ⋮ ⋱ ⋱ 0

0 … 0 ��
m

c
m,�

m

0 … 0 �
m
�2
�
m
,��
m

c
m,�

m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(u).
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We rewrite the column vector v as a block column [v�
0
, v�

1
,… , v�

m
]� or [v�

0
, v̄�]� , so that 

it is conformable with the gradient vectors V�(u) . To lighten notations, for every 
k = 0,… ,m and every i = 1,… , n , set �k,i ∶= v�

k
��k ck,�k (ui) and 

�k,i ∶= v�
k
�2
�k ,�

�
k

ck,�k (ui)vk. Therefore, simple calculations yield

We manage T0 as in the proof of Proposition 5:

By Assumption  (23) and obvious notations, we have T1 ⩾ 𝛼1,𝜔‖v̄‖22 − 𝜈1,𝜔‖v̄‖21 , ‖v̄‖2 ⩽ 1 and T1 ⩾ 𝛼2,𝜔‖v̄‖2 − 𝜈2,𝜔‖v̄‖1 , when ‖v̄‖2 > 1 . Moreover, we get

because ‖v0‖1 ⩽ 1 . Similarly, we obtain

To summarize, if ‖v‖2 ⩽ 1 , we have obtained

Moreover, if ‖v̄‖2 > 1 and then ‖v‖2 > 1 , we have got

v�∇2
𝜃,𝜃�

�n(𝜃)v =
1

n

n�
i=1

𝜇2
i

�
v�
0
c⃗𝜃(ui)

�2
+

1

n

n�
i=1

�� ∑m

k=1
𝜔k𝜁k,i∑m

k=1
𝜔kck,𝜃k (ui)

�2
−

∑m

k=1
𝜔k𝜈k,i∑m

k=1
𝜔kck,𝜃k (ui)

�

+
2

n

m�
k,l=1

n�
i=1

𝜇2
i
v0,l𝜔k𝜁k,icl,𝜃l (ui) −

2

n

m�
k=1

n�
i=1

𝜇iv0,k𝜁k,i =∶ T0 + T1 + T2 + T3.

T0 ⩾ ‖v0‖22 inf𝜃∈𝛩
𝜆min

�
1

n

n�
i=1

𝜇2
i
(𝜃)c⃗𝜃(ui)c⃗

�
𝜃
(ui)

�
=∶ ‖v0‖22 C(T0).

�T2� ⩽2

n

n�
i=1

m�
k=1

�2
i
�k��k,i�

� m�
l=1

cl,�l (ui)�v0,l�
�

⩽
2

n

n�
i=1

�2
i

� m�
k=1

�k‖��k ck,�k (ui)‖∞
�‖v‖1 sup

l

cl,�l (ui)‖v0‖1

⩽
2‖v‖1 min(‖v‖1, 1)

n

n�
i=1

�2
i

� m�
k=1

�k‖��k ck,�k (ui)‖∞
�
sup
l

cl,�l (ui) =∶ ‖v‖1 min(‖v‖1, 1)C(T2),

�T3� ⩽ 2

n

n�
i=1

�i

� m�
k=1

‖��k ck,�k (ui)‖∞�v0,k�
�‖v‖1

⩽
2‖v‖1 min(‖v‖1, 1)

n

n�
i=1

�i sup
k

‖��k ck,�k (ui)‖∞ =∶ ‖v‖1 min(‖v‖1, 1)C(T3).

v�∇2
𝜃,𝜃�

𝔾n(𝜃)v ⩾ ‖v0‖22C(T0) + 𝛼1,𝜔‖v̄‖22 − 𝜈1,𝜔‖v̄‖21 − ‖v‖2
1

�
C(T2) + C(T3)

�

⩾ ‖v‖2
2
min

�
C(T0), inf

𝜔
𝛼1,𝜔

�
− ‖v‖2

1

�
sup
𝜔

𝜈1,𝜔 + C(T2) + C(T3)
�
.
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since ‖v0‖22 + ‖v̄‖2 ⩾ ‖v‖2 =
�

‖v0‖22 + ‖v̄‖2
2
 when ‖v̄‖2 > 1 . Finally, if ‖v̄‖2 ⩽ 1 

and ‖v‖2 > 1 , we get

because ‖v̄‖2
1
⩽ ‖v‖1 in this case. Therefore, the (RSC) condition is satisfied with the 

defined constants �1 , �2 , �1 and �2 , proving the result.   ◻

Supplementary Information The online version supplementary material available at https:// doi. org/ 10. 
1007/ s10463- 021- 00785-4.
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