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Abstract
We consider a weighted local linear estimator based on the inverse selection probabil-
ity for nonparametric regression with missing covariates at random. The asymptotic
distribution of the maximal deviation between the estimator and the true regression
function is derived and an asymptotically accurate simultaneous confidence band is
constructed. The estimator for the regression function is shown to be oracally efficient
in the sense that it is uniformly indistinguishable from that when the selection prob-
abilities are known. Finite sample performance is examined via simulation studies
which support our asymptotic theory. The proposed method is demonstrated via an
analysis of a data set from the Canada 2010/2011 Youth Student Survey.

Keywords Brownian motion · Maximal deviation · Simultaneous confidence band ·
Weighted local linear regression

1 Introduction

In nonparametric data analysis, one important problem is to detect the global shape
of unknown curves or to test whether these curves follow some specific functional
forms that describe the overall trend of the regression relationship. Many researchers
have attempted to solve this problem by constructing nonparametric simultaneous
confidence bands (SCBs) as a vital tool of global inference for unknown curves;
see Johnston (1982), Zhou et al. (1998), Fan and Zhang (2000), Claeskens and Van
Keilegom (2003), Zhao and Wu (2008), Cao et al. (2012), Cai et al. (2014), Cao et al.
(2016), Cai et al. (2020) for the related theory and applications.
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1250 L. Cai et al.

Consider the common situation where observations (Xi ,Yi , εi )ni=1 are indepen-
dent and identically distributed (i.i.d.) copies of (X ,Y , ε) satisfying the following
nonparametric regression model

Y = m (X) + ε, (1)

where E (ε|X) = 0, var (ε|X) = σ 2 (X), and the mean functionm (·) and the variance
function σ 2 (·) defined on a compact interval [a, b] are unknown. In order to construct
an asymptotically accurate SCB for the mean function m (x), one requires to find a
bound Ln,α such that limn→∞ P

(
supx∈[a,b]

∣
∣m̂ (x) −m (x)| ≤ Ln,α

) = 1− α, where
m̂ (x) is an estimator of m (x) and α ∈ (0, 1) is a pre-specified error probability.

One classical approach to construct simultaneous confidence intervals is to first
obtain the asymptotic distribution of

[
m̂ (x)−m (x)

]
/
√
var{m̂ (x)} which is often the

standard normal distribution so that the pointwise confidence intervals for m (x) are
constructed. Then one can establish simultaneous confidence intervals for the values
of the regression curve at the design points by Bonferroni’s Inequality. One serious
drawback of this approach is that the simultaneous confidence intervals are too con-
servative; see Eubank and Speckman (1993) for more details. Johnston (1982) and
Härdle (1989) made a substantial improvement through studying the limiting distri-
bution of the maximal deviation supx∈[a,b]

∣∣m̂ (x) − m (x)
∣∣ for the kernel estimator

and later Wang and Yang (2009) extended the results to the B spline regression. As
formulated in the above works, Zheng et al. (2014) derived an SCB for the mean
function of sparse functional data and Gu et al. (2014) considered an SCB for varying
coefficient regression with sparse functional data, and Zheng et al. (2016) studied an
SCB for generalized additive models. Furthermore, Gu and Yang (2015) proposed
an SCB for the single-index link function, and Song and Yang (2009), Cai and Yang
(2015) and Cai et al. (2019) studied SCBs for the variance function σ 2 (x). In addition,
Härdle and Marron (1991) proposed an SCB for nonparametric regression based on
the bootstrap where resampling is done from a suitably estimated residual distribu-
tion. Claeskens and Van Keilegom (2003) proposed bootstrap SCBs for m (x) based
on likelihood kernel regression. Chernozhukov et al. (2014) derived a Gaussian mul-
tiplier bootstrap procedure for constructing honest uniform confidence bands for a
nonparametric function. Eubank and Speckman (1993), Hall and Titterington (1998),
Wang (2012), Cai et al. (2014), and Cai et al. (2019) investigated SCBs for m (x) in
nonparametric regression with an equally spaced design.

All the above and other related works on SCBs for nonparametric regression are
for fully observed data. To the best of our knowledge, there are no related works on
SCBs for the data with partially missing observations which is a common situation in
applications; see Little and Rubin (2019) for an introduction onmissing data andmany
examples. When the data are not missing completely at random, using the complete
case analysis by simply discarding the missing data can lead to a loss in efficiency
and yield inconsistent estimates since the conditional distribution of the response
given the observed covariates is in general not equal to the underlying true conditional
distribution of the response given all the covariates.

A series of efforts have been made to deal with missing data. The main approaches
include likelihood method, inverse selection probability weighted approach, imputa-
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Simultaneous confidence bands for missing covariate data 1251

tion and EMalgorithm. For example, Qin et al. (2009) considered likelihood approach,
while Wang et al. (1997; 1998), Lipsitz et al. (1999) and Liang et al. (2004) studied
an inverse selection probability weighting method. Hsu et al. (2014) proposed a near-
est neighbor-based nonparametric multiple imputation approach to recover missing
covariate information. Chen and Little (1999) applied the EM algorithm. See also
Ibrahim et al. (2005), Kim and Shao (2013) and Little and Rubin (2019) for com-
prehensive overviews of statistical methods handling missing data. However, most of
these existing works mainly study the consistency and asymptotic properties at any
fixed point of the proposed estimator.

In this paper, we study the global inference for the mean function m (x) by con-
structing an asymptotically accurate SCB when covariates are missing at random
(MAR) meaning that the missingness mechanism depends only on variables that are
fully observable. We employ a weighted estimator for m (x) based on the inverse
selection probability weights, which is shown to be oracally efficient in the sense that
the estimator with estimated selection probabilities under a correctly specified model
is uniformly as efficient as that with true selection probabilities. The asymptotic dis-
tribution of the maximal deviation of the estimator from the true mean function is
provided and hence an asymptotically accurate SCB for m(x) is constructed.

As an illustration, our proposedSCB is applied to the data collected from theCanada
2010/2011 Youth Student Survey to study the relationship between self-esteem and
BMI. Figure 4 depicts the weighted local linear estimator and the SCB for the data.
The null hypothesis of the mean function m(x) = c0 + c1x for some constants c0 and
c1 is tested by our SCB with the minimum confidence level covering the null curve
being 67.7%. Hence, with the p-value of 0.323 one cannot reject the null hypothesis;
see Section 6 for more details.

The rest of the paper is organized as follows. Section 2 presents the main theoretical
results and the detailed procedure to implement the proposed method. Finite sample
simulation results and real data analyses are reported in Sections 3 and 4, respectively.
Section 5 concludes the paper. Technical proofs of the main results are provided in
the Appendix and the online Supplementary Material.

2 Main results

2.1 A new SCB for themean function

When samples (Xi ,Yi ) are fully observable, Fan and Gijbels (1996) proposed the
local linear regression method to estimate m (x) by solving

argminβ0,β1∈Rn
−1

n∑

i=1

{
Yi − β0 − β1 (Xi − x)

}2
Kh (Xi − x) , (2)

where Kh (·) = h−1K (·/h) is a rescaled kernel function with bandwidth h. However,
when covariates are MAR, the complete case analysis in (2) by using only fully
observed (Xi , Yi ) can result in a biased estimator for m(x). Assume that the observed
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data are (δi , δi Xi ,Yi ), i = 1, . . . , n, where δi = 1 if Xi is observed and δi = 0
otherwise, and π i = P (δi = 1|Yi , Xi ) = P (δi = 1|Yi ) = π (Yi ) is the selection
probability by our MAR assumption. To accommodate the missingness, we apply the
Horvitz and Thompson (1952)-type inverse selection weighted method byminimizing
the following quantity with respect to (β0, β1),

n−1
n∑

i=1

δi

π i

{
Yi − β0 − β1 (Xi − x)

}2
Kh (Xi − x) . (3)

By least squares, one obtains the estimator m̂ (x, π) for m(x) with

m̂ (x, π) = eT0

(
XTWX

)−1
XTWY, (4)

where

X =
(

1 · · · 1
X1 − x · · · Xn − x

)T

,

W = 1
n diag

(
δ1
π1

Kh (X1 − x) , . . . , δn
πn

Kh (Xn − x)
)
, Y = (Y1, . . . ,Yn)T , and e0 =

(1, 0)T . Here m̂ (x, π) is used to emphasize its dependence on the selection probability
function π(y).

Note that the selection probability function π(y) is generally unknown. Here we
assume that π (y) follows a parametric binary model π (y,α) where α is some
unknown parameter vector. For example, assuming a logistic regression model,
π i = π (Yi ,α) = P(δi = 1|Yi ) = {1 + exp (−α0 − α1Yi )}−1, α = (α0, α1)

T .
By applying the maximum likelihood approach, one easily obtains a root-n consistent
estimate α̂; see Robins et al. (1994) and Wang et al. (1998) for related studies and
Hosmer and Lemeshow (2005) for a global statistic test for examining the pre-assumed
binary regression model. Denote the resulting selection probability function estimator
as π̂ (y) = π̂(y, α̂) and let π̂ i = π̂

(
Yi , α̂

)
, i = 1, . . . , n. Thus, replacing π i in (3)

with π̂ i , the feasible weighted estimator m̂
(
x, π̂

)
of m (x) is derived with

m̂
(
x, π̂

) = eT0

(
XT ŴX

)−1
XT ŴY, (5)

where the symbols with a hat on the right side of the equation above are the same as
those in equation (4) but with π i replaced by π̂ i .

For any function φ (x), we use φ(s)(x) to represent its s-th order derivative, and
for any integer p ≥ 0 and use C (p) [c, d] to indicate the space of functions that have
continuous p-th derivative on the interval [c, d] with letting C [c, d] = C (0) [c, d].
For any real positive sequences ln and dn, ln � dn means ln/dn → 0 as n → ∞.

To construct an accurate SCB for the mean function m(x), we need the following
general assumptions:
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Simultaneous confidence bands for missing covariate data 1253

(A1) The mean function m (x) ∈ C ( 2) [a, b] and the density function fX (x) of X
is positive in the open interval (a, b) with fX (x) ∈ C (1) [a, b]. Moreover, the
joint density function fX ,ε (x, ε) of (X , ε) has continuous first order partial
derivative with respect to x .

(A2) The variance function σ 2(x) is bounded on [a, b] and
∫

ε2 fX ,ε|δ=1 (x, ε) dε

has a positive lower bound for all x ∈ [a, b], where fX ,ε|δ=1 (x, ε) is the joint
density function of (X , ε) given δ = 1. In addition, there exist constants η > 4
and Mη > 0 such that E(|ε|2+η

∣∣X) ≤ Mη a.s.
(A3) The kernel function K (·) ∈ C (1) [−1, 1] is a symmetric probability density

function.
(A4) The selection probability function π (y) follows a parametric binarymodel and

has a positive lower bound cπ .Moreover, it has bounded second order partial
derivative with respect to y and has bounded first order partial derivative with
respect to α.

(A5) The bandwidth h = hn satisfies n−1/3 log n � h � n−1/5 log−1/5 n.

Assumptions (A1)–(A3) are elementary conditions in nonparametric kernel regres-
sion adapted from Johnston (1982), Härdle (1989), Wang and Yang (2009), and Cai
et al. (2019). Assumption (A1) implies that the density function fX (x) defined in any
compact subinterval of (a, b) is bounded away from zero. The condition η > 4 in
Assumption (A2) can be relaxed to η > 3 but then the lower order restriction of the
bandwidth is more complicated. For simplicity here we use η > 4. Assumption (A3)
entails that μ0 (K ) = 1 and μ1 (K ) = 0 where μl (K ) = ∫ 1

−1 u
l K (u) du, l = 0, 1.

Assumption (A4) is typical in missing data analysis. The same condition appears in
Wang et al. (1997) and Liang et al. (2004). Assumption (A5) is about the choice of
bandwidth h. Technically, it keeps the bias at a lower rate than the variance and entails
some negligible nonlinear remainder terms.

For any functions ϕn (x) and φn (x) , x ∈ D, we use ϕn (x) = O
(
φn (x)

)
and

ϕn (x) = o
(
φn (x)

)
to mean “ϕn (x) /φn (x) is bounded and ϕn (x) /φn (x) tends

to 0 as n → ∞ for any fixed x ∈ D”, while use ϕn (x) = U
(
φn (x)

)
and ϕn (x) =

u
(
φn (x)

)
tomean “ϕn (x) /φn (x) is bounded andϕn (x) /φn (x) tends to 0 as n → ∞

for all x ∈ D uniformly”. We use Op, op, Up and u p to denote the corresponding
order symbols in probability.

Moreover, we let [a0, b0] be any given closed subinterval of (a, b) so that it excludes
the endpoints ofa andb. The asymptotic uniformconvergence properties of m̂

(
x, π̂

)−
m (x) will be investigated on this compact subinterval to avoid the boundary effects
of the kernel estimator. Since [a0, b0] can be arbitrarily close to [a, b], little is lost
in exchange of technical convenience. The same strategy was employed in Härdle
(1989), Gu and Yang (2015), Cai et al. (2019), etc.

Theorem 1 Under Assumptions (A1)–(A5), as n → ∞ , uniformly for all x ∈ [a0, b0],
one has

m̂ (x, π) − m (x) = Vn (x) + 2−1h2μ2 (K )m(2) (x)+ u p

(
h2
)

,

where Vn (x) = n−1 f −1
X (x)

n∑

i=1

δi
π i
Kh (Xi −x) εi .
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The proof of Theorem 1 is given in the Appendix. By the Central Limit Theorem, it
is easy to see that the pointwise distribution of

√
nhVn (x) is approximately normally

distributed with mean zero and a positive constant standard deviation. This together
with Theorem 1 and

√
nhh2 � 1 resulted from h � n−1/5 log−1/5 n in Assumption

(A5) implies that Vn(x) dominates the second and remaining terms of m̂ (x, π)−m (x)
uniformly.

Let �n = ∑n
i=1 δi be the number of complete cases and denote the ratio by

rn = �n/n . Since δ1, . . . , δn are i.i.d., it is readily seen that

rn = P (δ1 = 1) + Op(n
−1/2). (6)

We now give the following theorem which describes the limiting distribution of the
maximal deviation between m̂ (x, π) and m (x). Its proof is given in the Appendix.

Theorem 2 Under Assumptions (A1)–(A5), as n → ∞, for any t ∈ R,

P

{

ah

[

sup
x∈[a0,b0]

∣∣
∣∣∣
(nh)1/2 r−1/2

n
{
m̂ (x, π) − m (x)

}

d1/2 (x)

∣∣
∣∣∣
− bh

]

≤ t

}

→ exp {−2 exp (−t)} , (7)

where

ah = √−2 log (h/ (b0 − a0)), bh = ah + 2−1a−1
h log

(
4−1π−2C (K )

)
,

d (x) = λ (K ) s (x) f −2
X (x) , s (x) =

∫
ε2

π2 (m (x) + ε)
fX ,ε|δ=1 (x, ε) dε,

λ (K ) = ∫ 1
−1 K

2 (u) du,C (K ) = λ−1 (K )
∫ 1

−1

{
K (1) (u)

}2
du.

Note that the π = 3.14 · · · in the definition of bh above is a mathematical constant
to be distinguished from the selection probability function π(y). Note also that when
data are fully observed, i.e., π (y) ≡ 1, rn ≡ 1, s (x) becomes σ 2 (x) fX (x). In such
a case, the result degenerates to that for the local linear estimator for fully observed
data, which extends the result of Johnston (1982) for the Nadaraya-Watson kernel
estimator to the local linear estimator under more general conditions.

The proof of Theorem 2 is quite involved. It uses the total probability formula that
the probability of supx∈[a0,b0] | (nh)1/2 r−1/2

n Vn(x)/d1/2 (x) | is the weighted aver-
age of its conditional probability given �n = n0 with weights P(�n = n0), n0 =
0, 1, 2, ..., n; see the detailed argument in the Appendix. In the remainder of the theo-
retical development, we assume that the parametric model for π is correctly specified
so that the estimator α̂ satisfies α̂ − α = Op(n−1/2). Theorem 3 below compares the
difference between the estimator based on the true selection probability function π

and that based on the estimated selection probability function π̂ . Its proof is given in
the Appendix.

123



Simultaneous confidence bands for missing covariate data 1255

Theorem 3 Under Assumptions (A1)–(A5), as n → ∞,

sup
x∈[a0,b0]

∣∣m̂
(
x, π̂

)− m̂ (x, π)
∣∣ = Op

(
n−1/2

)
.

Combining Theorems 2 and 3 and Slutsky’s Theorem, one obtains the following
result:

Theorem 4 Under Assumptions (A1)–(A5), as n → ∞, for any t ∈ R,

P

{

ah

[

sup
x∈[a0,b0]

∣∣∣∣∣
(nh)1/2 r−1/2

n
{
m̂
(
x, π̂

)− m (x)
}

d1/2 (x)

∣∣∣∣∣
− bh

]

≤ t

}

→ exp {−2 exp (−t)} .

Theorem 4 above can be used to construct a theoretical SCB for m (x) which
depends on unknown quantity d (x). To obtain a feasible SCB, we estimate d (x) by

d̂n (x) = �−1
n h f̂ −2

X (x)
n∑

i=1

δi

π̂
2
i

K 2
h (Xi −x) ε̂

2
i ,

where ε̂i = Yi − m̂
(
Xi , π̂ i

)
and f̂ X (x) is the weighted kernel density pilot estimator

of fX (x) with

f̂ X (x) = n−1
n∑

i=1

δi

π̂ i
Kh f (Xi −x) , (8)

in which we recommend to use the Silverman’s rule-of-thumb bandwidth (Silverman
(1986), p.48) computed with complete data for h f which has the order of n−1/5.

Theorem 5 Under Assumptions (A1)–(A5), as n → ∞ , one has

sup
x∈[a0,b0]

∣∣∣d̂n (x) − d (x)
∣∣∣ = Op

(
n−1/2h−3/2 log1/2 n

)
.

Note that n−1/2h−3/2 log1/2 n � log−1 n by Assumption (A5). Therefore, we have
the following corollary.

Corollary 1 Under Assumptions (A1)–(A5), for any α ∈ (0, 1), an asymptotic
100 (1 − α)% simultaneous confidence band for m (x) over any given [a0, b0] ⊂
(a, b) is

m̂
(
x, π̂

)± (nh)−1/2 r1/2n d̂1/2n (x)
(
bh + a−1

h qα

)
, (9)

where qα = − log
{− 1

2 log (1 − α)
}
and ah, bh are given in Theorem 2.
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2.2 Implementation

In this subsection, we describe the detailed procedure to implement the asymptotic
SCB in (9). They will be used throughout Sections 3 and 4 for simulation studies and
real data analysis.

The range of the covariate variable is taken as [â, b̂]with â=min{1≤i≤n,δi=1} Xi and
b̂ = max{1≤i≤n,δi=1} Xi , while the compact subinterval [â0, b̂0]with â0 = 0.9â+0.1b̂
and b̂0 = 0.9b̂+0.1â is regarded as the interval over which the SCBs are constructed.
The quartic kernel, K (u) = 15

(
1 − u2

)2
I (|u| ≤ 1) /16, is used for the weighted

local linear estimator in (5) and the weighted kernel density estimator in (8), satisfying
Assumption (A3).

Regarding the bandwidth selection for m̂ in (4 ), we adopt h = hrot log−ρ n for
some ρ > 1/5, where hrot is the rule-of-thumb bandwidth in Fan and Gijbels (1996,
Equation (4.3)) computed with the complete data. Note that the order of hrot is n−1/5

and hence the order of h is n−1/5 log−ρ n which satisfies Assumption (A5). We have
found in extensive simulations that h = hrot log−1/4 n (i.e., ρ = 1/4) works quite well
and that is what we recommend.

3 Simulation studies

In this section, we investigate the finite sample behaviors of the proposed SCB and
the finite sample effect due to estimating the selection probabilities. For comparison,
we also list the results of the complete case SCB for local linear regression by directly
ignoring the missing covariates, denoted by SCB-CC.

The following four cases were examined:

Case 1: m (X) = sin (πX) , σ (X) = 1;
Case 2: m (X) = sin (πX) , σ (X) = 2 exp(X) {exp(X) + 1}−1 ;
Case 3: m (X) = exp(−6X3/5), σ (X) = 1;
Case 4: m (X) = exp(−6X3/5), σ (X) = 2 exp(X) {exp(X) + 1}−1 ,

where X ∼ U [−1, 1], and the error ε ∼ N
(
0, σ 2 (x)

)
. Clearly, these scenarios

include both homoscedastic errors (Case 1, Case 3) and heteroscedastic errors (Case
2, Case 4). Twomodels for the selection probability functionwere considered: (i) logis-
tic model π (Y ) = P (δ = 1|Y ) = {1 + exp(−α0 − α1Y )}−1, and (ii) probit model
π (Y ) = P (δ = 1|Y ) = �

(
α∗
0 + α∗

1Y
)
, where � is the standard normal cumulative

distribution function. We took (α0, α1) and
(
α∗
0, α

∗
1

)
as (1.8, 1) and (1, 0.5), respec-

tively, leading to approximately 8% to 20% of the data missing (low proportion of
missing). We also took (α0, α1) and

(
α∗
0, α

∗
1

)
as (0.2, 0.6) and (0.1, 0.3), respectively,

leading to approximately 31% to 46% of the data missing (high proportion of miss-
ing). The sample sizes were n = 200, 400, 600, 800 and the confidence levels were
1 − α = 0.95, 0.99.
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Table 1 Empirical coverage frequencies of the SCB in (9) and the SCB in the complete case (SCB-CC)
with 1000 replications and their corresponding average widths (inside parentheses) under the selection
probability model (i) with parameters (α0, α1) = (1.8, 1)

n 1 − α Case 1 Case 2

SCB SCB-CC SCB SCB-CC

200 0.95 0.911(1.448) 0.617(1.212) 0.911(1.412) 0.708(1.216)

0.99 0.994(1.888) 0.904(1.581) 0.991(1.840) 0.936(1.584)

400 0.95 0.938(1.102) 0.422(0.910) 0.953(1.070) 0.573(0.910)

0.99 0.993(1.422) 0.832(1.175) 0.994(1.380) 0.901(1.174)

600 0.95 0.954(0.934) 0.284(0.774) 0.955(0.908) 0.443(0.771)

0.99 0.999(1.197) 0.705(0.992) 0.994(1.164) 0.850(0.988)

800 0.95 0.949(0.833) 0.180(0.690) 0.949(0.811) 0.349(0.689)

0.99 0.998(1.063) 0.596(0.881) 0.996(1.035) 0.779(0.879)

n 1 − α Case 3 Case 4

SCB SCB-CC SCB SCB-CC

200 0.95 0.910(1.247) 0.851(1.150) 0.923(1.304) 0.832(1.172)

0.99 0.991(1.622) 0.979(1.497) 0.992(1.692) 0.970(1.520)

400 0.95 0.938(0.945) 0.816(0.870) 0.942(0.985) 0.789(0.882)

0.99 0.991(1.216) 0.976(1.120) 0.995(1.265) 0.970(1.133)

600 0.95 0.932(0.806) 0.800(0.744) 0.940(0.844) 0.757(0.756)

0.99 0.994(1.031) 0.982(0.951) 0.997(1.077) 0.963(0.965)

800 0.95 0.934(0.720) 0.768(0.666) 0.937(0.760) 0.699(0.680)

0.99 0.995(0.916) 0.962(0.847) 0.997(0.964) 0.940(0.863)

Wefirst look at the performanceof the proposedSCB in the caseswhere the selection
probability models are correctly specified. Tables 1–4 give the coverage frequencies
with 1000 replications that the true mean function was covered by the SCB in (9) and
the SCB-CC at the equally spaced points â0 + (b̂0 − â0)k/400, k = 0, . . . , 400. One
can see that in all scenarios, the coverage frequencies of the proposed SCB in (9) are
close to the nominal confidence levels 0.95 and 0.99 while the coverage frequencies
of SCB-CC are far lower than the nominal levels, and the average widths of SCB-CC
are systematically narrower than that of the proposed SCB. Meanwhile, the average
widths of the SCBs decrease as the sample size n increases, as expected. All in all,
it can be seen that the proposed SCB in (9) performs much better than the SCB-CC.
This is because the local linear estimation in the complete case is generally biased for
the underlying true function. These findings support our theoretical results.

We next investigate the sensitivity of the SCB to the selection probability model
misspecification. Firstly, similar toWang et al. (1997)we carried out a simulation study
which has the same setting as that in Table 2 except that the selection probability is
truncated above by 0.75. As a result, about 46% of the cases had missing covariates.
Using the logistic regression model to fit π(y) is not completely correct in this setting.
Table 5 summarizes the simulation results under this misspecification. One can see
that in all the scenarios, the coverage frequencies are quite close to those under the
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Table 2 Empirical coverage frequencies of the SCB in (9) and the SCB in the complete case (SCB-CC)
with 1000 replications and their corresponding average widths (inside parentheses) under the selection
probability model (i) with parameters (α0, α1) = (0.2, 0.6)

n 1 − α Case 1 Case 2

SCB SCB-CC SCB SCB-CC

200 0.95 0.888(1.726) 0.568(1.501) 0.887(1.697) 0.564(0.496)

0.99 0.977(2.260) 0.872(1.964) 0.976(2.220) 0.892(1.956)

400 0.95 0.916(1.303) 0.365(1.118) 0.922(1.267) 0.402(1.103)

0.99 0.994(1.687) 0.774(1.447) 0.992(1.641) 0.816(1.428)

600 0.95 0.938(1.105) 0.219(0.945) 0.953(1.076) 0.247(0.932)

0.99 0.993(1.422) 0.696(1.215) 0.997(1.385) 0.741(1.199)

800 0.95 0.942(0.979) 0.125(0.837) 0.950(0.957) 0.138(0.829)

0.99 0.993(1.256) 0.562(1.074) 0.998(1.227) 0.607(1.062)

n 1 − α Case 3 Case 4

SCB SCB-CC SCB SCB-CC

200 0.95 0.907(1.453) 0.650(1.308) 0.911(1.536) 0.606(1.344)

0.99 0.993(1.900) 0.924(1.710) 0.986(1.998) 0.921(1.749)

400 0.95 0.918(1.103) 0.525(0.988) 0.935(1.160) 0.495(1.016)

0.99 0.991(1.425) 0.873(1.277) 0.992(1.492) 0.857(1.308)

600 0.95 0.935(0.948) 0.417(0.846) 0.948(0.999) 0.351(0.870)

0.99 0.996(1.215) 0.836(1.085) 0.997(1.277) 0.826(1.112)

800 0.95 0.939(0.845) 0.318(0.758) 0.936(0.889) 0.248(0.777)

0.99 0.992(1.078) 0.766(0.967) 1.000(1.131) 0.715(0.989)

correct specification of π(y). Secondly, we also conducted simulations when the data
were generated in the four cases above with the selection probability π(Y ) = {1 +
exp(−1.8−Y −0.2Y 2)}−1 having a quadratic term. Thus, using the logistic regression
model to fit the selection probability is still not correct. Table 6 describes the simulation
results under this misspecification. Likewise, one sees that the behaviors of the SCBs
are similar to those under the correct specification of the selection probability. All this
above suggests that the proposed SCB is not very sensitive to misspecification of the
selection probability function.

To visualize the SCB for the mean function, Figures 1 and 2 were created based on
two samples of size 400 and 800 for Case 1 and Case 4 under the logit missing mech-
anism with (α0, α1) = (0.2, 0.6). One can see that the SCB for n = 800 is narrower
and fits the true mean function better than those for n = 400, which corroborates our
asymptotically theoretical results. For comparisons, the complete case estimates and
the SCBs by ignoring the cases with missing covariates were also provided in Figures
1 and 2. These figures show that the SCBs do not contain the true curve completely and
suggest that the estimated curves may be biased. Other settings yield similar results
and hence they are omitted.
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Table 3 Empirical coverage frequencies of the SCB in (9) and the SCB in the complete case (SCB-CC)
with 1000 replications and their corresponding average widths (inside parentheses) under the selection
probability model (ii) with parameters (α∗

0, α
∗
1) = (1, 0.5)

n 1 − α Case 1 Case 2

SCB SCB-CC SCB SCB-CC

200 0.95 0.912(1.395) 0.671(1.226) 0.919(1.389) 0.759(1.238)

0.99 0.996(1.820) 0.929(1.598) 0.989(1.808) 0.950(1.612)

400 0.95 0.944(1.062) 0.527(0.926) 0.946(1.043) 0.643(0.923)

0.99 0.994(1.370) 0.888(1.194) 0.996(1.344) 0.940(1.191)

600 0.95 0.950(0.902) 0.409(0.787) 0.946(0.887) 0.540(0.784)

0.99 0.996(1.156) 0.819(1.009) 1.000(1.136) 0.900(1.005)

800 0.95 0.952(0.808) 0.330(0.705) 0.948(0.791) 0.458(0.702)

0.99 0.996(1.030) 0.745(0.899) 0.998(1.009) 0.856(0.894)

n 1 − α Case 3 Case 4

SCB SCB-CC SCB SCB-CC

200 0.95 0.914(1.246) 0.839(1.158) 0.918(1.298) 0.835(1.184)

0.99 0.993(1.622) 0.979(1.507) 0.991(1.685) 0.968(1.536)

400 0.95 0.931(0.939) 0.815(0.872) 0.941(0.974) 0.789(0.887)

0.99 0.992(1.209) 0.976(1.123) 0.995(1.252) 0.973(1.140)

600 0.95 0.928(0.803) 0.786(0.748) 0.943(0.836) 0.760(0.761)

0.99 0.996(1.027) 0.979(0.957) 0.998(1.066) 0.968(0.972)

800 0.95 0.938(0.718) 0.752(0.670) 0.934(0.746) 0.702(0.681)

0.99 0.997(0.914) 0.961(0.853) 0.997(0.948) 0.945(0.865)

−2

−1

0

1

2

5.00.05.0−
x

y

95% SCB with n=400

−2

−1

0

1

2

5.00.05.0−
x

y

95% SCB with n=800

Fig. 1 Plots of the true mean function m(x) (thick solid), the weighted local linear estimate m̂(x, π̂) (thick
dashed) and the 95% SCB (solid line) for Case 1 under the selection probability model (i) with parameters
(α0, α1) = (0.2, 0.6) (about 45% missing). The complete case estimate (dashed) and the SCB (dotted) by
ignoring the cases with missing covariates are also shown
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Table 4 Empirical coverage frequencies of the SCB in (9) and the SCB in the complete case (SCB-CC)
with 1000 replications and their corresponding average widths (inside parentheses) under the selection
probability model (ii) with parameters (α∗

0, α
∗
1) = (0.1, 0.3)

n 1 − α Case 1 Case 2

SCB SCB-CC SCB SCB-CC

200 0.95 0.900(1.682) 0.660(1.525) 0.882(1.666) 0.657(1.526)

0.99 0.978(2.200) 0.907(1.995) 0.975(2.177) 0.911(1.993)

400 0.95 0.931(1.265) 0.514(1.137) 0.923(1.226) 0.548(1.114)

0.99 0.995(1.636) 0.872(1.471) 0.998(1.588) 0.896(1.444)

600 0.95 0.944(1.067) 0.383(0.958) 0.946(1.047) 0.422(0.948)

0.99 0.994(1.373) 0.821(1.232) 0.996(1.347) 0.845(1.219)

800 0.95 0.940(0.941) 0.296(0.845) 0.944(0.931) 0.296(0.843)

0.99 0.997(1.207) 0.752(1.084) 0.999(1.193) 0.776(1.080)

n 1 − α Case 3 Case 4

SCB SCB-CC SCB SCB-CC

200 0.95 0.901(1.449) 0.689(1.342) 0.926(1.515) 0.673(1.374)

0.99 0.992(1.896) 0.942(1.755) 0.989(1.976) 0.940(1.791)

400 0.95 0.922(1.103) 0.582(1.019) 0.933(1.150) 0.595(1.045)

0.99 0.993(1.425) 0.899(1.316) 0.995(1.481) 0.905(1.346)

600 0.95 0.944(0.947) 0.511(0.873) 0.946(0.987) 0.473(0.894)

0.99 0.997(1.214) 0.881(1.119) 0.997(1.262) 0.881(1.143)

800 0.95 0.944(0.838) 0.405(0.776) 0.943(0.876) 0.357(0.795)

0.99 0.993(1.071) 0.846(0.991) 0.999(1.116) 0.805(1.013)

−1

0

1

2

3

5.00.05.0−
x
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95% SCB with n=400
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5.00.05.0−
x

y

95% SCB with n=800

Fig. 2 Plots of the true mean function m(x) (thick solid), the weighted local linear estimate m̂(x, π̂) (thick
dashed) and the 95% SCB (solid) for Case 4 under the selection probability model (i) with parameters
(α0, α1) = (0.2, 0.6) (about 31% missing). The complete case estimate (dashed) and the SCB (dotted) by
ignoring the cases with missing covariates are also shown
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Table 5 Empirical coverage frequencies of the proposed SCB in (9) and the SCB in the complete case (SCB-
CC) with 1000 replications and their corresponding average widths (inside parentheses) under using logistic
regression to fit the underlying truncated logistic selection probabilitywith parameters (α0, α1) = (0.2, 0.6)

n 1 − α Case 1 Case 2

SCB SCB-CC SCB SCB-CC

200 0.95 0.879(1.680) 0.582(1.490) 0.874(1.637) 0.622(1.487)

0.99 0.978(2.200) 0.879(1.951) 0.970(2.142) 0.908(1.944)

400 0.95 0.901(1.262) 0.395(1.107) 0.909(1.222) 0.473(1.102)

0.99 0.991(1.634) 0.782(1.434) 0.992(1.582) 0.859(1.426)

600 0.95 0.924(1.073) 0.237(0.939) 0.924(1.030) 0.329(0.925)

0.99 0.993(1.381) 0.713(1.208) 0.994(1.327) 0.803(1.191)

800 0.95 0.923(0.948) 0.160(0.831) 0.933(0.917) 0.220(0.825)

0.99 0.995(1.216) 0.599(1.066) 0.996(1.175) 0.707(1.057)

n 1 − α Case 3 Case 4

SCB SCB-CC SCB SCB-CC

200 0.95 0.907(1.369) 0.743(1.301) 0.917(1.434) 0.716(1.334)

0.99 0.984(1.790) 0.950(1.702) 0.986(1.867) 0.951(1.736)

400 0.95 0.921(1.037) 0.654(0.986) 0.927(1.080) 0.644(1.010)

0.99 0.994(1.340) 0.935(1.274) 0.993(1.391) 0.920(1.300)

600 0.95 0.937(0.885) 0.591(0.841) 0.944(0.926) 0.556(0.864)

0.99 0.995(1.136) 0.930(1.079) 0.998(1.184) 0.904(1.105)

800 0.95 0.932(0.786) 0.512(0.748) 0.942(0.823) 0.435(0.770)

0.99 0.994(1.004) 0.884(0.956) 0.997(1.048) 0.858(0.980)

Following a reviewer’s suggestion, we also assessed the empirical performance of
the statistical significance and power of the SCB test in the following setting:

⎧
⎪⎪⎨

⎪⎪⎩

Y = m(X) + σ(X)ε, σ (X) = 2 exp(X) {exp(X) + 1}−1 ,

ε ∼ N (0, 1), X ∼ U [−1, 1] , π (Y ) = {1 + exp(−1.8 − Y )}−1 ,
H0 : m(X) = c0 + c1X ,

H1 : m(X) = c0 + c1X + γ sin(πX),

(10)

where c0 = 1, c1 = 6 and γ = 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5. The nominal signifi-
cance level of α = 0.05 was used. Figure 3 shows the empirical power of the SCB test
with 1000 replications. Note that when γ = 0, it is under the null hypothesis H0 and
the power degenerates to the type I error rate. One sees that the type I error rate is quite
close to the significance level 0.05. When γ 
= 0, it is under the alternative hypothesis
H1. It is seen that the power of the SCB test increases as n and/or γ increase. All this
supports our theoretical findings.
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Table 6 Empirical coverage frequencies of the proposed SCB in (9) and the SCB in the complete case
(SCB-CC) with 1000 replications and their corresponding average widths (inside parentheses) under using
logistic regression to fit the underlying π(Y ) = {1 + exp(−1.8 − Y − 0.2Y 2)}−1

n 1 − α Case 1 Case 2

SCB SCB-CC SCB SCB-CC

200 0.95 0.941(1.400) 0.840(1.248) 0.936(1.397) 0.838(1.251)

0.99 0.995(1.822) 0.972(1.624) 0.992(1.817) 0.971(1.627)

400 0.95 0.955(1.057) 0.805(0.941) 0.951(1.052) 0.818(0.936)

0.99 0.994(1.360) 0.972(1.211) 0.997(1.355) 0.978(1.205)

600 0.95 0.950(0.902) 0.728(0.801) 0.959(0.892) 0.738(0.793)

0.99 0.996(1.154) 0.959(1.025) 0.998(1.141) 0.969(1.015)

800 0.95 0.957(0.802) 0.696(0.713) 0.964(0.797) 0.700(0.710)

0.99 1.000(1.021) 0.943(0.908) 1.000(1.015) 0.952(0.904)

n 1 − α Case 3 Case 4

SCB SCB-CC SCB SCB-CC

200 0.95 0.913(1.263) 0.853(1.151) 0.916(1.324) 0.851(1.182)

0.99 0.988(1.643) 0.982(1.498) 0.993(1.718) 0.981(1.534)

400 0.95 0.934(0.958) 0.835(0.870) 0.929(1.016) 0.834(0.888)

0.99 0.991(1.233) 0.980(1.120) 0.995(1.305) 0.982(1.141)

600 0.95 0.932(0.819) 0.813(0.744) 0.938(0.872) 0.819(0.763)

0.99 0.998(1.048) 0.983(0.951) 0.998(1.113) 0.979(0.973)

800 0.95 0.934(0.732) 0.798(0.668) 0.937(0.777) 0.785(0.683)

0.99 0.997(0.932) 0.971(0.850) 0.998(0.987) 0.974(0.868)

Fig. 3 Plot of the empirical
power function of the SCB test
in model (10) with 1000
replications. The nominal
significance level is α = 0.05
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4 Real data analysis

In this section, we illustrate an application to the data from the Canada 2010/2011
Youth Student Survey. The 2010/2011 Youth Student Survey sponsored by Health
Canada is a pan-Canadian, classroom-based survey on a representative youth students
in grades 6–12 betweenOctober 2010 and June 2011. It aims to provideHealthCanada,
provinces, schools, communities, and parents with timely and reliable data on tobacco,
alcohol and drug use in addition to other related issues about Canadian students;
see more details in 2010-2011 YSS Student Survey Data Codebook or from https://
uwaterloo.ca/canadian-student-tobacco-alcohol-drugs-survey.

We focused on a subset of the data collected from white female youth students
in grades 6–12 to study the relationship between self-esteem and Body Mass Index
(BMI); see the interesting related discussions and further references in Habib et al.
(2015) and ALAhmari et al. (2017). In this data set, the self-esteem was measured
by using a score ranging from 0 to 12, and the BMI was computed by the weight
over height in meter squared, ranging from 10.04 to 49.78. There were a total of 5343
students with having complete observations on self-esteem, while only 3565 students
provided BMI (33.2% missing rate).

For the data missingness mechanism, we used the logistic regression to estimate
π(y). The fitted estimates are α̂ = (0.82585,−0.015)T . To further judge how well
the model fits the missingness pattern in the data, the Hosmer-Lemeshow goodness
of fit test (Hosmer and Lemeshow (2005)) was employed with the p-value = 0.17.
Thus one cannot reject the null hypothesis that the logistic model is correct. Figure 4
shows the inverse selection probability weighted local linear estimate m̂(x, π̂) (thick
solid line) and the 95% and 65.6% SCBs (solid lines). The SCBwas applied to test the
null hypothesis H0: m(x) = c0 + c1x where the coefficients (c0, c1)T were computed
by the inverse selection probability weighted least square method; see the null curve
(dashed line) in Figure 4. One can see that the null curve is completely covered by the
95%SCB. Thus the null hypothesis of themean function being a linear function cannot
be rejected at the significant level = 0.05. Applying Theorem 4, we obtained that the
minimum confidence level containing the null curve is 67.7%; see the right panel of
Figure 4. Therefore, the null hypothesis cannot be rejected with p-value = 0.323.

Moreover, one can also see that the mean curve has a general decreasing trend,
i.e., there is a negative association between self-esteem and BMI among white female
youth students in grades 6–12. This result agrees with that discovered by Habib et al.
(2015). Meanwhile, according to Habib et al. (2015), a BMI between 20 and 25 is
considered normal, a BMI between 25 and 30 is considered overweight, and a BMI
> 30 is considered obese. Therefore, even if female students were within normal
weight range, their self-esteem was still decreased as BMI increased. This may be
because female students in general are more likely to see themselves as obese or
overweight and show dissatisfaction with their body image even if they have a healthy
weight.
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Fig. 4 Plots of the weighted local linear estimate m̂(x, π̂) (thick solid), the 95% and 67.7% SCBs (solid),
and the null hypothesis weighted linear regression curve (dashed) for the youth student survey data collected
from white female students

5 Concluding remarks

In this paper, asymptotically accurate SCBs were constructed for the nonparametric
mean function with covariates missing at random by employing the weighted esti-
mator based on inverse selection probabilities. The limiting distribution of the global
estimation error (also known as maximal deviation) was derived, overcoming the main
technical challenge on formulating such a confidence band. The proposed estimator
for the mean function was shown to be oracally efficient in the sense that using root-
n consistent selection probability estimates is as efficient as that when the selection
probabilities were known as a prior. Simulation studies support our theoretical find-
ings and the analysis of the Canada 2010/2011 Youth Student Survey data illustrates
the versatility of the SCB. The methodology should also be suitable to partial linear
models for missing covariate data (Wang, 2009). Further investigations may lead to
similar constructions of SCBs for generalized nonparametric models, partial linear
single-index models, varying coefficient models, and functional data with missing
covariate data.

The traditional approach of using the asymptotic quantiles of the Gumbel extreme
value distribution for the construction of the bands leads to a decay of logarithmic order
in their coverage error. A bootstrap approximation can provide a substantial improve-
ment; see, e.g., Hall (1991). Furthermore, one could potentially use recent results on
anti-concentration of Gaussian processes (Chernozhukov et al., 2014), together with
the multiplier bootstrap, in order to construct confidence bands whose coverage error
decays polynomially fast. It would be desirable to explore how these ideas could be
implemented successfully in our current setting of missing covariate data. All these
are interesting problems for future research.
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6 Supplementary information

The online SupplementaryMaterial contains the proofs of the lemmas given in Appen-
dices A.1 and A.2.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10463-021-00784-5.
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A. Appendix

We use an ∼ bn to represent limn→∞ an/bn = c, where c is some nonzero constant.
For any function ϕ (u) defined on [a, b], let ‖ϕ (u)‖∞ = ‖ϕ‖∞ = supu∈[a,b] |ϕ (u)|.

A.1 Preliminaries

This section gives some lemmas that are needed in our theoretical development. Their
proofs are given in the Supplementary Material.

Lemma 1 (Theorem 1.2 of Bosq (1998)) Let ξ1, . . . , ξn be independent random vari-
ables with mean 0. If there exists c > 0 such that (Cramér’s Conditions)

E
∣∣ξ i
∣∣k ≤ ck−2k!E ξ2i < +∞ for 1 ≤ i ≤ n, k ≥ 3,

then for any t > 0,

P

{∣∣∣∣∣

n∑

i=1

ξ i

∣∣∣∣∣
> t

}

≤ 2 exp

{

− t2

4
∑n

i=1 E ξ2i + 2ct

}

.

Lemma 2 Under Assumptions (A1)–(A5), for any integer l ≥ 0, as n → ∞, one has

sup
x∈[a0,b0]

∣∣∣∣∣
n−1

n∑

i=1

δi

π i
Kh (Xi − x) (Xi − x)l εi

∣∣∣∣∣
= Op

(
n−1/2hl−1/2 log1/2 n

)
.

In the following, we discuss the representations of the weighted estimators m̂ (x, π)

and m̂
(
x, π̂

)
, and break the errors m̂ (x, π)−m (x) and m̂

(
x, π̂

)−m (x) into simpler
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parts to prove Theorems 1 and 3. Let

Ln,l (x) = n−1
n∑

i=1

δi

π i
Kh (Xi − x) (Xi − x)l , l = 0, 1, 2,

and

Mn,l (x) = n−1
n∑

i=1

δi

π i
Kh (Xi − x) (Xi − x)l

{
Yi − m (x) − m(1) (x) (Xi − x)

}
.

Then

XTWX=
(
Ln,0 (x) Ln,1 (x)
Ln,1 (x) Ln,2 (x)

)
,

XTW
(
Y−m (x)Xe0−m(1) (x)Xe1

)
=
(
Mn,0 (x)
Mn,1 (x)

)
,

where e1 = (0, 1)T . By (4), one then has

m̂ (x, π) − m (x) = eT0

(
XTWX

)−1
XTW

(
Y−m (x)Xe0 − m(1) (x)Xe1

)

= eT0

(
Ln,0 (x) Ln,1 (x)
Ln,1 (x) Ln,2 (x)

)−1(Mn,0 (x)
Mn,1 (x)

)
. (11)

To further study m̂
(
x, π̂

)
, let

L̂n,l (x) = n−1
n∑

i=1

δi

π̂ i
Kh (Xi − x) (Xi − x)l , l = 0, 1, 2,

and

M̂n,l (x) = n−1
n∑

i=1

δi

π̂ i
Kh (Xi − x) (Xi − x)l

{
Yi − m (x) − m(1) (x) (Xi − x)

}
.

By (5), one then obtains that

m̂
(
x, π̂

)−m (x)= eT0

(
XT ŴX

)−1
XT Ŵ

(
Y−m (x)Xe0 − m(1) (x)Xe1

)

= eT0

(
L̂n,0 (x) L̂n,1 (x)
L̂n,1 (x) L̂n,2 (x)

)−1(
M̂n,0 (x)
M̂n,1 (x)

)
. (12)

Lemma 3 Under Assumptions (A1) and (A3)–(A5), as n → ∞, uniformly for all
x ∈ [a0, b0], one has

Ln,l (x) = hl fX (x) μl (K ) + u p

(
hl+1

)
+Up

(
n−1/2hl−1/2 log1/2 n

)
, l = 0, 1, 2.
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Lemma 4 Under Assumptions (A1)–(A5), as n → ∞, uniformly for all x ∈ [a0, b0],
one has

Mn,0 (x) = n−1
n∑

i=1

δi

π i
Kh (Xi − x) εi + 2−1m(2) (x) fX (x) μ2 (K ) h2 + u p

(
h2
)

and

Mn,1 (x) = Up

(
n−1/2h1/2 log1/2 n

)
.

Lemma 5 Under Assumptions (A1)–(A5), as n → ∞, one has

sup
u∈[a0,b0]

∣∣∣L̂n,l (x) − Ln,l (x)
∣∣∣ = Op

(
n−1/2

)
, l = 0, 1, 2,

and

sup
u∈[a0,b0]

∣∣∣M̂n,l (x) − Mn,l (x)
∣∣∣ = Op

(
n−1/2

)
, l = 0, 1.

A.2 Conditional limiting extreme value distribution of Vn(x)

This section contains themain steps to obtain the conditional extremevalue distribution

of Vn(x) = n−1 f −1
X (x)

n∑

i=1

δi
π i
Kh (Xi −x) εi shown in Theorem 6 at the end of this

section which will be used in the total probability formula in the proof of Theorem 2.
The Rosenblatt quantile transformation in Rosenblatt (1952) is adopted with

T (X , ε) = (
X∗, ε∗) = (

FX |δ=1 (X) , Fε|X ,δ=1 (ε|X)
)
,

where FX |δ=1 (X) is the conditional distribution function of X given δ = 1 and
Fε|X ,δ=1 (ε|X) is the conditional distribution function of ε given X and δ = 1. This
transformation produces mutually independent uniform random variables (X∗, ε∗) on
[0, 1]2. According to the strong approximation theorem in Tusnady (1977) (Theorem
1), there exists a sequence of two dimensional Brownian bridges Bn such that

supx,ε |Zn (x, ε) − Bn (T (x, ε))| = Oa.s.

(
n−1/2 log2 n

)
, (13)

where Zn (x, ε) = n1/2
{
Fn (x, ε) − FX ,ε|δ=1 (x, ε)

}
with Fn (x, ε) and FX ,ε|δ=1

(x, ε) representing the empirical and the theoretical distribution of (X , ε) given δ = 1.
The transformation and the strong approximation results have been also used in John-
ston (1982), Härdle (1989), and Wang and Yang (2009) for constructing SCBs for the
nonparametric regression when data are fully observed.

To obtain the distribution of supx∈[a0,b0] |Vn(x)| conditional on �n = n0, we will
show the following Lemmas 6–8. Here {n0} is a sequence of numbers related to n with
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1 ≤ n0 ≤ n. By (6) it is clear that there exists a constant r > 0 such that r ≤ �n/n ≤ 1
in probability as n → ∞. Thus we only need to consider n0 ≥ r × n. That is, n0 and
n have the same order as n → ∞. Therefore, to unify the notation in the following
we will use n in the convergence rate.

Meanwhile, due to the i.i.d. assumption of the data, conditional on�n = ∑n
i=1 δi =

n0 is equivalent to conditional on the event that there are n0 elements in δn =
(δ1, ..., δn)

T that are equal to 1 and the rest (n − n0) elements are equal to 0. Without
loss of generality, let δi = 1 for i = 1, . . . , n0 and δi = 0 for i = n0 + 1, . . . , n.

Notice that, for i = 1, . . . , n,

0 = E

{
δi

π i
Kh (Xi −x) εi

}
= E

[
E

{
δi

π i
Kh (Xi −x) εi

∣∣∣
∣ δi

}]

= E

{
1

π i
Kh (Xi −x) εi

∣∣∣∣ δi = 1

}
P (δi = 1) .

Thus, conditional on �n = n0, 1 ≤ n0 ≤ n, by symmetry one has

E

{
n∑

i=1

δi

π i
Kh (Xi −x) εi

∣∣
∣∣∣
�n = n0

}

= E

{
n∑

i=1

δi

π i
Kh (Xi −x) εi

∣∣∣
∣∣
δ1 = · · · = δn0 = 1, δn0+1 = · · · = δn = 0

}

= n0 E

{
1

π1
Kh (X1−x) ε1

∣∣∣∣ δ1 = 1

}
= 0

and

var

{
n∑

i=1

δi

π i
Kh (Xi −x) εi

∣∣
∣∣�n = n0

}

= E

[

{
n∑

i=1

δi

π i
Kh (Xi −x) εi }2

∣∣∣∣
∣
δ1 = · · · = δn0 = 1, δn0+1 = · · · = δn = 0

]

= n0 E

(
1

π2
1

K 2
h (X1−x) ε21

∣∣∣∣∣
δ1 = 1

)

= n0

∫
1

π2 (m (u) + ε)
K 2
h (u−x) ε2 fX ,ε|δ=1 (u, ε) dudε

= n0h
−1
∫

1

π2 (m (x + hv) + ε)
K 2 (v) ε2 fX ,ε|δ=1 (x + hv, ε) dvdε

= n0h
−1
∫

K 2 (v) dv

∫
1

π2 (m (x) + ε)
ε2 fX ,ε|δ=1 (x, ε) dε {1 + u (1)}

= n0h
−1λ (K ) s (x) {1 + u (1)} . (14)
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Moreover, as discussed above, conditional on �n = n0 one can let δi = 1 for i =
1, . . . , n0 and δi = 0 for i = n0+1, . . . , nwithout loss of generality. Then conditional
on �n = n0 one can write

Vn (x) = n−1 f −1
X (x)

n∑

i=1

δi

π i
Kh (Xi −x) εi

= n−1 f −1
X (x)

n0∑

i=1

1

π i
Kh (Xi −x) εi .

Conditional on �n = n0 we now introduce the following standardized stochastic
process:

ζ 1n0 (x) = (n0h)1/2 s−1/2 (x) n−1
0

n0∑

i=1

1

π i
Kh (Xi −x) εi , (15)

which can be rewritten as

ζ 1n0 (x) = h1/2s−1/2 (x)
∫ ∫

1

π (m (u) + ε)
Kh (u −x) εdZn0 (u, ε) ,

where Zn0 (u, ε) is the same as Zn (u, ε) in (13) but with n replaced by n0.
Let κn = nθ with 2

3η < θ < 1
6 where η > 4 is given in Assumption (A2), which

together with Assumption (A5) implies that

κ−η
n h−2 log n = O (1) , κ2

nn
−1/2h−1/2 (log n)5/2 = o (1) . (16)

Then conditional on �n = n0 one can define the following processes to approximate
ζ 1n0 (x):

ζ 2n0 (x) = h1/2s−1/2
n (x)

∫ ∫

|ε|≤κn

1

π (m (u) + ε)
Kh (u −x) εdZn0 (u, ε) ,

ζ 3n0 (x) = h1/2s−1/2
n (x)

∫ ∫

|ε|≤κn

1

π (m (u) + ε)
Kh (u −x) εdBn0 (T (u, ε)) ,

ζ 4n0 (x) = h1/2s−1/2
n (x)

∫ ∫

|ε|≤κn

1

π (m (u) + ε)
Kh (u −x) εdWn0 (T (u, ε)) ,

where sn (x) = ∫
|ε|≤κn

ε2

π2(m(x)+ε)
fX ,ε|δ=1 (x, ε) dε, Bn0 (T (u, ε)) is the sequence

of Brownian bridges in (13) and Wn0 (T (u, ε)) is the sequence of Wiener processes
satisfying Bn0(u, s)=Wn0(u, s) −usWn0 (1, 1). Moreover, define

ζ 5n0 (x) = h1/2s−1/2
n (x)

∫
s1/2n (u) Kh (u −x) dW (u) ,
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and

ζ 6n0 (x) = h1/2
∫

Kh (u −x) dW (u) ,

whereW (u) is a two-sided Wiener process on (−∞,+∞). Conditional on �n = n0,
according to Theorem 3.1 in Bickel and Rosenblatt (1952), one has

P

[

ah

{

sup
x∈[a0,b0]

∣∣ζ 6n0 (x)
∣∣ /λ1/2 (K ) − bh

}

≤ t

∣∣∣∣∣
�n = n0

]

→ exp {−2 exp (−t)}

(17)

∀t ∈ R, as n0 (and thus n) → ∞. Here ah, bh , and λ (K ) are given in Theorem 2.
The proofs of the following Lemmas 6 and 7 are given in the Supplementary Mate-

rial due to the space limitation.

Lemma 6 Under Assumptions (A1)–(A5), conditional on �n = n0, for an increasing
sequence {n0}, as n0 → ∞, one has

(a) sup
x∈[a0,b0]

∣∣ζ 2n0 (x)

−ζ 3n0 (x)
∣∣ = op

(
log−1/2 n

)
,

(b) sup
x∈[a0,b0]

∣∣ζ 3n0 (x)

−ζ 4n0 (x)
∣∣ = op

(
log−1/2 n

)
,

(c) sup
x∈[a0,b0]

∣∣ζ 5n0 (x)

−ζ 6n0 (x)
∣∣ = op

(
log−1/2 n

)
.

Lemma 7 Conditional on �n = n0 for an increasing sequence {n0}, the stochastic
processes ζ 4n0 (x) and ζ 5n0 (x) have the same asymptotic distribution as n0 → ∞.

Lemmas 6 and 7, expression (17), and Slutsky’s Theorem imply that

P

[

ah

{

sup
x∈[a0,b0]

∣∣ζ 2n0 (x)
∣∣ /λ1/2 (K )−bh

}

≤ t

∣∣∣∣∣
�n = n0

]

→ exp{−2 exp (−t)}

(18)

∀t ∈ R, as n0 → ∞.

Lemma 8 Under Assumptions (A1)–(A5), conditional on �n = n0 for an increasing
sequence {n0}, one has

sup
x∈[a0,b0]

∣∣ζ 1n0 (x) − ζ 2n0 (x)
∣∣ = op

(
log−1/2 n

)
,
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as n0 → ∞.

Proof of Lemma 8. Define

ζ ∗
1n0 (x) = h1/2s−1/2 (x)

∫ ∫

|ε|≤κn

1

π (m (u) + ε)
Kh (u −x) εdZn0 (u, ε) .

To prove the lemma, it is sufficient to prove that conditional on �n = n0

sup
x∈[a0,b0]

∣∣ζ 1n0 (x) − ζ ∗
1n0 (x)

∣∣ = op
(
log−1/2 n

)
(19)

and

sup
x∈[a0,b0]

∣∣ζ 2n0 (x) − ζ ∗
1n0 (x)

∣∣ = op
(
log−1/2 n

)
(20)

as n0 → ∞. In the following, we first show (20). By (18) and the fact that bh =
O
(
log1/2 n

)
, one has supx∈[a0,b0]

∣∣ζ 2n0 (x)
∣∣ = Op

(
log1/2 n

)
which with (S.6) in the

Supplementary Material implies that

sup
x∈[a0,b0]

∣∣ζ 2n0 (x)−ζ ∗
1n0 (x)

∣∣ = sup
x∈[a0,b0]

∣∣∣
∣h

1/2
{
s−1/2 (x) − s−1/2

n (x)
}

×
∫ ∫

|ε|≤κn

1

π (m (u)+ε)
Kh (u−x) εdZn0 (u, ε)

∣∣
∣∣

= Op

(
h2 log−1/2 n

)
= op

(
log−1/2 n

)
.

We next prove (19). Notice that

ζ 1n0 (x) − ζ ∗
1n0 (x)

= h1/2s−1/2 (x)
∫ ∫

|ε|>κn

1

π (m (u) + ε)
Kh (u −x) εdZn0 (u, ε)

=s−1/2 (x)
n0∑

i=1

(
n−1
0 h

)1/2 [ 1

π (m (Xi ) + εi )
Kh (Xi −x) εi I {|εi | > κn}

−E

{
1

π (m (Xi ) + εi )
Kh (Xi −x) εi I {|εi | > κn}

∣∣
∣∣ δi = 1

}]
.

For convenience, we denote

ς i,n (x) =
(
n−1
0 h

)1/2
log1/2 n

[
1

π (m (Xi ) + εi )
Kh (Xi −x) εi I {|εi | > κn}

−E

{
1

π (m (Xi ) + εi )
Kh (Xi −x) εi I {|εi | > κn}

∣∣∣∣δi = 1

}]
.
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To prove (19), it is sufficient to verify that

sup
x∈[a0,b0]

∣
∣∑n0

i=1 ς i,n (x)
∣
∣ = op (1) .

ByTheorem 15.6 in Billingsley (1968), it suffices to show: (i) conditional on�n = n0,∑n0
i=1 ς i,n (x) → 0 in probability for any given x ∈ [a0, b0] and (ii) the tightness of∑n0
i=1 ς i,n (x) conditional on �n = n0, using the following moment condition:

E

{∣∣∣
∣

(
n0∑

i=1
ς i,n (x) −

n0∑

i=1
ς i,n (x1)

)(
n0∑

i=1
ς i,n (x2) −

n0∑

i=1
ς i,n (x)

)∣∣∣
∣

∣∣∣
∣�n = n0

}

≤ C |x2 − x1|2

for any x ∈ [x1, x2] and some constant C > 0 that is independent of n0.
Firstly, note that ς i,n (x) , 1 ≤ i ≤ n, are independent variables with E{ς i,n (x) |

δi = 1} = 0 and

var{ς i,n (x)
∣∣δi = 1} = E{ς2

i,n (x)
∣∣δi = 1}

≤ n−1
0 h log n E

[
1

π2 (m (Xi ) + εi )
K 2
h (Xi −x) ε2i I {|εi | > κn}

∣∣∣
∣δi = 1

]

= n−1
0 h log n

∫ ∫

|ε|>κn

1

π2 (m (u) + ε)
K 2
h (u −x) ε2 fX ,ε|δ=1 (u, ε) dudε

= n−1
0 log n

∫ ∫

|ε|>κn

1

π2 (m (x)+ε)
K 2(v) ε2 fX ,ε|δ=1(x, ε) dvdε {1+u (1)}

≤ n−1
0 log n

∫
K 2(v) dv

∫

|ε|>κn

1

π2 (m (x)+ε)
ε2 fX ,ε|δ=1(x, ε) dε {1+u (1)} .

Thus, by (16), one has var{∑n0
i=1 ς i,n (x) | �n = n0} = n0 var{ς i,n (x) | δi = 1} → 0

which together with Markov’s inequality concludes that for any given x ∈ [a0, b0],

∑n0
i=1 ς i,n (x) → 0 in probability.

Secondly, notice that

E

{(
n0∑

i=1
ς i,n (x) −

n0∑

i=1
ς i,n (x1)

)2
∣
∣∣∣∣
�n = n0

}

= n−1
0 h log n

n0∑

i=1

E

[{
(Kh (Xi − x)−Kh (Xi −x1))

π (m (Xi ) + εi )
εi I {|εi | > κn} −

E

(
(Kh (Xi − x)−Kh (Xi −x1))

π (m (Xi ) + εi )
εi I (|εi | > κn) )

∣∣
∣∣ δi = 1

)}2∣∣∣
∣∣
�n =n0

]

= h log n E

[{
(Kh (X1 − x)−Kh (X1 −x1))

π (m (X1) + ε1)
ε1 I {|ε1| > κn} −
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E

(
(Kh (X1 − x)−Kh (X1 −x1))

π (m (X1) + ε1)
ε1 I (|ε1| > κn) )

∣∣
∣∣ δ1 = 1

)}2∣∣
∣∣∣
δ1 = 1

]

.

Since K (u) ∈ C (1) [−1, 1] by Assumption (A3),

E

{(
n0∑

i=1
ς i,n (x) −

n0∑

i=1
ς i,n (x1)

)2
∣
∣∣∣∣
�n = n0

}

≤ C1 (x − x1)
2 h−2 log n

∫

|ε|>κn

1

π2 (m (x) + ε)
ε2 fX ,ε|δ=1 (x, ε) dε

and

E

{(
n0∑

i=1
ς i,n (x2) −

n0∑

i=1
ς i,n (x)

)2
∣∣∣∣∣
�n = n0

}

≤ C1 (x2 − x)2 h−2 log n
∫

|ε|>κn

1

π2 (m (x) + ε)
ε2 fX ,ε|δ=1 (x, ε) dε

for some constant C1 > 0 that is independent of n0. Therefore, by the Schwarz
inequality, one has that

E

{∣∣∣∣

(
n0∑

i=1
ς i,n (x) −

n0∑

i=1
ς i,n (x1)

) (
n0∑

i=1
ς i,n (x2) −

n0∑

i=1
ς i,n (x)

)∣∣∣∣

∣∣∣∣�n = n0

}

≤
[

E

{(
n0∑

i=1
ς i,n (x) −

n0∑

i=1
ς i,n (x1)

)2
∣
∣∣∣∣
�n = n0

}]1/2
×

[

E

{(
n0∑

i=1
ς i,n (x2) −

n0∑

i=1
ς i,n (x)

)2
∣∣
∣∣∣
�n = n0

}]1/2

≤ C1 |x − x1| |x2 − x | h−2 log n
∫

|ε|>κn

1

π2 (m (x) + ε)
ε2 fX ,ε|δ=1 (x, ε) dε

which together with (16) concludes that

E

{∣∣∣∣

(
n0∑

i=1
ς i,n (x) −

n0∑

i=1
ς i,n (x1)

)(
n0∑

i=1
ς i,n (x2) −

n0∑

i=1
ς i,n (x)

)∣∣∣∣

∣∣∣∣�n = n0

}

≤ C |x2 − x1|2

for some C > 0 that is independent of n0, verifying the tightness. The proof is
completed. �

By the definitions of Vn (x) in Theorem 1 and ζ 1n0(x) in (15), one has ζ 1n0 (x) =
(nh)1/2 r−1/2

n s−1/2 (x) fX (x) Vn (x) given �n = n0. This together with Lemma 8,
expression (18), and Slutsky’s Theorem concludes the following result.
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Theorem 6 Under Assumptions (A1)–(A5), one has that, for any t ∈ R, as n0 → ∞,

P

[

ah

{

sup
x∈[a0,b0]

∣∣∣(nh)1/2 r−1/2
n Vn (x) /d1/2 (x)

∣∣∣− bh

}

≤ t

∣
∣∣∣�n = n0

]

→ exp {−2 exp (−t)} . (21)

A.3 Proofs of the theorems in Section 2

Proof of Theorem 1. By Lemma 3 and Assumption (A5), one has

XTWX =
(
Ln,0 (x) Ln,1 (x)
Ln,1 (x) Ln,2 (x)

)
= fX (x)

(
1 + u p(h) Up(h2)
Up(h2) h2μ2 (K ) + u p(h3)

)

which implies that

(
XTWX

)−1 = f −1
X (x)

(
1 + u p (h) Up (1)
Up (1) h−2μ−1

2 (K ) + u p
(
h−1

)
)

.

It together with (11) and Lemmas 2 and 4 concludes that uniformly for all x ∈ [a0, b0],

m̂ (x, π) − m (x)

= eT0

{
f −1
X (x)

(
1 + u p (h) Up (1)
Up (1) h−2μ−1

2 (K ) + u p
(
h−1

)
)}

×
⎛

⎝ n−1
n∑

i=1

δi
π i
Kh (Xi − x) εi + 2−1m(2) (x) fX (x) μ2 (K ) h2 + u p

(
h2
)

Up
(
n−1/2h1/2 log1/2 n

)

⎞

⎠

= Vn (x) + 2−1m(2) (x) μ2 (K ) h2 + u p

(
h2
)

+Up

(
n−1/2h1/2 log1/2 n

)

= Vn (x) + 2−1m(2) (x) μ2 (K ) h2 + u p

(
h2
)

.

The proof is completed. �

Proof of Theorem 2. According to Theorem 6, for any t ∈ R , as n0 → ∞,

P

[

ah

{

sup
x∈[a0,b0]

∣
∣∣(nh)1/2 r−1/2

n Vn (x) /d1/2 (x)
∣
∣∣− bh

}

≤ t

∣∣
∣∣∣
�n = n0

]

→ exp {−2 exp (−t)} .

Thus one has that for any given ε > 0 and t ∈ R, there exists N0 > 0 such that

∣∣∣∣∣
P

[

ah

{

sup
x∈[a0,b0]

∣∣∣(nh)1/2 r−1/2
n Vn (x) /d1/2 (x)

∣∣∣− bh

}

≤ t

∣∣∣∣∣
�n = n0

]
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− exp {−2 exp (−t)}
∣
∣∣∣ <

ε

2

for all n0 ≥ N0. On the other hand, since �n/n → P (δ1 = 1) > 0 a.s., there exists
N > N0 such that when n ≥ N , P (�n ≥ N0) > 1 − ε/2. Therefore, unconditional
on �n , for n ≥ N ,

∣∣
∣∣∣
P

[

ah

{

sup
x∈[a0,b0]

∣
∣∣(nh)1/2 r−1/2

n Vn(x)/d
1/2 (x)

∣
∣∣− bh

}

≤ t

]

− exp {−2 exp (−t)}
∣∣
∣∣∣

≤
n∑

n0=1

∣∣∣∣
∣
P

[

ah

{

sup
x∈[a0,b0]

∣∣∣(nh)1/2 r−1/2
n Vn(x) /d1/2 (x)

∣∣∣− bh

}

≤ t

∣∣∣∣
∣
�n = n0

]

− exp {−2 exp (−t)}
∣∣∣∣× P(�n = n0) + P(�n = 0)

≤
n∑

n0=N0

∣∣∣∣∣
P

[

ah

{

sup
x∈[a0,b0]

∣∣∣(nh)1/2 r−1/2
n Vn(x) /d1/2 (x)

∣∣∣− bh

}

≤ t

∣∣∣∣∣
�n = n0

]

− exp {−2 exp (−t)}
∣∣
∣∣× P(�n = n0) + ε

2
< ε.

This together with the fact that the dominating term of m̂ (x, π) − m (x) is Vn(x) as
seen in Theorem 1 concludes Theorem 2. �

Proof of Theorem 3. By (11) and (12) one has

m̂ (x, π) − m̂
(
x, π̂

) = eT0

(
Ln,0 (x) Ln,1 (x)
Ln,1 (x) Ln,2 (x)

)−1 (Mn,0 (x)
Mn,1 (x)

)

− eT0

(
L̂n,0 (x) L̂n,1 (x)
L̂n,1 (x) L̂n,2 (x)

)−1 (
M̂n,0 (x)
M̂n,1 (x)

)
.

By Lemma 5, it is easily seen that

sup
x∈[a0,b0]

∣∣m̂ (x, π) − m̂
(
x, π̂

)∣∣ = Op

(
n−1/2

)
,

completing the proof. �

Proof of Theorem 5. By definition,

d̂n (x) = n

�n
f̂ −2
X (x)

h

n

n∑

i=1

δi

π̂
2
i

K 2
h (Xi −x) ε̂

2
i . (22)
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Firstly, we study the uniform convergence property of h
n

n∑

i=1

δi

π̂2
i
K 2
h (Xi −x) ε̂

2
i . Notice

that

sup
x∈[a0,b0]

∣
∣∣∣∣
h

n

n∑

i=1

δi

π̂
2
i

K 2
h (Xi −x) ε̂

2
i − h

n

n∑

i=1

δi

π2
i

K 2
h (Xi −x) ε̂

2
i

∣
∣∣∣∣

= sup
x∈[a0,b0]

∣∣∣∣∣∣

h

n

n∑

i=1

δi

(
π2
i − π̂

2
i

)

π̂
2
i π

2
i

K 2
h (Xi −x)

{
m (Xi ) − m̂

(
Xi , π̂ i

)+ εi
}2
∣∣∣∣∣∣

= op
(
n−1/2h−1

)

and

sup
x∈[a0,b0]

∣∣
∣∣∣
h

n

n∑

i=1

δi

π2
i

K 2
h (Xi −x) ε̂

2
i − h

n

n∑

i=1

δi

π2
i

K 2
h (Xi −x) ε2i

∣∣
∣∣∣

= sup
x∈[a0,b0]

∣∣
∣∣∣
h

n

n∑

i=1

δi

π2
i

K 2
h (Xi −x)

(
ε̂
2
i − ε2i

)
∣∣
∣∣∣

≤ sup
x∈[a0,b0]

∣∣∣
∣∣
h

n

n∑

i=1

δi

π2
i

K 2
h (Xi −x)

{
m (Xi ) − m̂

(
Xi , π̂ i

)}2
∣∣∣
∣∣

+ sup
x∈[a0,b0]

∣∣∣∣
∣
2
h

n

n∑

i=1

δi

π2
i

K 2
h (Xi −x)

{
m (Xi ) − m̂

(
Xi , π̂ i

)}
εi

∣∣∣∣
∣

= Op

(
n−1/2h−3/2 log1/2 n

)
,

which imply that

sup
x∈[a0,b0]

∣∣∣∣∣
h

n

n∑

i=1

δi

π̂
2
i

K 2
h (Xi −x) ε̂

2
i − h

n

n∑

i=1

δi

π2
i

K 2
h (Xi −x) ε2i

∣∣∣∣∣

= Op

(
n−1/2h−3/2 log1/2 n

)
. (23)

Secondly, denote ε∗
i = δi ε

2
i

π2
i

− E

(
δi ε

2
i

π2
i

∣
∣∣Xi

)
. By applying the inequality in Lemma

1, the Borel-Cantelli Lemma, and the truncation and discretization method as in the
proof of Lemma 2, one obtains that

sup
x∈[a0,b0]

∣
∣∣∣∣
h

n

n∑

i=1

K 2
h (Xi − x) ε∗

i

∣
∣∣∣∣
= Op

(
n−1/2h−1/2 log1/2 n

)
(24)
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as n → ∞. Meanwhile, similar to the proof of Lemma 3, one can easily show that

sup
x∈[a0,b0]

∣∣∣∣
∣
h

n

n∑

i=1

E

{

K 2
h (Xi −x)

δiε
2
i

π2
i

| Xi

}

− h E

{

K 2
h (X1− x)

δ1ε
2
1

π2
1

}∣∣∣∣
∣

= Op

(
n−1/2h−1/2 log1/2 n

)
. (25)

Combining (23), (24), and (25), one has

sup
x∈[a0,b0]

∣∣∣∣∣
h

n

n∑

i=1

δi

π̂
2
i

K 2
h (Xi−x) ε̂

2
i − h E

{
δ1

π2
1

K 2
h (X1− x) ε21

}∣∣∣∣∣

= Op

(
n−1/2h−3/2 log1/2 n

)
.

Meanwhile, by Lemmas 3 and 5, and h f = O(n−1/5), one can easily obtain that

sup
x∈[a0,b0]

∣∣∣ f̂ X (x) − fX (x)
∣∣∣ = op

(
h f
)+ Op

(
n−1/2h−1/2

f log1/2 n
)

= op
(
n−1/5

)
.

Thus,

sup
x∈[a0,b0]

∣∣∣
∣∣
f̂ −2
X (x)

h

n

n∑

i=1

δi

π̂
2
i

K 2
h (Xi −x) ε̂

2
i − f −2

X (x) h E

{
δ1

π2
1

K 2
h (X1− x) ε21

}∣∣∣
∣∣

= op
(
n−1/5

)
+ Op

(
n−1/2h−3/2 log1/2 n

)
= Op

(
n−1/2h−3/2 log1/2 n

)
,

which together with the fact that

f −2
X (x) h E

{
δ1

π2
1

K 2
h (X1− x) ε21

}

= f −2
X (x) h E

{
1

π2
1

K 2
h (X1− x) ε21

∣
∣∣δ1 = 1

}

P (δ1 = 1)

= d (x) P (δ1 = 1) + u p (h)

implies

sup
x∈[a0,b0]

∣∣∣∣∣
f̂ −2
X (x)

h

n

n∑

i=1

δi

π̂
2
i

K 2
h (Xi −x) ε̂

2
i − d (x) P (δ1 = 1)

∣∣∣∣∣

= Op

(
n−1/2h−3/2 log1/2 n

)
. (26)
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It is easily seen from (22), (6), and (26) that

sup
x∈[a0,b0]

∣∣
∣d̂n (x) − d (x)

∣∣
∣ = Op

(
n−1/2h−3/2 log1/2 n

)
,

completing the proof. �
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