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1 Computation for the Proposed Method

1.1 Computation of the proposed likelihood function and its derivatives

Computation of the proposed likelihood function and its derivatives require a numerical integration. For their
computation in our programs, we use the Matlab function integral(), which works satisfactorily for computing
integrals in the likelihood functions. Besides the Matlab function, we recommend to use the double exponential
formulas provided by Takahasi and Mori (1974). For the implementation of the double exponential formulas in C
program, the readers may find the C functions intde () and intdei () in Ooura’s Mathematical Software Packages,
provided by Prof. Takuya Ooura on his web page (http://www.kurims.kyoto-u.ac.jp/ ooura/index.html). We
strongly recommend not to use the R function integrate() since the obtained results using this function may not
be satisfactory, as we have witnessed.

Although, in general, the values of the likelihood function increase exponentially with sample size n, it is
possible to prevent the values from getting too large by taking the logarithm of the likelihood function, and
thus may overflow rarely happens in computation. However, it is not effective to take the logarithm of the

proposed likelihood function l(k; s
(j)
n ) for preventing l(k; s

(j)
n ) from overflow since l(k; s

(j)
n ) has an integral with

the integrand including factors that increase exponentially with n that needs to be evaluated before taking the
logarithm. To remedy this difficulty, we recommend the use of log sum exponential method to compute the
proposed log-likelihood function, it is as follows.

For k ̸= 0, the logarithm of l(k; s
(j)
n ) can be expressed as

log l(k; s(j)n ) = log n! +D + log

∫
χk

1

|k|

(u
k

)n−1 n∏
i=1

(1− usi)
1/k−1

exp (−D) du, (1)

∗Corresponding Author: Hideki Nagatsuka, email:hideki@indsys.chuo-u.ac.jp

1



where

D = sup
u∈χk

log
1

|k|

(u
k

)n−1 n∏
i=1

(1− usi)
1/k−1

= sup
u∈χk

(n− 1) log |u|+
(
1

k
− 1

) n∑
i=1

log (1− usi) .

Note that the integrand of the third term in Eq.(1) is less than or equal to 1. Thus, an overflow in computation
is not expected to occur. This method can be used in the computation of the derivatives of the likelihood

function as well. For k = 0, l(k; s
(j)
n ) and its derivatives do not have integrals and the log sum exponential

method is not needed in this case.

1.2 Computation of Fisher Information:

The Fisher information,

Ij,n (k) = −E

(
∂2

∂k2
log l

(
k; S(j)

n

))
,

requires n-fold integrals to compute the expectation of log l
(
k; S

(j)
n

)
. One possibility is to use Monte Carlo

integration; but, instead, we use the observed Fisher information, instead of Ij,n (k), which is given by

Îj,n (k) = − ∂2

∂k2
log l

(
k; s(j)n

)
,

where s
(j)
n = (s

(j)
1:n, . . . , s

(j)
j−1:n, s

(j)
j+1:n, . . . , s

(j)
n:n), s

(j)
i:n = xi:n/xj:n, i ̸= j, 1 ≤ i ≤ n, and xi:n is the observed value

corresponding to Xi:n. We carried out extensive Monte Carlo simulations and observed that the asymptotic
properties of the interval estimation and hypothesis testing procedures based on the observed Fisher information
were quite similar to those based on the expected Fisher information. In Sections 4 and 5, we therefore use the
observed Fisher information for the inferential procedures carried out there.

2 Proofs

2.1 Proof of Proposition 2

For k ̸= 0, l′(k; s
(j)
n ) is immediately obtained by deriving l(k; s

(j)
n ). In the case when k = 0, for ∆k < 0, using

the fact that l(0; s
(j)
n ) = n!

∫∞
0

un−1 exp (−u
∑n

i=1 si) du,

l(∆k; s
(j)
n )− l(0; s

(j)
n )

∆k

= n!

[∫ ∞

0

un−1 exp

{(
1

∆k
− 1

) n∑
i=1

log (1−∆kusi)

}
− un−1 exp

(
−u

n∑
i=1

si

)
du

]
/
∆k

= n!

[∫ ∞

0

un−1 exp

[
n∑

i=1

{
−usi +

(
1− usi

2

)
∆kusi

}
+O (∆k)

2

]
− un−1 exp

(
−u

n∑
i=1

si

)
du

]
/
∆k

→ n!

∫ ∞

0

un−1

{
n∑

i=1

(
1− usi

2

)
usi

}
exp

(
−u

n∑
i=1

si

)
du, as ∆k ↑ 0,

=

{
1−

(n+ 1)
∑n

i=1 s
2
i

2 (
∑n

i=1 si)
2

}
(n!)

2

(
∑n

i=1 si)
n . (2)
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For ∆k > 0, we see that

l(∆k; s
(j)
n )− l(0; s

(j)
n )

∆k

= n!

[∫ 1/∆k

0

un−1 exp

{(
1

∆k
− 1

) n∑
i=1

log (1−∆kusi)

}
du−

∫ ∞

0

un−1 exp

(
−u

n∑
i=1

si

)
du

]
/
∆k

→ n!

∫ ∞

0

un−1 exp

{(
1

∆k
− 1

) n∑
i=1

log (1−∆kusi)

}
du− un−1 exp

(
−u

n∑
i=1

si

)
du/

∆k

→ n!

∫ ∞

0

un−1

{
n∑

i=1

(
1− usi

2

)
usi

}
exp

(
−u

n∑
i=1

si

)
du, as ∆k ↓ 0,

=

{
1−

(n+ 1)
∑n

i=1 s
2
i

2 (
∑n

i=1 si)
2

}
(n!)

2

(
∑n

i=1 si)
n . (3)

It follows from (2) and (3) that

l′(0; s(j)n ) = lim
∆k→0

l(∆k; s
(j)
n )− l(0; s

(j)
n )

∆k
=

{
1−

(n+ 1)
∑n

i=1 s
2
i

2 (
∑n

i=1 si)
2

}
(n!)

2

(
∑n

i=1 si)
n .

2.2 Proof of Proposition 3

For k ̸= 0, l′′(k; s
(j)
n ) is immediately obtained by deriving l′(k; s

(j)
n ). In the following, we will derive l′′(0; s

(j)
n ).

We obtain for ∆k ̸= 0 such that |∆k| is sufficiently small,

Ψ (∆k, u) = (1/∆k − 1)

n∑
i=1

log (1−∆kusi)

= −u
n∑

i=1

si +∆ku
n∑

i=1

(
1− usi

2

)
si +∆k2u2

n∑
i=1

(
1

2
− usi

3

)
s2i

+∆k3u3
n∑

i=1

(
1

3
− usi

4

)
s3i +O

(
∆k4

)
, (4)

and

Ψ′ (∆k, u) = − n

∆k
−
∑n

i=1 log (1−∆kusi)

∆k2

= −

(
n− u

n∑
i=1

si

)
/∆k +

u2

2

n∑
i=1

s2i +∆k
u3

3

n∑
i=1

s3i +O
(
∆k2

)
, (5)

where Ψ′ (∆k, u) = ∂Ψ(∆k, u) /∂∆.
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From (4) and (5), and a Maclaurin expansion for exp (Ψ (∆k, u)) around 0, we have

lim
∆k→0

l′(∆k; s(j)n ) = lim
∆k→0

n!

∫
X∆k,1

un−1Ψ′ (∆k, u) exp (Ψ (∆k, u)) du

= lim
∆k→0

∫ ∞

0

[
−

(
n− u

n∑
i=1

si

)/
∆k

−un

n∑
i=1

si + u2

n+ 1

2

n∑
i=1

si +

(
n∑

i=1

si

)2
− u3 1

2

n∑
i=1

si

n∑
i=1

s2i

+

−n

2
u2


(

n∑
i=1

si

)2

+

n∑
i=1

s2i


+u3

n+ 1

3

n∑
i=1

s3i +
n+ 2

2

n∑
i=1

si

n∑
i=1

s2i +
1

2

(
n∑

i=1

si

)3


−u4

n+ 2

8

(
n∑

i=1

s2i

)2

+
1

2

(
n∑

i=1

si

)2 n∑
i=1

s2i +
1

3

n∑
i=1

si

n∑
i=1

s3i


+
1

3
u5

n∑
i=1

si

(
n∑

i=1

s2i

)2
∆k +O

(
∆k2

)n!un−1 exp

(
−u

n∑
i=1

si

)
du

= l′(0; s(j)n )

+

{
1− (n+ 1)

∑n
i=1 s

2
i

(
∑n

i=1 si)
2 +

(n+ 2) (n+ 3)

4

(∑n
i=1 s

2
i

)2
(
∑n

i=1 si)
4 − 2 (n+ 2)

3

∑n
i=1 s

3
i

(
∑n

i=1 si)
3

}

×n! (n+ 1)!

(
∑n

i=1 si)
n lim

∆k→0
∆k + lim

∆k→0
O
(
∆k2

)
. (6)

It then follows from (6) that

l′′
(
0; s(j)n

)
= lim

∆k→0

l′(∆k; s
(j)
n )− l′(0; s

(j)
n )

∆k

=

{
1− (n+ 1)

∑n
i=1 s

2
i

(
∑n

i=1 si)
2 +

(n+ 2) (n+ 3)

4

(∑n
i=1 s

2
i

)2
(
∑n

i=1 si)
4 − 2 (n+ 2)

3

∑n
i=1 s

3
i

(
∑n

i=1 si)
3

}

×n! (n+ 1)!

(
∑n

i=1 si)
n .

2.3 Proof of Proposition 4

The proof is very similar to that of Proposition 3 and is therefore omitted for the sake of brevity.

2.4 Proof of Theorem 10

It suffices to prove the proposition only in the cases of k̂ < 0 and 0 < k̂ < 1. We let

Ψ (σ) = n−
(
1

k̂
− 1

) n∑
i=1

k̂ xi

σ − k̂ xi

.

Then, for k̂ < 0 and 0 < k̂ < 1, we obtain

∂Ψ(σ)

∂σ
=

(
1

k̂
− 1

) n∑
i=1

k̂ xi(
σ − k̂ xi

)2 > 0. (7)

For k̂ < 0, we have limσ↓0 Ψ(σ) = n/k̂ < 0, limσ→∞ Ψ(σ) = n > 0 and Ψ (σ) is continuous with respect to

σ > 0. It follows from these facts and (7) that Ψ (σ) changes sign only once with respect to σ. For 0 < k̂ < 1,
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we must have σ > k̂ maxi xi since the support of the pdf of the GPD is (0, σ/k) when k > 0. Then, we
observe that limσ↓k̂ maxi xi

Ψ(σ) = −∞ < 0, limσ→∞ Ψ(σ) = n > 0, and Ψ (σ) is continuous with respect to

σ ∈ (k̂ maxi xi, ∞), which also implies that Ψ (σ) changes sign only once.
From the facts established above, Ψ (σ) = 0 always has a unique solution with respect to σ, which completes

the proof of Theorem 10.

2.5 Proof of Theorem 11

When k = 0, 1
n

∑n
i=1 Xi

P→ σ, since X1, . . . , Xn are i.i.d. random variables from the exponential distribution

with mean σ, where
P→ denotes convergence in probability. When k ≥ 1, for any ϵ > 0, we have

P (|kXn:n − σ| < ϵ) = Fn
(σ
k
+

ϵ

k
; k, σ

)
− Fn

(σ
k
− ϵ

k
; k, σ

)
→ 1, as n → ∞,

which implies that kXn:n
P→ σ. When k < 0 or 0 < k < 1, by Proposition 10 and Corollary 3.8 of Lehmann

and Casella (1998, p.448), the proposed estimator σ̂, in which k̂ is replaced by the true value k, is consistent
for σ.

From the above facts, Theorem 4 and Slutsky’s theorem, we have σ̂
P→ σ, which completes the proof.

3 Illustrarive Example Based on Fatigue Data

In the second example, we fit the GPD to the fatigue data concerning the Kevlar/Epoxy strand lifetime (in
hours) at 70% stress level, provided by Andrews and Herzberg (1985), and reanalyzed by Castillo and Hadi
(1997) and Chen et al (2017). These data are presented in Table 1. The interest in this example is in the

Table 1: The fatigue data: the Kevlar/Epoxy strand lifetime (in hours) at 70% stress level

1051 1337 1389 1921 1942 2322 3629 4006 4012 4063
4921 5445 5620 5817 5905 5956 6068 6121 6473 7501
7886 8108 8546 8666 8831 9106 9711 9806 10205 10396
10861 11026 11214 11362 11604 11608 11745 11762 11895 12044
13520 13670 14110 14496 15395 16179 17092 17568 17568

left tail of the corresponding lifetime distribution (see Castillo and Hadi (1997) for details). But, the GPD is
applicable to upper extremes. So, as suggested by Castillo and Hadi (1997), we fit the GPD to negative values
of these data so that the lower tail can be transformed to upper tail, and then the obtained results can be
readily inverted back for the original data.

In Tables 2 and 3, the estimates of k and σ by the ML, ZS, Zj, WMD and the proposed method (Proposed)
are all presented for each threshold. The thresholds are taken as u = −1.8,−1.6,−1.4,−1.2,−1.0 and −0.8(
×103

)
, same as those chosen by Castillo and Hadi (1997). As several authors have reported, the ML estimates

are not found for all the cases.
As in the preceding example, we computed ASAE for all the methods, the corresponding results for the ML,

ZS, Zj, WMD and Proposed methods are all presented in Table 4.
Tables 2 and 3 also present the 95% the confidence intervals for k and σ by bootstrap-t technique, based on

ZS, Zj, WMD and the proposed methods based on Wald type statistic (Proposed-Wald) and LR type statistic
(Proposed-LR).

Table 2: Estimates of k for the fatigue data: u is the threshold and m is the number of exceedances

u
(
×103

)
m ZS Zj WMD Proposed

-1.8 49 1.017 0.885 1.137 1.057
-1.6 45 0.968 0.841 1.079 1.014
-1.4 42 0.859 0.748 0.908 0.914
-1.2 39 0.672 0.599 0.441 0.760
-1.0 28 0.825 0.676 0.849 0.914
-0.8 21 0.853 0.640 0.894 0.955
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Table 3: Estimates of σ for the fatigue data: u is the threshold and m is the number of exceedances

u
(
×103

)
m ZS Zj WMD Proposed

-1.8 49 17627 16074 19354 18206
-1.6 45 14884 13605 16256 15472
-1.4 42 11627 10697 12170 12210
-1.2 39 8137 7665 7048 8814
-1.0 28 7922 7095 8205 8560
-0.8 21 6411 5501 6734 6995

Table 4: ASAE for the fatigue data: u is the threshold and m is the number of exceedances

u
(
×103

)
m ZS Zj WMD Proposed

-1.8 49 0.0386 0.0511 0.0348 0.0361
-1.6 45 0.0366 0.0477 0.0350 0.0344
-1.4 42 0.0234 0.0302 0.0254 0.0257
-1.2 39 0.0357 0.0355 0.0378 0.0405
-1.0 28 0.0314 0.0358 0.0314 0.0337
-0.8 21 0.0475 0.0507 0.0479 0.0495

Table 5: CIs of k for the fatigue data: u is the threshold and m is the number of exceedances

u
(
×103

)
m ZS Zj WMD Proposed-Wald Proposed-LR

-1.8 49 (0.776, 1.366) (0.806, 1.240) (0.725, 1.695) (0.719, 1.394) (0.755, 1.458)
-1.6 45 (0.705, 1.334) (0.739, 1.200) (0.668, 1.671) (0.667, 1.360) (0.700, 1.427)
-1.4 42 (0.579, 1.219) (0.625, 1.104) (0.524, 1.535) (0.567, 1.261) (0.583, 1.322)
-1.2 39 (0.394, 1.043) (0.434, 0.949) (0.103, 1.074) (0.397, 1.123) (0.359, 1.164)
-1.0 28 (0.495, 1.306) (0.543, 1.132) (0.331, 1.634) (0.461, 1.367) (0.466, 1.468)
-0.8 21 (0.435, 1.448) (0.487, 1.164) (0.208, 1.974) (0.400, 1.510) (0.408, 1.666)

Table 6: CIs of σ for the fatigue waves data: u is the threshold and m is the number of exceedances

u
(
×103

)
m ZS Zj WMD Proposed-Wald Proposed-LR

-1.8 49 (13434, 23097) (13936, 21430) (12648, 26536) (12187, 23626) (12803, 24716)
-1.6 45 (10971, 19787) (11568, 18293) (10254, 22402) (9968, 20335) (10466, 21338)
-1.4 42 (8142, 15689) (8753, 14571) (7480, 17096) (7337, 16322) (7546, 17123)
-1.2 39 (5417, 11232) (5882, 10584) (3957, 10213) (4349, 12293) (3935, 12749)
-1.0 28 (5133, 11412) (5527, 10258) (3905, 12250) (4124, 12233) (4171, 13136)
-0.8 21 (3611, 9648) (4062, 8289) (2414, 10542) (2780, 10492) (2832, 11577)
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Table 7: P-values under H0 : k ≤ 0.5 for the proposed methods for the fatigue data: u is the threshold and m
is the number of exceedances

u ×103 m Proposed-Wald Proposed-Score Proposed-LR
-1.8 49 0.001 0.000 0.000
-1.6 45 0.004 0.000 0.002
-1.4 42 0.019 0.001 0.016
-1.2 39 0.160 0.110 0.178
-1.0 28 0.073 0.014 0.067
-0.8 21 0.108 0.022 0.096

Furthermore, we also carry out the three proposed tests for k and σ. For this, we consider the hypothesis
H0 : k ≤ 0.5 vs. H1 : k > 0.5. Under the null hypothesis H0 : k ≤ 0.5, we carry out the three proposed tests,
and the p-value at k = 0.5 is the largest among H0 : k ≤ 0.5, for all the cases. These p-values are presented
in Table 7 for each threshold level. For u = −18, 000,−16, 000 and −14, 000, all p-values are less than 0.05,
providing evidence to k being larger than 0.5. Moreover, almost all estimates of k (see Table 2) are larger than
0.5, and the ML estimates are not found. This certainly provides a justification for the methods developed in
this work.

Next, suppose we are interested in testing H0 : σ ≥ 30, 000 vs. H1 : σ < 30, 000. The p-value at σ = 30, 000
is the largest among H0 : σ ≥ 30, 000, for all the cases. These p-values, computed for each threshold, all turned
out to be 10−4, but the results are not presented here for brevity.
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