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Abstract
It is well known that inference for the generalized Pareto distribution (GPD) is a dif-
ficult problem since the GPD violates the classical regularity conditions in the maxi-
mum likelihood method. For parameter estimation, most existing methods perform 
satisfactorily only in the limited range of parameters. Furthermore, the interval esti-
mation and hypothesis tests have not been studied well in the literature. In this arti-
cle, we develop a novel framework for inference for the GPD, which works success-
fully for all values of shape parameter k. Specifically, we propose a new method of 
parameter estimation and derive some asymptotic properties. Based on the asymp-
totic properties, we then develop new confidence intervals and hypothesis tests for 
the GPD. The numerical results are provided to show that the proposed inferential 
procedures perform well for all choices of k.

Keywords  Asymptotic normality · Interval estimation · Hypothesis testing · Non-
regularity problem · Extreme value · Peaks over threshold

1  Introduction

1.1 � Background

Statistical modeling of the largest or smallest values (extreme values) of certain natural 
phenomena (e.g., waves, floods, earthquakes, winds, temperatures, etc) is of importance 
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in various practical applications. For example, the distributions of high waves and large 
floods are important in the designs of dikes and dams, respectively. The traditional 
approach to the analysis of extreme values is based on the generalized extreme value 
distribution (GEVD), which is a limiting distribution for extreme values, comprising 
the Gumbel, Fréchet and Weibull distributions all as special cases (Coles 2001, Castillo 
et al. 2004, Beirlant et al. 2004, and de Haan and Ferreira 2006). Although the GEVD 
is suitable for fitting data on maxima, there have been some criticisms since using only 
maxima leads to loss of information contained in other values in the data. This problem 
is remedied by considering some largest values in the given period instead of the largest 
values alone, that is, considering all values larger than a given threshold (exceedances 
over the threshold). The generalized Pareto distribution (GPD), which is a limiting dis-
tribution for exceedances over the threshold, offers a unifying approach to modeling 
such values (Coles 2001, Castillo et al. 2004, Beirlant et al. 2004, and de Haan and 
Ferreira 2006). Using the GPD instead of the GEVD can be a solution to the above 
mentioned problem. This distribution was initially introduced by Pickands (1975) and 
has since been used widely to analyze exceedances over threshold in various areas (see, 
for example, Salvadori et al. 2007). The cumulative distribution function (cdf) of the 
GPD is given by

where k ∈ ℝ and 𝜎 > 0 are the shape and scale parameters, respectively, and 
Xk, 𝜎 = {x ∶ 0 < x < ∞, if k ≤ 0, or , 0 < x < 𝜎∕k, if k > 0} . The corresponding 
probability density function (pdf) is

for k ∈ ℝ and 𝜎 > 0 . The shape of the pdf varies over the shape parameter k (see 
Figure  1). The smaller the value of k is, the heavier the tail of the distribution 
becomes, that is, very large values can be observed. On the other hand, the larger 
the value of k becomes, lighter the tail of the distribution becomes. In fact, −1∕k is 
known as the tail index, and we can know the risk in a situation from the value of 
k or the tail index. For example, a small value of k (or the tail index) indicates that 
the events associated with large values occur with high probability. An important 
property of the GPD is that X − u ∼ GPD(k, � − k u) if X ∼ GPD(k, �) , given that 
X > u for every u ∈ ℝ , where GPD(k, �) is the GPD with shape parameter k and 
scale parameter � (Castillo and Hadi 1997).
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1.2 � Review of parameter estimation for GPD

We first review parameter estimation for the GPD. Although the GPD is useful for 
modeling exceedances over threshold, it is well known that parameter estimation 
for the GPD is a difficult problem. We refer the readers to de Zea Bermudez and 
Kotz (2010a, 2010b), Zhang and Stephens (2009), del Castillo and Serra (2015), 
and Chen et al. (2017) for pertinent details. For k > 1 , the maximum likelihood esti-
mators (MLEs) do not exist. For k ≤ −1∕r , r ∈ ℕ , the rth moment does not exist, 
and therefore, all the moment-based estimators such as the method of moments 
(MOM) estimators, the probability weighted moments (PWM) estimators and 
the L-moments estimators proposed by Hosking (1990) exist only for k in certain 
ranges. The Hill estimator (Hill 1975) and the Pickands estimator (Pickands 1975) 
are well-known estimators of the tail index. These estimators are very simple and 
sometimes used for parameter estimation of k as an initial value for other methods. 
Two empirical Bayesian methods of parameter estimation have been proposed by 
Zhang and Stephens (2009) and Zhang (2010). They have shown good performances 
of their estimators for moderate or small values of k ( k ≤ 0.5 ), through Monte Carlo 
simulations. However, for large values of k, their estimators have considerably large 
bias and RMSE even if the sample size is large (Chen et al. (2017)), also as shown 
later by Monte Carlo simulations. This reveals that their estimators may not have 
consistency property for large k. Recently, Chen et al. (2017) have proposed a new 
method, inspired by the minimum distance estimation and the M-estimation in 
the regression with � functions including Tukey’s biweight function. Prior to this, 
Song and Song (2012) proposed a method that is close to the one proposed by Chen 
et  al. (2017). This method is a special case of Chen et  al.’s method when � is a 

Fig. 1   Pdfs of GPD for different values of the shape parameter k, with � = 1
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constant function. The reason for using � functions in Chen et al.’s method is that 
the estimates obtained by minimizing the residual sum of squares in M-estimation 
without � functions are sensitive to the shape parameter k (Chen et al. 2017). These 
authors also provided a weighted version of their method, wherein the residuals are 
weighted by the inverse of the asymptotic variance of the residual. They proved that 
both methods are consistent for all k. Simulation studies showed that their two esti-
mators were comparable to the Bayesian method of Zhang (2010) and EPM by Cas-
tillo and Hadi (1997) for k < 1∕2 , while they performed better for k > 1∕2 . Moreo-
ver, between their two methods, the weighted version performed slightly better than 
the original method.

1.3 � Review of other inferential methods for GPD

As pointed out by Chen et al. (2017), interval estimation and hypothesis testing for 
GPD have not been discussed much in the literature. One of the reasons is the non-
regularity problem in the maximum likelihood (ML) method for k ≥ 1∕2 . The ML 
method for the GPD has been discussed by many authors including Smith (1984, 
1985), Hosking and Wallis (1987), Davison and Smith (1990), Grimshaw (1993), 
de Zea Bermudez and Kotz (2010a), and del Castillo and Serra (2015). It is known 
from these works that the MLEs exist only for k < 1 , and have asymptotic normal-
ity only for k < 1∕2 . Therefore, when k ≥ 1∕2 , it is difficult to construct confidence 
intervals and hypothesis testing procedures based on the asymptotic properties of 
MLEs while, when k < 1∕2 , we can develop them readily using the asymptotic 
properties of MLEs. Instead, Castillo and Hadi (1997) and Chen et al. (2017) pro-
vided interval estimation by using bootstrap method (especially, bootstrap-t method) 
based on their proposed estimators.

1.4 � Aims and outline of the present work

In spite of many papers dealing with the GPD, there does not appear to be any work 
wherein inferential procedure is established formally for all possible values of k. In 
this work, we develop a new framework for inference for the GPD, which works 
successfully for all k. The key idea is to use an unimodal likelihood function that is 
proposed here, instead of the usual likelihood function, to tackle the non-regularity 
problem in the usual ML method. We propose a new method of parameter estima-
tion for the GPD and derive some asymptotic properties of the proposed estimators 
and related statistics (for 0.5 ≤ k < 1 , the asymptotic properties of the estimator of � 
have not been derived yet). We also prove that the estimates by the proposed method 
always exist uniquely for all choices of k while, in most existing methods, existence 
and uniqueness of the estimates are not guaranteed. Based on the asymptotic proper-
ties of the proposed estimators and related statistics, we also develop new methods 
of confidence intervals and hypothesis tests for the GPD.

The remainder of this article is organized as follows. In Sects.  2 and  3, we 
develop inferential methods for shape parameter k and scale parameter � , respec-
tively. Then, the performances of the proposed estimators of parameters, confidence 
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intervals and hypothesis tests are assessed by Monte Carlo simulation in Sect.  4. 
To illustrate all the inferential methods proposed here, we apply them to analyze 
the zero-crossing hourly mean periods (in seconds) of the sea waves measured in 
Bilbao buoy, Spain, and the Kevlar/Epoxy strand lifetime (in hours) at 70% stress 
level, in Sect. 5. Finally, some concluding remarks are made in Sect. 6. Some techni-
cal proofs, remarks on the computation for the proposed inferential method and one 
of the illustrative examples are given in the supplementary materials. The Matlab 
codes are available on Github (https​://www.githu​b.com/Hidek​iNaga​tsuka​/GPD/).

2 � New likelihood‑based inference for the shape parameter k

In this section and in the next section, we develop a new likelihood-based infer-
ence providing efficient methods for parameter estimation, interval estimation and 
hypothesis testing for k and � . Unlike most existing methods which can estimate 
parameters only when their estimates of k is in a certain range and also their asymp-
totic properties being not known, the proposed method provides a successful infer-
ential framework providing efficient estimators, confidence intervals and tests of 
hypothesis, based on their asymptotic properties of the estimators.

The proposed method consists of two parts: one is for k, and another is for � . In 
this section, we develop the new likelihood-based inference for k and specifically 
provide an estimator for k. Next, we derive a score function for k and some asymp-
totic properties of statistics related to the score function. Finally, we construct confi-
dence intervals and hypothesis tests for the shape parameter k.

2.1 � New maximum likelihood estimator of k

Let X1,… ,Xn be i.i.d. random variables from the GPD with cdf as in (1), and 
X1∶n ≤ ⋯ ≤ Xn∶n be the order statistics obtained by arranging the above Xi ’s in 
increasing order of magnitude. For any fixed j, 1 ≤ j ≤ n , we derive the joint density 
of S(j)

n
 , where

S(j)
n
= (S

(j)

1∶n
,… , S

(j)

j−1∶n
, S

(j)

j+1∶n
,… , S

(j)
n∶n) , with S(j)

i∶n
= Xi∶n∕Xj∶n , i ≠ j , 1 ≤ i ≤ n . We 

note that S(j)
i∶n

 ’s do not depend on �.

Proposition 1  For k ∈ ℝ and any fixed j, 1 ≤ j ≤ n , the joint density of S(j)
n

 is given 
by

�
�
s(j)
n
;k
�
=

⎧
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s1 ≤ ⋯ ≤ sj−1 ≤ 1 ≤ sj+1 ≤ ⋯ ≤ sn,

https://www.github.com/HidekiNagatsuka/GPD/
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where 𝜒k = {u ∶ −∞ < u < 0, if k < 0, or , 0 < u < 1∕sn, if k > 0} , s(j)n = (s
1
,… ,

sj−1, sj+1,… , sn) , and sj = 1.

Proof  See “Appendix B.1.”  	�  ◻

From Proposition 1, we can obtain the likelihood function for k based on S(j)
n

 as

where s(j)n  is the vector consisting of the realized values of S(j)
i∶n

 , i ≠ j , 1 ≤ i ≤ n . Then, 
the MLE of k based on S(j)

n
 , denoted by k̂ , is obtained by maximizing l(k;s(j)n ) with 

respect to k, replacing S(j)
n

 by s(j)n .

2.2 � Properties of the proposed estimator of k

In this subsection, we provide some properties of the estimator of k proposed above, 
which can be used to derive confidence intervals and hypothesis tests for the param-
eter k.

First, it may be noted that the likelihood function l(k;s(j)n ) depends on j, and so we 
may wonder which j may be good to use. Fortunately, from Theorem 1, we note that 
we do not need to worry about the choice of j, in the ML method based on S(j)

n
.

Theorem 1  For any j, 1 ≤ j ≤ n , the MLE of k based on S(j)
n

 , k̂ , does not depend on j.

Proof  For any j ≠ t , 1 ≤ j, t ≤ n , there is a one-to-one transformation between S(j)
n

 
and S(t)

n
 since we have

This clearly implies that the MLE of k based on S(j)
n

 is identical to the MLE based on 
S(t)
n

 , as required. 	�  ◻

We further observe that the ML method based on S(j)
n

 is equivalent to the ML 
methods based on Xi∶n∕Xi+1∶n ’s and Xi+1∶n∕Xi∶n ’s in the sense of the following theo-
rem, which once again reinforces that the ML method based on S(j)

n
 does not depend 

on j.

Theorem 2  For any fixed i and j, 1 ≤ i, j ≤ n , the MLE of k based on Xi∶n∕Xi+1∶n’s 
(and Xi+1∶n∕Xi∶n’s) agrees with the MLE based on S(j)

n
.

Proof  The proof is very similar to the proof of Theorem 1, and is therefore omitted. 	
� ◻

In the required computation, we need to choose a j. We recommend the choice 
of 
[
n

2

]
+ 1 for j, where [z] is the greatest integer less than or equal to z, since the 

(3)l
(
k;s(j)

n

)
=�

(
s(j)
n
;k
)
,

S
(t)

i∶n
= S

(j)

i∶n
∕S

(j)
t∶n, i ≠ j, t, i = 1,… , n.



1159

1 3

Efficient likelihood-based inference for GPD

proposed estimator could be sensitive to the presence of outliers if we take j cor-
responding to lower or upper extremes.

We provide Propositions 8, 9 and 10 in “Appendix A.” These propositions give 
the derivatives of l(k;s(j)n ) , which are used for theorems, lemmas and propositions 
provided later, and their proofs are given in the supplementary materials.

Although, in most existing methods, existence and uniqueness of the estimates 
are not always guaranteed, the following theorem and the ensuing corollary imply 
that the estimate of k obtained by solving the equation l�

(
k;s

(j)
n

)
= 0 always exists 

uniquely for all k.

Theorem  3  For k ∈ ℝ , any fixed j, 1 ≤ j ≤ n , and any given 
s
(j)
n = (s1,… , sj−1, sj+1,… , sn) such that s1 ≤ ⋯ ≤ sj−1 ≤ 1 ≤ sj+1 ≤ ⋯ ≤ sn , the 

likelihood equation

always has a unique solution with respect to k.

Proof  See “Appendix 3.” 	�  ◻

Corollary 1  For k ∈ ℝ , any fixed j, 1 ≤ j ≤ n , and any given s(j)n  , the likelihood func-
tion l

(
k;s

(j)
n

)
 is unimodal with respect to k.

For proving the result that the estimator of k has consistency property, the fol-
lowing lemma is needed.

Lemma 1  For any fixed k ≠ k0 , where k0 is the true value of the parameter k, and for 
any fixed j, 1 ≤ j ≤ n,

Proof  See “Appendix 1.” 	�  ◻

Theorem 4  The estimator k̂ is consistent for k ∈ ℝ.

Proof  Using Lemma 1, the proof is similar to that of Theorem 3.7 in Lehmann and 
Casella (1998, p.447), and is therefore not presented here. 	�  ◻

We can obtain the score function of k by differentiating the logarithm of the 
likelihood function in (3) with respect to k. We provide the asymptotic normality 
of the score function, denoted by U

(
k;S(j)

n

)
 , which will be made use of in develop-

ing test of hypothesis later in Sect. 4.

Theorem 5  For k ∈ ℝ and j ∈ {1,… , n},

l�
(
k;s(j)

n

)
=0

lim
n→∞

Pr
(
l
(
k;S(j)

n

)
< l

(
k0;S

(j)
n

))
= 1.
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where

is the score function of k based on S(j)
n

 , and

is the Fisher information about k in S(j)
n

.

Proof  See “Appendix B.4.” 	�  ◻

We also provide the asymptotic normality of the proposed estimator of k, which 
will be used later in Sect. 4 to develop interval estimation and hypothesis testing for 
the parameter k.

Theorem 6    

Proof  See “Appendix B.5.” 	�  ◻

From Theorems 5 and 6, the following Wald, score and likelihood ratio (LR)-type 
test statistics for k and their asymptotic properties can be readily presented.

Theorem 7  (Wald-type test statistic for k)  

Theorem 8  (Rao’s score-type test statistic for k)  

Theorem 9  (Likelihood ratio (LR) test statistic for k)  

where �2
1
 is �2 distribution with degree of freedom 1, and L is the logarithm of the 

likelihood function of k.

U
�
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n

�
√
Ij,n(k)

d
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U
(
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n

)
=

�

�k
log l
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n

)

Ij,n(k) = − E
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�k2
log l

(
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n

))
,

(4)
k̂ − k√
I−1
j,n
(k)

d
⟶N(0, 1), as n ⟶ ∞.

TW (k) ∶=
(
k̂ − k

)2
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d
⟶𝜒2

1
, as n ⟶ ∞.

TS(k) ∶=
U
(
k;S(j)

n

)2
Ij,n(k)

d
⟶�2

1
, as n ⟶ ∞.

TL(k) ∶=2
(
L
(
k̂;S(j)

n

)
− L

(
k;S(j)

n

)) d
⟶𝜒2

1
, as n ⟶ ∞,
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For interval estimation of k, we propose two methods based on TW (k) in Theo-
rem 7 and TL(k) in Theorem 9. The method based on TS(k) in Theorem 8 is dropped 
here since the computational burden of interval estimation based on Rao’s score test 
statistics may be heavier than those of the other two methods. For test of hypothesis 
for k, we propose three methods, based on TW (k) in Theorem 7, TS(k) in Theorem 8 
and TL(k) in Theorem 9.

Finally, some remarks on the computation for the proposed inferential methods 
for k are presented in the supplementary materials.

3 � Inference for the scale parameter �

In this section, we discuss methods of inference for the scale parameter � . We spe-
cifically provide the estimator of � , the score function of � and asymptotic proper-
ties of some statistics related to the score function. We then use them to construct 
confidence intervals and hypothesis tests for the parameter �.

3.1 � Estimation of �

Once we obtain the estimate of k, by using the method outlined in the preceding sec-
tion, we can adopt the usual ML method to obtain the estimate of � , by replacing the 
shape parameter k by its estimate k̂.

The usual log-likelihood function of k and � , based on X =
(
X1,… ,Xn

)
 , is given 

by

see Hosking and Wallis (1987) and de Zea Bermudez and Kotz (2010a). Then, the 
MLE of � is given by, after replacing k by k̂,

It is known that the usual MLE of � possesses large bias (Giles et al. (2016)). For 
k < 1∕2 , Giles et al. (2016) provided an analytical expression for the bias, to O

(
n−1

)
 , 

of the MLE of � as follows.

Lk,�(k, �;X) =

⎧
⎪⎪⎨⎪⎪⎩

−n ln � +
�
1

k
− 1

� n�
i=1
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�
1 − k
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�

�
, k ≠ 0,

−n ln � −

∑n

i=1
Xi

�
, k = 0;

𝜎̂ =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

Solution of n −

�
1

k̂
− 1

� n�
i=1

k̂ Xi

𝜎 − k̂ Xi

= 0, k̂ < 0, 0 < k̂ < 1,

1

n

n�
i=1

Xi, k̂ = 0,

k̂ Xn∶n, k̂ ≥ 1.
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Proposition 2  (Bias of MLE of � for k<1/2 (Giles et al. 2016))  

Proof  See Giles et al. (2016). 	�  ◻

We adopt the bias correction based on Proposition 2 to the proposed estimator of 
� only when k̂ < 0.

For k ≥ 1 , we readily have the following result for the expectation of Xn∶n.

Proposition 3  (Expectation of Xn∶n for k ≥1)  

Proof  For k ≥ 1,

	�  ◻

By making use of Propositions 2 and 3, we propose the new bias-corrected esti-
mator of � as follows:

3.2 � Properties of the estimator of �

In this subsection, we establish some properties of the proposed estimator of �.

Theorem 10  For k ∈ ℝ , 𝜎 > 0 and any given realized values x1,… , xn of X1,… ,Xn , 
the proposed estimate of � , when k̂ is substituted for its realized value, always exists 
uniquely.

Theorem 11  The proposed estimator 𝜎̂ is consistent for �.

Proofs of Theorems 10 and 11 are given in the supplementary materials.
We now present some asymptotic properties of 𝜎̂ which are subsequently used 

to develop confidence intervals and hypothesis tests for � . We first introduce the 

E(𝜎̂) − 𝜎 =𝜎
(
3 − 5 k − 4 k2

)/
{n(1 − 3 k)} + O

(
n−2

)
.

E
(
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)
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�

k

(
1 −

n! k!

(n + k)!

)
.

E
(
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)
=∫

�∕k

0

1 − {F(x; k, �)}n dx = 1 −
n! k!

(n + k)!
.

𝜎̂BC =

⎧
⎪⎪⎨⎪⎪⎩

𝜎̂
�
1 −

�
3 − 5 k̂ − 4 k̂2

���
n
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1 − 3 k̂

���
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1 −
n! k!
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, k̂ ≥ 1,

𝜎̂, otherwise.
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usual score function and the Fisher information matrix about k and � in X for 
GPD, which are as follows:

where

and

We also have the inverse of the Fisher information matrix as

Note that the Fisher information matrix and the inverse of the Fisher information 
matrix exist only when k < 1∕2 , and the usual MLEs of k and � have asymptotic 
normality only when k < 1∕2 (Smith 1984, 1985). From these, we can get the fol-
lowing asymptotic normality of 𝜎̂ , when k < 1∕2 and is known.

Proposition 4  (Asymptotic distribution of 𝜎̂ when k< 1/2 and is known)  

Proof  It can be established from Theorem 4, the asymptotic normality of the MLE 
of � , and by the use of Slutsky’s theorem. 	�  ◻

From the above facts and Proposition 4, the following Wald, score and likeli-
hood ratio (LR)-type statistics for the case when k is known and their asymptotic 
properties can be readily provided as follows.

U(k, �) =
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�(k �)�
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Proposition 5  (Wald-type test statistic for �, when k< 1/2 and is known)  

Proposition 6  (Rao’s score-type test statistic for � , when k< 1/2 and is known)  

Proposition 7  (Likelihood ratio (LR) test statistic for � , when k < 1∕2 and is known)  

We now present two methods of interval estimation of � when k̂ < 1∕2 , where 
k̂ is the proposed estimator of k, by the use of Propositions 5 and 7, wherein k is 
replaced by k̂ . The method based on Proposition 6 is dropped here for the same rea-
son as for the interval estimation of k. We also have three methods of hypothesis 
testing for � when k̂ < 1∕2 , where k̂ is the proposed estimator of k, by the use of the 
Propositions 5, 6 and 7, wherein k is replaced by k̂.

Note that the usual MLEs do not exist for k ≥ 1 . Therefore, we cannot get the 
asymptotic properties of the usual MLE of � and consequently the confidence inter-
vals and hypothesis tests cannot be developed based on them. However, based on the 
estimator of k proposed in the preceding section that exists for every k in ℝ , we can 
obtain the following asymptotic normality of the proposed estimator of � even for 
the case when k ≥ 1.

Theorem 12  (Asymptotic distribution of 𝜎̂ when k ≥1 and is known)  

Proof  It can be proved from Theorems 6 and 11, and by the use of Slutsky’s theo-
rem. 	�  ◻

We propose the construction of confidence intervals and hypothesis tests for � , 
with the use of Theorem 12, wherein k is replaced by k̂ , when k̂ ≥ 1.

It is important to mention that we have not derived asymptotic properties of 𝜎̂ , 
and also methods of interval estimation and hypothesis tests have not been estab-
lished so far, for 1∕2 ≤ k < 1 . We performed Monte Carlo simulations and found 
that the interval estimation and hypothesis testing methods based on Theorem  12 
turn out to be best for the case when 1∕2 ≤ k̂ < 1.

Furthermore, in our Monte Carlo simulations, we found the score- and LR-type 
methods for interval estimation and hypothesis tests for � do not perform well when 
0 < k < 1∕2 . One of the reasons might be that the support of the GPD depends 
on the unknown parameters k and � and the regularity condition in the usual ML 

WW (k, 𝜎) =W
2
0
(k, 𝜎) =
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d
⟶𝜒2
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√

I−1
j,n
(k)

d
⟶N(0, 1), as n ⟶ ∞.
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method is thus violated, when 0 < k < 1∕2 . Meanwhile, the Wald-type interval esti-
mation and hypothesis testing methods based on WW (k, �) turns out to be best for the 
case when 0 < k̂ < 1∕2.

The proposed methods of interval estimation and hypothesis testing for k and � 
are all summarized in Table 1.

4 � Empirical evaluation of proposed methods of inference

In this section, we conduct extensive Monte Carlo simulation studies to investigate 
the finite-sample performance of the proposed methods of inference and also com-
pare them with some other methods available in the literature for the GPD. All pro-
grams in this numerical study were written and run in Matlab.

4.1 � Point estimation

In this subsection, we compare the proposed method (Proposed) of estimation 
of parameters k and � with the following prominent methods: the usual maxi-
mum likelihood method (ML), the Bayesian method proposed by Zhang and Ste-
phens (2009) (ZS), the Bayesian method proposed by Zhang (2010) (Zj) and the 
weighted minimum distance estimation method by Chen et  al. (2017) (WMD). 
Figures 2 and 3 depict the simulation results of bias and root mean squared error 
( RMSE =

√
variance + bias2 ) of the estimators of k and � by all these methods, 

based on 10,000 Monte Carlo runs, for −4 ≤ k ≤ 4 , and n = 20 and 100. We set 
� = 1 since all considered estimators are equivariant for � . Although the ML estima-
tors exist when k ≤ 1 , their behavior becomes unstable when k gets close to 1 (see 
the simulation results of Chen et al. (2017)). For this reason, we show the bias and 
RMSE of the ML estimators only for k ≤ 0.

From these results, we observe that the proposed method is quite success-
ful in providing estimates of k and � and also demonstrates good performance in 
terms of both bias and RMSE, for all considered values of the shape parameter k. 

Table 1   Proposed interval 
estimation and hypothesis 
testing procedures

The methods in parentheses are only for hypothesis testing

Inference for k

k̂ ∈ ℝ Wald-type method based on TW (k)
(Rao’s score-type method based on TS(k))
LR-type method based on TL(k)

Inference for �

k̂ ≤ 0 Wald-type method based on WW (k, �)

(Rao’s score-type method based on WS(k, �))
LR-type method based on WL(k, �)

0 < k̂ < 1∕2 Wald-type method based on WW (k, �)

k̂ ≥ 1∕2 The method based on W
1
(k, �)
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Furthermore, the proposed method of estimation of k and � is seen to outperform 
in general the WMD method of Chen et al. (2017), based on both bias and RMSE. 
For estimation of k, the WMD method has higher RMSE than all other methods and 
does not perform very well in terms of bias, especially for negative k. Finally, it is 
seen that ML, ZS and Zj do not exist or do not have consistency property for certain 
ranges of k.

4.2 � Interval estimation

In this subsection, we investigate the performances of the two proposed interval 
estimation methods based on Wald- and LR-type statistics (Proposed-Wald and 
Proposed-LR), detailed in Section  3.2. In this Monte Carlo simulation study, we 
compare the proposed confidence intervals (CIs) with the bootstrap-t CIs based on 
ML, ZS, Zj and WMD methods of parameter estimation. The number of bootstrap 
samples was set to 1,000. Figures 4 and 5 show the simulation results on the cover-
age probability (CP) and the average interval width of the 95% CIs of k and � by all 
methods, based on 10,000 Monte Carlo runs, for the choices of −4 ≤ k ≤ 4 , � = 1 , 
and n = 20 and 100.

Only the proposed methods (Proposed-Wald and Proposed-LR) and the boot-t 
method based on WMD successfully produce the CIs (in terms of CP) for all values 

Fig. 2   Absolute value of bias and RMSE of estimators, based on 10,000 Monte Carlo simulations for 
n = 20 ( � = 1)
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of the shape parameter k. In addition, we see that the two proposed methods out-
perform the boot-t method based on WMD in terms of CP in general and the AIW 
(average interval width) in all considered cases. Furthermore, we observe that the 
Proposed-LR is superior to the Proposed-Wald method since the CPs of the former 
are better than those of the latter, while there is not much difference between the two 
methods in terms of AIW. Moreover, the boot-t methods based on ML, ZS and Zj 
do not work well when k > 0 . From all these empirical results, we conclude that the 
Proposed-LR is the best method, in term of both these performance measures.

4.3 � Hypothesis testing

In this subsection, we conduct simulation studies to evaluate the performance of the 
three proposed tests based on Wald (Proposed-Wald), score (Proposed-Score) and 
LR (Proposed-LR)-type statistics, introduced earlier in Section  3.2. In the Monte 
Carlo simulation studies, we estimated rejection probabilities based on 10,000 
Monte Carlo runs. Unlike in the studies for interval estimation, we do not evalu-
ate the hypothesis testing methods based on bootstrap for three reasons: (1) almost 
all authors who proposed parameter estimation methods did not suggest hypothe-
sis tests based on bootstrap (see, for examples, de Zea Bermudez and Kotz (2010a, 

Fig. 3   Absolute value of bias and RMSE of estimators, based on 10,000 Monte Carlo simulations, for 
n = 100 ( � = 1)
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2010b), Zhang and Stephens (2009), Zhang (2010), del Castillo and Serra (2015), 
Chen et al. (2017)), (2) comprehensive Monte Carlo studies become infeasible due 
to the heavy computational burden of the bootstrap method, and (3) the results of 
hypothesis tests may be predicted reasonably from those of interval estimation, that 
is, the proposed methods would perform better than the bootstrap methods based on 
the existing parameter estimation methods. So, in this part of Monte Carlo studies, 
we focus on which method of hypothesis testing among the three proposed methods 
performs the best.

First, we conduct simulations for tests of hypothesis for k. Figures  6 and  7 
show the rejection rates of the tests under H0 ∶ k = a versus H1 ∶ k ≠ a , where 
a = −2,−1, 0, 1, 2 , for different true values of k, n = 20 and 100. We take the true 
values of k as −4 ≤ k ≤ 4 . We set � = 1 , and the significance level to be 0.05.

We observe that all three tests have similar power, and also their levels are close 
to the nominal significance level. Yet, the Proposed-LR displays best performance 
with respect to the level among the three tests, and is therefore the one we recom-
mend for testing the shape parameter k.

Next, we conduct simulations for tests of hypothesis for � . Figures 8 and 9 show 
the rejection rates of the tests under H0 ∶ � = 100 versus H1 ∶ � ≠ 100 , for different 
true values of � , n = 20 and 100. We take various true values of � (see the horizon-
tal axes in figures for details). All tests depend on the estimates of k. Therefore, we 

Fig. 4   The coverage probabilities and average interval widths for the parameters at nominal level 0.95, 
based on 10,000 Monte Carlo simulations, for n = 20 ( � = 1)
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Fig. 5   The coverage probabilities and average interval widths for the parameters at nominal level 0.95, 
based on 10,000 Monte Carlo simulations, for n = 100 ( � = 1)

Fig. 6   Empirical power of the Wald-, score- and LR-type tests for shape parameter, under the stated 
hypotheses with significance level 5%, based on 10,000 Monte Carlo simulations, for n = 20
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conduct the simulation of hypothesis tests, for different true values of k, taken to be 
−2,−1, 0, 1 , and 2. Once again, the significance level is set to be 0.05.

We find that the Proposed-Score and Proposed-LR have very similar performance 
in terms of power and levels, and their levels are close to the nominal level. Mean-
while, the performance of the Proposed-Wald test is worse than those of the other 
two when k < 1 . Note that when k = 1 and 2, the performances of all three tests are 
same since the test statistics are the same for all the methods when k > 0.

Fig. 7   Empirical power of the Wald-, score- and LR-type tests for shape parameter, under the stated 
hypotheses with significance level 5%, based on 10,000 Monte Carlo simulations, for n = 100

Fig. 8   Empirical power of the Wald-, score- and LR-type tests for scale parameter, based on 10,000 
Monte Carlo simulations, for n = 20



1171

1 3

Efficient likelihood-based inference for GPD

Based on all the above findings, we recommend the use of the Proposed-Score 
and Proposed-LR tests for test concerning the scale parameter �.

5 � Illustrative examples

We demonstrate the proposed inferential procedures using two well-known real 
datasets: one is the Bilbao waves data, discussed by Castillo and Hadi (1997), and 
another is the fatigue data, by Andrews and Herzberg (1985). The latter example is 
presented in the supplementary materials.

5.1 � Bilbao Waves Data

In the first example, we fit the GPD to the Bilbao waves data. These data gave the 
zero-crossing hourly mean periods (in seconds) of the sea waves measured in a Bil-
bao bay in January 1997, Spain, initially provided by Castillo and Hadi (1997) and 
later reanalyzed by many authors including Zhang and Stephens (2009), del Castillo 
and Serra (2015), and Chen et al. (2017). For these data, the GPD is found to pro-
vide a good fit, and all estimates of the shape parameter k are larger than 0.5. The 
purpose of analyzing these data is to study the influence of periods on beach mor-
phodynamics and other problems related to the right tail, and so only observations 
above 7 seconds are taken, which are displayed in Table 2.

In Tables 3 and 4, the estimates of k and � by the ML, ZS, Zj, WMD and the pro-
posed method (Proposed) are presented for each threshold. The thresholds are taken 
as u = 7.0, 7.5, 8.0, 8.5, 9.0 , and 9.5, same as those in Castillo and Hadi (1997). As 
several authors have reported, the ML estimates are not found when u ≥ 8.5.

Fig. 9   Empirical power of the Wald-, score- and LR-type tests for scale parameter, based on 10,000 
Monte Carlo simulations, for n = 100
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Table 2   The Bilbao waves data: 
the zero-crossing hourly mean 
periods (in seconds) of the sea 
waves measured in Bilbao Buoy 
in January 1997

7.05 7.12 7.15 7.18 7.19 7.20 7.20 7.20 7.20 7.25
7.26 7.27 7.28 7.30 7.31 7.31 7.32 7.33 7.37 7.40
7.46 7.46 7.47 7.48 7.48 7.52 7.54 7.55 7.55 7.58
7.59 7.59 7.61 7.63 7.65 7.66 7.66 7.67 7.67 7.68
7.69 7.72 7.72 7.72 7.72 7.72 7.77 7.77 7.79 7.79
7.82 7.83 7.83 7.83 7.84 7.85 7.85 7.88 7.88 7.90
7.90 7.91 7.93 7.93 7.93 7.94 7.95 7.95 7.97 7.97
7.97 7.99 8.00 8.03 8.03 8.05 8.06 8.06 8.07 8.10
8.11 8.12 8.15 8.15 8.15 8.18 8.18 8.18 8.19 8.20
8.21 8.23 8.23 8.30 8.30 8.31 8.31 8.32 8.32 8.33
8.40 8.41 8.42 8.43 8.43 8.45 8.48 8.49 8.50 8.50
8.51 8.52 8.53 8.54 8.56 8.58 8.59 8.59 8.60 8.65
8.69 8.71 8.72 8.74 8.74 8.74 8.74 8.79 8.81 8.84
8.85 8.86 8.88 8.88 8.94 8.98 8.98 8.99 9.01 9.03
9.06 9.12 9.16 9.17 9.17 9.18 9.18 9.18 9.21 9.22
9.23 9.24 9.27 9.29 9.30 9.32 9.33 9.36 9.38 9.43
9.46 9.47 9.59 9.59 9.60 9.61 9.62 9.63 9.66 9.74
9.75 9.78 9.79 9.79 9.80 9.84 9.85 9.89 9.90

Table 3   Estimates of k for 
the Bilbao waves data: u is 
the threshold and m is the 
number of exceedances; — 
indicates nonexistence of the 
corresponding estimate

u m ML ZS Zj WMD Proposed

7.0 179 0.861 0.808 0.782 0.831 0.822
7.5 154 0.768 0.706 0.686 0.602 0.725
8.0 106 0.864 0.768 0.731 0.668 0.797
8.5 69 – 0.833 0.767 0.771 0.877
9.0 41 – 0.878 0.760 0.877 0.942
9.5 17 – 1.010 0.736 1.274 1.122

Table 4   Estimates of � for 
the Bilbao waves data: u is 
the threshold and m is the 
number of exceedances; — 
indicates nonexistence of the 
corresponding estimate

u m ML ZS Zj WMD Proposed

7.0 179 2.501 2.382 2.331 2.436 2.415
7.5 154 1.860 1.753 1.722 1.621 1.781
8.0 106 1.648 1.508 1.462 1.406 1.549
8.5 69 – 1.208 1.146 1.165 1.256
9.0 41 – 0.826 0.756 0.836 0.873
9.5 17 – 0.430 0.361 0.515 0.468
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To measure the overall goodness of fit, we use the average scaled absolute 
error (ASAE), defined in Castillo and Hadi (1997) as

where x̂i∶n = 𝜎̂

[
1 − (1 − i∕(n + 1))k̂

]
∕k̂ , and k̂ and 𝜎̂ are the estimates of k and � , 

respectively.
The values of ASAE for the ML, ZS, Zj, WMD and proposed methods are pre-

sented in Table 5.
The proposed method is comparable with the ZS, Zj and WMD methods 

with respect to ASAE, for all cases of u, although slightly superior in most of 
the cases. Tables 6 and 7 show the 95% the confidence intervals for k and � by 

ASAE =
1

n

n∑
i=1

||xi∶n − x̂i∶n
||

xn∶n − x1∶n
,

Table 5   ASAE for the 
Bilbao waves data: u is 
the threshold and m is the 
number of exceedances; — 
indicates nonexistence of the 
corresponding estimate

u m ML ZS Zj WMD Proposed

7.0 179 0.0298 0.0257 0.0246 0.0275 0.0267
7.5 154 0.0262 0.0185 0.0169 0.0124 0.0203
8.0 106 0.0307 0.0181 0.0152 0.0132 0.0214
8.5 69 – 0.0200 0.0188 0.0179 0.0232
9.0 41 – 0.0334 0.0333 0.0326 0.0347
9.5 17 – 0.0698 0.0974 0.0629 0.0636

Table 6   CIs of k for the Bilbao waves data: u is the threshold and m is the number of exceedances

u m ZS Zj WMD Proposed-Wald Proposed-LR

7.0 179 (0.692, 0.946) (0.697, 0.929) (0.672, 1.056) (0.682, 0.962) (0.686, 0.971)
7.5 154 (0.587, 0.854) (0.595, 0.838) (0.456, 0.844) (0.570, 0.879) (0.564, 0.884)
8.0 106 (0.610, 0.961) (0.629, 0.932) (0.480, 0.962) (0.604, 0.990) (0.602, 1.004)
8.5 69 (0.625, 1.094) (0.653, 1.035) (0.503, 1.176) (0.622, 1.132) (0.629, 1.163)
9.0 41 (0.598, 1.258) (0.646, 1.134) (0.497, 1.528) (0.583, 1.301) (0.601, 1.368)
9.5 17 (0.519, 1.738) (0.641, 1.368) (0.297, 2.680) (0.448, 1.796) (0.539, 2.050)

Table 7   CIs of � for the Bilbao waves data: u is the threshold and m is the number of exceedances

u m ZS Zj WMD Proposed-Wald Proposed-LR

7.0 179 (2.041, 2.767) (2.052, 2.728) (2.002, 2.898) (1.978, 2.788) (1.991, 2.817)
7.5 154 (1.475, 2.062) (1.489, 2.035) (1.292, 1.952) (1.369, 2.109) (1.354, 2.122)
8.0 106 (1.216, 1.836) (1.248, 1.793) (1.066, 1.750) (1.148, 1.881) (1.144, 1.908)
8.5 69 (0.920, 1.535) (0.952, 1.470) (0.815, 1.527) (0.871, 1.584) (0.880, 1.629)
9.0 41 (0.574, 1.117) (0.620, 1.031) (0.506, 1.196) (0.525, 1.171) (0.541, 1.231)
9.5 17 (0.240, 0.660) (0.286, 0.555) (0.142, 0.842) (0.179, 0.718) (0.215, 0.820)
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bootstrap-t methods based on the ZS, Zj, WMD and the proposed methods based 
on Wald-type statistic (Proposed-Wald) and LR-type statistic (Proposed-LR).

In addition, we demonstrate the three proposed tests for k. We will be naturally 
interested in testing whether k > 0.5 or not, since the asymptotic properties of 
MLEs are valid only when k < 0.5 . So, we consider the hypothesis H0 ∶ k ≤ 0.5 vs. 
H1 ∶ k > 0.5 . Under the null hypothesis H0 ∶ k ≤ 0.5 , we carry out the three pro-
posed tests. The p-value at k = 0.5 is the largest among H0 ∶ k ≤ 0.5 , for all the 
cases. The resulting p-values under H0 ∶ k ≤ 0.5 are presented in Table 8 for each 
threshold level. All p-values, except for the Proposed-Wald when u = 9.5 , are less 
than 0.05, providing evidence to k being larger than 0.5. So, there is a necessity for 
methods other than the ML method for analyzing these data.

6 � Concluding remarks

The GPD is one of the most important distributions in modeling extreme values. 
However, in spite of many papers dealing with GPD, there has been little work done 
on inferential procedures established formally for all values of the shape parame-
ter k. In this article, we develop a new framework for efficient inference for GPD, 
which works well for all possible k. Specifically, we propose a new likelihood-based 
method of parameter estimation for GPD and establish asymptotic properties of the 
estimators and some related statistics. We prove that the estimates by the proposed 
method always exist uniquely for all k. Based on the asymptotic properties of the 
proposed estimators and of related statistics, we develop confidence intervals and 
hypothesis tests for the GPD, based on Wald-, score- and LR-type statistics, and 
these are shown to work satisfactorily for all k. The simulation results show that the 
proposed methods, for both point and interval estimation, outperformed in general a 
number of prominent existing methods, and also that the proposed hypothesis tests 
perform well for all k, especially those based on score- and LR-type statistics, even 
for small sample sizes.

As mentioned in Sect. 3.2, for inference for � , we have not provided the asymp-
totic properties of the proposed estimator, when 1∕2 ≤ k̂ < 1 , and so we adopted 
the results for k̂ ≥ 1 in this case too. Although the simulation study shows that this 
adopted method works well for k in the range [1/2,  1), the asymptotic properties 
of the proposed estimator of � remain open for this case. We have discussed here 

Table 8   P-values under 
H

0
∶ k ≤ 0.5 for the proposed 

methods for the Bilbao waves 
data: u is the threshold and m is 
the number of exceedances

u m Proposed-Wald Proposed-Score Proposed-LR

7.0 179 0.000 0.000 0.000
7.5 154 0.004 0.002 0.008
8.0 106 0.003 0.000 0.004
8.5 69 0.004 0.000 0.004
9.0 41 0.016 0.000 0.013
9.5 17 0.070 0.000 0.037
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only the complete data case, and the approach for the case of censored data will 
be of great interest. Our approach can be generalized to other distributions possess-
ing non-regularity problems such as the generalized extreme value distribution. We 
hope to consider these problems in our future research.
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Propositions for derivatives of the likelihood function of k

Proposition 8  For k ∈ ℝ and any given s(j)n  , where j, 1 ≤ j ≤ n , is fixed, the deriva-
tive l�(k;s(j)n ) = (�∕�k)l(k;s

(j)
n ) is given by

Proposition 9  For k ∈ ℝ and any given s(j)n  , where j, 1 ≤ j ≤ n , is fixed, the second 
derivative l��(k;s(j)n ) = (�2∕�k2)l(k;s

(j)
n ) is given by

Proposition 10  For k ∈ ℝ and any given s(j)n  , where j, 1 ≤ j ≤ n , is fixed, the third 
derivative l���(k;s(j)n ) = (�3∕�k3)l(k;s

(j)
n ) is given by

(5)

l�(k;s(j)
n
)

=

⎧⎪⎪⎨⎪⎪⎩

n! ��k

�
−
n

k
−

∑n

i=1
log

�
1 − usi

�
k2

�
1

�k�
�
u

k

�n−1
n�
i=1

�
1 − usi

�1∕k−1
du, k ≠ 0,

�
1 −

(n + 1)
∑n

i=1
s2
i

2
�∑n

i=1
si
�2

�
(n!)2�∑n

i=1
si
�n , k = 0,

s1 ≤ ⋯ ≤ sj−1 ≤ 1 ≤ sj+1 ≤ ⋯ ≤ sn, and sj = 1.

l��(k;s(j)
n
)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n! �
�k

�
n(n + 1)

k2
+

2(n + 1)
∑n

i=1
log

�
1 − usi

�
k3

+

�∑n

i=1
log

�
1 − usi

��2

k4

�

×
1

�k�
�
u

k

�n−1
n�
i=1

�
1 − usi

�1∕k−1
du, k ≠ 0,

�
1 − (n + 1)

∑n

i=1
s2
i�∑n

i=1
si
�2 +

(n + 2)(n + 3)

4

�∑n

i=1
s2
i

�2
�∑n

i=1
si
�4 −

2(n + 2)

3

∑n

i=1
s3
i�∑n

i=1
si
�3
�

×
n! (n + 1)!�∑n

i=1
si
�n , k = 0,

s1 ≤ ⋯ ≤ sj−1 ≤ 1 ≤ sj+1 ≤ ⋯ ≤ sn, and sj = 1.
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and

where s1 ≤ ⋯ ≤ sj−1 ≤ 1 ≤ sj+1 ≤ ⋯ ≤ sn , and sj = 1.

Proofs

Proof of Proposition 1

Denote the cdf and pdf of the GPD with � = 1 , F(⋅; k, 1) and f (⋅; k, 1), by G(⋅ ;k) and 
g(⋅ ;�) , respectively, for simplicity. Suppose Zi , i = 1,… , n , are n independent random 
variables from such a standard GPD with shape parameter k. For i = 1,… , n , let Zi∶n 
be the i-th order statistic among Z1,… , Zn.

First, we assume that k ≠ 0 . Define i
(j)

n = {i|i = 1,… , j − 1, j + 1,… , n} . 
For a fixed positive integer value j, and for any n − 1 real values 
s1 ≤ ⋯ ≤ sj−1 ≤ 1 ≤ sj+1 ≤ ⋯ ≤ sn , we consider

(6)

l���(k;s(j)
n
)

= n! ��k

�
−
n(n + 1)(n + 2)

k3
−

3(n + 1)(n + 2)
∑n

i=1
log

�
1 − usi

�
k4

−
3(n + 2)

�∑n

i=1
log

�
1 − usi

��2

k5
−

�∑n

i=1
log

�
1 − usi

��3

k6

�

×
1

�k�
�
u

k

�n−1
n�
i=1

�
1 − usi

�1∕k−1
du, for k ≠ 0,

(7)

l���(0;s(j)
n
)

=

�
1 −

3(n + 1)

2

∑n

i=1
s2
i�∑n

i=1
si
�2 −

(n + 3)(n + 4)(n + 5)

8

�∑n

i=1
s2
i

�3
�∑n

i=1
si
�6

− 2(n + 2)

∑n

i=1
s3
i�∑n

i=1
si
�3 + (n + 3)(n + 4)

�∑n

i=1
s2
i

��∑n

i=1
s3
i

�
�∑n

i=1
si
�5

+
3(n + 2)(n + 3)

4

�∑n

i=1
s2
i

�2
�∑n

i=1
si
�4 −

3(n + 3)

2

∑n

i=1
s4
i�∑n

i=1
si
�4
�

n! (n + 2)!�∑n

i=1
si
�n ,
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where hj(⋅; k) is the pdf of Zj∶n.
We note that the integrand in Eq. (8) has its partial derivative with respect to si , 

i ∈ i
(j)

n  , as n!g(u ;k)
∏

i∈i
(j)

n

u g(usi ;k) , and further that

is bounded above. From the boundedness of (9), we have

where C0 is a positive constant, and

Then, upon using Part (ii) of Theorem  16.8 of Billingsley (1994), we can inter-
change the derivatives and the integration in (8), so that the partial derivative of it 
with respect to si, i ∈ i

(j)

n  , as

The result for k = 0 can be obtained by letting k → 0 in the result for k ≠ 0 . After 
some simple algebra, the proof of Proposition 1 gets completed. 	�  ◻

(8)

Pr
(
S
(j)

i∶n
≤ si, i ∈ i

(j)

n

)

= Pr

(
Zi∶n

Zj∶n
≤ si, i ∈ i

(j)

n

)

= �
Xk,1

Pr
(
Zi∶n ≤ usi, i ∈ i

(j)

n
||Zj∶n = u

)
hj(u; k) du

= �
Xk,1

(j − 1)!

j−1∏
i=1

G(usi ;k)

G(u ;k)
× (n − j)!

n∏
i=j+1

G(usi ;k)

1 − G(u ;k)

×
n!

(j − 1)!(n − j)!
{G(u ;k)}j−1{1 − G(u ;k)}n−jg(u ;k) du

= �
Xk,1

n! g(u ;k)
∏
i∈i

(j)

n

G(usi ;k) du,

(9)(j − 1)!

j−1∏
i=1

u g(usi ;k)

G(u ;k)
× (n − j)!

n∏
i=j+1

u g(usi ;k)

1 − G(u ;k)
,

n!g(u ;k)
∏
i∈i

(j)

n

u g(usi ;k) ≤ C0 hj(u; k),

�
Xk,1

n!g(u ;k)
∏
i∈i

(j)

n

u g(usi ;k) du ≤ �
Xk,1

C0 hj(u; k) du = C0 < ∞.

n! ∫
Xk,1

g(u ;k)
∏
i∈i

(j)

n

u g(usi ;k) du.
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Proof of Theorem 3

First, we shall show that the likelihood equation has at least one solution. Given s(j)n  , 
the derivative of the likelihood function in (5) for k ≠ 0 can be rewritten as

where �(k, u) = −
n

k
−

∑n

i=1
log (1−usi)
k2

 , Λ(k, u) =
1

�k�
�

u

k

�n−1 ∏n

i=1

�
1 − usi

�1∕k−1 and 

sj = 1 . It follows from the facts that 𝜂(k, u) = −
1

k

�
n +

∑n

i=1
log (1−usi)

k

�
> 0 for suffi-

ciently small k ∈ ℝ , and 𝜂(k, u) < 0 for sufficiently large k ∈ ℝ , and Λ(k, u) > 0 for 
every k ∈ ℝ , for every u ∈ �k , there exist real values �1 and �2 such that l�(k;s(j)n ) > 0 
for every k < 𝛿1 , and l�(k;s(j)n ) < 0 for every k > 𝛿2 , respectively. In addition, we see 
from Proposition 8 that l�(k;s(j)n ) is continuous with respect to k ∈ ℝ . Thus, 
l�(k;s

(j)
n ) = 0 has at least one solution.

Next, we shall show that the number of solutions is exactly one. Let k∗ be one of 
the solutions of l�(k;s(j)n ) = 0 . We see that �(k∗, u) is strictly increasing in u and takes 
on values over (−∞,−n∕k∗) for k∗ < 0 . Thus, there exists a unique value of u such 
that �(k∗, u) = 0 , which we denote by u0 . We also see that 𝜂(k∗, u) < 0 for u < u0 and 
𝜂(k∗, u) > 0 for u > u0.

We have, for k∗ < 0 and sufficiently small Δk > 0 such that k∗ + Δk < 0,

where u0− = limu↑u0
u , and the inequality follows from the facts that

is greater than (1 + Δk∕k∗)−2 for u ∈ (−∞, u0) , is less than (1 + Δk∕k∗)−2 for 
u ∈ (u0, 0) , and 𝜂

(
k∗ + Δk, u0

)
< 0 = 𝜂

(
k∗, u0

)
(1 + Δk∕k∗)−2.

We further note that

l�(k;s(j)
n
) =n! ∫

�k

�(k, u)Λ(k, u) du,

(10)

l�(k∗ + Δk;s(j)
n
) =n! ∫

0

−∞

𝜂(k∗, u)
𝜂(k∗ + Δk, u)

𝜂(k∗, u)
Λ(k∗ + Δk, u) du

<n! ∫
u0−

−∞

𝜂(k∗, u)
(
1 +

Δk

k∗

)−2

Λ(k∗ + Δk, u) du

+ n! ∫
0

u0

𝜂(k∗, u)
(
1 +

Δk

k∗

)−2

Λ(k∗ + Δk, u) du

=
(
1 +

Δk

k∗

)−2

n! ∫
0

−∞

𝜂(k∗, u)Λ(k∗ + Δk, u) du,

�(k∗ + Δk, u)

�(k∗, u)
=
�
1 +

Δk

k∗

�−2
�

1 +
Δk

k∗ +
1

n

∑n

i=1
log

�
1 − usi

�
�

Λ(k∗ + Δk, u)

Λ(k∗, u)
=
(
1 +

Δk

k∗

)n n∏
i=1

(
1 − u si

) 1

k∗+Δk
−

1

k∗
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is strictly increasing in u and takes on value over (0, (1 + Δk∕k∗)n) . Then, it follows 
from (10) and by the mean value theorem that

where M = Λ
(
k∗ + Δk, u�

)
∕Λ

(
k∗, u�

)
∈ (0, (1 + Δk∕k∗)n) , for u� ∈ (−∞, 0).

We can also obtain the same results for k∗ ≥ 0 . The proofs are very similar to 
the proof for k∗ < 0 (for k∗ = 0 , by using the fact that l�(0;s(j)n ) = limk→0 l

�(k;s
(j)
n ) and 

Lebesgue’s dominated convergence theorem) and are therefore omitted here. The 
fact that l�(k∗ + Δk;s

(j)
n ) < 0 for every k∗ ≠ 0 clearly implies that l�(k;s(j)n ) changes 

sign only once with respect to k.
From the above arguments, l�(k;s(j)n ) = 0 always has a unique solution with respect 

to k, and the proof of Theorem 3 thus gets completed.	� ◻

Proof of Lemma 1

Let S(j)
n,1

=
(
S
(j)

1∶n
,… , S

(j)

j−1∶n

)
 and S(j)

n,2
=
(
S
(j)

j+1∶n
,… , S

(j)
n∶n

)
 . Then, by Theorem  2 of 

Iliopoulos and Balakrishnan (2009), conditional on Zj∶n = u ∈ �k , where 
Zj∶n = Xj∶n∕�0 and 𝜆k = {u ∶ 0 < u < ∞, if k < 0, or 0 < u < 1∕k, if k > 0} as 
defined in the proof of Proposition 1, we see that S(j)

n,1
 are distributed exactly as order 

statistics from a sample of size j − 1 from the distribution with density 
�1(s; k0, u) = u g(u s; k0)∕G(u; k0) , 0 ≤ s ≤ 1 , and S(j)

n,2
 are distributed exactly as order 

statistics from a sample of size n − j from the distribution with density 
�2(s; k0, u) = u g(u s; k0)∕(1 − G(u; k0)) , s ≥ 1 , where g(⋅; k) = f (⋅; k, 1) and 
G(⋅; k) = F(⋅; k, 1) . We also have S(j)

n,1
 and S(j)

n,2
 to be conditionally independent. 

Hence, under the condition that Zj∶n = u ∈ �k , we have the joint density function of 
S
(j)

n,1
 and S(j)

n,2
 to be

denoted by lu

(
k0; s

(j)
n

)
 , where s

(j)
n = (s1,… , sj−1, sj+1,… , sn) , for 

0 ≤ s1 ≤ ⋯ ≤ sj−1 ≤ 1 ≤ sj+1 ≤ ⋯ ≤ sn . Equation (11) implies that 

S
(j)

1∗
= (S

(j)

1
,… , S

(j)

j−1
) , which are the corresponding random variables to 

S
(j)

n,1
= (S

(j)

1∶n
,… , S

(j)

j−1∶n
) , are i.i.d. distributed with the conditional density function 

�1 , and S(j)
2∗

= (S
(j)

j+1
,… , S

(j)
n ) , which are the corresponding random variables to 

S
(j)

n,2
= (S

(j)

j+1∶n
,… , S

(j)
n∶n) , are i.i.d. with the conditional density function �2 , given 

Zj∶n = u.

l�(k∗ + Δk;s(j)
n
) <

(
1 +

Δk

k∗

)−2

M n! ∫
0

−∞

𝜂(k∗, u)Λ(k∗, u) du

=
(
1 +

Δk

k∗

)−2

M n! l�(k∗;s(j)
n
) = 0,

(11)(j − 1)!

j−1∏
i=1

�1(si; k0, u) × (n − j)!

n∏
i=j+1

�2(si; k0, u),
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Let Z�
j∶n

= X�
j∶n
∕� , where X�

j∶n
 is the jth-order statistic from the GPD with param-

eters k ≠ k0 and � ≠ �0 . Then, for any fixed u ∈ �k and u� ∈ �k , and any k ≠ k0 , con-
ditional on Zj∶n = u and Z�

j∶n
= u� , it follows that

where S(j)
n∗

= (S
(j)

1∗
, S

(j)

2∗
) = (S

(j)

1
,… , S

(j)

j−1
, S

(j)

j+1
,… , S

(j)
n ) . By the weak law of large 

numbers, (12) converges in probability to

where S1 and S2 are random variables which are distributed with the conditional 
density functions �1(x; k0, u) and �2(x; k0, u) , given Zj∶n = u , respectively, and 
p = limn→∞ j∕n ( 0 ≤ p ≤ 1 ). E1 and E2 denote the conditional expectations with 
respect to �1 and �2 , given Zj∶n = u , respectively. By Jensen’s inequality, we have

Hence, for any fixed u, u� ∈ �k , we have

or

Now, the density of Zj∶n , with k0 ∈ ℝ , is given by

and thus we see that

(12)

1

n − 1
log

lu�
(
k;S(j)

n

)

lu
(
k0; S

(j)
n

) =
1

n − 1
log

lu�
(
k;S(j)

n∗

)

lu
(
k0; S

(j)
n∗

)

=
j − 1

n − 1

1

j − 1

j−1∑
i=1

log
�1(S

(j)

i
; k, u�)

�1(S
(j)

i
; k0, u)

+
n − j

n − 1

1

n − j

n∑
i=j+1

log
�2(S

(j)

i
; k, u�)

�2(S
(j)

i
; k0, u)

,

pE1

[
log

�1(S1; k, u
�)

�1(S1; k0, u)

]
+ (1 − p)E2

[
log

�2(S2; k, u
�)

�2(S2; k0, u)

]
,

q E1

[
log

𝜓1(S1; k, u
�)

𝜓1(S1; k0, u)

]
+ (1 − q)E2

[
log

𝜓2(S2; k, u
�)

𝜓2(S2; k0, u)

]

< logE1

[
𝜓1(S1; k, u

�)

𝜓1(S1; k0, u)

]
+ logE2

[
𝜓2(S2; k, u

�)

𝜓2(S2; k0, u)

]

= log∫
1

0

𝜓1(t; k, u
�) dt + log∫

∞

1

𝜓2(t; k, u
�) dt = 0.

lim
n→∞

P

(
1

n − 1
log

lu�
(
k;S(j)

n

)

lu
(
k0; S

(j)
n

) < 0
|||Zj∶n = u, Z�

j∶n
= u�

)
= 1,

lim
n→∞

P
(
lu�
(
k;S(j)

n

)
< lu

(
k0; S

(j)
n

) | Zj∶n = u, Z�
j∶n

= u�
)
= 1.

hj
(
u; k0

)
=

n!

(j − 1)!(n − j)!

{
G
(
u; k0

)}j−1
g
(
u; k0

){
1 − G

(
u; k0

)}n−j
,
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since P
(
lu�
(
k;S(j)

n

)
< lu

(
k0; S

(j)
n

) | Zj∶n = u, Z�
j∶n

= u�
)
 is bounded by 1. Then, by 

applying the dominated convergence theorem, we have

which completes the proof of Lemma 1.	�  ◻

Proof of Theorem 5

Here, we shall use the shorthand notation L
(
k;S(j)

n

)
 for the log-likelihood function 

based on S(j)
n

 , log l
(
k;S(j)

n

)
 , and L�

(
k;S(j)

n

)
 and L��

(
k;S(j)

n

)
 for its derivatives with 

respect to k.
First, we assume that k ≠ 0 and k∗ ≠ 0 . We then have

�
𝜆k
�
𝜆k0

P
(
lu�
(
k;S(j)

n

)
< lu

(
k0; S

(j)
n

) | Zj∶n = u, Z�
j∶n

= u�
)
hj
(
u; k0

)
hj
(
u�; k

)
du du�

≤ �𝜆k0

hj
(
u; k0

)
du�𝜆k

hj
(
u�; k

)
du� = 1,

lim
n→∞

P
(
l
(
k;S(j)

n

)
< l

(
k0; S

(j)
n

))

= ∫𝜆k
∫
𝜆k0

lim
n→∞

P
(
lu�
(
k;S(j)

n

)

< lu
(
k0; S

(j)
n

) | Zj∶n = u, Z�
j∶n

= u�
)
hj
(
u; k0

)
hj
(
u�; k

)
du du� = 1,

(13)

1

n
L�
�
k;S(j)

n

� P

−−→
1

n

∫
�k

�
−

n

k
−

∑n

i=1
log

�
1−k u S

(j)

i∶n

�

k2

�
�n,j(S

(j)
n
, k, u) �(u − v) du

∫
�k
�n,j(S

(j)
n
, k, u) �(u − v) du

=
1

n

n�
i=1

⎛⎜⎜⎜⎝
−
1

k
−

log
�
1 − k v S

(j)

i

�

k2

⎞⎟⎟⎟⎠

P

−−→p
1

j − 1

j−1�
i=1

⎛⎜⎜⎜⎝
−
1

k
−

log
�
1 − k v S

(j)

i

�

k2

⎞⎟⎟⎟⎠
+

1

n
C1(k, v)

+ (1 − p)
1

n − j

n�
i=j+1

⎛
⎜⎜⎜⎝
−
1

k
−

log
�
1 − k v S

(j)

i

�

k2

⎞
⎟⎟⎟⎠
, as n → ∞,
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where S(j)
j∶n

= S
(j)

j
= 1 , C1(k, v) = −

1

k
−

log (1−k v)

k2
 , �(⋅) is the Dirac delta function, 

�n,j(S
(j)
n
, k, u) = (j − 1)!

∏j−1

i=1
�1(Si∶n; k, u) × (n − j)!

∏n

i=j+1
�2(Si∶n; k, u) , and �1 , �2 , 

hj , S
(j)

1∗
= (S

(j)

1
,… , S

(j)

j−1
) and S(j)

2∗
= (S

(j)

j+1
,… , S

(j)
n ) are all as defined in the proof of 

Lemma 1.
As with the likelihood function under regularity conditions (see Lemma 5.3 of 

Lehmann and Casella 1998), we obtain

Hence, it follows, from (13)–(15), with the use of central limit theorem, that

We can obtain the same results when k = 0 or k∗ = 0 , by noting that 
L�(0;S(j)

n
) = limk→0 L

�(k;S(j)
n
) and L��(0;S(j)

n
) = limk→0 L

��(k;S(j)
n
) , and by Lebesgue’s 

dominated convergence theorem. These details are therefore omitted for the sake of 
brevity.	�  ◻

Proof of Theorem 6

Here, we shall use the shorthand notation L
(
k;S(j)

n

)
 for the log-likelihood function 

based on S(j)
n

 , log l
(
k;S(j)

n

)
 , and L�

(
k;S(j)

n

)
 , L��

(
k;S(j)

n

)
 and L���

(
k;S(j)

n

)
 for its deriva-

tives with respect to k. By a Taylor expansion of L�
(
k̂;S(j)

n

)
 around k, we obtain

where k∗ lies between k and k̂.
By Theorem 1, we can take any j ∈ {1,… , n} to treat k̂ that is the MLE based 

on S(j)
n

 , without loss of generality. Here, we take j such as Zj∶n
P

−−→v ∈ �k as n → ∞ , 
where P

−−→ denotes convergence in probability, and 𝜆k = {u ∶ 0 < u < ∞, if k < 0, 

(14)E
(
L�
(
k;S(j)

n

))
=

�

�k
1 = 0,

(15)
Var

(
L�
(
k;S(j)

n

))
=E

(
L�
(
k;S(j)

n

)2)
= E

(
−

�2

�k2
L
(
k;S(j)

n

))
+

�2

�k2
1

= − E
(
L��

(
k;S(j)

n

))
.

L�
�
k;S(j)

n

�
√
Ij,n(k)

d
⟶N(0, 1).

(16)k̂ − k =
L�
(
k;S(j)

n

)

−L��
(
k;S(j)

n

)
−

k̂−k

2
L���

(
k∗; S(j)

n

) ,
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or 0 < u < 1∕k, if k > 0} as defined in the proof of Proposition  1, and let 
p = limn→∞ j∕n.

From here, we shall show the following facts:

as n → ∞.
We first note that (17) holds from Theorem 6. So, we shall show now (18), for 

which we assume that k ≠ 0 and k∗ ≠ 0.
As in (13), we have

The last convergence follows by weak law of large numbers.
Next, (19) holds since

(17)
L�
�
k;S(j)

n

�
√
Ij,n(k)

d
−→N(0, 1),

(18)− L��
(
k;S(j)

n

) P

−−→Ij,n(k),

(19)
1

n
L���

(
k∗; S(j)

n

)
is bounded in probability ,

−
1

n
L��

�
k;S(j)

n

�
−

1

n
Ij,n(k)

P

−−→p
1

j − 1

j−1�
i=1

⎧⎪⎨⎪⎩
−
1

k2
−

2 log
�
1 − k v S

(j)

i

�

k3

⎫⎪⎬⎪⎭

+ (1 − p)
1

n − j

n�
i=j+1

⎧⎪⎨⎪⎩
−
1

k2
−

2 log
�
1 − k v S

(j)

i

�

k3

⎫⎪⎬⎪⎭

− pE

⎛⎜⎜⎜⎝
−
1

k2
−

2 log
�
1 − k v S

(j)

1

�

k3

⎞⎟⎟⎟⎠
− (1 − p)E

⎛⎜⎜⎜⎝
−
1

k2
−

2 log
�
1 − k v S

(j)

j+1

�

k3

⎞⎟⎟⎟⎠
P

−−→0.
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where C2(k
∗, v) = −

2

k∗3
−

6 log (1−k∗ v)

k∗4
 , and E1 and E2 are conditional expectations 

with respect to �1 and �2 , given Zj∶n = v , respectively, as defined in the proof of 
Lemma 1.

The interchangeability of integrations, differentiations and limits in the proofs of 
(17), (18) and (19) can be justified by Lebesgue’s dominated convergence theorem. 
These proofs are quite similar to the proof of interchangeability of differentiations 
and integration in Proposition 1 and are therefore omitted. We can further obtain the 
same results when k = 0 or k∗ = 0 , by noting that L��(0;S(j)

n
) = limk→0 L

��(k;S(j)
n
) and 

L���(0;S(j)
n
) = limk∗→0 L

���(k∗;S(j)
n
) and by the use of Lebesgue’s dominated convergence 

(20)

����
1

n
L���

�
k∗; S(j)

n

�����
=

������
2

n

�
l�(k∗;S(j)

n
)

l(k∗;S(j)
n
)

�3

−
3

n

l�(k∗;S(j)
n
)l��(k∗;S(j)

n
)

�
l(k∗;S(j)

n
)
�2

+
1

n

l���(k∗;S(j)
n
)

l(k∗;S(j)
n
)

������
P

−−→

��������
p

1

j − 1

j−1�
i=1

⎧
⎪⎨⎪⎩
−

2

k∗3
−

6 log
�
1 − k∗ v S

(j)

i

�

k∗4

⎫
⎪⎬⎪⎭
+

1

n
C2(k

∗, v)

+(1 − p)
1

n − j

n�
i=j+1

⎧⎪⎨⎪⎩
−

2

k∗3
−

6 log
�
1 − k∗ v S

(j)

i

�

k∗4

⎫⎪⎬⎪⎭

��������
P

−−→

��������
pE1

⎛⎜⎜⎜⎝
−

2

k∗3
−

6 log
�
1 − k∗ v S

(j)

1

�

k∗4

⎞⎟⎟⎟⎠
+

1

n
C2(k

∗, v)

+(1 − p)E2

⎛⎜⎜⎜⎝
−

2

k∗3
−

6 log
�
1 − k∗ v S

(j)

j+1

�

k∗4

⎞⎟⎟⎟⎠

��������
≤ 2

���k∗
3���

+
6p

k∗4
E1

�����log
�
1 − k∗ v S

(j)

1

�����
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�����log
�
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6 v p

���k∗
3���
E1

�
S
(j)

1

�
+
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1
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���k∗
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6 v p

���k∗
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1
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1
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+
1
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theorem. These proofs are not presented here for the sake of brevity. Thus, the proof of 
Theorem 6 gets completed.	� ◻
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