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Abstract
The typical central limit theorems in high-frequency asymptotics for semimartin-
gales are results on stable convergence to a mixed normal limit with an unknown 
conditional variance. Estimating this conditional variance usually is a hard task, 
in particular when the underlying process contains jumps. For this reason, several 
authors have recently discussed methods to automatically estimate the conditional 
variance, i.e. they build a consistent estimator from the original statistics, but com-
puted at different time scales. Their methods work in several situations, but are 
essentially restricted to the case of continuous paths always. The aim of this work 
is to present a new method to consistently estimate the conditional variance which 
works regardless of whether the underlying process is continuous or has jumps. We 
will discuss the case of power variations in detail and give insight to the heuristics 
behind the approach.

Keywords Asymptotic conditional variance · High-frequency statistics · Itô 
semimartingale · Jumps · Stable convergence

1 Introduction

The asymptotic theory for functionals of semimartingales observed at high fre-
quency is well understood now. Since the beginning of the century, a variety of laws 
of large numbers and accompanying central limit theorems has been stated in differ-
ent situations, starting with power and bipower variation for continuous processes 
(Barndorff-Nielsen and Shephard (2003) or Barndorff-Nielsen et  al. (2006)). Cru-
cial generalizations involve the case of possible jumps in the process (Jacod 2008) 
or the discussion of observations with additional microstructure noise (Jacod et al. 
2010). Later extensions regard truncated increments, multivariate processes or the 
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treatment of irregularity and asynchronicity in the data. A general overview about 
these results and statistical applications can be found in the monographs Jacod and 
Protter (2012) and Aït-Sahalia and Jacod (2014).

Typically, the central limit theorems in these situations are stated as follows: one 
proves stable convergence in law of an appropriately rescaled statistic to a mixed 
normal limit, where the (asymptotic) conditional variance of the limiting variable 
is a random variable which depends in a complicated way on the underlying sem-
imartingale. Once a consistent estimator for this conditional variance has been con-
structed, thanks to the properties of stable convergence in law, one can deduce the 
convergence in distribution of the standardized statistic to a standard Gaussian law. 
This opens the door for all kinds of statistical applications.

Constructing a consistent estimator for the conditional variance, however, is not 
always a simple task. Compared with the original object of interest for which the 
law of large numbers is shown, usually an integral of a power of volatility or a sum 
of a power of jumps, the variance is typically of a more complicated form and might 
depend on additional objects as well. In particular, apart from the case of power var-
iations of continuous processes, it is not possible to estimate the variance by using 
similar statistics as for the corresponding law of large numbers. Hence, estimators 
are usually constructed based on the specific form of the conditional variance in the 
respective situations. This procedure has two major drawbacks: first, every newly 
proven central limit theorem requires new estimators for the conditional variances. 
Second, when the model is not correctly specified, it is likely that the proposed esti-
mator does not work.

A different approach is to build an estimator which only requires knowledge of 
the original statistics and does not rely on the specific form of the conditional vari-
ance. For example, Jacod (2008) discusses statistics of the form

for simplicity over [0, 1], where Δn
i
X = XiΔn

− X(i−1)Δn
 denotes the ith increment of 

the semimartingale X, Δn → 0 , and where fn ∶ ℝ → ℝ is a function which may or 
may not depend on n. Several laws of large numbers and associated central limit the-
orems are shown in various cases. A universal estimator for the conditional variance 
in these very central limit theorems would then only depend on fn , but not utilize the 
specific form of the conditional variance in the respective situations. Whether such 
estimators exist, and how they look like, is obviously an important question in the 
theoretical discussion of high-frequency statistics.

In recent years, two classes of such universal estimators have been proposed in the 
literature. Mykland and Zhang (2017) base their estimator on a comparison of local 
versions of Un computed over neighbouring intervals of length knΔn , kn → ∞ and 
knΔn → 0 , whereas Christensen et al. (2017) use a subsampling approach which com-
pares Un with versions where only every kn th increment is taken into account. Both esti-
mators are shown to work in a variety of situations, but only when the semimartingale 
X does not jump (or when the jumps do not contribute to the limiting distribution), and 

Un =

n∑
i=1

fn(Δ
n
i
X),
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it is rather simple to see that both procedures indeed do not work when the limiting 
distribution contains jumps.

Therefore, the question remains whether it is possible to construct a universal esti-
mator for the conditional variance which works both in the continuous case and in the 
case involving jumps and, if yes, how it could be constructed. We will give positive 
answers to both questions, for simplicity in the case of power variations only, which 
means that X is a general Ito semimartingale including jumps and that fn is essentially 
of the form fn(x) = |x|p , p > 0 , up to a possible standardization. Already in this situ-
ation, we will see all different kinds of limiting behaviour, including conditional vari-
ances which only depend on the volatility or which depend jointly on jumps and vola-
tility. It is to be expected that the same construction of a universal estimator works for 
most other statistics as well, as the main idea behind the proof of the respective central 
limit theorems usually is the same as for the corresponding power variations.

The paper is organized as follows: after introducing the setting in Sect. 2, we will 
discuss three novel universal estimators for the conditional variance in Sect.  3. 
While the first two estimators are rather simple to construct in practice, they have 
the deficiency that they do not work in all situations. In fact, the first one is consist-
ent for continuous processes, but when jumps dominate it only converges stably in 
law to a random variable whose mean is the conditional variance. Similarly for the 
second estimator, but with different roles: the estimator is consistent in the jump 
case, but does not converge to the correct conditional variance for continuous pro-
cesses. A remarkable exception is the case p = 2 in which it gives an alternative 
estimator for the conditional variance when the quadratic variation is to be esti-
mated. Finally, the intuition behind both estimators is combined to construct the uni-
versal estimator which formally works in all situations. Its computation time is of 

order n
(

kn
�n

)
 for sequences kn and �n converging to infinity, however, so it is of the-

oretical interest in the first place rather than being a serious alternative in all practi-
cal cases. The proofs are given in Sect. 5.

2  Setting

Suppose that we have a filtered probability space (Ω,F, (Ft)t≥0,ℙ) on which an Ito 
semimartingale of the form

is defined, where W is a standard Brownian motion, � is a Poisson random measure 
on ℝ+ ×ℝ , and its predictable compensator satisfies 𝜈(ds, dz) = ds⊗ 𝜆(dz) for some 
�-finite measure � on ℝ endowed with the Borelian �-algebra. We further assume 
that b and � are adapted processes and that � is predictable on Ω ×ℝ+ ×ℝ . We write 
ΔXs = Xs − Xs− with Xs− = limt↗s Xt for a possible jump of X in s.

(1)
Xt = X0 + �

t

0

bsds + �
t

0

𝜎sdWs + �
t

0 � 𝛿(s, z)�{|𝛿(s,z)|≤1}(𝜇 − 𝜈)(ds, dz)

+ �
t

0 � 𝛿(s, z)�{|𝛿(s,z)|>1}𝜇(ds, dz)
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We will work in a high-frequency framework, so without loss of generality we 
assume to be on the fixed interval [0, 1]. Observations of X take place at the regu-
lar times iΔn , i = 0,… , n , where we set n = Δ−1

n
 . Throughout the paper, Δn → 0 

governs the asymptotics.
In order to prove asymptotic results for statistics based on increments of X, one 

typically needs additional assumptions on the semimartingale characteristics. Our 
aim in the following is not to be as general as possible, so we will state sufficient 
conditions in order to prove consistency of the statistics and associated central 
limit theorems, respectively. The first one is good enough for theorems on con-
sistency, and it even is sufficient for some central limit theorems.

Condition 1 The process (bs) is locally bounded and predictable, the process (�s) is 
càdlàg, and there exist a sequence (�n) of stopping times increasing to infinity and 
a sequence (�n) of deterministic real functions such that 1 ∧ |�(s, z)| ≤ �n(z) for all 
s ≤ �n and ∫ 𝛾n(z)

2𝜆(dz) < ∞ hold.

Stronger assumptions are typically needed when one is interested in a central 
limit theorem associated with a limit in probability which is governed by the con-
tinuous martingale part of X. What is always needed is that � is positive and that 
it takes a form similar to (1).

Condition 2 We assume that the process (�s) is bounded below by a positive number 
and of the form

with M being a local martingale with |ΔMs| ≤ 1 , orthogonal to W, and we assume 
that ⟨M,M⟩t = ∫ t

0
�sds as well as that the compensator of 

∑
0<s≤t Δ𝜎s�{�Δ𝜎s�>1} takes 

the form ∫ t

0
�′
s
ds . The processes (bs) and (�̃s) are càdlàg, and the processes (b̃s) , (�s) 

and (��
s
) are locally bounded and predictable.

Even this condition is not general enough in the case where X has jumps as 
well; see Theorems 5.3.5 and 5.3.6 in Jacod and Protter (2012). We will therefore 
assume that X is continuous whenever we are concerned with central limit theo-
rems associated with the continuous martingale part only. Condition 2 turns out 
to be sufficient then.

3  Results

3.1  Limit theorems for power variations

The typical object of interest in high-frequency statistics is a statistic of the form

𝜎t = 𝜎0 + �
t

0

�bsds + �
t

0

�𝜎sdWs +Mt +
∑
0<s≤t

Δ𝜎s�{|Δ𝜎s|>1}
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where Δn
i
X = XiΔn

− X(i−1)Δn
 denotes the ith increment of X and fn ∶ ℝ → ℝ is a 

function which may or may not depend on n. Typical examples are power variations 
of the form

for some p > 0 , where the latter scaling depends on the length of the interval over 
which the increment is computed. For those power variations and related statistics, 
a rule of thumb is: whenever a weak law of large numbers holds, the limit is of the 
form

where g ∶ ℝ+ → ℝ and h ∶ ℝ → ℝ are suitable functions depending on fn . Let us 
recall the results from Theorem 2.2 and Theorem 2.4 in Jacod (2008).

Theorem 1 Let X be a semimartingale of the form (1) and assume that Condition 1 
holds.

(a)  Let p < 2 and  fn(x) = Δ
1−p∕2
n |x|p . Then

  with mp = �[|N|p] for N ∼ N(0, 1).
(b)  Let p > 2 and fn(x) = |x|p for any n. Then

(c)  Let fn(x) = |x|2 for any n. Then

Remark 1 In the case where no jumps are present, the law of large numbers in part 
(a) also holds for p ≥ 2 . Similarly, if the continuous martingale part vanishes the 
claim in part (b) also holds for p ∈ (1, 2] and, under a further assumption on the 
drift, even for p ≤ 1 . See again Jacod (2008).   ◻

Un =

n∑
i=1

fn(Δ
n
i
X),

fn(x) = |x|p or fn(x) = Δ1−p∕2
n

|x|p

U = �
1

0

g(𝜎s)ds +
∑
0<s≤1

h(ΔXs),

Un

ℙ

⟶mp ∫
1

0

�p
s
ds

Un

ℙ

⟶

∑
0<s≤1

|ΔXs|p.

Un

ℙ

⟶[X,X]1 = �
1

0

𝜎2
s
ds +

∑
0<s≤1

|ΔXs|2.
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As noted above we have associated central limit theorems in all three cases, but 
for simplicity we will state the one connected to Theorem 1 (a) only in the case of a 
continuous X in which it holds irrespective of p. In general, such a result is expected 
to hold only with p < 1 , but with additional assumptions regarding the jumps then. 
Similarly, the central limit theorem associated with Theorem 1 (b) only holds for 
p > 3 . The mode of convergence is always ( F -)stable convergence in law, which 
means in particular that the limiting variables are typically defined on an appropriate 
extension of (Ω,F, (Ft)t≥0,ℙ) . For details on stable convergence see Section 2.2.1 in 
Jacod and Protter (2012).

Theorem 2 Let X be a semimartingale of the form (1). 

(a)  Suppose that X is continuous and assume that Condition   2 holds. With 
fn(x) = Δ

1−p∕2
n |x|p , we have the stable convergence

where W ′ denotes an independent Brownian motion on a suitable extension of the 
original probability space.

(b)  Let p > 3 and suppose that X allows for jumps and that X and  � never jump at 
the same time. Under Condition  1 and with fn(x) = |x|p for all n , we have the 
stable convergence

where (Sr)r≥1 denotes a sequence of stopping times exhausting the jumps of X over 
[0, 1], and where (Nr)r≥1 is a sequence of independent standard normal variables, 
also defined on a suitable extension of the original probability space.

(c)  Suppose that X allows for jumps and that X and  � never jump at the same 
time. Under Condition 1 and with fn(x) = |x|2 for all n , we have the stable 
convergence

with Y as in part (a) and Z as in part (b), where W ′ and (Nr)r≥1 are defined on the 
same extended probability space and independent.

For a proof see Theorems 5.3.6, 5.1.2 and 5.4.2 of Jacod and Protter (2012).

Remark 2 The limiting variable in part (a) of Theorem 2 is mixed normal with con-
ditional variance

Δ−1∕2
n

(
Un − mp ∫

1

0

�p
s
ds
)

L−(s)
⟶ Y =

√
m2p − m2

p ∫
1

0

�p
s
dW �

s

Δ−1∕2
n

(
Un −

∑
0<s≤1

|ΔXs|p
)

L−(s)
⟶ Z =

∞∑
r=1

psign(ΔXSr
)|ΔXSr

|p−1𝜎SrNr

Δ−1∕2
n

(
Un − [X,X]1

) L−(s)
⟶ Y + Z,
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Given a consistent estimator Vn for V, Slutsky’s lemma for stable convergence yields

In general, the central limit results connected with jumps do not allow for a mixed 
normal limit. An exception is the case where � and X have no common jumps [com-
pare, e.g. Proposition 5.1.1 in Jacod and Protter (2012)], which is why we work 
under this assumption. In this case, we obtain

for part (b) and

for part (c), respectively. The goal then again is to find a consistent estimator for V, 
from which central limit theorems similar to (2) can be concluded.   ◻

Historically, estimators for the asymptotic conditional variances in Theorem  2 
have been built using the exact representation of V and somewhat similar statistics 
as the original power variations. For example, in case (a) above it is obvious from 
Remark 1 that

with gn(x) = Δ
1−p
n |x|2p consistently estimates V. In the other two cases, estimation of 

the conditional variances is possible, yet severely more complicated due to the mix-
ture of jumps and volatility. Plain power variations cannot be used anymore, but a 
truncated version where only increments Δn

i
X with |Δn

i
X| > 𝛼Δ𝜛

n
 , 𝜛 < 1∕2 , 𝛼 > 0 , 

are used, combined with a local estimator for the volatility, still does the trick. See, 
for example, Theorem 9.5.1 in Jacod and Protter (2012). This feature in fact is typi-
cal in high-frequency analysis: the conditional variance is often substantially more 
difficult to estimate than the original quantities of interest.

3.2  Universal estimators in the continuous case

Two competing procedures have recently been proposed in the literature which 
do not try to mimic the specific structure of the limiting conditional variance, but 

V = (m2p − m2
p
)∫

1

0

�2p
s
ds.

(2)
Δ

−1∕2
n

�
Un − mp ∫ 1

0
�
p
s ds

�
√
Vn

L

⟶N(0, 1).

V =
∑
0<s≤1

p2|ΔXs|2p−2𝜎2
s

V = 2�
1

0

𝜎4
s
ds +

∑
0<s≤1

4|ΔXs|2𝜎2
s

V̂n =
m2p − m2

p

m2p

n∑
i=1

gn(Δ
n
i
X)
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rather construct estimators directly from the form of the original statistics Un . Let us 
remain in the framework of power variations, so

and let us write the limiting variables in Theorem 1 as

so, for example,

in case of part (c). The essential idea behind the estimator from Mykland and Zhang 
(2017) is the intuition that each summand fn(Δn

i
X) within Un is in fact a local esti-

mate for the corresponding �[(i−1)Δn,iΔn]
 , and this intuition remains true if several 

increments are aggregated. Precisely,

with an auxiliary sequence kn → ∞ , knΔn → 0 , serves as an estimator for

They therefore base their estimator on

which, using a simple decomposition, essentially mimics twice the asymptotic vari-
ance, plus an additional term due the difference of �[iΔn,(i+kn)Δn]

 and �[(i−kn)Δn,iΔn]
 . 

When the latter approximation error is not too large compared with the other two 
terms, it is possible to get rid of it by working with a suitable linear combination 
of two different QVn(kn) . Among other possible linear combinations Mykland and 
Zhang (2017) choose

An estimator for V is then given by nTn.
The estimator from Christensen et al. (2017) is based on a subsampling proce-

dure. They set

Un =

n∑
i=1

fn(Δ
n
i
X),

U =

n∑
i=1

�[(i−1)Δn,iΔn]
,

𝜃[(i−1)Δn,iΔn]
= [X,X]iΔn

− [X,X](i−1)Δn
= �

iΔn

(i−1)Δn

𝜎2
s
ds +

∑
(i−1)Δn<s≤iΔn

|ΔXs|2

(3)�̂[iΔn,(i+kn)Δn]
=

kn∑
j=1

fn(Δ
n
i+j
X)

(4)�[iΔn,(i+kn)Δn]
=

kn∑
j=1

�[(i+j−1)Δn,(i+j)Δn]
.

QVn(kn) =
1

kn

n−kn∑
i=kn

(
�̂[(i−kn)Δn,iΔn]

− �̂[iΔn,(i+kn)Δn]

)2

Tn =
2

3

(
QVn(kn) −

1

4
QVn(2kn)

)
.
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for each l = 1,… , kn . Up to edge effects, this is the same estimator as the original 
one, but where only each kn th increment is taken into account, thus the estimator is 
blown up by the factor kn . Again, fn(Δ

n
(i−1)kn+l

X) is a local estimator for 
�[((i−1)kn+l−1)Δn,((i−1)kn+l)Δn]

 , and if neighbouring �[((i−1)kn+l−1)Δn,((i−1)kn+l)Δn]
 are close 

the each other, then Un
l
 should behave in the same way as the original Un . In particu-

lar, a central limit theorem should hold with the same asymptotic variance, but the 
rate of convergence should drop to (knΔn)

1∕2 . Therefore, the subsampling estimator 
for the asymtotic variance is given by

where Un serves as an approximation for the unknown limit U. As the convergence 
of Un to U happens at a faster rate than the convergence of Un

l
 to U, this replacement 

does not cause any troubles in the limit.
Both estimators, nTn and Σ̂n , are known to work in a variety of situations if 

kn → ∞ and knΔn → 0 hold and are by no means restricted to power variations. 
Mykland and Zhang (2017) work with a structural assumption and show that their 
estimator works in most cases where the limiting variable takes the form

for some semimartingale � , whereas Christensen et al. (2017) establish consistency 
of their subsampling estimators explicitly for power and bipower variations, includ-
ing a truncated version when additional jumps are present in the process and a pre-
averaged version when the process is only observed with noise. In particular, in both 
papers the case of a limit governed by jumps is excluded, intuitively because the 
implicit assumption fails that estimators close nearby will estimate the same quan-
tity. In fact, they estimate very different quantities if a jump is present because it 
falls into just one interval and not into the next one.

Example 1 Suppose that Xt = �Wt + Jt for a constant 𝜎 > 0 and a Poisson process J 
with parameter 𝜆 > 0 . Then, with

and

we have

Un
l
= kn

⌊ n

kn
⌋�

i=1

fn(Δ
n
(i−1)kn+l

X)

Σ̂n =
1

kn

kn∑
l=1

(knΔn)
−1(Un

l
− Un)

2,

U = ∫
1

0

�sds

fn(Δ
n
i
X) = |XiΔn

− X(i−1)Δn
|2

Un =

n∑
i=1

fn(Δ
n
i
X),
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according to Theorem 2, where the limiting variance is given by

But, for any choice of kn → ∞ and knΔn → 0 we neither have nTn
ℙ

⟶V  nor Σ̂n

ℙ

⟶V  . 
A proof of this result will be given in Sect. 5.1.

3.3  Three new universal estimators

In order to circumvent the problem that a jump falls into just one interval, we will 
present several novel estimators in the following, all of which are based on the fol-
lowing intuition: we fix a local interval [iΔn, (i + kn)Δn] first, and we will always 
compare two estimators constructed from increments within this interval only. These 
estimators are defined in such a way that a possible jump dominates both estimators 
in the same way, so that it is wiped out to first order. Afterwards, the local estimators 
based on [iΔn, (i + kn)Δn] are aggregated into a global estimator.

This procedure is explained easiest for a first estimator Vn which is not univer-
sal in the sense that Vn

ℙ

⟶V  holds in all three cases. Recall (3) and (4). We will 
use �̂[iΔn,(i+kn)Δn]

 as a local estimator for �[iΔn,(i+kn)Δn]
 again, but it will be compared 

with a local power variation based on the increment X(i+kn)Δn
− XiΔn

 which, using the 
same p > 0 , also is a local estimator for �[iΔn,(i+kn)Δn]

 . Recall that a possible scaling 
depends on the length of the interval over which the increment is computed, so the 
factor will be based on knΔn instead of Δn . This means, in the continuous case we set

and

while otherwise

The first estimator is then given by

Theorem 3 Let X be of the form (1) and let kn → ∞ such that  kn = o(n) . 

Δ−1∕2
n

(
Un − [X,X]1

) L−(s)
⟶ Y + Z,

V = 2�4 + 4�2J1.

Un
[iΔn,(i+kn)Δn]

= (knΔn)
1−p∕2|X(i+kn)Δn

− XiΔn
|p

�̂[iΔn,(i+kn)Δn]
=

kn∑
j=1

Δ1−p∕2
n

|Δn
i+j
X|p,

Un
[iΔn,(i+kn)Δn]

= |X(i+kn)Δn
− XiΔn

|p, �̂[iΔn,(i+kn)Δn]
=

kn∑
j=1

|Δn
i+j
X|p.

V̂n =
n

kn(kn − 1)

n−kn∑
i=0

(
Un

[iΔn,(i+kn)Δn]
− �̂[iΔn,(i+kn)Δn]

)2

.
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(a)  Suppose that Xis continuous and assume that Condition 2 holds. We have

(b)  Let p > 3 and suppose that X allows for jumps and that X and � never jump at 
the same time. Under Condition 1 , we have the stable convergence

where (Sr)r≥1 denotes a sequence of stopping times exhausting the jumps of X over 
[0, 1] and where (Rr)r≥1 denotes a sequence of i.i.d. random variables distributed as 
a multiple Wiener-Itô integral

independent of F  and defined on a suitable extension of the original probability 
space.

(c)  Suppose that X allows for jumps and that X and � never jump at the same time. 
For p = 2 , under Condition 1 we have

with (Sr)r≥1 and  (Rr)r≥1 as in (b).

Remark 3 Let us discuss the heuristics behind Theorem 3 by distinguishing the two 
cases of X being continuous and X having jumps. The mixed case typically just com-
bines those arguments. 

 (i) In the continuous case, let us discuss the related, asymptotically equivalent, 
estimator 

which is the same as V̂n up to small order edge effects. Note that for each 
fixed � , the estimator is based on observations from non-overlapping inter-
vals. Later on these are aggregated in some type of sample mean. Then, if we 
set 

V̂n

ℙ

⟶V = (m2p − m2
p
)∫

1

0

�2p
s
ds.

V̂n

L−(s)
⟶ V∗ =

∞∑
r=1

p2|ΔXSr
|2p−2�2

Sr
(1 + Rr)

∫[0,2]2
f (s, t)dBsdBt, f (s, t) = (2 − s ∨ t) ∧ 1 − (1 − s ∧ t) ∨ 0,

V̂n

L−(s)
⟶ 2∫

1

0

�4
s
ds +

∞∑
r=1

4|ΔXSr
|2�2

Sr
(1 + Rr),

V̂ (1)
n

=
1

kn

kn−1�
�=0

n

kn

⌊ n

kn
⌋−1�

i=0

�
Un

[(ikn+�)Δn,((i+1)kn+�)Δn]
− �̂[(ikn+�)Δn,((i+1)kn+�)Δn]

�2

�[u,v] = mp ∫
v

u

�p
s
ds
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for u < v , following the same proof as Theorem 2 (a), it is easy to see that 

uniformly in i and � . Young’s inequality allows us to replace one term by the 
other. As we work over disjoint intervals, we then use the intuition that the 

obey the same central limit theorem as Theorem 2 (a). In particular, using 
conditional independence, it is no surprise that each 

 estimates V. So does V̂ (1)
n

.
 (ii) Whenever jumps are present, the idea is to implicitly assume that there are only 

finitely many of them and that each interval (iΔn, (i + kn)Δn] contains either no 
jump or exactly one jump. The proof of Theorem 2 (b) shows, due to p > 3 , 
that only those intervals with jumps play a role to first order in the asymptotics. 
For each jump time Sr and for each interval such that Sr ∈ (iΔn, (i + kn)Δn] , a 
Taylor expansion gives 

uniformly in i, where �[iΔn,(i+kn)Δn]
= |ΔXSr

|p and by using that � is continu-
ous at Sr by assumption. Therefore, 

where ((ir − 1)Δn, irΔn] denotes the interval which includes Sr . Note that the 
second sum above consists of highly correlated Brownian increments, and it is 
easy to see that both its expectation and its variance are equal to one, at least 
to first order. So we do not have convergence to one in probability.   ◻

The lesson told by Remark 3 is that we need less dependence between the Brownian 
increments over those intervals where jumps are detected. A natural second statistic 
therefore is given by

�̂[(ikn+�)Δn,((i+1)kn+�)Δn]
− �[(ikn+�)Δn,((i+1)kn+�)Δn]

= oℙ(knΔn),

�
n

kn

⌊ n

kn
⌋−1�

i=0

�
Un

[(ikn+�)Δn,((i+1)kn+�)Δn]
− �[(ikn+�)Δn,((i+1)kn+�)Δn]

�

n

kn

⌊ n

kn
⌋−1�

i=0

�
Un

[(ikn+�)Δn,((i+1)kn+�)Δn]
− �̂[(ikn+�)Δn,((i+1)kn+�)Δn]

�2

�̂[iΔn,(i+kn)Δn]
− �[iΔn,(i+kn)Δn]

= p sign(ΔXSr
)|ΔXSr

|p−1�Sr (W(i+kn)Δn
−WiΔn

) + oℙ((knΔn)
1∕2)

V̂n =
∑
r

p2|ΔXSr
|2p−2�2

Sr

n

k2
n

kn∑
j=1

(W(ir+kn−j)Δn
−W(ir−j)Δn

)2
(
1 + oℙ(1)

)
,

�Vn =
n

2

n−kn∑
i=0

(
1(
kn
2

) ∑
i<u<v≤i+kn

(
fn(Δ

n
u
X + Δn

v
X) − (fn(Δ

n
u
X) + fn(Δ

n
v
X))

)2)
,
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where the scaling within fn again depends on the length of the corresponding inter-
val, so it becomes

in the continuous case and

in the other cases.
Let us explain the main idea behind Ṽn by using the simplifying assumption again 

that there are only finitely many jumps which are separated in the sense that no 
interval (iΔn, (i + kn)Δn] contains more than one jump. Then in the jump case

as only the cases with u = ir or v = ir give dominating terms to first order. If one 
now uses a Taylor expansion and keeps j fixed first, we obtain

and it is clear that we have indeed convergence in probability to the correct quantity.
The drawback, however, is that the statistic does not converge in probability to 

the correct variance if the continuous part dominates. The reason is simple: we 
now subtract (fn(Δn

u
X) + fn(Δ

n
v
X)) only which is just a sum of two terms. Previously, 

when discussing V̂n , we subtracted a sum of kn terms which asymptotically equals a 
functional of �p . This allowed us to mimic the arguments from the original central 
limit theorem. Now we estimate a quantity which is in general different from V. A 
remarkable exception is the case p = 2 where we exactly estimate the variance V.

Theorem 4 Let X be of the form (1) and let kn → ∞ such that kn = o(n) . 

(a)  Suppose that X is continuous and assume that Condition 2 holds. With

for independent standard normal N1 , N2 we have

fn(Δ
n
u
X + Δn

v
X) = (2Δn)

1−p∕2|Δn
u
X + Δn

v
X|p, fn(Δ

n
u
X) = Δ1−p∕2

n
|Δn

u
X|p,

fn(Δ
n
u
X + Δn

v
X) = |Δn

u
X + Δn

v
X|p, fn(Δ

n
u
X) = |Δn

u
X|p,

�Vn =
∑
r

n

kn(kn − 1)

kn∑
j=1

( ∑
ir − j < v ≤ ir + kn − j

v ≠ ir

(|Δn
ir
X + Δn

v
X|p − |Δn

ir
X|p)2

)(
1 + oℙ(1)

)
,

�Vn =
∑
r

1

kn

kn∑
j=1

n

kn − 1

∑
ir − j < v ≤ ir + kn − j

v ≠ ir

p2(ΔXSr
)2p−2𝜎2

Sr
(Δn

v
W)2 + oℙ(1),

cp = 2�

���� 1√
2
(N1 + N2)

��p − 1

2
(�N1�p + �N2�p)

�2
�

Ṽn

ℙ

⟶cp ∫
1

0

�2p
s
ds.
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(b)  Let p > 3 and suppose that X allows for jumps and that X and � never jump at 
the same time. Under Condition 1 , we have

(c)  Suppose that X allows for jumps and that X and � never jump at the same time. 
For p = 2 , under Condition 1 we have

Remark 4 Note that Theorem 4 (c) proves that Ṽn is a consistent estimator for the 
asymptotic conditional variance when the quadratic variation is to be estimated. In 
this situation, various estimators are known in the literature which all mimic the spe-
cific form of the variance; see, for example, Chapter 9.5 in Jacod and Protter (2012) 
or Veraart (2010).   ◻

The construction of a universal estimator which converges in probability to 
V in all three cases now combines the best from both worlds. Let �n → ∞ with 
�n = o(kn) be another auxiliary sequence and set

so

for a continuous X and again

otherwise. We see that a jump in Δn
j1
X , say, comes together with a growing number 

of increments which are sufficiently independent from each other in order to ensure 
convergence in probability as for Ṽn . Also, as we subtract 

∑�n

m=1
fn(Δ

n
jm
X) we consist-

ently estimate a local version of �p in the continuous case. Note that V̂n and Ṽn are 
special cases with �n = kn and �n = 2 , respectively.

Theorem  5 Let X be of the form (1) and let �n, kn → ∞ with �n = o(kn) and 
kn = o(n) . 

�Vn

ℙ

⟶V =
∑
0<s≤1

p2|ΔXs|2p−2𝜎2
s
.

�Vn

ℙ

⟶V = 2�
1

0

𝜎4
s
ds +

∑
0<s≤1

4|ΔXs|2𝜎2
s
.

Vn =
n

�n(�n − 1)

n−kn∑
i=0

1(
kn
�n

) ∑
i<j1<…<j

�n
≤i+kn

(
fn

( �n∑
m=1

Δn
jm
X
)
−

�n∑
m=1

fn(Δ
n
jm
X)

)2

,

fn

( �n∑
m=1

Δn
jm
X
)
= |�nΔn|1−p∕2|||

�n∑
m=1

Δn
jm
X
|||
p

, fn(Δ
n
jm
X) = Δ1−p∕2

n
|Δn

jm
X|p

fn

( �n∑
m=1

Δn
jm
X
)
=
|||

�n∑
m=1

Δn
jm
X
|||
p

, fn(Δ
n
jm
X) = |Δn

jm
X|p
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(a)  Suppose that X is continuous and assume that Condition 2 holds. We have

(b)  Let p > 3 and suppose that X allows for jumps and that X and � never jump at 
the same time. Under Condition 1 , we have

(c)  Let p = 2 and suppose that X allows for jumps and that Xand � never jump at 
the same time. Under Condition 1 , we have

Remark 5 

 (i) An important question regards the choice of kn and �n in Theorem 5. While the 
result itself is rather general and does not come with a rate of convergence per 
se, we can say more under some additional, mostly standard, assumptions. Let 
p ≥ 1 . If we assume finite activity jumps, and if for all stopping times S ≤ T  
and all q > 0 both 

 and 

hold, where Cq is a constant which might depend on q, then a tedious but 
straightforward computation proves 

If kn and �n are of the respective orders na and nb then clearly a = 2∕3 , 
b = 1∕3 gives Vn − V = Oℙ(n

−1∕6) . Note further that in the purely continuous 
case (a) the latter error term disappears and the choice of �n = kn becomes 
possible. In this case one chooses a = 1∕2 and obtains Vn − V = Oℙ(n

−1∕4) . 
The same order can be attained in the jump dominated case (b) where the 
second error term vanishes and �n = 2 is a fine choice.

 (ii) The approach presented in this work is tailored for a conditional variance 
associated with Theorem 2, so for sums of functionals computed over non-

Vn

ℙ

⟶V = (m2p − m2
p
)∫

1

0

�2p
s
ds.

Vn

ℙ

⟶V =
∑
0<s≤1

p2|ΔXs|2p−2𝜎2
s
.

Vn

ℙ

⟶V = 2�
1

0

𝜎4
s
ds +

∑
0<s≤1

4|ΔXs|2𝜎2
s
.

�
[
sup

s∈[S,T]

|�s − �S|q
] ≤ Cq�

[
(T − S)q∕2

]

||�[�q

T
− �

q

S
]|| ≤ Cq�[T − S]

Vn − V = Oℙ

⎛⎜⎜⎝
√
knΔn +

�
1

�n

+

�
�n

kn

⎞⎟⎟⎠
.
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overlapping intervals. In more general situations, the conditional variance 
in the central limit theorem contains terms which are due to the covariance 
between neighbouring intervals, and these terms need to be estimated as well. 
At least in the continuous case there is some remedy. Let us discuss bipower 
variation as a specific example where the statistics are of the form 

 with F(x, y) = |x|p|y|q , so (essentially) every Δn
i
X appears twice within Un . 

An associated central limit theorem can be found in Theorem 11.2.1 of Jacod 
and Protter (2012). In this case, the natural analogon for V̂n is built from 

 and 

 and reads as 

 Clearly it is not consistent as it does not estimate the covariance due to Δn
i
X 

appearing twice, but a version which also incorporates neighbouring inter-
vals is. Precisely, the same methods as for Theorem 3 (a) prove that 

 consistently estimates the variance of bipower variation. Generalizations of 
this form are thus necessary when working with overlapping intervals.   ◻

Un =
1

n

n−1�
i=1

F
�

1√
n
Δn

i
X,

1√
n
Δn

i+1
X) = Δ1−(p+q)∕2

n

n−1�
i=1

�Δn
i
X�p�Δn

i+1
X�q

Un
[iΔn,(i+2kn)Δn]

= (knΔn)
1−(p+q)∕2|X(i+kn)Δn−XiΔn

|p|X(i+2kn)Δn
− X(i+kn)Δn

|q

�̂[iΔn,(i+2kn)Δn]
=

kn∑
j=1

Δ1−(p+q)∕2
n

|Δn
i+2j−1

X|p|Δn
i+2j

X|q

V̂n =
n

kn(kn − 1)

n−2kn∑
i=0

(
Un

[iΔn,(i+2kn)Δn]
− �̂[iΔn,(i+2kn)Δn]

)2

.

n

kn(kn − 1)

n−3kn∑
i=kn

(
Un

[iΔn,(i+2kn)Δn]
− �̂[iΔn,(i+2kn)Δn]

)

×
((

Un
[(i−kn)Δn,(i+kn)Δn]

− �̂[(i−kn)Δn,(i+kn)Δn]

)
+
(
Un

[iΔn,(i+2kn)Δn]
− �̂[iΔn,(i+2kn)Δn]

)

+
(
Un

[(i+kn)Δn,(i+3kn)Δn]
− �̂[(i+kn)Δn,(i+3kn)Δn]

))
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4  Conclusion

In this paper, we have presented a new class of estimators for the asymptotic 
(conditional) variance in limit theorems for semimartingales. These estimators 
are only based on the form of the original statistics

in the central limit theorem, and we have shown in Theorem 5 that they are consist-
ent for power variations in all three possible regimes: for a dominating continuous 
martingale part, for dominating jumps, and for the quadratic variation.

Even though the estimator Vn discussed in Theorem 5 gives a positive answer 
to the question whether such universal estimators exist, its application in practice 

is difficult, as we need to compute statistics over each of the 
(

kn
�n

)
 subintervals 

within (iΔn, (i + kn)Δn] in order to obtain Vn . From a computational point of view, 
this is certainly not a reasonable strategy, at least under the conditions �n → ∞ 
and �n = o(kn) . The other estimators V̂n and Ṽn are constructed with �n = kn and 
�n = 2 , respectively, so they are computationally much less expensive, though not 
consistent in all situations.

Future research clearly needs to investigate the practical properties of this new 
class of estimators, for V̂n in comparison with Mykland and Zhang (2017) and 
Christensen et  al. (2017) in the continuous case, but also with a focus towards 
the properties of Ṽn in the case of quadratic variation. This new estimator is 
consistent in all situations, with jumps or not, so one does not need to test in 
advance whether jumps are present in the path of X or not. Further, as hinted at in 
Remark 5, extensions of the estimator are necessary when working with overlap-
ping intervals, such as for multipower variation or pre-averaging estimators when 
microstructure noise is present. While the continuous case can be treated with 
similar methods, additional research becomes particularly important when jumps 
dominate.

5  Proofs

Throughout the proofs we will assume that the processes (bs) , (�s) and (Xs) are 
bounded, and we will also assume that |�(s, z)| is bounded by a deterministic func-
tion �(z) satisfying ∫ 𝛾2(z)𝜆(dz) < ∞ . In fact, according to Condition 1 we know 
that (bs) and (�(s, z)) safisfy such claims locally, and we also know that (�s) is 
càdlag̀, and then a standard localization procedure as in Section  4.4.1 in Jacod 
and Protter (2012) shows that we may assume global bounds without loss of 
generality. Similarly, whenever we explicitly need Condition 2, we may further 
assume that (�̃s) , (b̃s) , (�s) and (��

s
) are bounded as well, and we may also assume 

that (�s) is bounded away from zero. Also, C > 0 denotes a universal constant 

Un =

n∑
i=1

fn(Δ
n
i
X)
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which may change from line to line, and we write Cr whenever we want to empha-
size dependence of the constant on an auxiliary parameter such as r.

We introduce the decomposition Xt = X0 + B(q)t + Xc
t
+M(q)t + N(q)t of the 

Itô semimartingale (1) with

Here q is a parameter which controls whether jumps are classified as small jumps or 
big jumps. We also set X(q)t = B(q)t + Xc

t
+M(q)t and denote the derivative process 

of B(q) with b(q). From the integrability condition on � one immediately obtains 
|b(q)| ≤ Cq.

5.1  Proof of Example 1

Let A be the subset of Ω such that J contains exactly one jump in (0, 1) and that the 
jump time S is in (0, 1)�ℚ . Obviously, ℙ(A) > 0 , and it is sufficient to prove that 
both nTn�A and Σ̂�A diverge to infinity in probability.

For Tn , on A, suppose that n is large enough such that knΔn < S < 1 − knΔn . 
Then, each

consists of 2kn summands which are affected by the one jump and of n − 4kn + 1 
summands which are not. Suppose, for example, that i = ⌈nS⌉ . Then, 

where we have used knΔn → 0 . Consequently,

B(q)t = �
t

0

(
bs − � (𝛿(s, z)�{|𝛿(s,z)|≤1} − 𝛿(s, z)�{𝛾(z)≤1∕q})𝜆(dz)

)
ds,

Xc
t
= �

t

0

𝜎sdWs,

M(q)t = �
t

0 � 𝛿(s, z)�{𝛾(z)≤1∕q}(𝜇 − 𝜈)(ds, dz),

N(q)t = �
t

0 � 𝛿(s, z)�{𝛾(z)>1∕q}𝜇(ds, dz).

QVn(kn) =
1

kn

n−kn∑
i=kn

(�̂[(i−kn)Δn,iΔn]
− �̂[iΔn,(i+kn)Δn]

)2

�̂[(i−kn)Δn,iΔn]
− �̂[iΔn,(i+kn)Δn]

=

kn−1�
j=1

�2(�Δn
i−kn+j

W�2 − �Δn
i+j
W�2) + �1 + �Δn

i
W�2 − �2�Δn

i+kn
W�2

= 1 + 2�Δn
i
W +

kn�
j=1

�2(�Δn
i−kn+j

W�2 − �Δn
i+j
W�2) = 1 + Oℙ(

√
Δn),
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The sum over the remaining n − 4kn + 1 terms asymptotically behaves in the same 
way as the entire QVn(kn) in the case without jumps and is of order Δn according to 
Theorem 4 of Mykland and Zhang (2017). Therefore, 

and nTn diverges on A.
Similarly, on the set A we have that only one of the statistics Un

l
 contains the 

increment with the one jump, whereas the remaining kn − 1 intervals are not affected 
by it. Therefore, each of the latter statistics satisfies Un

l
− Un = Oℙ(1) as restricted to 

A both statistics converge in probability to �2 and �2 + 1 , respectively. We conclude 
that

on A, so it does not converge as well.   ◻

5.2  Proof of Theorems 3, 4 and 5

We will proceed as follows: in all cases, we will only show parts (a) and (b), and we 
will discuss these in separate sections. The proof of part (c) mostly just combines 
the ideas from (a) and (b) after one separates intervals with and without jumps of 
N(q). Within each section, we will start with the result from Theorem 5 which we 
will prove in essentially all details. Afterwards, we discuss the necessary changes for 
Theorems 3 and 4. Note that we can use analogous proofs for most parts because the 
estimators are essentially all the same, just with �n varying between 2 and kn.

Before we begin with the proofs of the main theorems, we provide a key lemma 
which will be used extremely often throughout the remaining sections.

Lemma 1 Let

and suppose that there exists

such that Rn

ℙ

⟶X (or Rn

L−(s)
⟶ X ) and

1

kn

⌈SΔ−1
n ⌉+kn−1�

i=⌈SΔ−1
n ⌉−kn

(�̂[(i−kn)Δn,iΔn]
− �̂[iΔn,(i+kn)Δn]

)2 = 2 + Oℙ(
√
Δn).

Tn =
2

3

�
QVn(kn) −

1

4
QVn(2kn)

�
= 1 + Oℙ(

√
Δn),

Σ̂n =
1

kn

kn∑
l=1

(knΔn)
−1(Un

l
− Un)

2 = Oℙ((knΔn)
−1)

Xn =

n−kn∑
i=1

(�n
i
)2

Rn =

n−kn∑
i=1

(�n
i
)2
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Then Xn

ℙ

⟶X (or Xn

L

⟶X).

Proof For both claims we only have to show Xn − Rn

ℙ

⟶0 . Note that for each 𝜀 > 0 
there exists some C𝜀 > 0 such that

which is a simple consequence of Young’s inequality. Therefore, 

and we obtain

for each fixed � , where we have first used (5) and the Portmanteau theorem plus 
Rn

L

⟶X afterwards. Letting � → 0 then finishes the proof.   ◻

5.2.1  Proof of part (a)

We will start with Theorem 5 and discuss Vn . In the situation of a continuous X a simple 
computation using the respective standardization of fn shows that the estimator reads as

with

The main strategy in the proof of Vn

ℙ

⟶V  is to apply Lemma 1 several times, which 
means that one successively replaces Vn by simpler terms until one ends up with

We first prove Vn

ℙ

⟶V  for which we set hn(x1,… , x
�n
) = |�−1∕2

n (x1 +…+ x
�n
)|p 

and

(5)
n−kn∑
i=1

(�n
i
− �n

i
)2

ℙ

⟶0.

(6)|(x + y)2 − x2| ≤ �x2 + C�y
2,

|Xn − Rn| ≤ �Rn + C�

n−kn∑
i=1

(�n
i
− �n

i
)2,

lim sup
n→∞

ℙ(|Xn − Rn| > 𝛿) ≤ lim sup
n→∞

ℙ

(
Rn ≥ 𝛿

2𝜀

) ≤ ℙ

(
X ≥ 𝛿

2𝜀

)

Vn =
�n

n(�n − 1)

n−kn∑
i=0

1(
kn
�n

) ∑
1≤j1<…<j

�n
≤kn

(
Vn
i+j1,…,i+j

�n

)2

Vn
i+j1,…,i+j

�n

= (�nΔn)
−p∕2|||

�n∑
m=1

Δn
i+jm

X
|||
p

−
1

�n

�n∑
m=1

Δ−p∕2
n

|Δn
i+jm

X|p.

Vn =
1

n

n−kn∑
i=0

𝜎
2p

iΔn

1(
kn
�n

) ∑
1≤j1<…<j

�n
≤kn

(
(�nΔn)

−p∕2|||
�n∑
m=1

Δn
i+jm

W
|||
p

− mp

)2

.
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Clearly, �[Un
i
] = m2p − m2

p
 , and because of conditional independence, boundedness 

of (�s) and the Cauchy–Schwarz inequality we also have

Using Theorem 1.2.3 in Denker (1985) on an upper bound for the variance of a U 
statistic we obtain

so as a consequence of �nΔn → 0

Convergence in probability of the latter quantity to V is standard.
It remains to prove that the simplification to Vn is adequate. We first show 

V
n

ℙ

⟶V  for

with

Using Lemma 1, boundedness of (�s) and Vn

ℙ

⟶V  we just have to establish

in order to show �n−1

�n

V
n

ℙ

⟶V  , and the claim regarding V
n
 then follows from 

�n → ∞ . Note that

Un
i
=

1(
kn
�n

) ∑
1≤j1<…<j

�n
≤kn

(
hn(Δ

−1∕2
n

Δn
i+j1

W,… ,Δ−1∕2
n

Δn
i+j

�n

W) − mp

)2

.

(7)�

[(
1

n

n−kn∑
i=0

�
2p

iΔn
(Un

i
− �[Un

i
])
)2

]
≤ C

n2

n−kn∑
i,r=0

�{|i−r|≤kn}
√

Var (Un
i
)Var (Un

r
).

Var (Un
i
) ≤ �n

kn
Var

(
(hn(Δ

−1∕2
n

Δn
i+j1

W,… ,Δ−1∕2
n

Δn
i+j�n

W) − mp)
2
) ≤ C

�n

kn
,

Vn =
1

n

n−kn∑
i=0

�
2p

iΔn
Un

i
=

1

n

n−kn∑
i=0

�2
iΔn

(m2p − m2
p
) + oℙ(1).

V
n
=

�n

n(�n − 1)

n−kn∑
i=0

𝜎
2p

iΔn

1(
kn
�n

) ∑
1≤j1<…<j

�n
≤kn

(
Vn

i+j1,…,i+j
�n

)2

Vn

i+j1,…,i+j
�n

= (�nΔn)
−p∕2|||

�n∑
m=1

Δn
i+jm

W
|||
p

−
1

�n

�n∑
m=1

Δ−p∕2
n

|Δn
i+jm

W|p.

(8)
1

n

n−kn∑
i=0

1(
kn
�n

)
∑

1≤j1<…<j
�n
≤kn

(
1

�n

�n∑
m=1

Δ−p∕2
n

|Δn
i+jm

W|p − mp

)2

ℙ

⟶0
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satisfies �[|Tn

i+j1,…,i+j
�n

|2] ≤ C∕�n by independence of the Brownian increments, so 
that (8) follows from

Finally, another application of Lemma 1 together with V
n

ℙ

⟶V  , plus the obvious 
(v + w)2 ≤ 2(v2 + w2) , shows that the proof of Vn

ℙ

⟶V  boils down to showing

as well as

with

The proof is similar for both claims, and we will only prove (10) in detail.
To this end, let � ∶ ℝ → ℝ be a smooth function such that

and for any A > 0 and p > 0 we set

Clearly,

with

T
n

i+j1,…,i+j
�n

=

(
1

�n

�n∑
m=1

Δ−p∕2
n

|Δn
i+jm

W|p − mp

)2

�

⎡⎢⎢⎢⎢⎣

1

n

n−kn�
i=0

1�
kn
�n

� �
1≤j1<…<j

�n
≤kn

�
1

�n

�n�
m=1

Δ−p∕2
n

�Δn
i+jm

W�p − mp

�2
⎤
⎥⎥⎥⎥⎦
≤ C

�n

→ 0.

(9)

�n

n(�n − 1)

n−kn∑
i=0

1(
kn
�n

)
∑

1≤j1<…<j
�n
≤kn

Δ−p
n

(
1

�n

�n∑
m=1

(
|Δn

i+jm
X|p − 𝜎

p

iΔn
|Δn

i+jm
W|p

))2

ℙ

⟶0

(10)
�n

n(�n − 1)

n−kn∑
i=0

1(
kn
�n

) ∑
1≤j1<…<j

�n
≤kn

Tn
i+j1,…,i+j

�n

ℙ

⟶0

Tn
i+j1,…,i+j

�n

= (�nΔn)
−p

(
||

�n∑
m=1

Δn
i+jm

X||p − �
p

iΔn

||
�n∑
m=1

Δn
i+jm

W||p
)2

.

�[1,∞)(x) ≤ �(x) ≤ �[1∕2,∞)(x),

�A(x) = �
( |x|
A

)
, � �

A
(x) = 1 − �A(x), �A,p(x) = �A(x)|x|p, � �

A,p
(x) = � �

A
(x)|x|p.

Tn
i+j1,…,i+j

�n

≤ 2(Tn
i+j1,…,i+j

�n
,A
+ T

�n
i+j1,…,i+j

�n
,A
)
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Estimation of the conditional variance

and similarly for T �n
i+j1,…,i+j

�n
,A

 , but with �A,p replaced by � ′
A,p

 . (10) then follows from

and

for every fixed A > 0 . The first claim can be quickly deduced from

(v + w)2 ≤ 2(v2 + w2) and, e.g.

which is a consequence of the Burkholder–Davis–Gundy inequality and the bound-
edness assumption for (bs) and (�s).

So let finally be A fixed. It is easy to see that � ′
A,p

 is bounded and uniformly 
continuous, and it follows that

as � → 0 . In particular,

By first letting n → ∞ and then � → 0 it is thus sufficient to prove

Tn
i+j1,…,i+j

�n
,A
=

⎛⎜⎜⎝
�A,p

⎛⎜⎜⎝

∑�n

m=1
Δn

i+jm
X

√
�nΔn

⎞⎟⎟⎠
− �A,p

⎛⎜⎜⎝
�iΔn

∑�n

m=1
Δn

i+jm
W

√
�nΔn

⎞⎟⎟⎠

⎞⎟⎟⎠

2

lim
A→∞

lim sup
n→∞

�n

n(�n − 1)

n−kn∑
i=0

1(
kn
�n

)
∑

1≤j1<…<j
�n
≤kn

�

[
Tn
i+j1,…,i+j

�n
,A

]
= 0

lim
n→∞

�n

n(�n − 1)

n−kn∑
i=0

1(
kn
�n

)
∑

1≤j1<…<j
�n
≤kn

�

[
T

�n
i+j1,…,i+j

�n
,A

]
= 0

�A,p(x) = �
(|x|
A

)
|x|p ≤ �{2|x|≥A}|x|p ≤ 2|x|p+1

A
,

�

⎡⎢⎢⎣

������

∑�n

m=1
Δn

i+jm
X

√
�nΔn

������

2p+2⎤⎥⎥⎦
≤ C

�(�) = sup
x∈ℝ,|y|≤�

|||�
�
A,p

(x + y) − � �
A,p

(x)
||| → 0

|||𝜓
�
A,p

(x + y) − 𝜓 �
A,p

(x)
||| ≤ 𝜃(𝜀) +

|||𝜓
�
A,p

(x + y) − 𝜓 �
A,p

(x)
|||�{|y|>𝜀} ≤ 𝜃(𝜀) + CA

y2

𝜀2
.

�n

n(�n − 1)

n−kn�
i=0

1�
kn
�n

�
�

1≤j1<…<j
�n
≤kn

�

��∑�n

m=1
Δn

i+jm
X − 𝜎iΔn

∑�n

m=1
Δn

i+jm
W

√
�nΔn

�2�
→ 0
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as n → ∞ . Using (v + w)2 ≤ 2(v2 + w2) once more, we can discuss the absolutely 
continuous part of the increments and the Brownian parts separately, and the proof 
for the first terms follows from

We can thus assume dXt = �tdWt , and we will first prove the result in the case of a 
continuous � . We have

so that

where we have used that every interval [(i + jm − 1)Δn, (i + jm)Δn] appears (
kn − 1

�n − 1

)
 times and

plus �n ≤ 2(�n − 1) for any �n ≥ 2 . Convergence to zero in probability then follows 
from continuity of � and dominated convergence.

In the general case we use the reasoning from Lemma 3.4.8 in Jacod and Protter 
(2012). A standard argument using ∫ 1

0
�2
s
ds ≤ C proves the existence of a sequence 

�(u) of adapted continuous processes �(u) such that

as u → ∞ . Thus, setting X(u)t = X0 + ∫ t

0
bsds + ∫ t

0
�(u)sdWs , we have already 

shown

1

�nΔn

�

⎡
⎢⎢⎣

�
�

(i+j1)Δn

(i+j1−1)Δn

bsds +…+ �
(i+j

�n
)Δn

(i+j
�n
−1)Δn

bsds

�2⎤
⎥⎥⎦
≤ C�nΔn → 0.

1

�nΔn

�

⎡
⎢⎢⎣

�
∫

(i+j1)Δn

(i+j1−1)Δn

(�s − �iΔn
)dWs +…+ ∫

(i+j
�n
)Δn

(i+j
�n
−1)Δn

(�s − �iΔn
)dWs

�2⎤
⎥⎥⎦

=
1

�nΔn

�

�
∫

(i+j1)Δn

(i+j1−1)Δn

(�s − �iΔn
)2ds +…+ ∫

(i+j
�n
)Δn

(i+j
�n
−1)Δn

(�s − �iΔn
)2ds

�
,

1

�n − 1

n−kn�
i=0

1�
kn
�n

� �
1≤j1<…<j

�n
≤kn

�

⎡
⎢⎢⎣

�
�n�
m=1

�
(i+jm)Δn

(i+jm−1)Δn

(𝜎s − 𝜎iΔn
)dWs

�2⎤
⎥⎥⎦

=
�n

�n − 1

1

kn

n−kn�
i=0

�
(i+kn)Δn

iΔn

(𝜎s − 𝜎iΔn
)2ds ≤ �

1

0

2

kn

kn−1�
m=0

�[(𝜎s − 𝜎(⌊ns⌋−m)+Δn
)2]ds

(11)�n

(
kn
�n

)
= kn

(
kn − 1

�n − 1

)
,

(12)�

[
∫

1

0

(
�s − �(u)

)2
ds

]
→ 0
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Estimation of the conditional variance

as n → ∞ , where Vn(u) denotes the statistic Vn , but based on X(u). Clearly, V(u)
ℙ

⟶V  
as u → ∞ as well, so it remains to prove

for every 𝜂 > 0 . Using (6) one has to deal with similar claims as (9) and (10), but 
with � = 1 and where W becomes X(u). Reproducing these lines the proof finally 
follows from (12).

For Theorem 3 the proof holds without any changes, because we have only used 
�nΔn → 0 and �n → ∞ which holds for �n = kn as well. The situation is different for 
Theorem 4 in which case

for a U statistic of the form

where

and the latter equality is to be understood in distribution, with the Ni+j all independ-
ent standard normal. Setting

the same reasoning as for (7) gives

Vn(u)
ℙ

⟶V(u) = (m2p − m2
p
)∫

1

0

�(u)p
s
ds

lim
u→∞

lim sup
n→∞

ℙ(|Vn − Vn(u)| > 𝜂) = 0

V
n
=

1

n

n−kn∑
i=0

�
2p

iΔn
Un

i

Un

i
=

1(
kn
2

) ∑
1≤j1<j2≤kn

2
(
Vn

i+j1,i+j2

)2

Vn

i+j1,i+j2
= (2Δn)

−p∕2�Δn
i+j1

W + Δn
i+j2

W�p − 1

2
Δ−p∕2

n
(�Δn

i+j1
W�p + �Δn

i+j2
W�p)

=
���
1√
2
(Ni+j1

+ Ni+j2
)
���
p

−
1

2
(�Ni+j1

�p + �Ni+j2
�p)

cp = 2�

�����
1√
2
(Ni+j1

+ Ni+j2
)
���
p

−
1

2
(�Ni+j1

�p + �Ni+j2
�p)

�2�

V
n
= cp

1

n

n−kn∑
i=0

�
2p

iΔn
+ oℙ(1) = cp ∫

1

0

�2p
s
ds + oℙ(1).
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The remainder of the proof remains unchanged. Note finally that

  ◻

5.2.2  Proof of part (b)

We define Lm = {z | 𝛾(z) > 1∕m} for any m ≥ 1 , and let {S(m, j) | j ≥ 1} denote the 
jump times of the Poisson process �Lm�Lm−1 ⋆ 𝜇 over [0,  1], where we use the nota-
tion from, e.g. Section 2.1.2 in Jacod and Protter (2012) to denote the integral process 
with respect to a jump measure. Then, if (Sr)r≥1 is a reordering of the double sequence 
(S(m, j))m,j≥1 , we denote with Pq the set of all indices r such that Sr = S(m, j) for some 
m ≤ q . By definition, these are the jump times of N(q) over [0, 1]. Further, let Ω(n, q) 
be the set of all � on which N(q) has at most one jump in each interval [iΔn, (i + kn)Δn] , 
i = 0,… , n − kn , all jumps of N(q) over [0, 1] occur within [knΔn, 1 − knΔn] and where

Since X(q) is càdlàg with jumps bounded by 1/q (in absolute value) and N(q) only 
possesses finitely many jumps on [0, 1], it is clear that ℙ(Ω(n, q)) → 1 as n → ∞ for 
any q > 0 . As we will typically let first n → ∞ and then q → ∞ , we will sometimes 
assume � ∈ Ω(n, q).

We introduce the notation ir to denote the interval ((ir − 1)Δn, irΔn] containing the 
rth jump ΔXSr

 of N(q). In this case we have

and the key to the proof will be the decomposition Vn = Vn(q) + V �
n
(q) with

and where

Clearly, the proof is finished once we have shown

c2 =
1

2
�

[(|N1 + N2|2 − (|N1|2 + |N2|2)
)2]

= 2�[N2
1
N2
2
] = 2.

|X(q)(�)t+s − X(q)(�)t| ≤ 2∕q for all t ∈ [0, 1] and s ∈ [0, knΔn].

Vn =
n

�n(�n − 1)

n−kn∑
i=0

1(
kn
�n

)
∑

1≤j1<…<j
�n
≤kn

(
|||

�n∑
m=1

Δn
i+jm

X
|||
p

−

�n∑
m=1

|Δn
i+jm

X|p
)2

Vn(q) =
n

�n(�n − 1)

∑
r∈Pq

kn∑
�=1

Y (n)
r,�
, V �

n
(q) = Vn − Vn(q),

Y (n)
r,𝛼

=
1(
kn
�n

) ∑
1 ≤ j1 < … < j

�n
≤ kn

{j1,… , j
�n
} ∩ {𝛼} ≠ �

(
|||

�n∑
m=1

Δn
ir−𝛼+jm

X
|||
p

− |Δn
ir
X|p

)2

.
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Estimation of the conditional variance

as n → ∞ for any fixed q,

as q → ∞ , as well as

for all 𝜂 > 0 . Note that (14) is a direct consequence of monotone convergence. 
Regarding (15) we observe that increments of X and X(q) coincide when no jump 
of N(q) is present. Therefore, and using �n ≤ 2(�n − 1) for �n ≥ 2 , we have the 
inequality

with

and

for

We will start with the first part of (15) and prove

for which we set

where we use the shorthand notation

(13)Vn(q)
ℙ

⟶V(q) =
∑
r∈Pq

p2|ΔXSr
|2p−2�2

Sr

(14)V(q)
ℙ

⟶V =
∑
0<s≤1

p2|ΔXs|2p−2𝜎2
s

(15)lim
q→∞

lim sup
n→∞

ℙ
(||V �

n
(q)|| > 𝜂

)
= 0

|V �
n
(q)| ≤ An(q) + Bn(q)

An(q) =
2n

�2
n

n−kn∑
i=0

1(
kn
�n

)
∑

1≤j1<…<j
�n
≤kn

(
|||

�n∑
m=1

Δn
i+jm

X(q)
|||
p

−

�n∑
m=1

|Δn
i+jm

X(q)|p
)2

Bn(q) =
n

�n(�n − 1)

∑
r∈Pq

kn∑
�=1

|Z(n)
r,�

− Y (n)
r,�
|

Z(n)
r,𝛼

=
1(
kn
�n

)
∑

1 ≤ j1 < … < j
�n

≤ kn
{j1,… , j

�n
} ∩ {𝛼} ≠ �

(
|||

�n∑
m=1

Δn
ir−𝛼+jm

X
|||
p

−

�n∑
m=1

|Δn
ir−𝛼+jm

X|p
)2

.

(16)lim
q→∞

lim sup
n→∞

ℙ
(
An(q) > 𝜂

)
= 0,

(17)Y(q)t = �
t

iΔn

�Bn
i,j1,…,j�n

(s)dX(q)s, t ≥ iΔn,
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We will basically apply (5.1.19) in Jacod and Protter (2012) which is stated for 
increments of X(q) rather than for Y(q), but the proof works similarly in our situa-
tion. Let us introduce some notation. We set f (x) = |x|p as well as

Then, we obtain

where M(n,  q,  B) is a square-integrable martingale with predictable bracket 
A�(n, q,B) , and where

with

and

Similarly,

with A(n, q, i + jm − 1) and M(n, q, i + jm − 1) defined as above, but with B being 
replaced by ((i + jm − 1)Δn, (i + jm)Δn] , also in the definition of Y(q). Thus, as the 
respective sums over the jumps f (ΔX(q)s) cancel, An(q) becomes

B = Bn
i,j1,…,j

�n

= ((i + j1 − 1)Δn, (i + j1)Δn] ∪ … ∪ ((i + j
�n
− 1)Δn, (i + j

�n
)Δn].

k(x, y) = f (x + y) − f (x) − f (y), g(x, y) = k(x, y) − f �(x)y.

|Δn
i+j1

X(q) +… + Δn
i+j

�n

X(q)|p = f (Y(q)(i+kn)Δn
)

=
∑

iΔn<s≤(i+kn)Δn

f (ΔX(q)s)�B(s) + A(n, q,B)(i+kn)Δn
+M(n, q,B)(i+kn)Δn

,

A(n, q,B)t = ∫
t

iΔn

a(n, q,B)udu, A�(n, q,B) = ∫
t

iΔn

a�(n, q,B)udu,

a(n, q,B)u = f �(Y(q)u−)b(q)u�B(u) +
1

2
f ��(Y(q)u−)�

2
u
�B(u)

+ � g(Y(q)u−, �(u, z))�{�(z)≤1∕q}�B(u)�(dz)

a�(n, q,B)u = (f �(Y(q)u−))
2�2

u
�B(u) + � k(Y(q)u−, �(u, z))

2
�{�(z)≤1∕q}�B(u)�(dz).

�n∑
m=1

|Δn
i+jm

X|p = ∑
iΔn<s≤(i+kn)Δn

f (ΔX(q)s)�B(s)

+

�n∑
m=1

(A(n, q, i + jm − 1)(i+jm)Δn
+M(n, q, i + jm − 1)(i+jm)Δn

)
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Estimation of the conditional variance

and in order to show (16) it becomes important to bound quantities like

A Taylor expansion gives |k(x, y)| ≤ C
(|x||y|p−1 + |y||x|p−1) as well as 

|g(x, y)| ≤ C
(|x||y|p−1 + y2|x|p−2) . From the boundedness conditions and integrabil-

ity of �(z) , we obtain

for some sequence �q with �q → 0 as q → ∞ , and an argument similar to (15.2.22) 
in Jacod and Protter (2012) gives

where we have used |B| = �nΔn . Therefore,

and

To summarize,

and

Similar inequalities hold for A(n, q, i + jm − 1) and M(n, q, i + jm − 1) , but with 
�n = 1 . Then, 

(18)

2n

�2
n

n−kn∑
i=0

1(
kn
�n

)
∑

1≤j1<…<j
�n
≤kn

(
A(n, q,Bn

i,j1,…,j
�n

)(i+kn)Δn
+M(n, q,Bn

i,j1,…,j
�n

)(i+kn)Δn

−

�n∑
m=1

(A(n, q, i + jm − 1)(i+jm)Δn
+M(n, q, i + jm − 1)(i+jm)Δn

)
)2

�[(A(n, q,B)(i+kn)Δn
)2] and �[(M(n, q,B)(i+kn)Δn

)2] = �[A�(n, q,B)(i+kn)Δn
].

|a(n, q,B)u| ≤ C�B(u)
(
q|Y(q)u−|p−1 + |Y(q)u−|p−2 + �q|Y(q)u−|

)

a�(n, q,B)u ≤ C�B(u)
(|Y(q)u−|2p−2 + �q|Y(q)u−|2

)

�

[
sup

u≤(i+kn)Δn

|Y(q)u−|r
] ≤ C

(
qr(�nΔn)

r + (�nΔn)
r∕2 + �q(�nΔn)

1∧(r∕2)
)

�

[
sup

u≤(i+kn)Δn

a(n, q,B)2
u

] ≤ Cq�nΔn

�

[
sup

u≤(i+kn)Δn

a�(n, q,B)u

] ≤ Cq(�nΔn)
2 + �q�nΔn.

(19)�[(A(n, q,B)(i+kn)Δn
)2] ≤ (�nΔn)

2
�

[
sup

u≤(i+kn)Δn

a(n, q,B)2
u

] ≤ Cq(�nΔn)
3

(20)

�[(M(n, q,B)(i+kn)Δn
)2] = �[A�(n, q,B)(i+kn)Δn

] ≤ �nΔn�

[
sup

u≤(i+kn)Δn

a�(n, q,B)u

]

≤ Cq(�nΔn)
3 + �q(�nΔn)

2.
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and

From (18) and the bounds in (19)–(22), we obtain

and the right-hand side goes to zero as first n → ∞ and then q → ∞ . This finishes 
the proof of (16).

The proof of (15) is completed by showing

which we will do under the assumption that (13) holds. The proof of the latter claim 
will finish the entire section. Thus, let 𝜅 > 0 be arbitrary. Then there exists K > 0 
such that ℙ(V ≥ K) ≤ � , and from the Portmanteau theorem we deduce

Let � ≤ �

3K
 . Then, using (6), we obtain

For the first summand, we have

while for the second term

by construction. As � was arbitrary (23) follows, using �n ≤ 2(�n − 1) again, once 
we have shown

(21)�

[( �n∑
m=1

A(n, q, i + jm − 1)(i+jm)Δn

)2] ≤ Cq�
2
n
Δ3

n

(22)

�

[( �n∑
m=1

M(n, q, i + jm − 1)(i+jm)Δn

)2]

=

�n∑
m=1

�
[
A�(n, q, i + jm − 1)(i+jm)Δn

] ≤ Cq�nΔ
3
n
+ �q�nΔ

2
n
.

�
[
An(q)

] ≤ C
(
Cq�nΔn + �q

)
,

(23)lim
q→∞

lim sup
n→∞

ℙ
(
Bn(q) > 𝜂

)
= 0

lim sup
q→∞

lim sup
n→∞

ℙ(Vn(q) ≥ K) ≤ lim sup
q→∞

ℙ(V(q) ≥ K) ≤ ℙ(V ≥ K) ≤ �.

ℙ
(
Bn(q) > 𝜂

) ≤ ℙ(𝜀Vn(q)𝟙{Vn(q)≥K} > 𝜂∕3) + ℙ(𝜀Vn(q)𝟙{Vn(q)<K}
> 𝜂∕3)

+ ℙ

(
C𝜀

n

�n(�n − 1)

∑
r∈Pq

kn∑
𝛼=1

1(
kn

�n

)
∑

1 ≤ j1 < … < j
�n

≤ kn

{j1,… , j
�n
} ∩ {𝛼} ≠ �

(|Δn
ir
X|p −

�n∑
m=1

|Δn
ir−𝛼+jm

X|p)2 > 𝜂∕3

)
.

lim sup
q→∞

lim sup
n→∞

ℙ(𝜀Vn(q)𝟙{Vn(q)≥K} > 𝜂∕3) ≤ ℙ(V ≥ K) ≤ 𝜅,

ℙ(𝜀Vn(q)𝟙{Vn(q)<K}
> 𝜂∕3) ≤ ℙ(𝜀K > 𝜂∕3) = 0
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for any 𝛿 > 0 , and we may assume to live on Ω(n, q) without loss of generality. On 
this set the decomposition

holds, because each interval [iΔn, (i + kn)Δn] , i = 0,… , n − kn , contains at most one 
jump of N(q). We will now prove

and again restricted to Ω(n, q) if necessary. Note that the simplification in (26) is due 
to

Clearly, (24) is a simple consequence of (16), and the proof of (26) is essentially the 
same as for (25), but with �n = 1.

Thus, we will only prove (25), and we further introduce an auxiliary parameter 
L ∈ ℕ and formally prove the equivalent convergence of (25) as first n → ∞ , then 
L → ∞ and finally q → ∞ . Introducing the events �{|Pq|≤L} and �{|Pq|>L} , where |A| 
denotes the cardinality of a discrete set A, and from the fact that

lim
q→∞

lim sup
n→∞

ℙ

(
2n

�2
n

∑
r∈Pq

kn∑
𝛼=1

1(
kn

�n

) ∑

1 ≤ j1 < … < j�n ≤ kn

{j1,… , j�n} ∩ {𝛼} ≠ �

(|Δn
ir
X|p −

�n∑
m=1

|Δn
ir−𝛼+jm

X|p)2 > 𝛿

)
= 0

|Δn
ir
X|p −

�n∑
m=1

|Δn
ir−�+jm

X|p =
(|||

�n∑
m=1

Δn
ir−�+jm

X(q)
|||
p

−

�n∑
m=1

|Δn
ir−�+jm

X(q)|p
)

−
|||

�n∑
m=1

Δn
ir−�+jm

X(q)
|||
p

+ |Δn
ir
X(q)|p

= I(n, q, ir, �, j1,… , j
�n
) − II(n, q, ir, �, j1,… , j

�n
) + III(n, q, ir)

(24)

lim
q→∞

lim sup
n→∞

ℙ

(
2n

�2
n

∑
r∈Pq

kn∑
𝛼=1

1(
kn
�n

)
∑

1 ≤ j1 < … < j
�n

≤ kn
{j1,… , j

�n
} ∩ {𝛼} ≠ �

I(n, q, ir, 𝛼, j1,… , j
�n
)2 > 𝛿

)
= 0,

(25)

lim
q→∞

lim sup
n→∞

ℙ

(
2n

�2
n

∑
r∈Pq

kn∑
𝛼=1

1(
kn
�n

)
∑

1 ≤ j1 < … < j
�n

≤ kn
{j1,… , j

�n
} ∩ {𝛼} ≠ �

II(n, q, ir, 𝛼, j1,… , j
�n
)2 > 𝛿

)
= 0,

(26)lim
q→∞

lim sup
n→∞

ℙ

(
2n

�n

∑
r∈Pq

III(n, q, ir)
2 > 𝛿

)
= 0,

(27)
n

�2
n

kn
1(
kn
�n

)
(

kn − 1

�n − 1

)
=

n

�n

.
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for any fixed q, it is clear that (25) follows from

for any fixed q and L. As the sum over r is then finite, we may focus on a single arbi-
trary index ir , and by properties of a Poisson measure we can also drop the depend-
ence on the jumps of �Lq ⋆ 𝜇 and simply write i. With the notation (17) we have

By definition X(q) consists of three terms, and we will discuss each of them sepa-
rately. The first two are easier to deal with, and we have

and

Together with (27) it is clear that (28) follows from

where we again use the notation B = Bn
i−�,j1,…,j

�n

 . For any 0 < 𝜀 < 1 and any 
t ≥ (i − kn)Δn , we decompose the above integral into three terms and set

By integrability of �2 we have

lim
L→∞

ℙ(|Pq| > L) = 0

(28)

lim
n→∞

ℙ

(
2n

�2
n

∑
r ∈ Pq

|Pq| ≤ L

kn∑
𝛼=1

1(
kn
�n

)
∑

1 ≤ j1 < … < j
�n

≤ kn
{j1,… , j

�n
} ∩ {𝛼} ≠ �

II(n, q, ir, 𝛼, j1,… , j
�n
)2 > 𝛿

)
= 0

II(n, q, i, j1,… , j
�n
) ≤ |||||�

(i+kn)Δn

(i−kn)Δn

�Bn
i−�,j1,…,j�n

(s)dX(q)s

|||||

p

.

�

[|||�
(i+kn)Δn

(i−kn)Δn

�Bn
i−�,j1,…,j�n

(s)b(q)sds
|||
2p
]
≤ Cq(�nΔn)

2p

(29)�

[|||�
(i+kn)Δn

(i−kn)Δn

�Bn
i−�,j1,…,j�n

(s)�sdWs
|||
2p
]
≤ C(�nΔn)

p.

�

[(
2n

�2
n

kn∑
𝛼=1

1(
kn

�n

)
∑

1 ≤ j1 < … < j
�n

≤ kn

{j1,… , j
�n
} ∩ {𝛼} ≠ �

(
�

(i+kn)Δn

(i−kn)Δn
� 𝛿(s, z)�B(s)�{𝛾(z)≤1∕q}(𝜇 − 𝜈)(ds, dz)

)2p)
∧ 1

]
→ 0

�N(𝜀)t = �
t

(i−kn)Δn
� �{𝛾(z)>𝜀}𝜇(ds, dz),

�M(𝜀)t = �
t

(i−kn)Δn
� �{𝛾(z)≤𝜀}𝛿(s, z)�B(s)�{𝛾(z)≤1∕q}(𝜇 − 𝜈)(ds, dz),

�B(𝜀)t = −�
t

(i−kn)Δn
� �{𝛾(z)>𝜀}𝛿(s, z)�B(s)�{𝛾(z)≤1∕q}𝜆(dz)ds.
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and similarly we can deduce |B̃(�)(i+kn)Δn
| ≤ C

�nΔn

�
. Finally, from Lemma 2.1.5 in 

Jacod and Protter (2012) we obtain

Then

where we have used (27). Choosing �n → 0 small enough then ends the proof of 
(28).

We will finish the proof by showing (13), for which we use the following Tay-
lor expansion for f (x) = |x|p : on Ω(n, q) we have

for some intermediate �n
ir
 between Δn

ir
X and ΔXSr

 and �n
ir−�,j1,…,j

�n

 between ∑�n

m=1
Δn

ir−�+jm
X and Δn

ir
X . On Ω(n, q) both are bounded by Cq . Obviously, one can 

show

ℙ(�N(𝜀)(i+kn)Δn
≥ 1) ≤ 𝔼[�N(𝜀)(i+kn)Δn

] = 𝔼

[
�

(i+kn)Δn

(i−kn)Δn
� 𝟙{𝛾(z)>𝜀}𝜆(dz)ds

]
≤ C

knΔn

𝜀2
,

(30)

�[|M̃(�)(i+kn)Δn
|2p]

≤ C

(
�

[
�

(i+kn)Δn

(i−kn)Δn
� �{�(z)≤�}|�(s, z)|2p�B(s)�{�(z)≤1∕q}�(dz)ds

]

+ �

[(
�

(i+kn)Δn

(i−kn)Δn
� �{�(z)≤�}|�(s, z)|2�B(s)�{�(z)≤1∕q}�(dz)ds

)p])

≤ C

(
�2p−2�nΔn � �(z)2�(dz) + (�nΔn)

p
(
� �(z)2�(dz)

)p
)

≤ C(�2p−2�nΔn + (�nΔn)
p).

𝔼

[(
2n

�2
n

kn∑
𝛼=1

1(
kn

�n

)
∑

1 ≤ j1 < … < j
�n

≤ kn

{j1,… , j
�n
} ∩ {𝛼} ≠ �

(
�

(i+kn)Δn

(i−kn)Δn
� 𝛿(s, z)𝟙B(s)𝟙{𝛾(z)≤1∕q}(𝜇 − 𝜈)(ds, dz)

)2p)
∧ 1

]

≤ ℙ(�N(𝜀)(i+kn)Δn
≥ 1) + Cp

n

�2
n

kn∑
𝛼=1

1(
kn

�n

)
∑

1 ≤ j1 < … < j
�n

≤ kn

{j1,… , j
�n
} ∩ {𝛼} ≠ �

𝔼[|�B(𝜀)(i+kn)Δn
|2p + |�M(𝜀)(i+kn)Δn

|2p]

≤ Cp

(
knΔn

𝜀2
+
(
�nΔn

)2p−1
𝜀−2p + 𝜀2p−2 + (�nΔn)

p−1

)
,

|||
�n∑
m=1

Δn
ir−�+jm

X
|||
p

− |Δn
ir
X|p = f �(ΔXSr

)

�n∑
m = 1

jm ≠ �

Δn
ir−�+jm

X(q)

+ f ��(�n
ir
)Δn

ir
X(q)

�n∑
m = 1

jm ≠ �

Δn
ir−�+jm

X(q) +
1

2
f ��(�n

ir−�,j1,…,j
�n

)
|||

�n∑
m = 1

jm ≠ �

Δn
ir−�+jm

X(q)
|||
2
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as n → ∞ for any fixed q along the same lines as the ones from the proof of (25) 
with p = 2 , and similarly

Lemma 1 then suggests that we only need to prove

where

The penultimate step is yet another application of Lemma 1, namely to first prove

as n → ∞ for any fixed q and to use boundedness of the jumps of N(q) by some Cq . 
This proof also works in the same way as (25) with p = 1 , but with two differences: 
first, instead of (29) we discuss

and we apply additionally continuity of � in Sr plus dominated convergence, and 
second the upper bound in (30) now becomes �nΔn ∫ �{�(z)≤�}�(z)2�(dz) . Therefore, 
from Lemma 1 it is sufficient to prove convergence in probability of

2n

�2
n

∑
r∈Pq

kn∑
𝛼=1

1(
kn
�n

)
∑

1 ≤ j1 < … < j
�n

≤ kn
{j1,… , j

�n
} ∩ {𝛼} ≠ �

|||
�n∑

m = 1

jm ≠ 𝛼

Δn
ir−𝛼+jm

X(q)
|||
4 ℙ

⟶0

2n

�2
n

∑
r∈Pq

kn∑
𝛼=1

1(
kn
�n

)
∑

1 ≤ j1 < … < j
�n

≤ kn
{j1,… , j

�n
} ∩ {𝛼} ≠ �

|Δn
ir
X(q)|2|||

�n∑
m = 1

jm ≠ 𝛼

Δn
ir−𝛼+jm

X(q)
|||
2 ℙ

⟶0.

n

�n(�n − 1)

∑
r∈Pq

kn∑
�=1

Ŷ (n)
r,�

ℙ

⟶V(q)

�Y (n)
r,𝛼

=
1(
kn
�n

)
∑

1 ≤ j1 < … < j
�n

≤ kn
{j1,… , j

�n
} ∩ {𝛼} ≠ �

f �(ΔXSr
)2
|||

�n∑
m = 1

jm ≠ 𝛼

Δn
ir−𝛼+jm

X(q)
|||
2

.

2n

�2
n

∑
r∈Pq

kn∑
𝛼=1

1(
kn
�n

)
∑

1 ≤ j1 < … < j
�n

≤ kn
{j1,… , j

�n
} ∩ {𝛼} ≠ �

( �n∑
m = 1

jm ≠ 𝛼

(Δn
ir−𝛼+jm

X(q) − 𝜎SrΔ
n
ir−𝛼+jm

W)
)2 ℙ

⟶0

�

[|||�
(ir+kn)Δn

(ir−kn)Δn

�Bn
i−�,j1,…,j�n

(s)(�s − �Sr )dWs
|||
2
]
≤ �nΔn�[ sup

|u|≤knΔn

|�Sr−u − �Sr |2],

(31)

n

�n(�n − 1)

∑
r∈Pq

(f �(ΔXSr
))2𝜎2

Sr

kn∑
𝛼=1

1(
kn
�n

)
∑

1 ≤ j1 < … < j
�n

≤ kn
{j1,… , j

�n
} ∩ {𝛼} ≠ �

|||
�n∑

m = 1

jm ≠ 𝛼

Δn
ir−𝛼+jm

W
|||
2
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to V(q) as n → ∞ . Using f �(x) = pxp−1 and (11) we are left to show 1
kn

∑kn
�=1

Zn
i,�

ℙ

⟶0 
for any fixed i, where

Note that we can again drop the dependence on r by properties of a Poisson random 
measure. Using �[Zn

ir ,�
] = 0 and

we are left to show Var (Zn
i,�
) ≤ �n → 0 . In distribution, Zn

i,�
 equals the U statistic

for i.i.d. standard normal Ni . Using Theorem 1.2.3 in Denker (1985) again we obtain

which finishes the proof for Vn.
We will finally discuss the necessary changes for V̂n and Ṽn , and this time the 

entire proof goes through in exactly the same way when �n = 2 . For �n = kn the 
proof of (16) goes through without any changes, whereas for (23) we cannot apply 
(13) because we do not have convergence in probability in the end. Nevertheless, 
we only use (13) in an application of the Portmanteau theorem, and this goes 
through under weak convergence as well. So we only need to discuss the stable 
convergence of (13), as (14) finally follows from monotone convergence again.

The proof of (13) can always be reproduced until one arrives at (31) which, 
because of kn → ∞ , becomes

with

Zn
i,𝛼

=
1(

kn − 1

�n − 1

)
∑

1 ≤ j1 < … < j
�n−1

≤ kn
{j1,… , j

�n−1
} ∩ {𝛼} = �

(
n

�n − 1

|||
�n−1∑
m=1

Δn
i−𝛼+jm

W
|||
2

− 1

)
.

Var
(
1

kn

kn∑
�=1

Zn
i,�

)
=

1

k2
n

kn∑
�1,�2=1

Cov (Zn
i,�1

, Zn
i,�2

) ≤ (
1

kn

kn∑
�=1

√
Var (Zn

i,�
)
)2

Un =
1(

kn − 1

�n − 1

) ∑
1≤j1<…<j

�n−1
≤kn−1

(|||
�n−1∑
m=1

Nn
jm

|||
2

− 1

)

Var (Un) ≤ C
�n − 1

kn − 1
→ 0

∑
r∈Pq

(f �(ΔXSr
))2�2

Sr

1

kn

kn∑
�=1

n

kn

|||
kn∑

m=1

Δn
ir−�+m

W
|||
2(
1 + oℙ(1)

)

=
∑
r∈Pq

(f �(ΔXSr
))2�2

Sr
wn,r

(
1 + oℙ(1)

)
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The final step therefore is to prove the stable convergence

which follows as in the proof of Theorem 4.3.1 in Jacod and Protter (2012) and can 
be traced back to convergence in distribution of each fixed wn,r to 1 + Rr . A simple 
computation gives

which equals

in distribution, where f (s, t) = (2 − s ∨ t) ∧ 1 − (1 − s ∧ t) ∨ 0 and B is a standard 
Brownian motion. Clearly,

and the proof is finally finished because

converges in probability to ∫
[0,2]2

f (s, t)dBsdBt by definition of a multiple Wiener-Itô 
integral.   ◻
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