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Abstract
We present a fast, accurate estimation method for multivariate Hawkes self-exciting 
point processes widely used in seismology, criminology, finance and other areas. 
There are two major ingredients. The first is an analytic derivation of exact maxi-
mum likelihood estimates of the nonparametric triggering density. We develop this 
for the multivariate case and add regularization to improve stability and robust-
ness. The second is a moment-based method for the background rate and triggering 
matrix estimation, which is extended here for the spatiotemporal case. Our method 
combines them together in an efficient way, and we prove the consistency of this 
new approach. Extensive numerical experiments, with synthetic data and real-world 
social network data, show that our method improves the accuracy, scalability and 
computational efficiency of prevailing estimation approaches. Moreover, it greatly 
boosts the performance of Hawkes process-based models on social network recon-
struction and helps to understand the spatiotemporal triggering dynamics over social 
media.
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1  Introduction

The spatiotemporal Hawkes (ST-Hawkes) process has been widely used to model 
and forecast clustered point process data in the study of earthquakes ( Ogata 
1998), crimes (Mohler et al. 2011), invasive species (Balderama et al. 2012), ter-
rorist attacks (Porter et  al. 2012), infectious disease (Schoenberg et  al. 2018a) 
and finance (Bacry et al. 2015). These models are often characterized by a trig-
gering density describing how the occurrence of one event may spark future 
events nearby. Recently, multivariate Hawkes processes, which can incorporate 
accompanying information on each event such as event types or magnitude of an 
earthquake, have been the subject of significant research in the areas of societally 
harmful events (Mohler 2014; Chiang et  al. 2019; Brantingham et  al. 2020a), 
finance (Bacry et  al. 2015), neuroscience (Chen et  al. 2017) and text analysis 
(Du et al. 2015; Zhu and Xie 2019). Applications include network reconstruction 
(Linderman and Adams 2014; Fox et al. 2016; Hall and Willett 2016; Yuan et al. 
2019; Mark et al. 2018), causal inference (Achab et al. 2017; Eichler et al. 2017; 
Brantingham et  al. 2020b) and social media cascade modeling (Lai et  al. 2016; 
Farajtabar et al. 2015).

Much of this recent research has been fueled by advances in the nonparamet-
ric estimation of Hawkes processes, and in particular by the landmark work of 
Marsan and Lengliné (2008), who detailed a method for estimating the triggering 
in a ST-Hawkes process by assuming the triggering density to be a step func-
tion and then estimating the step heights via maximum likelihood estimation 
(MLE). Such nonparametric estimation methods allow the triggering density to 
be estimated without assuming a particular parametric form which may be sub-
ject to misspecification or over-fitting, which can be very serious problems, espe-
cially in social science applications (Yuan et  al. 2019). Instead, the data drive 
the estimation of the triggering density, and this is especially attractive for use 
with the large data sets that are increasingly becoming available in applications. 
Unfortunately, however, a major limitation of current nonparametric estimation 
methods is their computational complexity and lack of speed, as existing methods 
are mainly based on maximum likelihood estimation (MLE) (Reinhart 2018), or 
variants such as EM-type algorithms (Veen and Schoenberg 2008; Marsan and 
Lengline 2008), which are typically non-convex problems without closed-form 
solutions. For applications to crime or social media, for instance, catalogs of mil-
lions of ST events are often the subject of study (Wang et  al. 2018), and each 
calculation of the likelihood function with N events requires at least O(N2) time. 
In such situations, the estimation of the triggering density using existing methods 
can be infeasible. As a result, it is important to develop better alternatives to cur-
rent MLE-based methods (Schoenberg et al. 2018a).

Recent developments in the nonparametric estimation of the Hawkes process 
provide new insights for this problem, including an analytic method for comput-
ing the MLE of the triggering density in the special case where the adjacency 
matrix is invertible (Schoenberg et al. 2018b), and generalized moments methods 
(GMM) for the estimation of the triggering matrix (Achab et al. 2017). However, 
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there are several limitations that prevent us to apply them directly to multivariate 
ST-Hawkes processes. The analytic MLE method in Schoenberg et  al. (2018b) 
can only be applied to the univariate case, while the GMM method for the tem-
poral process cannot estimate the triggering kernels. In this paper, we propose a 
new, highly computationally efficient, scalable nonparametric estimator for ST-
Hawkes processes, based on a blend of these recent ideas with modern advances 
in the regularization and inversion of sparse matrices.

The contributions of this paper are threefold. First of all, we extend the ana-
lytic formula for the MLE of the step heights in the triggering density (Schoen-
berg et al. 2018b) to the multivariate ST case and greatly improve the stability of 
the resulting estimator using regularization. We next extend the cumulant-based 
estimators of (Achab et  al. 2017) to the multivariate ST case and derive GMM 
estimators of the triggering matrix in this context. Finally, we combine the MLE 
and GMM estimators to obtain a scalable, consistent and efficient estimator and 
show that the proposed estimator has a computation complexity linear in the num-
ber of events N, allowing one to explore applications to large data sets with mil-
lions of events, in which our method outperforms current state-of-the-art methods 
in terms of both accuracy in network reconstruction and computation time.

The structure of this paper is as follows. We first review background material 
in Sect. 2. In Sect. 3, we develop the proposed method and show the consistency 
and computational complexity. The performance of this estimator is inspected 
using a variety of synthetic and real social network data sets in Sect. 4. Finally, 
we conclude and discuss important directions for future research in Sect. 5.

2 � Multivariate Hawkes processes and nonparametric estimations

In this section, we review the definition of multivariate Hawkes processes and 
previous researches on inference methods, focusing especially on MLE and 
GMM.

A point process (Daley and Vere-Jones 2007, 2003) is a �-finite collection of 
points {�1, �2,…} occurring in some metric space. While the definitions and results 
below can be extended quite readily to other spaces, we will assume for simplicity 
throughout that the metric space is a bounded interval [0, T] in time or a bounded 
interval B × [0, T] in space-time. A temporal or ST point process is typically mod-
eled via its conditional intensity, �(t) or �(s, t) , which represents the infinitesimal rate 
at which points are accumulating at the particular location in time or space-time, 
given information on all points occurring prior to time t. Simple point processes are 
uniquely characterized by their conditional intensity (Daley and Vere-Jones 2007); 
for models for non-simple point processes, see Schoenberg (2006).

Hawkes processes are typically characterized via their conditional intensi-
ties. We refer readers to Daley and Vere-Jones (2007), Brillinger et  al. (2002) 
for details about these concepts. For a simple temporal Hawkes process (Hawkes 
1971), the conditional intensity of events at time t can be written
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where 𝜇 > 0 is the background rate, g(v) ≥ 0 is the triggering density satisfying 
∫ ∞

0
g(v)dv = 1 which describes the conductivity of events, and the constant K is the 

productivity, which is typically required to satisfy 0 ≤ K < 1 in order to ensure sta-
tionarity and subcriticality (Hawkes 1971).

A multivariate temporal Hawkes process is conveniently viewed as a sequence 
of temporal point processes indexed by u = 1,… ,U , where each subprocess Nu has 
conditional intensity

and the N points of the entire process may conveniently be labeled (tk, uk) , for 
k = 1,… ,N , where tk indicates the time of point k, and uk indicates the index dictat-
ing to which subprocess the point belongs. The idea behind Eq. (2) is that the trig-
gering density guk and productivity Kuk ,u

 may depend on the index of the point tk.
In the model (2), �u is the background rate, indicating the rate at which points of 

mark u occur, absent any other prior events. For simplicity, one traditionally assumes 
a uniform background rate in time. K ∈ ℝ

U×U is the triggering matrix, where Ku,v is 
the expected number of events of index v that are triggered by one event of index u. 
This triggering effect, in this temporal-only case, is closely related to Granger cau-
sality (Granger 1969). In fact, subprocess u does not Granger-cause subprocess v if 
and only if Ku,v = 0 (Eichler et al. 2017). Similarly, for stationarity and subcritical-
ity, K needs to satisfy ‖K‖ < 1 , where ‖K‖ is the spectral norm of K.

In nonparametric estimation of g, one typically assumes that each subprocess has 
a piecewise-constant or basis-function representation of triggering densities gu(t) 
which control how quickly the rate �u(t) returns to its baseline level �u after an event 
occurs. One can estimate the parameters � = (�u)u , K , and the triggering densities 
g via MLE (Ogata 1978) or minimize a regression loss (Chen et al. 2017). Here, we 
focus on the MLE approach. The log-likelihood function of the intensity function 
(2) becomes

One can directly maximize this function using off-the-shelf optimization methods 
or the EM-type algorithm proposed in Veen and Schoenberg (2008). See Yuan et al. 
(2019) for details about the derivation of the EM-type algorithm for ST-Hawkes pro-
cesses. Another MLE-based approach, based on their analytic derivation of MLE, 
is first proposed in Schoenberg et al. (2018b) for the univariate case ( U = 1 ). They 
found that one can solve the MLE problem via solving linear equations in g and two 
additional linear equations for the background rate � and productivity K. However, 
for the multivariate case, the coefficients of these equations depend on the triggering 

(1)�(t) = � + K

t

∫
0

g(t − t�)dN(t�) ,

(2)𝜆u(t) = 𝜇u +
∑

tk<t

Kuk ,u
guk (t − tk) ,

(3)l =

N∑

k=1

log(�uk (tk)) −

U∑

u=1
∫

T

0

�udt.
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matrix K and it is no longer a linear system. Also, there is the problem of stability 
when the matrix of the linear system is singular or nearly singular. The inversion of 
the matrix is a major problem (Schoenberg et  al. 2018b) in its implementation in 
practice, and in Sect. 3.2, we present the solution to this problem via regularization.

Another kind of estimation method (Achab et al. 2017; Bacry and Muzy 2016) is 
based on GMM using cumulants of Hawkes processes. Define � = (� −�T)−1 , where 
� is the identity matrix. As an alternative to the moments, the first, second and third 
cumulant of Hawkes process � , C and � can be calculated analytically from � and � . 
The idea of GMM is to match the cumulants from � and the cumulants approximated 
numerically from the data. Then, one can obtain the triggering matrix KT = � − �−1 by 
minimizing the non-convex approximation error of the cumulants. This provides a fast 
estimation procedure for both � and K . But it does not estimate the triggering density, 
which plays an important role in the dynamics of the point process. In applications such 
as stochastic declustering (Zhuang et al. 2002), it is necessary to estimate triggering 
densities from the data. Some other moment-based methods (Bacry and Muzy 2016) 
can estimate both of them at the cost of high computation time.

3 � Proposed methods for multivariate ST‑Hawkes

In this section, we extend the previous discussion to the case of multivariate ST-Hawkes 
processes and derive a fast estimation method via extending and combining the two 
approaches (MLE and GMM) discussed above. We recommend interested readers to 
check (Reinhart 2018; Schoenberg et al. 2013) which provide comprehensive reviews 
of ST point processes. The focus of our method is to reduce the computational bur-
den of the inference and improve the model estimation accuracy. Our motivation comes 
from the application of network reconstruction. Previous studies have shown the ability 
of Hawkes process models to uncover the underlying connections between nodes [such 
as social media users (Yuan et al. 2019), neurons (Chen et al. 2017), email users (Fox 
et al. 2016) and crime (Linderman and Adams 2014)]. It is essential to develop a scal-
able method because one often encounters data sets with thousands of nodes (large U) 
and millions of associated ST events (very large N).

We consider a multivariate ST-Hawkes process with a spatially isotropic triggering 
density g(x, y,  t)—i.e., g(x, y, t) = g(r, t), r =

√
x2 + y2. (g is only a function of time 

and distance.) This is a common assumption in real-world applications such as crime 
and earthquake aftershocks. We assume that g(t) is identical for all subprocesses for 
simplicity. However, both assumptions can be easily extended to the general case via 
adding more variables and equations on g like (11). For each subprocess u = 1,… ,U , 
the conditional intensity characterizing the multivariate ST-Hawkes process is assumed 
to have the form

where (tk, xk, yk, uk) , for k = 1,… ,N , denotes the N observed events in B × [0, T] 
and dk =

√
(xk − x)2 + (yk − y)2 . Current MLE-based methods such as the EM-type 

(4)𝜆u(x, y) = 𝜇u(x, y) +
∑

tk<t

Kuku
g(dk, t − tk) ,
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algorithm (Veen and Schoenberg 2008; Yuan et  al. 2019) are not well suited for 
large-scale problems due to its O(N3) computational complexity (Achab et al. 2017). 
Also, in many applications, it is difficult to ascertain the appropriate triggering den-
sity g(r, t). Our proposed method has a linear O(N) complexity and learns triggering 
densities directly from data. Specifically, we estimate g(r, t) nonparametrically from 
MLE and K , � from GMM. This combined method gives a fast and complete esti-
mation of the ST-Hawkes process.

3.1 � ST triggering density estimation

We extend the analytic method, first proposed in (Schoenberg et al. 2018b) for the 
univariate temporal case, to the case of multivariate ST-Hawkes processes.

First, we review the derivation of analytic estimates of the triggering func-
tion for the multivariate temporal Hawkes process (2). We assume that � and 
� are given or well estimated by other means, and the only variables here to be 
estimated are the heights of the step function comprising the triggering density 
g(t) =

∑Nt

m=1
gm�t∈(�m,�m+1) with Nt grids Vm = {t | t ∈ (�m, �m+1)},m = 1,… ,Nt 

dividing the time window [0, T]. The step function is a common assumption for the 
nonparametric method in Hawkes processes applications (Schoenberg et al. 2018b; 
Marsan and Lengline 2008). One seeks to obtain the step heights of the triggering 
density via maximizing the log-likelihood function. The log-likelihood function 
[from (3)]

is concave with respect to {gm}m . We take the derivative with respect to gm and set it 
to zero:

where �m = �m+1 − �m . Using the notation � = {�uj (tj)}j , A(k, j) =
∑

tj−ti∈Uk
Kuiuj

 , 
� = {gm}m and b = {

∑U

u=1

∑N

i=1
Kuiu

�m}m , we obtain a matrix representation of Eq. 
(6) as

Here, 1∕� is the element-wise reciprocal. The solution of (7) yields an estimate of � . 
Further, Eq. (2) can be rewritten as

Solving this equation using the estimate of � from (7) provides the maximum likeli-
hood estimate of �.

(5)l =

N∑

k=1

log(�uk (tk)) −

U∑

u=1

(
�uT +

Nt∑

m=1

gm�m

N∑

k=1

Kuku

)

(6)0 =
�l

�gm
=

∑

(tj−ti)∈Vm

Kuiuj

�uj (tj)
−

U∑

u=1

N∑

i=1

Kuiu
�m ,

(7)0 = A(1∕�) − b .

(8)� = � + AT� .
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We now focus on the multivariate ST-Hawkes process with a piecewise-con-
stant ST triggering density g(r,  t). We simply assume a uniform background rate 
�u(x, y) = �u . For each subprocess u = 1,… ,U , the conditional intensity satisfies

Here, dk =
√
(xk − x)2 + (yk − y)2 and g is defined on a 2-D Nr × Nt grids 

with Vn = {dk | dk ∈ (rn, rn+1)}, n = 1,… ,Nr dividing the space and 
Vm = {tk − t | tk − t ∈ (�m, �m+1)},m = 1,… ,Nt dividing the time window. The log-
likelihood function of this intensity function is Schoenberg (2013)

where |B| is the area of B, �m = �m+1 − �m. and Δn = �(r2
n+1

− r2
n
) . We calculate the 

spatial and temporal distance separately as this is the case for most applications. One 
can consider more complicated spatiotemporal distance via simply replacing �mΔn 
with the distance measure over the spatiotemporal grid defined by the distance.

Assuming that � and K are given, the only variables here are {gmn}m,n . Maximiz-
ing the log-likelihood function will give us the estimation of the triggering density 
g. Since (10) is concave, we take the derivative of equation w.r.t. gmn

with dij =
√

(xi − xj)
2 + (yi − yj)

2 . Similar to the temporal case, we define 
� = {�uj (xj, yj, tj)}j , A(k(m, n), j) =

∑
tj−ti∈Vm,dij∈Vn

Kuiuj
 , � = (gmn)k(m,n) and 

b = (
∑U

u=1

∑N

i=1
Kuiu

�mΔn)k(m,n) with the index k(m, n) = Nr(m − 1) + n . Then, we 
obtain the matrix representation of (11) and (9) as

Finally, we can estimate � via solving the above linear equations separately.

3.2 � Regularization for linear system

As noted in Schoenberg et al. (2018b), in many applications, the matrix A in (12) 
and (13) is often ill-conditioned or singular, even with a careful selection of the 2-D 
grids Vm and Vn . Further, even when it can be obtained, the direct inverse A−1b (or 

(9)𝜆u(x, y, t) = 𝜇u +
∑

tk<t

Kuku

Nt∑

m=1

Nr∑

n=1

gmn�tk−t∈(𝜏m,𝜏m+1)�dk∈(rn,rn+1) .

(10)

l =

N∑

k=1

log(�uk (xk, yk, tk)) −

U∑

u=1
∬B ∫

T

0

�u(x, y, t)dt dx dy ,

=

N∑

k=1

log(�uk (xk, yk, tk)) −

U∑

u=1

(�u|B|T +
∑

m

∑

n

gmn�mΔn

N∑

k=1

Kuku
) ,

(11)0 =
�l

�gmn
=

∑

(tj−ti)∈Vm,dij∈Vn

Kuiuj

�uj (xj, yj, tj)
−

U∑

u=1

N∑

i=1

Kuiu
�mΔn ,

(12)0 = A(1∕�) − b ,

(13)� = � + AT� .
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pseudo inverse (ATA)−1ATb ) can give unstable results due to over-fitting. In order to 
solve the linear equations in a stable and robust fashion, we use regularization pro-
cedures to find meaningful approximate solutions. As this is an important topic in 
inverse problems (Kaipio and Somersalo 2006), both classic regularization methods 
and statistical inversion theory using the Bayesian framework (Malinverno 2002) 
can be applied here.

More specifically, we propose the use of the Tikhonov regularization method 
(Neumaier 1998) with its analytic solution. For example, with the regularization, 
solving (12) becomes this minimization problem

for a Tikhonov matrix � = �I . This is essentially the L2 regularization, giving pref-
erence to solutions with smaller norms. L1 regularization will typically give a sparse 
solution with many zero entities. It does not work here due to the fact that each ele-
ment in x = 1∕� is positive and nonzero. Further one could utilize other Tikhonov 
matrices to guarantee smoothness if the underlying vector is believed to be mostly 
continuous. Instead of this, for the estimation of the triggering density, we smooth g 
with the post-processing approach below.

In some applications, one might want to separate the triggering density in space 
and time (Ogata 1998). As a post-processing step after estimation, we need to dis-
entangle the spatiotemporal density g(r, t) from � in order to compare with previous 
methods (Fox et al. 2016; Yuan et al. 2019), which assuming a separable density. 
As a result, we can decompose the triggering density g(r, t) into the spatial trigger-
ing density f(r) and temporal triggering density h(t) (i.e., g(r, t) = f (r)h(t) ). If we 
reshape the NrNt-by-1 vector � as a Nr-by-Nt matrix B , then estimating the spatial 
and temporal triggering density becomes the following unmixing problem

Here, B is a nonnegative matrix based on the definition of g(r, t) (triggering density 
function), f  is a nonnegative Nr-by-1 vector and h is a nonnegative 1-by-Nt vector. 
This is, in fact, a rank-one nonnegative matrix factorization (NMF) (Lee and Seung 
1999) B = fh and we solve it using singular value decomposition (SVD). Finally, 
we use a Gaussian moving average filter to smooth f  and h to obtain the estimation 
of piecewise-constant triggering densities. This is based on our assumption that g 
is smooth and it can reduce the variance of our estimations. Our numerical experi-
ments show that the regularization procedure described above leads to stable and 
robust estimations for synthetic and real-world data sets.

3.3 � Triggering matrix estimation

In previous sections, we estimate the triggering density with the assumption that 
both � and K are given. In the univariate case, one can remove this assumption 
by adding two additional linear equations (Schoenberg et  al. 2018b). However, in 

(14)min
x

‖Ax − b‖2 + ‖�x‖2 ,

(15)min
f≥0,h≥0 ‖B − fh‖2 .
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the multivariate case, because matrix A is depend on matrix K , solving � , K and g 
simultaneously is no longer a linear problem.

In order to solve this problem, we extend the cumulants (22), (23), (18) to the ST 
case for a fast estimation of � and K . For a ST-Hawkes process with U subprocesses, 
we define its first, second and third cumulant as (Daley and Vere-Jones 2007)

Here, 1 ≤ i, j, k ≤ U and � , a and b are the variables of integration corresponding to 
t, x and y.

Cumulants can be numerically estimated from the ST data of events from each 
subprocess Zi = (tk, xk, yk)k, i = 1,… ,U on the ST bounded area B × [0, T] . Here, 
we simply assume that B is a rectangular with length X and width Y. We obtain the 
following estimation formulas for (16), (17) and (18):

(16)Λidtdxdy = �(dNi
t,x,y

) ,

(17)Cijdtdxdy =∫
�,a,b∈ℝ3

(𝔼(dNi
t,x,y

dN
j

t+�,x+a,y+b
− 𝔼(dNi

t,x,y
)𝔼(dN

j

t+�,x+a,y+b
) ,

(18)

Γijkdtdxdy =∫
��,a�,b�∈ℝ3 ∫�,a,b∈ℝ3

(𝔼(dNi
t,x,y

dN
j

t+�,x+a,y+b
dNk

t+��,x+a�,y+b�
)

+ 2𝔼(dNi
t,x,y

)𝔼(dN
j

t+�,x+a,y+b
)𝔼(dNk

t+��,x+a�,y+b�
)

− 𝔼(dNi
t,x,y

dN
j

t+�,x+a,y+b
)𝔼(dNk

t+��,x+a�,y+b�
)

− 𝔼(dNi
t,x,y

dNk
t+�,x+a,y+b

)𝔼(dN
j

t+��,x+a�,y+b�
)

− 𝔼(dN
j

t+�,x+a,y+b
dNk

t+��,x+a�,y+b�
)𝔼(dNi

t,x,y
)) .

(19)Λ̂i =
1

TXY

∑

𝜏,a,b∈Zi

=
Ni
T ,X,Y

TXY
,

(20)Ĉij =
1

TXY

∑

𝜏,a,b∈Zi

(N
j

a+X̃,b+Ỹ ,𝜏+H
− N

j

a−X̃,b−Ỹ ,𝜏−H
− 8X̃ỸHΛ̂j) ,

(21)

Γ̂ijk =
1

TXY

∑

𝜏,a,b∈Zi

(N
j

a+X̃,b+Ỹ ,𝜏+H
− N

j

a−X̃,b−Ỹ ,𝜏−H
− 8X̃ỸHΛ̂j)×

(Nk

a+X̃,b+Ỹ ,𝜏+H
− Nk

a−X̃,b−Ỹ ,𝜏−H
− 8X̃ỸHΛ̂k)

−
Λ̂i

TXY

∑

𝜏�,a�,b�∈Zk

∑

𝜏,a,b∈Zj

(2H − |𝜏 − 𝜏�|)+(2X̃ − |a − a�|)+(2Ỹ − |b − b�|)+

+ 64(HX̃Ỹ)2Λ̂iΛ̂jΛ̂k ,
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via numerical integration approximations of the cumulants on 
[−X̃, X̃] × [−Ỹ , Ỹ] × [−H,H] assuming that the support of the triggering density 
is within this region [see Appendix B.3 in (Achab et  al. 2017) for more details]. 
One also needs to symmetrize the approximated cumulants via (Ĉij + Ĉji)∕2 and 
(2Γ̂iji + Γ̂jii)∕3 because the actual cumulants satisfy Γiji = Γiij and Cij = Cji.

The first, second and third cumulants of Hawkes process � , C and � also have 
the following relationships (Achab et al. 2017) with R

Here, Rim = R(i,m) . Although the definition and numerical estimations of the cumu-
lants are different for the ST case, the above formulas hold for both temporal and 
spatiotemporal cases because the spatial information can be viewed as “marks” of 
the temporal point process. According to (23) and (24), we can obtain the triggering 
matrix KT = � − �−1 by minimizing the approximation error of the cumulants with 
some scaling coefficient �

Here, ⊙ is the Hadamard product and �̂c = �̂(i, i, k) . Given the estimated R̃ , we also 
have 𝝁̃ = R̃

−1
�̃ from the cumulants equation (22).

Finally, we can plug the approximated cumulants into (25) to estimate � and 
K . The error function (25) is a non-convex polynomial and similar to the loss 
function of a multilayer neural network. As a result, stochastic gradient descend 
(SGD) with acceleration [e.g., Adam Kingma and Ba (2015) or AdaGrad Duchi 
et al. (2011)] can be used to minimize the error function. With a good choice of 
the initial value such as in Achab et  al. (2017), SGD often leads to satisfying 
convergence results and is more accurate than EM-type algorithms in many 
applications (Achab et  al. 2017). The normalization term � is 𝜅 =

‖�̂c‖2
2

‖Ĉ‖2
2
+‖�̂c‖2

2

 
based on the theory of GMM (Achab et al. 2017). The ratio between the support 
of the triggering density and the ST bounded area B × [0, T] matters for the con-
sistency of the GMM (Achab et al. 2017). Usually for specific applications such 
as social network reconstruction, B × [0, T] is much larger than the square of the 
support of the triggering density, which guarantees the consistency of the GMM 
estimation.

(22)�(i) = Λi =

U∑

m=1

Rim�m ,

(23)C(i, j) = Cij =

d∑

m=1

ΛmRimRjm ,

(24)

�(i, j, k) = Γijk =

d∑

m=1

(RimRjmCkm + RimCjmRkm + CimRjmRkm − 2ΛmRimRjmRkm) .

(25)L(R) = (1 − 𝜅)‖R⊙2Ĉ
T
+ 2(R⊙ (Ĉ − RL̂))RT − 𝚪c‖2

2
+ 𝜅‖RL̂RT − Ĉ‖2

2
.
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3.4 � Consistency guarantee

The consistency of maximum likelihood estimates (Ogata 1978) or GMM esti-
mates (Achab et al. 2017) is guaranteed by general theoretical results. Here, we 
note that our proposed method, as a combination of GMM and MLE, also yields 
consistent estimates.

First, as background, note that in Ogata (1978), Ogata showed the MLE of 
the full vector of parameters is, under quite general conditions, consistent. Also, 
if only some of the parameters are to be estimated and others, such as in this 
instance K and � , are known exactly, then again one may consider the param-
eter vector to be only those parameters being estimated, and again (Ogata 1978) 
showed the estimated ones will be consistent. However, we are considering the 
case where K and � are not known but are estimated consistently via GMM, and 
then, the other parameters are estimated by MLE. To the best of our knowledge, 
this case has not been studied previously, and the result does not immediately fol-
low from the theorems in Ogata (1978). We show that 𝜷  inherits the property of 
consistency from the MLE and GMM estimators, under the same assumptions as 
in Achab et al. (2017) and Ogata (1978). For simplicity purposes, we will not list 
these groups of assumptions, which are mainly related to observations and regu-
larity conditions.

Let Θ denote the full vector of parameters, including K and � . Let Θ0 denote 
the true value of Θ . Let U denote a neighborhood of Θ0 . Let K′ and �′ denote 
the GMM estimates of K and � . Let Θ = (K,�, �) , where � is the vector of other 
parameters estimated by MLE. Let K̂ , 𝝁̂ and �̂ be the MLEs of these parameters.

Theorem 1  Assuming the same regularity conditions used in the proofs of consist-
ency of the MLE and GMM estimator in  Achab et  al. (2017) and Ogata (1978) 
(see   "Appendix 3" for details), the combined estimator �̂ → � in probability as 
T → ∞.

Proof  Let L denote the log-likelihood divided by T. Thus, L depends on T, but we 
will suppress this here. Let Θ1 denote the supremum over Uc of L, which is the MLE 
outside of U.

We are given that (K�,��) → (K,�) in probability as T → ∞ . Thus, (K�,��) are in 
U with probability going to 1 as T → ∞.

We have L(Θ1) → �(L(Θ1)) and L(Θ0) → �(L(Θ0)) , where this convergence is in 
probability as T → ∞ and is uniform in Θ . This follows from the same logic as in 
the proof of Theorem 2 of Ogata (1978).

Similarly, following exactly as in the proof on p253 of Ogata (1978), we have 
�(L(Θ0)) > �(L(Θ1)) and for sufficiently large T, there exists 𝜖 > 0 such that 
|�(L(Θ)) − supΘ∉U �(L(Θ))| > 𝜖∕2 . This follows from the assumptions in Ogata 
(1978), particularly the assumption that � is uniformly bounded away from 0.

Therefore, since (K�,��) are in U as T → ∞ , for sufficiently large T, we have 
�(L(Θ0)), and therefore, L(Θ0) is also maximized within U with probability going to 
1. More specifically, for any 𝜖 > 0 , there is 𝛿 > 0 and sufficiently large T so that
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3.5 � Computational complexity

The state-of-the-art cumulants-based method (NPHC) (Achab et al. 2017) for tem-
poral triggering density estimation has a complexity of O(NU2 + NiterU

3) , where 
Niter is the number of iterations for SGD (around 200 for our applications). Our 
method has a similar complexity O(NU2 + NiterU

3 + (NrNt)
3) as NPHC since the 

calculation time of spatiotemporal cumulants is just a constant multiple of tempo-
ral cumulants. The additional calculation for triggering density estimation is usually 
negligible because Nr,Nt are small constants (we use 50 in experiments) and A is 
usually sparse. For an EM-type algorithm (EM) (Lewis and Mohler 2011), the com-
plexity is O(NiterN

3U2) (Achab et al. 2017). With some clever implementation or in 
some special cases (e.g., temporal Hawkes process with an exponential triggering 
density), one can reduce this to O(N2) or better.

Our method outperforms EM when N ≫ U . Moreover, in many cases, we find 
that our method is even faster than NPHC. This seems impossible since our method 
needs to process spatial data in addition to the timestamp. However, for ST data, 
there are many event pairs that are close in time (within the support of the temporal 
triggering density) while spatially separated from each other (outside the support of 
the spatial triggering density). Temporal-only model such as NPHC will calculate 
these events pairs during the estimation of cumulants. This might cause false posi-
tives in causal inference. Our method, on the other hand, uses spatial information 
to exclude these events. It seems that, for a majority of data sets we examined, this 
effect is very significant and our method can be much faster than NPHC.

4 � Numerical examples

In this section, we compare our method, which is called ST-Hawkes cumulants 
(STHC) throughout this section, with other popular estimation methods for multi-
variate Hawkes processes on various data sets. We consider both simulation data 
and real-world social network data. First, we simulate multiple synthetic data sets 
with different sizes, triggering matrices and triggering densities. These data sets 
with ground-truth information allow us to examine different methods in detail. Then, 
for real-world applications, we further evaluate the performance of these methods on 

P(�̂ ∉ U) = P{sup
Uc

L(Θ) ≥ sup
U

L(Θ)}

≤ P{L(Θ1) ≥ L(Θ0)}

≤ P{L(Θ1) − �(L(Θ1)) ≥ 𝛿} + P{�(L(Θ1)) − �(L(Θ0)) > −2𝛿}

+ P{�(L(Θ0)) − L(Θ0) ≥ 𝛿}

≤ 𝜖∕2 + 0 + 𝜖∕2

= 𝜖 .
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the task of network reconstruction for multiple location-based social network check-
in data sets. Moreover, our method directly estimates spatial and temporal trigger-
ing densities, which provides a useful tool for the study of ST dynamics among 
these check-in events. We conduct all of the experiments on a single machine with 
a NVIDIA 970 GPU (4 GB memory), 4-core Intel i7-6700K CPU (4.20 GHz) and 
16 GB of RAM.

4.1 � Synthetic data

Our synthetic data sets are generated using Algorithm 3 in Yuan et al. (2019), which 
is based on the clustering representation of Hawkes process. We simulate various 
ST-Hawkes processes and use them to evaluate our method (STHC), the state-of-
the-art temporal cumulants method (NPHC) and EM-type algorithm (EM). The 
details about the simulation, preprocessing and hyperparameters (such as � for the 
regularization) are described in "Appendix 1." Here, we define some error measure-
ments used in this section.

•	 Relative error between the estimated triggering matrix K̂ and the ground-truth 
matrix K : 

•	 Mean squared error (MSE) between the estimated triggering densities (temporal 
ĥ(t) , spatial f̂ (r) and combined ĝ(r, t) ) and the ground-truth triggering densities 
(temporal h(t), spatial f(r) and combined g(r, t)): 

Here, ĝij = B(i, j) is the discrete estimation of the triggering density on a 2-D grid 
of size 50 × 50 and gij are the ground-truth values of the triggering density on the 
grid. ĥi = ĥ(i) and f̂i = f̂ (i) are from the NMF decomposition of B , and hi = h(i) and 
fi = f (i) are the ground-truth values of the temporal and spatial triggering densities 
on the grid accordingly.

4.1.1 � Triggering density estimation

We first compare our methods with EM in terms of the triggering density estimation 
accuracy (NPHC does not estimate triggering densities). Simulation data with 2587 
events are from a ST-Hawkes process with U = 1 , exponential triggering density in 
time and Gaussian in space. We get a good estimation of the triggering density f(r) 
( MSEr = 0.001662 ), h(t) ( MSEt = 0.02876 ) in Fig. 1 and the overall estimation for 
� = (gmn)k(m,n) ( MSE� = 0.03400 ). This is a relatively small data sets so that we can 
use EM for ST-Hawkes [ST-EM, see Yuan et al. (2019)] estimation. For ST-EM, we 

RelErr
(
K, K̂

)
=

1

U2

∑

u,v

(
|Kuv − K̂uv|

|Kuv|
�Kuv≠0 + |K̂uv|�Kuv=0

)
.

MSEr =
1

Nr

Nr∑

i=1

(fi − f̂i)
2, MSEt =

1

Nt

Nt∑

i=1

(hi − ĥi)
2, MSE𝛽 =

1

NrNt

Nr∑

i=1

Nt∑

j=1

(gij − ĝij)
2 .
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get f(r) ( MSEr = 0.01485 ), h(t) ( MSEt = 0.004058 ) and � ( MSE� = 0.2533 ). Our 
method is faster (see Table 1) and overall more accurate.

4.1.2 � Triggering matrix

Then, we evaluate the ability of our model to recover the triggering matrix K . This 
is important for many applications such as network reconstruction and causal infer-
ence. On our existing architecture, the ST-EM method runs out of memory. Instead, 
we use EM and NPHC implementations in the tick package Bacry et al. (2017) for 
the following comparisons.

We simulate a ST-Hawkes process with U = 100 and a symmetric K matrix (see 
Fig. 2) because our network reconstruction data sets mainly have undirected social 
networks. We achieve a relative error of 0.1080. In the same setting, we get a rela-
tive error of 0.1626 for NPHC and 0.1459 for EM. The improvement in computation 
time (see Table 1) is significant.

4.1.3 � Combined estimation

Now, we combine the two steps together and give a complete estimation of ST-
Hawkes processes. We simulate a ST-Hawkes process with U = 10 and 179,176 
events in total. From the results in Fig. 3 and Table 1, STHC gives very fast and also 

Fig. 1   The estimation results of STHC on U = 1 data. Ground-truth spatial triggering density f(r) as red 
triangles and estimated triggering density as blue circles (left). Temporal triggering density h(t) as red 
triangles and estimated triggering density as blue circles (right)

Fig. 2   Ground-truth K matrix, STHC , NPHC result and EM estimation results (from left to right)
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accurate estimations (RelErr  =  0.02901) compared to NPHC (RelErr  =  0.04899) 
and EM (RelErr = 0.03269). We then threshold K̂ with � = 0.01 to remove noise. 
Using K̂, 𝝁̂ , we get a good estimation of the triggering density f(r) and h(t) in Fig. 4 
with MSEr = 0.002381 , MSEt = 0.06664 and MSE� = 0.1067, while EM has a 
much worse MSE ( MSEt = 0.9512 ) since it does not consider spatial information.

4.1.4 � Combined estimation with different triggering densities

We modify the above U = 10 data set via replacing the ST triggering density with 
different functions. We first get accurate estimations of K̃ and 𝝁̃ . Given K̃ and 𝝁̃ , we 
then estimate the triggering density in space and time. The results are summarized 
in Table 2. Specifically, we consider Pareto triggering density in time, uniform trig-
gering density in time, power-law triggering density in space and uniform triggering 
density in space. See "Appendix 1" for more details on generating these synthetic 
data sets and visualizations of triggering kernels.

In summary, for synthetic data, our method consistently performs better than all 
baselines in the estimation of triggering matrices and densities in terms of the mean 
square error and relative error. This is consistent with the finding in Achab et  al. 
(2017) that moment-based methods, which do not require the estimation of trigger-
ing densities, are less sensible to model misspecification and more accurate com-
pared with EM. Moreover, our approach is much faster than EM-type algorithms, 
which are not scalable to large-scale spatiotemporal data.

4.2 � Location‑based social network reconstruction

In many situations, network data are incomplete and it may not be possible to directly 
observe the hidden relationships between nodes. Point process models, especially 
Hawkes processes, are widely used to infer the hidden connections via viewing each 

Table 1   The computation 
time for different methods on 
synthetic data sets. Here, the 
time is in second

STHC NPHC EM

U = 1 0.165528 – 4.643132
U = 10 1.073085 1.093068 4.707377
U = 100 2.608996 4.174796 43.781988

Fig. 3   Ground-truth K matrix, STHC, NPHC and EM estimation results (from left to right)
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subprocess as a node in the network. Then, the estimated triggering matrix K̂ , which 
uncover the macroscale causality between users (subprocesses), can recover under-
lying connections between neurons (Linderman and Adams 2014), financial markets 
(Achab et al. 2017) and social media users (Yuan et al. 2019). The assumption here 
is that this causality information reflects actual friendship connections. Our task of 
network reconstruction is to uncover the ground-truth friendship network among 
social media users using only the information of each user’s check-ins.

The Gowalla and Brightkite data sets, collected in Cho et  al. (2011), are both 
from location-based social media websites in which users share their locations by 
checking in. Authors in Cho et al. (2011) use public APIs to collect user “friend-
ship” networks, location profiles and users’ spatiotemporal check-in history. These 
data sets have already been studied in many areas, such as human mobility (Cho 
et al. 2011), geometric learning problems (Bronstein et al. 2017) and location-based 
recommendation systems (Bao et al. 2012; Yuan et al. 2020), and become bench-
mark data sets of location-based online social networks. Previous studies on these 
data sets reveal that human movement patterns are often a combination of periodic 
behaviors and behaviors related to social relationships. Multivariate Hawkes process 
models could be able to capture both parts via the background rate and mutual trig-
gering between users. Here, we verify this assumption through the network recon-
struction task.

In detail, Gowalla has a “friendship” network with 196,591 users, 950,327 
edges and a total of 6,442,890 check-ins of these users between February 2009 

Fig. 4   The estimation results of STHC on U = 10 data. Ground-truth spatial triggering density f(r) as red 
triangles and estimated triggering density as blue circles (left). Temporal triggering density h(t) as red 
triangles and estimated triggering density as blue circles (right)

Table 2   Error measures for 
STHC on U = 10 data sets with 
different triggering densities

MSE
r

MSE
t RelErr(K, K̂)

Pareto in time 0.01244 0.0009966 0.02784
Uniform in time 0.01320 1.296 × 10−5 0.09306
Power law in space 0.0003904 0.04463 0.0409
Uniform in space 0.0006231 0.1294 0.04552
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and October 2010. Brightkite’s “friendship” network consists of 58,228 nodes 
and 214,078 edges, and a total of 4,491,143 check-ins over the period of April 
2008–October 2010. Each check-in record includes the latitude and longitude coor-
dinates, a user ID and the time (with a precision of one second). Similar to the Face-
book “friendship” network, both the Gowalla and Brightkite friendship networks are 
undirected and unweighted. We study several subnetworks (Gowalla-SF, Brightkite-
LA, Gowalla-CHI, and Brightkite-SD) within these data sets; see "Appendix 2" for 
details.

To reconstruct these user subnetworks, we model the ST check-ins of each user 
within a subnetwork as events of one subprocess within a multivariate ST-Hawkes 
process. Then, we infer relationships between these users (i.e., infer adjacency 
matrix) from the triggering matrix K . We compare our method (STHC) with NPHC 
and EM in terms of how well the reconstructed networks match the ground-truth 
friendships. With the prior information that friendship networks are undirected, we 
first symmetrize the inferred triggering matrix (via K̃ =

(
K̂ + K̂

T
)
∕2 ) to obtain the 

estimated weighted adjacency matrix. Then, the network reconstruction becomes a 
binary classification problem with the probability ∝ K̃ . Given the ground-truth 
binary adjacency matrix, we calculate the corresponding receiver operating charac-
teristic (ROC) curves and the area under the curve (AUC) to evaluate the results.

The performances of different methods are examined on various subnetworks 
with different sizes. Our STHC method consistently outperforms other methods 
with more than 20% improvement in terms of the AUC in Fig. 5. The improve-
ment is mainly from the ability of our method to exclude false-positive connec-
tions. We show an example of network reconstruction results of Brightkite-SD in 
Fig. 6. For the computation time (see Table 3), STHC scales better than NPHC in 
all data sets, as explained in Sect. 3.5. EM has the worst scaling due to its super-
linear complexity. Finally, we estimate spatiotemporal triggering densities with 
Nr = Nt = 50 for these subnetworks and plot their spatial and temporal marginal 
triggering densities from (15) in Figs.  7 and 8 separately. The spatial trigger-
ing densities for different subnetworks have similar shapes with a cutoff around 
10−4 . This could come from the fact that the check-in location is usually fixed 
for a point of interest (POI, such as shop/cafe/gym). The triggering density also 
implies that the spatial triggering effects between users have a short radius, which 
mainly occur when they visit the same POI. These temporal triggering densities 
also share the same trend. The triggering effects only peak a few hours after the 
event time. This is also observed in other data sets, such as the insurgency activ-
ity in Iraq (Lewis and Mohler 2011). 

5 � Conclusions

We present a novel inference approach of ST-Hawkes processes; it is the most 
efficient and accurate method in comparison with other popular estimation meth-
ods, according to the numerical experiments presented. Moreover, this approach 
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is successfully applied to network reconstruction problems and leads to promising 
applications for the inference of causal relationships and social interactions.

A point that should be stressed is that we make a few model assumptions to sim-
plify the estimation procedure. To recapitulate, we assume a constant background 

(a) (b)

(c) (d)

Fig. 5   ROC curves of different methods (STHC, NPHC and EM) on subnetworks in Gowalla and Bright-
kite data sets. The dashed line (red) is from random guess

Fig. 6   Friendship network reconstruction using different methods on Brightkite-SD. Here, we zoom in to 
show a subgraph within the Brightkite-SD network
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rate in space and no boundary effect for events outside the area that we studied. For 
more general spatial background (inhomogeneous) distributions, one can approxi-
mate it using a piecewise-constant function in space by dividing events into spatial 
grids. Essentially, for each grid, we still have a uniform background for estimation 

Table 3   The computation 
time for different methods on 
Gowalla and Brightkite data 
sets. Here, the time is in second

STHC NPHC EM

Brightkite-SD 0.271304 2.035561 2.252009
Gowalla-CHI 2.978064 3.869652 15.474624
Brightkite-LA 3.976395 7.001311 36.357789
Gowalla-SF 40.754037 76.514422 180.918273

(a) (b)

(c) (d)

Fig. 7   Estimated spatial triggering densities of our method on Gowalla and Brightkite data sets. The 
plot is in log–log scale, and we normalize the triggering density for easy comparison. Hyperparameters 
include � = 0.5 and N

r
= N

t
= 50
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and then combine them. For applications on large areas with an inhomogeneous 
background, we expect a piecewise-constant or covariate-based background rate to 
achieve even better results (Schoenberg et al. 2018b), and incorporating boundary 
effects helps to remove bias in the estimation of the background rate and trigger-
ing densities (Reinhart 2018). Moreover, the current regularization method can be 
extended to a more general case to utilize the smoothness proprieties of triggering 
densities.

Finally, while we are focusing on the general case of multivariate ST-Hawkes pro-
cesses, the current method can be very useful for the estimation of univariate mod-
els. The regularization improves the stability and robustness of the analytic method 
in Schoenberg et al. (2018b). This makes it possible to apply univariate models to 
the study of large data sets in areas like seismology, epidemiology and criminology.

Acknowledgements  This work was supported by the City of Los Angeles Gang Reduction Youth Devel-
opment Project, by NSF grant DMS-2027277 and by NSF grant DMS-1737770. Baichuan Yuan grate-
fully acknowledges the fellowship support of the National Institute of Justice (NIJ) under Award Number 
2018-R2-CX-0013.

(a) (b)

(c) (d)

Fig. 8   Estimated temporal triggering densities of our method on Gowalla and Brightkite data sets. The 
plot is in log–log scale, and we normalize the triggering density for easy comparison. Hyperparameters 
include � = 0.5 and N

r
= N

t
= 50
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Appendix 1: Simulation data

U = 1 data

We simulate a univariate ST-Hawkes process with K = 1∕6 , � = 0.01 , T = 2.1 × 105 , 
X, Y ∈ (0, 10) , f (r) =

1

2��2
exp(−r2∕2�2) ( �2 = 0.2 ) and h(t) = � exp(−�t) 

( � = 10 ). The regularization parameter � = 0.5.

U = 100 data

Using the same triggering densities, this data set has the following parameters: 
U = 100 , the background rate � = (0.01,… , 0.01) . T = 105 , X, Y ∈ (0, 10) , �2 = 0.2 
and � = 10 with 172,943 events. For the triggering matrix in Fig.  2, each yellow 
pixel is 1/20, cyan pixel is 1/40 and dark pixel is 0.

U = 10 data

With the same densities, the parameters are U = 10 , � = (0.01,… , 0.01) , T = 1e6 , 
X, Y ∈ (0, 10) , �2 = 0.2 , � = 10 and K is shown in Fig. 3. Here, each yellow pixel is 
1/6 and dark pixel is 0. The regularization parameter � = 0.55.

U = 10 data with a Pareto triggering density in time

We keep the same parameters as the U = 10 above. The changes on the densities 
are on the temporal density h(t) = (p − 1)cp−1∕(t + c)p with c = 2 and p = 2.5 and 
the same spatial triggering density with �2 = 0.1 . The regularization parameter 
� = 0.38.

U = 10 data with a uniform triggering density in time

Similar to the section above, here we change the temporal densities to be uniform 
h(t) = 0.1 and the spatial triggering density with �2 = 0.1 . The regularization 
parameter � = 0.4 . We threshold the estimated K̃ with � = 0.01 to remove noise.

U = 10 data with a power‑law triggering density in space

Similarly, we use the power-law density f (r) = 1

(r2+1)2
 in space and the exponen-

tial triggering density in time with � = 10 . The regularization parameter 
� = 0.28 . We threshold the estimated K̃ with � = 0.02 to remove noise.
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U = 10 data with a uniform triggering density in space

Given the same parameters as above, we change the spatial density to f (r) = 0.25 
and keep the exponential triggering density in time with � = 10 . The regularization 
parameter � = 0.36 . We threshold the estimated K̃ with � = 0.01 to remove noise 
(Fig. 9).

Appendix 2: Gowalla and Brightkite data sets

In this section, we describe the preprocessing procedure for Gowalla and Brightkite 
data sets. We focus on various local friendship subnetworks within different US cit-
ies, including San Diego (SD), Chicago (CHI), Los Angeles (LA) and San Francisco 
(SF). They have diverse network sizes and ST patterns within the same time period.

Brightkite‑SD

We study check-ins in SD for Brightkite data set. We use a bounding box (with 
a north latitude of 33.1142, a south latitude of 32.5348, an east longitude of 
− 116.9058 , and a west longitude of − 117.2824)1 to locate check-ins in SD. We con-
sider “active” users, who have more than 300 check-ins during the period. This gives 
us a small subnetwork with 25 “active” users and a total of 13,760 check-ins in SD.

Gowalla‑CHI

We apply the same procedure as in "Appendix 2" on the Gowalla check-in data for 
CHI. The bounding box for CHI has a north latitude of 42.0229, a south latitude of 
41.6446, an east longitude of − 87.5245 and a west longitude of − 87.9395 . After 
selecting only active users (with more than 100 check-ins) users, we have a medium-
sized subnetwork with 96 users and 27,326 check-ins.

Brightkite‑LA

We apply the same procedure as in  "Appendix 2" on the Brightkite check-in data 
in LA. The bounding box for LA has a north latitude of 34.34, a south latitude of 
33.70, an east longitude of − 118.16 and a west longitude of − 118.67 . After select-
ing only active users (with more than 150 check-ins) users, we have a medium-sized 
subnetwork with 168 users and 89,127 check-ins.

1  We obtain latitude and longitude coordinates from https​://www.flick​r.com/place​s/info.

https://www.flickr.com/places/info
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Gowalla‑SF

We apply the same procedure as in "Appendix 2" on the Gowalla check-in data in 
SF. The bounding box for SF has a north latitude of 37.93, a south latitude of 37.64, 
an east longitude of − 122.28 and a west longitude of − 123.17 . After selecting only 
active users (with more than 65 check-ins) users, we have a large subnetwork with 
515 users and 102,673 check-ins.

Appendix 3: Assumptions for Theorem 1

There are two separate sets of general assumptions for the consistency of GMM and 
MLE in Hawkes processes. We only list assumptions that are relevant to our proof.

The first set of assumptions is from Ogata (1978) about the point process and 
intensity functions.

Assumption 1  (Consistency of MLE estimation) 

•	 Multivariate Hawkes process (Nt,x,y) is stationary, ergodic and absolutely con-
tinuous with respect to the standard Poisson process.

•	 The conditional intensity function �Θ with parameters Θ is predictable for all 
compact metric spaces and continuous in Θ.

•	 When t = 0 , �Θis positive almost surely and �Θ1
= �Θ2

almost surely if and only 
if Θ1 = Θ2 ; for any Θ from a compact metric space, there exists a neighborhood 
U(Θ) of Θ  such that for all Θ� ∈ U(Θ) , |�Θ� | and | log �Θ� |   are bounded by ran-
dom variables with finite second moments.

•	 For any Θ  from a compact metric space, there is a neighborhood U(Θ)  of Θ  
such that supΘ�∈U(Θ) |�(Θ�) − �(�(Θ�))| → 0 in probability as t → ∞ and (for 
some 𝛼 > 0 ) supΘ�∈U(Θ) | log�(�(Θ�))|  has finite (2 + �)th moment uniform 
bounded with respect to t.

On top of Assumption 1, we also need GMM-related assumptions from Achab et al. 
(2017).
Assumption 2  (Consistency of GMM estimation)

•	 For (25), the GMM approximation error L(R) = 0  if and only if R = (I − KT)−1.
•	 For (22–24), the supports of the triggering density X, Y, H  satisfy X̃2∕X , Ỹ2∕Y  , 

H̃2∕T → 0  separately as X, Y ,H → ∞.
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