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Abstract
The Bayesian paradigm with proper priors can be extended either to improper dis-
tributions or to finitely additive probabilities (FAPs). Improper distributions and dif-
fuse FAPs can be seen as limits of proper distribution sequences for specific con-
vergence modes. In this paper, we compare these two kinds of limits. We show that 
improper distributions and FAPs represent two distinct features of the limit behav-
ior of a sequence of proper distribution. More specifically, an improper distribution 
characterizes the behavior of the sequence inside the domain, whereas diffuse FAPs 
characterizes how the mass concentrates on the boundary of the domain. Therefore, 
a diffuse FAP cannot be seen as the counterpart of an improper distribution. As an 
illustration, we consider several approach to define uniform FAP distributions on 
natural numbers as an equivalent of improper flat prior. We also show that expected 
logarithmic convergence may depend on the chosen sequence of compact sets.

Keywords Bayesian statistics · Improper distribution · Finitely additive probability · 
Q-vague convergence · Uniform distribution · Expected logarithmic convergence. · 
Remote probability

1 Introduction

Improper priors and finitely additive probabilities (FAP) are the two main extensions 
of the standard Bayesian paradigm based on proper priors, i.e., countably additive 
probabilities (see Hartigan 1983,  p.  15). Both extensions induce paradoxical phe-
nomena such as strong inconsistency (Stone 1976; Dubins 1975) or marginalization 
paradoxes (Dawid et al. 1973) that do not occur with proper priors. To have a better 
understanding of these phenomena, some authors such as Stone (1982) or Kadane 
et al. (1986, p. 218), consider improper distributions and FAPs as limits of proper 
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prior sequences w.r.t. to appropriate topologies. Heuristically, this approach seems 
to establish a link between improper distributions and FAP.

Seeing a FAP as a limit is a way to preserve the total mass equal to 1, while sac-
rificing the countable additivity. This point of view has been mainly supported by 
de Finetti (1972). On the other hand, improper distributions aim at preserving the 
countable additivity, while sacrificing a total mass equal to 1. Improper distribu-
tions appear naturally in the framework of conditional probability, see Rényi (1955) 
and more recently Taraldsen and Lindqvist (2010, 2016) and Lindqvist and Tarald-
sen (2018). Conditional probability spaces are also related to projective spaces of 
measures (Rényi 1970) which have a natural quotient space topology and a natu-
ral convergence mode, named q-vague convergence by Bioche and Druilhet (2016). 
Bayesian inference with improper posterior is justified by Taraldsen et  al. (2019) 
from a theoretical point of view. Bord et  al. (2018) consider the convergence of 
proper distribution sequences to an improper posterior for Bayesian estimation of 
abundance by removal sampling. Tufto et al. (2012) propose to adapt MCMC for the 
estimation of improper posteriors. In another approach, Akaike (1980) consider the 
convergence of posterior distributions w.r.t. an entropy criterion when the posterior 
distributions are proper.

In this paper, we mainly consider convergence of prior distributions to FAPs or to 
improper distributions, regardless to any statistical model. In Sect. 2, we define the 
notion of limits in the settings of improper distributions and of FAPs. We show that 
improper distributions and FAPs represent two distinct characteristics of a sequence 
of proper distributions. Therefore, they cannot be connected by the mean of proper 
distribution sequences. In Sect. 3, we revisit the notion of uniform distribution on 
integers in the light of our results. In Sect. 4, we illustrate with some examples the 
fundamental difference between convergence to an improper prior and to a FAP. 
In Sect. 5, we consider expected logarithmic convergence, defined by Berger et al. 
(2009) to approximate an improper distribution by a sequence of truncated proper 
priors. We apply some of the methods used in Sect. 2 to propose an example where 
this convergence mode depends on the chosen sequence of compact sets.

2  Convergence of probability sequences

We denote by Cb the set of continuous real-valued bounded functions on a space � 
and by CK the set of continuous real-valued functions with compact support. For a 
�-finite measure � , we denote �(f ) = ∫ f (�) d�(�) . Let {�n}n∈ℕ be a sequence of 
proper distributions. The usual converge mode of {�n}n∈ℕ to a proper prior � is the 
narrow convergence, also called weak convergence or convergence in law, defined 
by:

When it exists, the narrow limit of {�n}n is necessarily unique. In this section, we 
consider two alternative convergence modes when there is no narrow limit, and 

(1)�n
narrowly
����������������������������→
n→+∞

� ⟺ �n(f ) ������������������������→
n→+∞

�(f ) ∀f ∈ Cb.
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especially when the total mass tends to concentrate around the boundary on the 
domain, more precisely when limn �n(f ) = 0 for all f in CK . The idea is to consider a 
proper prior either as a special case of FAP or as a special case of a Radon measure, 
and for each case, to define a convergence mode in a formalized way.

In the following, � is a locally compact separable metric space. This is the case, 
for example, for usual topological finite-dimensional vector spaces or for denumer-
able sets with the discrete topology. In the latter case, any function is continuous and 
a compact set is a finite set.

2.1  Convergence to an improper distribution

To extend the notion of narrow limits, we consider here proper distributions within 
the set of projective space of positive Radon measures as follows: we denote by R 
the set of non-null Radon measures, that is regular countably additive measures with 
finite mass on each compact set. Note that, in the discrete case, any �-finite measure 
is a Radon measure.

We define an improper distribution as an unbounded Radon measure which 
appears in parametric Bayesian statistics (see, e.g., Jeffreys 1970). The projec-
tive space R associated with R is the quotient space for the equivalence relation 
∼ defined by �1 ∼ �2 iff �2 = � �1 for some positive scalar factor � . To each Radon 
measure � is associated a unique equivalence class 𝜋 = {𝜋� = 𝛼 𝜋 ; 𝛼 > 0} . There-
fore, a projective space is a space where objects are defined up to a positive scalar 
factor. It is natural in Bayesian statistics to consider such projective space since two 
equivalent priors give the same posterior. The projective space R is also naturally 
linked with conditional probability spaces (Rényi 1955). All the results presented 
below on the convergence mode w.r.t. to the projective space R can be found in Bio-
che and Druilhet (2016). The usual topology on R is the vague topology defined by

From the related quotient topology, we can derive a convergence mode, called 
q-vague convergence: a sequence {�n}n in R converges q − vaguely to a (non-null) 
improper distribution � in R if �n converges to � w.r.t. the quotient topology where 
�n and � are the equivalence classes associated with �n and � . The limit � is unique 
whereas � is unique only up to a positive scalar factor. It is not always tractable to 
check a convergence in the quotient space. However, there is an equivalent definition 
in the initial space R : {�n}n converges q − vaguely to � if there exists some scalar 
factors �n such that {�n �n}n converges vaguely to �:

The q-vague convergence can be considered as an extension of the narrow conver-
gence in the sense that if {�n}n and � are proper distributions and {�n}n converges 
narrowly to � then {�n}n converges q-vaguely to � . Note that the converse part holds 
if and only if {�n}n is tight (see Bioche and Druilhet 2016, Proposition 2.8).

(2)�n
q - vaguely
�����������������������������������→

n→+∞
� ⟺ �n(f )

vaguely
�������������������������→
n→+∞

�(f ) ∀f ∈ CK .

(3)𝜋n
q−vaguely
����������������������������������→
n→+∞

𝜋 ⟺ an𝜋n
vaguely
�������������������������→
n→+∞

𝜋 for some a1, a2,⋯ > 0 .
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When a sequence {�n}n of proper distributions converges q-vaguely to an 
improper distribution, then limn �n(K) = 0 for any compact K (Bioche and Druilhet 
2016, Proposition 2.11). The following lemma gives an apparently stronger, but in 
fact equivalent, result. It will be useful to establish our main result and to construct 
examples in Sects. 4.3 and 5.

Lemma 1 Let {�n}n be a sequence of proper distributions such that limn �n(K) = 0 
for any compact K. Then there exists a non-decreasing sequence of compact sets Kn 
such that ∪nKn = � and limn �n(Kn) = 0 . Moreover, Kn may be chosen such that, for 
any compact K, there exists an integer N such that K ⊂ KN.

Proof Let K̃m , m ≥ 1 , be an increasing sequence of compact sets with ∪mK̃m = � . 
For each m, limn �n(K̃m) = 0 , so there exists an integer Nm such that Nm > Nm−1 and 
�n(K̃m) ≤ 1∕m for n > Nm . Consider now such a sequence of integers Nm , m ≥ 1 . 
For any n, there exists a unique integer m such that Nm ≤ n < Nm+1 . We define Kn by 
Kn = K̃m . So, �n(Kn) = �n(K̃m) ≤ 1∕m . Since m increases with n, limn �n(Kn) = 0 . 
Furthermore, the sequence K̃m can be chosen such that, for any compact K, K is a 
subset of all but finitely many K̃m , (see e.g. Bauer 2001, Lemma 29.8). By construc-
tion, the same property holds for the sequence Kn .   ◻

Note that, limn �n(K) = 0 for any compact set K does not imply that {�n}n con-
verge q-vaguely, as shown in Sect. 4 on some examples.

2.2  Convergence to a FAP

Here, we consider proper distributions as special cases of FAPs. Denote by Fb the 
set of bounded real-valued measurable functions on � . A FAP � is a linear func-
tional on Fb which is positive, i.e., �(f ) ≥ 0 if f ≥ 0 , and which satisfies �(1) = 1 . 
Therefore, the set of FAPs is included in the topological dual of Fb equipped with 
the sup-norm. For any measurable set E ⊂ 𝛩 , we define �(E) = �(�E) , where 
�E(x) = 1 if x ∈ E and 0 otherwise. We also denote ∫ f (�) d�(�) = �(f ).

For most authors (see, e.g., Heath and Sudderth 1978), a FAP is a linear func-
tional on the set of bounded real-valued functions. Here, we do impose a measur-
ability condition, since we require proper distributions to be special cases of FAPs. 
In the case where � is a denumerable set equipped with the usual discrete topology, 
any function or set is measurable, and so, both definitions of FAPs are equivalent.

Let {�n}n be a sequence of FAPs. The usual convergence mode for FAPs is asso-
ciated with the weak* topology: a sequence {�n}n converges to � if limn �n(f ) = �(f ) 
for any f ∈ Fb.

When {�n}n does not converge, we may consider limit points, as proposed by 
Stone (1982) for denumerable sets and extended here to more general sets. The 
existence of limit points relies on the Banach-Alaoglu-Bourbaki theorem (see, e.g., 
Rudin 1991), since a FAP belongs to the unit ball in the dual of Fb , which is com-
pact for the weak∗-topology. Hence, for any sequence {�n}n of FAPs, there exists 
at least one limit point � which is defined as a FAP limit. We recall that � is a limit 
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point of {�n}n for the weak∗-topology if and only if for any integer p, any f1,… fp in 
Fb and any 𝜀 > 0 , there exists an infinite number of n such that ||�n(fi) − �(fi)

|| ≤ � , 
i = 1,… , p . Since Fb is not in general first-countable, there does not necessar-
ily exist a subsequence {�nk}k that converges to � . We can only say that, for any 
f1,… , fp in Fb , there exists a subsequence {�nk}k such that (�nk (f1),… ,�nk (fp)) con-
verges to (�(f1),… ,�(fp)).

When �n and � are proper distributions, then {�n}n converging narrowly to � does 
not imply that � is a FAP limit point of {�n}n . Therefore, unlike q-vague limits, FAP 
limit points cannot be considered as an extension of the narrow convergence.

For example, consider the proper distributions �n = �√
2∕n

 , where � is the Dirac 
measure. The sequence {�n}n converges narrowly to � = �0 but � is not a FAP limit 
point of {�n}n . To show this, consider f (�) = 𝟙ℚ(�) ∈ Fb , with ℚ the set of rational 
numbers, we have limn �n(f ) = 0 ≠ �(f ) = 1 . We can only say that any FAP limit 
point of the sequence {�n}n will coincide with � = �0 on the set Cb.

To consider a FAP limit as an extension of the narrow convergence, we should 
have defined FAPs on the space Cb rather than Fb . However, with this choice, �(E) is 
not well defined for all measurable sets E.

In the special case where � is a denumerable set, any real-valued function on � is 
continuous. So, if a sequence of proper distributions {�n}n converges narrowly to a 
proper distribution � , then � is a FAP limit point.

Another way to extend the notion of limit can be obtained by using the Hahn-
Banach theorem as follows (see Huisman 2016): let Sc be the set of f ∈ Fb such 
that limn �n(f ) exists. A FAP � is said to be an extended FAP limit of {�n}n if 
limn �n(f ) = �(f ) for any f ∈ Sc , and if �(f ) ≤ lim supn �n(f ) . The existence of a 
FAP � satisfying this requirement is guaranteed by the Hahn-Banach theorem (see 
Rudin 1991): define the linear function � on Sc by �(f ) = limn �n(f ) and the sub-
linear functional p(f ) = lim supn �n(f ) . Then, there exists a linear functional � on 
Fb that coincides with � on Sc and that satisfies �(f ) ≤ p(f ) on Fb . The condition 
�(f ) ≤ p(f ) implies that � is a FAP. Conversely, an extended FAP limit necessar-
ily satisfies �(f ) ≤ p(f ) . Replacing f by −f  gives �(f ) ≥ lim infn �n(f ) . Therefore, an 
extended FAP limit can be characterized by the following lemma:

Lemma 2 A FAP � is an extended FAP-limit of the sequence {�n}n if and only if 
for any f ∈ Fb

or equivalently if and only if for any measurable set E

Note that the sequence {�n}n converges to � for the weak∗ topology if and only if 
Sc = Fb . In general, an extended FAP limit is not unique and its existence relies on 
the axiom of choice.

The set of limit points of {�n}n is included in the set of extended FAP limits. 
The converse inclusion is false in general. Inequalities (4) or (5) hold for limit 

(4)lim inf
n

�n(f ) ≤ �(f ) ≤ lim sup
n

�n(f )

(5)lim inf
n

�n(E) ≤ �(E) ≤ lim sup
n

�n(E).
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points but are not sufficient to characterize them. It is easy to see that the closed 
convex hull of the set of limit points is included in the set of extended FAP limits. 
We conjecture that, conversely, the set of extended FAP limits defined by (4) is 
the closed convex hull of the set of limit points. As a simple example, consider 
the sequence {�n}n with �2n = �0 and �2n+1 = �1 . There are only two limit points 
�0 and �1 , whereas any � = ��0 + (1 − �)�1 , 0 ≤ � ≤ 1 is a extended FAP limit. In 
Sect.  4.1, we illustrate the difference between these two constructions of limits 
with another example.

Even if the notion of FAP limit points is more restrictive than the notion of 
extended FAP limit, the main results, especially Theorem 1, Corollary 1, Proposi-
tion 2, Lemmas 3 and 4 hold for both of them. In the following, we consider only 
FAP limit points.

2.3  FAP limit points versus q‑vague convergence

The fact that a sequence of proper distributions has both improper and FAP limit 
points may suggest a connection between the two notions as proposed heuristically 
by several authors, such as Levi (1980), Stone (1982) and Kadane et al. (1986). The 
following results show that this is not the case. Roughly speaking, it is shown that 
any FAP which is a limit point of some proper distribution sequence can be con-
nected to any improper prior by this mean.

Theorem 1 Let {�n}n be a sequence of proper distributions such that limn �n(K) = 0 
for any compact set K. Then, for any improper distribution �, it can be constructed 
a sequence {�̃n}n which converges q-vaguely to � and which has the same set of FAP 
limit points as {�n}n.

Proof For any FAP or any proper or improper distribution � , we define the distribu-
tion (�A �) by (�A �)(f ) = �(�A f ) where A is any measurable set. From Lemma 1, it 
can be constructed an exhaustive increasing sequence Kn of compact sets such that 
limn �n(Kn) = 0 . Put �n = �n(Kn) and define the sequence of proper distributions 
�̃n = �n

1

�(Kn)
�Kn

� + (1 − �n)
1

�n(K
c
n
)
�Kc

n
�n , with Kc the complement of K. By Lem-

mas   4 and   3 in “Appendix 1”, �̃n has the same FAP limit points as {�n} . By 
Lemma 5, �̃n converges q-vaguely to � .   ◻

Corollary 1 Let {�n}n be a sequence of proper distributions that converges 
q-vaguely to an improper distribution �(1). Then, for any other improper distribution 
�(2), it can be constructed a sequence {�̃n}n that converges q-vaguely to �(2) and that 
has the same FAP limit points as {�n}n.

We have shown that no direct link between an improper limit and a FAP limit 
point can be established. One can only say that if a sequence of proper distributions 
converges to an improper distribution, its FAP limit point � are diffuse, i.e. �(K) = 0 
for any compact set K.
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3  Uniform distribution on integers

In this section, we compare different notions of uniform distributions on the set 
ℕ of integers, by using several considerations such as limit of proper uniform 
distributions.

We also illustrate the fact that FAP uniform distributions are not well-defined 
objects (de  Finetti 1972,  pp.122, 224). Contrary to uniform improper distribu-
tions, FAP limit points of uniform distributions on an exhaustive sequence of 
compact sets are highly dependent on the choice of that sequence.

3.1  Uniform improper distribution

There are several equivalent ways to define a uniform improper prior on integers. 
These definitions lead to a unique, up to a scalar factor, distribution. The uni-
form distribution can be defined directly as a flat distribution, i.e., �(k) ∝ 1 for 
any integer k. It is the unique (up to a scalar factor) measure that is shift invari-
ant, i.e., such that �(k + A) = �(A) for any integer k and any set of integers A. The 
uniform distribution is also the q-vague limit of the sequence of uniform proper 
distributions on Kn = {0, 1,… , n} . More generally and equivalently, the uniform 
distribution is the q-vague limit of any sequence of proper uniform priors on an 
exhaustive increasing sequence {Kn}n of finite subsets of integers.

3.2  Uniform finitely additive probability

The notion of uniform finitely additive probabilities is more complex. Contrary to 
the improper case, there is no explicit definition since �(k) = 0 for any integer k. 
We present here several non equivalent approaches to define a uniform FAP. The 
first two ones can be found in Kadane and O’Hagan (1995) and Schirokauer and 
Kadane (2007).

3.2.1  Shift invariant (SI) uniform distribution

As for the improper case, a uniform FAP � can be defined as being any shift 
invariant FAP, i.e., a FAP satisfying �(A) = �(A + k) for any subset of integers A 
and any integer k. Such a distribution will be called SI-uniform. In that case, one 
necessarily has: �(k1 + k2 × ℕ) = k−1

2
 , for any (k1, k2) ∈ ℕ × ℕ∗ . In Kadane and 

O’Hagan (1995), the authors investigate the properties of FAPs satisfying only 
�(k1 + k2 × ℕ) = k−1

2
 , where the sets k1 + k2 × ℕ are called residue classes.
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3.2.2  Limiting relative frequency (LRF) uniform distributions

Kadane and O’Hagan (1995) consider a stronger condition to define uniformity. 
For a subset A, define its Limiting Relative Frequency LRF(A) by

when this limit exists. A FAP � on ℕ is said to be LRF uniform if �(A) = p when 
LRF(A) = p.

Let �n be the uniform proper distribution on Kn = {0, 1,… , n} , then LRF(A) = 
limn→∞ �n(A) . Therefore, any FAP limit point of �n is LRF uniform. In fact, a FAP 
� is LRF uniform if and only if it is an extended FAP limit of {�n}n.

It is worth noting that, unlike the q-vague limit,
FAP limit points are highly dependent on the choice of the increasing 

exhaustive sequence of finite sets Kn . Changing the sequence {Kn}n changes 
the notion of uniformity. For example, if �̃n is the uniform distribution on 
Kn = {2k ; 0 ≤ k ≤ n2} ∪ {2k + 1; 0 ≤ k ≤ n} , then limn �̃n(2ℕ) = 1 , whereas 
limn �n(2ℕ) = 1∕2.

3.2.3  Bernoulli Scheme (BS) uniform distribution

We propose here another notion of uniformity that is not dependent of the 
choice a particular increasing sequence of finite sets Kn as for the LRF uni-
formity. Consider a Bernoulli Scheme, that is, a sequence {Xk}k∈ℕ of i.i.d. 
Bernoulli distributed random variables with mean p ∈ [0, 1] . Define the ran-
dom set A(X) = {k ∈ ℕ, s.t. Xk = 1} . A FAP � is said to be BS-uniform  if, for 
any p ∈ [0;1] , �(A(X)) = p , almost surely. By the strong law of large numbers, 
LRF(A(X)) = p , almost surely.

Proposition 1 Let {Kn} be an increasing sequence of finite subsets of ℕ, with 
∪n∈ℕKn being infinite. Then, any FAP which is a limit point of the sequence �n of 
uniform distributions on Kn is BS-uniform.

When ∪n∈ℕKn = ℕ , this proposition shows that any FAP limit point of uniform 
distribution sequences is BS-uniform. In particular, a LRF uniform FAP is also 
BS uniform. However, if, for example, Kn is the set of even numbers less or equal 
to n, then any FAP limit point � of the sequence of uniform distributions on Kn is 
BS-uniform. However, � is not uniform on ℕ but uniform on 2ℕ . Therefore, BS 
uniformity looks much more like a necessary condition for a FAP to be uniform, 
than like a complete definition.

LRF(A) = lim
N→∞

#{k ≤ N, s.t. k ∈ A}

N + 1
,
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4  Comparison of convergence modes on examples

We consider here some examples that illustrate the difference between conver-
gence of proper distributions to an improper distribution and to a FAP.

4.1  FAP limit points on ℕ

For a sequence {�n}n of proper distributions on ℕ , it is known that there does not 
necessarily exist a q-vague limit, but if it exists, it is unique up to a scalar factor, 
i.e., it is unique in the projective space of Radon measures. At the opposite, we 
have seen that a FAP limit point always exists but is not necessarily unique.

We illustrate the non-uniqueness of FAP limit point with an extreme case. Con-
sider the sequence of proper distributions �n = �n , where �n is the Dirac measure 
on n. This sequence has no q-vague limit since �n(k) = 0 for n > k.

Let � be a FAP limit points. For any subset A, there exists a subsequence 
{�nk} such that �nk (A) convergences to �(A) . So, �(A) ∈ {0, 1}. Therefore � is any 
remote FAP, that is a diffuse FAP such that �(A) ∈ {0, 1} , as defined by Dubins 
(1975, p. 92). This also proves the existence of remote FAPs. Note that a remote 
FAP is neither BS uniform nor SI and therefore cannot be LRF uniform. As a 
remark, the extended FAP limits of �n are all the diffuse FAPs.

4.2  Convergence of sequence of Poisson distributions

We consider here the sequence {�n}n of Poisson distributions with mean n. 
Although limn �n(K) = 0 for any finite set K, this sequence of proper distributions 
does not converge q-vaguely to any improper distribution (Bioche and Druilhet 
2016,  §  5.2). As a remark, let �̃n be the shifted measures defined on the set of 
positive and integers integers ℤ by �̃n(B) = �n(B + n) , where �n can be seen as 
a measure on the set ℤ , with �n(k) = 0 for k < 0 . Then, using the approximation 
of the Poisson distribution by an normal distribution, it can be shown that the 
sequence �̃n converges q-vaguely to the improper uniform measure on the set ℤ.

We consider now the FAP limit point of the sequence {�n}n . The next result 
shows that these limits have some properties of uniformity described in Sect. 3 
but not all of them. The proof is given in “Appendix 2”.

Proposition 2 Any FAP � which is a limit point of the sequence {�n}n of Pois-
son distribution with mean n is SI-uniform and BS-uniform but not necessarily 
LRF-uniform.

Therefore, the FAP limit points of the Poisson distribution sequence are exam-
ples of SI- and BS-uniform distributions that are not LRF uniform. Kadane and 
Jin (2014) give another example of SI but not LRF uniform FAPs using paths of 
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random walks. Even if they consider FAPs on a subset of bounded functions, it 
can be extended to Fb by using the Hahn-Banach theorem similarly to Sect. 2.2.

4.3  FAP versus q‑vague convergence of uniform proper distributions

To illustrate the fact that any FAP limit point can be related with any improper distri-
bution, consider again the sequence {�n}n of Poisson distributions with mean n and 
let �0 be any improper distribution on the integers. Since limn �n(K) = 0 for any finite 
set, from Lemma 1, we can construct an exhaustive sequence of finite set Kn such that 
limn �n(Kn) = 0 . Put Kn = {k ∈ ℕ, k ≤ n∕2} , which satisfies this condition. Define 
the sequence of proper distributions �̃n by:

for any set A. From Theorem 1, {�̃n}n converges q-vaguely to �0 and has the same 
FAP limit points as {�n}n.

As another example, let {�n}n be the sequence of uniform distributions on 
{0, 1,… , n} and choose Kn = {k ∈ ℕ, k ≤ √

n} . Then, limn �n(Kn) = 0 . Therefore, 
for any improper distribution �0 on the set of integers, the sequence constructed as in 
(6) has the same FAP limit points as those of the sequence of uniform distributions 
{�n}n and converges q-vaguely to �0 . This shows again the difficulty to connect the uni-
form improper distribution and uniform FAPs by limits of proper distributions.

4.4  Convergence of beta distributions

In this section, we consider the limit of the sequence of Beta distribution �n = 
Beta(an, bn) defined on � =]0, 1[ when an and bn go to 0. We will see that contrary to 
the improper limit, the FAP limit points depend on the way an and bn go to 0. This illus-
trates again the difference between the two kinds of limits.

The density of a beta distribution Beta(a, b) is given by

where �(a, b) is the beta function.
From Bioche and Druilhet (2016), the unique (up to a scalar factor) q-vague limit of 

Beta(an, bn) when an and bn go to 0 is the Haldane improper distribution:

The q-vague limit gives no information on the relative concentration of the mass 
around 0 and 1: for 0 < u < v < 1 , �H(]0, u]) = �H(]v, 1[]) = +∞ . To explore this 
concentration, we temporarily replace the space � by � = [0, 1] . This has no conse-
quence on the Beta distributions but the Haldane distribution is no longer a q-vague 
limit of the sequence. Put cn = an∕bn and assume that {cn}n converges to some 

(6)�̃n(A) = �n(Kn)
�0(A ∩ Kn)

�0(Kn)
+ (1 − �n(Kn))

�n(A ∩ Kc
n
)

�n(K
c
n
)

�a,b(x) =
1

�(a, b)
xa−1(1 − x)b−1 for x ∈]0;1[

�H(x) =
1

x(1 − x)
for x ∈]0;1[.
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c ∈ [0, 1] . The sequence {�n}n converges narrowly, and hence q-vaguely, to the 
proper distribution �̃ =

1

1+c
�0 +

c

1+c
�1 . Contrary to the Haldane prior, �̃  shows how 

the mass concentrates on the boundary of the domain, but gives no information on 
the behavior of the sequence inside the domain. Note that the Haldane distribution is 
not a Radon measure on � since �H([0, 1]) = +∞ where [0,  1] is a compact set. 
Therefore �H cannot be a candidate for the q-vague limit on �.

We now consider the FAP limit points on � =]0, 1[ of �n , and we show that they 
give an information similar to that given by �̃  on the way the mass concentrate on 
the boundary of the domain. Again, we assume that cn = an∕bn converges to some 
c ∈ [0, 1] . Easy calculations show that for any 0 < 𝜀 < 1 limn �n(]0, �[) =

1

1+c
 and 

limn �n(]1 − �, 1[) =
c

1+c
 . Therefore, for any FAP limit point � and for any � ∈]0, 1[ , 

we have �(]0, �[) = 1

1+c
 and �(]1 − �, 1[) =

c

1+c
 , with �([u, v]) = 0 for 0 < u < v < 1.

5  Expected logarithmic convergence

In Bayesian statistics, consider a statistical model p(x|�) and an improper prior �(�) 
on � . Define the truncated proper prior �n(�) ∝ �(�) ��∈Kn

 , for some exhaustive 
increasing sequence of compact sets {Kn}n . From Berger et al. (2009), a sequence of 
posteriors distributions �n(�|x) is said to be expected logarithmically convergent to 
�(�|x) if

where pi(x) = ∫
�
p(x|�)�i(�)d� , and �(m1,m2) denotes the Kullback-Leibler dis-

tance between probability measures m1 and m2 . The prior � is said to be permissible 
w.r.t. p(x|�) if �(�|x) is proper and if there exists some exhaustive sequence of com-
pact sets {Kn}n such that �n(�|x) is expected logarithmically convergent to �(�|x) . 
Note that �n(�|x) converges q-vaguely to �(�|x) , provided that p(x|�) is continuous 
w.r.t. � for any x (Bioche and Druilhet 2016, Proposition 3.1).

An open problem is to know whether this property is always independent from 
the choice of the sequence of compact sets {Kn}n . We present here a situation where 
it is not.

The construction of this counter-example relies on the fact that the tail behavior 
of a sequence of distributions is not directly related to its q-vague convergence as 
explained in Sect. 2.3.

Consider the following model: for any integers x and � (included negative inte-
gers) define:

lim
i→∞∫

X

pi(x)�(�(⋅|x),�i(⋅|x))dx = 0 ,

p(x��) =
⎧⎪⎨⎪⎩

1

3
if � ≥ 1, x ∈ {

�
�

2

�
, 2�, 2� + 1}

1 if � ≤ 0, x = �

0 otherwise
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where [l] the integer part of l, with the particular case [1∕2] = 1 . For � ≤ 0 , 
x ≤ 0 , we have a deterministic model. Remark also that for x, � ≥ 1 , we have the 
equivalence:

Consider the flat prior �(�) ∝ 1 . If we consider only x, � ≥ 1 , this model corresponds 
to a model proposed by Fraser et al. (1985) and used by Berger et al. (2009) to illus-
trate their approach.

Let Kn = {−an ≤ � ≤ bn} be an exhaustive sequence of compact sets, with 
an, bn → +∞ . Denote In = ∫

X
pn(x)�(�(⋅|x),�n(⋅|x))dx . We have:

where �(bn) = 1 if bn is even, and 0 if bn is odd. Therefore, as an and bn tend to infin-
ity, In ∼

ln(3)

2

bn

an+bn+1
.

When bn∕an tends to 0, limn→∞ In = 0 , which gives an expected logarith-
mically convergent sequence of posteriors. However, taking an = bn leads to 
limn→∞ In =

ln(3)

4
 , and the sequence of corresponding posteriors is not expected loga-

rithmically convergent.
This example shows that at least for some statistical models p(x|�) and improper 

prior �(�) , the notion of expected logarithmic convergence may depend on the 
choice of the sequence of compact sets. It could be interesting to characterizes situa-
tions where it does not. This is left for future works.

6  Conclusion and perspectives

In this paper, we have shown that the characteristics of a sequence of proper distri-
butions given by its FAP or improper limits are quite different. As a consequence, 
there is no clear link between improper distributions and FAPs: a diffuse FAP can-
not be considered as the counterpart of some improper distribution.

In Bayesian statistics, improper distributions are commonly used in practice, even 
if some paradoxes may occur. They are easy to interpret either through their den-
sities or as conditional probabilities (Taraldsen and Lindqvist 2016). At the oppo-
site, diffuse FAPs are never used in practice, mainly because their constructions are 
always implicit and because diffuse FAPs give information only on the boundary of 
the parameter space, which is difficult to construe.

However, FAPs may provide a better understanding of some limit behavior 
that are not captured by improper distributions. The fact that our main results 
rely on explicit constructions of proper prior sequences may be useful to pro-
vide counterexamples. For example, in Sect.  5, we have shown that the notion 
of expected logarithmic convergence may depend on the sequence of compact 

(
x ∈

{[
�

2

]
, 2�, 2� + 1

})
⇔

(
� ∈

{[
x

2

]
, 2x, 2x + 1

})
.

In =
1

an + bn + 1

⎛
⎜⎜⎜⎝
ln(3)

�
2bn + 1 −

�
bn

2

��

3
+

ln(3∕2)

3
�(bn)

⎞
⎟⎟⎟⎠
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sets. We hope to use our results in future works to have a better understanding of 
some paradoxical phenomena in Bayesian statistics, such as strong inconsistency 
or the marginalization paradox.

Appendix 1

We establish some lemmas useful to prove Theorem  1. The first one is 
straightforward.

Lemma 3 Let {�(1)
n
}n and {�(2)

n
}n be two sequences of proper distributions and 

0 ≤ �n ≤ 1 be a sequence of scalars that converges to 0. Then, the sequence defined 
by �̃n = �n�

(1)
n

+ (1 − �n)�
(2)
n

 has the same FAP limit points as {�(2)
n
}n.

Proof For any f1,… , fp ∈ Fb , then (�(2)
nk
(f1),… ,�(2)

nk
(fp)) converges to 

(�(f1),… ,�(fp)) iff (�̃nk (f1),… , �̃nk (fp)) converges to (�(f1),… ,�(fp)) . The result fol-
lows.   ◻

Lemma 4 Let {�n}n be a sequence of proper priors and Kn be a non-decreasing 
sequence of compact sets such that limn �n(Kn) = 0, then the sequence defined by 
�̃n =

1

�n(K
c
n
)
�Kc

n
�n has the same FAP limit points as {�n}n.

Proof First, note that {�n}n is not defined when �n(Kn) = 1 , but this cannot occur 
more than a finite number of times. For any f ∈ Fb , �n(f ) = �Kn

�n(f ) + �Kc
n
�n(f ) = 

�n(�Kn
f ) + �n(K

c
n
)�̃n(f ) . Since f is bounded, limn �n(�Kn

f ) = 0. Moreover, 
limn(K

c
n
) = 1 . Thus, for any f1,… , fp ∈ Fb , (�nk (f1),… ,�nk (fp)) converges to 

(�(f1),… ,�(fp)) iff (�̃nk (f1),… , �̃nk (fp)) converges to (�(f1),… ,�(fp)) .   ◻

At the opposite of Lemma 4, the following lemma shows that if we consider 
the restriction of a sequence {�n}n of a proper or improper distribution on a 
exhaustive increasing sequence {Kn}n of compact sets, we preserve the q-vague 
limits.

Lemma 5 Let Kn be a non-decreasing sequence of compact sets such that ∪nKn = � 
and such that, for any compact K, there exists N such that K ⊂ KN. A sequence {�n}n 
of Radon measures converges q-vaguely to the Radon measure � if and only if 
�̃n =

1

�n(Kn)
�Kn

�n converges q-vaguely to �.

Proof Assume that �n converges q-vaguely to � , then there exists some positive 
scalars {an}n such that for any f in CK , limn an�n(f ) = �(f ) . Put ãn = an �n(Kn) and 
denote by Kf  a compact set that includes the support of f. Then, there exists an inte-
ger N such that Kf ⊂ Kn for n > N . Therefore, for n > N , ãn�̃n(f ) = an�n(f ) . The 
result and its reciprocal follow.  ◻
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Appendix 2

We prove here Proposition 2 of Sect. 4.2.
In order to show that � is SI-uniform, we consider �n as a distribution on the set 

of positive and negative integers, extending it by 0 on the non-positive integers. 
Define by �(k)

n
 the shifted distribution: �(k)

n
(A) = �n(A + k) , for any subset A of the 

set of integers. One knows that ‖�(k)
n

− �n‖TV ≤ k√
2�n

 , where ‖ ⋅ ‖TV is the total vari-
ation norm. Therefore, for any subset of ℕ , limn→∞ |�n(A + k) − �n(A)| = 0 . Letting 
n go to infinity, we deduce that, for any FAP limit point � of �n , and any integer k: 
�(A + k) = �(A).

The fact that � is BS-uniform comes from an easy adaptation of the Hoeffding 
inequality in that context. Let (Xk)k∈ℕ be a Bernoulli scheme, of parameter p, and 
denote by ℙ the associated probability. Hoeffding inequality gives, that, for any n:

for some positive constant c. The expected conclusion is then obtained thanks to the 
Borel-Cantelli lemma.

The fact that some of the limit points � of {�n}n are not LRF uniform is a direct 
consequence of the following lemma.

Lemma 6 For any 0 ≤ p, p′ ≤ 1, there exists a set A and some FAP limit points � of 
{�n}n such that LRF(A) = p and �(A) = p�.

Proof First note that, for any set A′ , LRF(A�) = p if, and only if, ♯{k ≤ n, k ∈ A�} = 
pn + o(n) . Therefore, for any set A with LRF(A) = p and for any set B such that 
♯{k ≤ n, k ∈ B} = o(N) , one has both LRF(A ∪ B) = p and LRF(A⧵B) = p . Take 
now for set B the following:

For that B, one has:

and thus LRF(B) = 0 . However, �4k (B) converges to 1. Indeed, if Uk is some random 
variable with law �4k , one has:

The right-hand side term above converges to 1 thanks to the central limit theorem. 
Hence LRF(A ∪ B) = LRF(A⧵B) = p while �4k (A ∪ B) converges to 1, and �4k (A⧵B) 

ℙ

�����
∞�
k=0

e−n
kn

n!
(Xk(�) − p)

���� ≥ t

�
≤ 2e−2c

√
2�n t2 ,

B =
⋃
k∈ℕ

{
u ∈ ℕ∶ 4k − 2kk ≤ u ≤ 4k + 2kk

}
.

lim sup
n→∞

♯{k ≤ n, k ∈ B}

n + 1
= lim

k→∞

∑k

i=0
2i+1i

4k + 2kk
≤ lim

k→∞

(k + 1)2k+2

4k
= 0,

�4k
��

u ∈ ℕ∶ 4k − 2kk ≤ u ≤ 4k + 2kk
��

= ℙ

�
Uk − 4k√

4k
∈
�
− k; k

��
.
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converges to 0. Now, for any p� ∈ [0;1] , choose two numbers a < b , so that 
p� = ∫ b

a

e−u
2∕2√
2�

du . Take the set B′ to be:

then LRF(B�) = 0 again and �4k (B�) converges to p′ , still thanks to the central limit 
theorem. Let A = (A�⧵B) ∪ B� . Then LRF(A) = p and limk→∞ �4k (A) = p� . Now, any 
FAP limit point � of subsequence {�4k}k is also a FAP limit point of {�k}k . Hence, � 
is SI-uniform and BS-uniform, but one has �(A) = p� and LRF(A) = p.  ◻
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