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APPENDIX A: DERIVATION OF `0j (t), j = 1, 2, 3, . . .`0j (t), j = 1, 2, 3, . . .`0j (t), j = 1, 2, 3, . . .
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APPENDIX B: ADDITIONAL INTERPRETATION OF THE WLRWLRWLR STATISTIC

Hereunder, we present another possible interpretation of Lj . Namely, we will express it in terms

of the weighted differences between observed and conditionally expected failures (cf., for instance,

Tarone and Ware, 1977, p. 158). For this purpose, let X1:1, . . . , Xn1:n, Xn1+1:n, . . . , Xn:n be the

order statistics and ∆1:1, . . . ,∆n1:n,∆n1+1:n, . . . ,∆n:n be their concomitants, which are also called

the induced order statistics (i.e., ∆i:n is the censoring status of Xi:n). Let O1i be the observed

numbers of failures in the first group at Xi:n and E1i = (O1i + O2i)Y1(Xi:n)/Y (Xi:n) be their

indirect standardization, where O2i is defined similarly to O1i, i = 1, . . . , n. Actually, E1i is the
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expectation of the hyper-geometric distribution with the parameters (1, Y1(Xi:n), Y (Xi:n)), which is

the conditional distribution of O1i given Oi = O1i +O2i, Y1(Xi:n), and Y (Xi:n). It means that E1i

is strictly related to the contingency table (see Table S1) corresponding to Xi:n such that ∆i:n = 1,

1 ≤ i ≤ n.

Table S1 Contingency table corresponding to the uncensored observation Xi:n

Sample

Failure 1 2 Total

Yes O1i O2i O1i +O2i = 1

No Y1(Xi:n)−O1i Y2(Xi:n)−O2i Y (Xi:n)− 1

Total Y1(Xi:n) Y2(Xi:n) Y (Xi:n)

Then, by (5) and (12),
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)
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where X?
n = min{max1≤i≤n1 Xi,maxn1<i≤nXi}. In that sense, Lj is the rescaled sum of the

weighted differences between observed and conditionally expected failures, while the number of not

vanishing summands is the number of the uncensored observations in both samples smaller than

or equal to X?
n, and thereby, the number of distinct failure times in the pooled sample, which does

not exceed X?
n.

APPENDIX C: PROOFS

Proof of Theorem 1.

First, we shall show that Cj
D−→ N(0, 1), j = 1, 2, 3 . . . . For this purpose, we exploit part (a)

of Corollary 2.5, p. 52, Janssen and Neuhaus (1997). Recall that F = ηF1 + (1 − η)F2, with

η = limn→∞(n1/n), η ∈ (0, 1), H(x) = 1− η[1− F1(x)][1−G1(x)]− (1− η)[1− F2(x)][1−G2(x)],

x ∈ [0,∞), and H−1(t) = inf{x : H(x) ≥ t }, t ∈ [0, 1). Since the assumptions of Theorem 2.2

(a), ibidem, are satisfied with the weight w(·) = `j(F (H−1(·))), cf. (10.40), (10.42) in supplement

to Brendel et al. (2014), and the assertions of part (a) of the Corollary also hold, we obtain that

Cj
D−→ N(0, 1), j = 1, 2, 3 . . . .
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Now, it is enough to show that J(n, c)
P−→ 1 for any fixed c > 0, and that S

P−→ 1. For this

purpose, by (19),

P ( J(n, c) = 0 ) = P ( max
1≤j≤d

∣∣Cj∣∣ >√c log n ) ≤
d∑
j=1

P (
∣∣Cj∣∣ >√c log n )→ 0, as n→∞,

because d is fixed, while Cj = OP (1). The same argument entails that

P (S ≥ 2) = P (∪dk=2{S = k}) = P (∪dk=2{Wk − k log n > W1 − log n}) ≤

≤
d∑

k=2

P
( k∑
j=2

C2
j > (k − 1) log n

)
→ 0, as n→∞,

and completes the proof.

Proof of Theorem 2.

Let j0 be the first index such that γj0 :=
∫ τ
0 `

0
j0

(F (x)) π1(x)π2(x)π(x) d[Λ1(x) − Λ2(x)] 6= 0. Then∣∣Lj0∣∣ =
√
n1n2/n

∣∣γ̂j0∣∣ P−→ +∞, as n → +∞, because γ̂j0
P−→ γj0 . Since σ̂j0

P−→ vj0 , which is

positive and finite, where v2j0 =
∫ τ
0

[
`0j0(F (x))

]2 π1(x)π2(x)
π(x)

dH1(x)
π(x) , while H1 is the subdistribution

function of the form H1(x) = η
∫ x
0 (1−G1(y))dF1(y) + (1− η)

∫ x
0 (1−G2(y))dF2(y), y ∈ [0,∞), we

have
∣∣Cj0∣∣ P−→ +∞. As a result,

P ( J(n, c) = 0 ) = P ( max
1≤j≤d

∣∣Cj∣∣ >√c log n ) ≥ P (
∣∣Cj0∣∣ >√c log n ) =

= P ( |γ̂j0 |/σ̂j0 >
√
c log n/

√
n1n2/n )→ 1, as n→∞.

Thereby,

P (T ≥ j0 ) = P (T ≥ j0, J(n, c) = 0 ) + oP (1) = P (A ≥ j0 ) + oP (1) =

= P (∪k≥j0 ∩l<j0 {Wk − 2k ≥Wl − 2l} ) ≥ P (∩l<j0{Wj0 − 2j0 ≥Wl − 2l} ) ≥

≥ P (Wj0 − 2j0 ≥Wj0 − 2 ) = P (C2
j0 ≥ 2(j0 − 1))→ 1, as n→∞,

and the proof is complete.

Proof of (ii) and (iii) of Lemma 2.

Since the assumptions of Theorem 1 of Janssen and Mayer (2001) are satisfied, asymptotic stan-

dard normality of the permutation version of the components Cj , j = 1, 2, 3, . . . , together with the

reasoning like in the proof of Theorem 1 above, provide the asymptotic chi-square distribution with

one degree of freedom of the permutation version of the test statistic WT (DDD; (XXX(),∆∆∆())). The above

and Lemma 1 in Janssen and Pauls (2003) yield the property (ii). In consequence, it also entails (iii).

3



APPENDIX D: ALGORITHM FOR CALCULATION AN EMPIRICAL POWER

FUNCTION

1. Generate (Xo
li, Uli), i = 1, . . . , nl, from (Fl, Gl), l = 1, 2.

2. Define (Xli,∆li) = (min{Xo
li, Uli},1(Xo

li ≤ Uli)), i = 1, . . . , nl, l = 1, 2.

3. On their basis, calculate a value of the statistic WT .

4. Denote the pooled sample from step 2 as (XXX,∆∆∆) = ((X1,∆1), . . . , (Xn,∆n)).

5. Draw without replacement n1 pairs (X(1)X(1)X(1),∆(1)∆(1)∆(1)) = ((X(1),∆(1)), . . . , (X(n1),∆(n1))), which

constitute the first group, from (XXX,∆∆∆), and treat the remaining observations (X(2)X(2)X(2),∆(2)∆(2)∆(2)) =

((X(n1+1),∆(n1+1)), . . . , (X(n),∆(n))), as the second group.

6. On the basis of (X(1)X(1)X(1),∆(1)∆(1)∆(1)) and (X(2)X(2)X(2),∆(2)∆(2)∆(2)), calculate a value of the test statistic WT , say,

W
(1)
T .

7. Repeat steps 5-6, npr [number of permutation runs, in our simulation npr = 1000] times,

obtaining W
(1)
T , . . . ,W

(npr)
T .

8. Find a permutation critical value, i.e., the permutation (1− α)-quantile of the WT statistic

q
(1)
WT

(1− α) = W
(a:npr)
T + (1− b)[W (a+1:npr)

T −W (a:npr)
T ],

where a = npr−bα(npr+ 1)c, b = α(npr+ 1)−bα(npr+ 1)c, while W
(a:npr)
T is the ath order

statistic from the sample W
(1)
T , . . . ,W

(npr)
T .

9. If WT > q
(1)
WT

(1− α), reject H and remember 1, otherwise, accept H and remember 0.

10. Repeat steps 1-9 nr [number of runs, in our simulation nr = 1000] times.

11. Estimate the power function in the point (F1, G1;F2, G2) as

̂Powerfunction(F1, G1;F2, G2) =
number of 1s

1000
=

number of rejections of H
number of runs

.

Remark S1.

The above algorithm works well if at least one observation in each sample is uncensored. This is a

natural silent assumption imposed in the survival analysis setting. In the case when ∆(1)∆(1)∆(1) = 000n1 or

∆(2)∆(2)∆(2) = 000n2 , we skip such a sample and repeat step 5, once more. Also, conducting the simulation

study one can observe that all the observations in one sample are censored, cf. point 4, above.

Then, we also need to skip such a sample and repeat steps 1–4, again. In our numerical experiment

demonstrated in the paper, such a situation only occurs under small sample sizes, i.e., n1 = n2 = 13.

Such a slight modification of the algorithm also concerns the remaining solutions.
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APPENDIX E: DESCRIPTION OF THE COMPETITIVE SOLUTIONS

First, recall that τ̂ = inf{x : Y1(x)Y2(x) = 0}.

The Gehan (1965) test is based on the statistic

G =

√
n

n1n2

∫ τ̂
0
Y (x)
n

Y1(x)Y2(x)
Y (x)

(
dN1(x)
Y1(x)

− dN2(x)
Y2(x)

)
√

n
n1n2

∫ τ̂
0

[
Y (x)
n

]2
Y1(x)Y2(x)

Y (x)
dN(x)
Y (x)

,

while the Mantel (1966) test is based on the statistic

M =

√
n

n1n2

∫ τ̂
0
Y1(x)Y2(x)

Y (x)

(
dN1(x)
Y1(x)

− dN2(x)
Y2(x)

)
√

n
n1n2

∫ τ̂
0
Y1(x)Y2(x)

Y (x)
dN(x)
Y (x)

.

The statistic M is the first component of the data-driven statistic WT . In both cases, we reject the

null hypothesis for large values of the square of the respective statistics.

The Renyi-type Kolmogorov-Smirnov (Gill, 1980) statistic of the form

R = sup
t∈[0,τ̂)

|
∫ t
0
Y1(x)Y2(x)

Y (x)

(
dN1(x)
Y1(x)

− dN2(x)
Y2(x)

)
|√∫ τ̂

0
Y1(x)Y2(x)

Y (x)
dN(x)
Y (x)

.

Large values of the R statistic certifies the alternative.

The Fleming and Harrington (1991), p. 257, statistic from the Gp,q family with p = 0, q = 1

FH =

√
n

n1n2

∫ τ̂
0 F̂ (x)Y1(x)Y2(x)Y (x)

(
dN1(x)
Y1(x)

− dN2(x)
Y2(x)

)
√

n
n1n2

∫ τ̂
0 [F̂ (x)]2 Y1(x)Y2(x)Y (x)

dN(x)
Y (x)

.

We reject the null hypothesis when FH2 is large enough.

The Lin and Wang (2004) proposal of the form

LW =
L̃W − E[L̃W ]√

V ar[L̃W ]

, where L̃W =

n∑
i=1

[O1i − E1i]
2∆i:n,

cf. formula (S1) in Appendix B. An explicit form of the expectation and variance of the L̃W

statistic can be found in the paper ibidem p. 490. Also, cf. Koziol and Jia (2014), p. 2, where the

corrected form of the variance has been provided. When LW 2 exceeds qχ2
1
(1−α), we infer that the

alternative is true.

The Qiu and Sheng (2008) test is a two-stage procedure employing the log-rank test and a test

focused on detection crossing hazard rates. To save space, we do not present here the definition of

the procedure, but we send a reader to pp. 194-197 of the aforementioned paper. For verification

of the null hypothesis H, we use the function twostage from the package TSHRC in the following

configuration:

twostage(XXX, ∆∆∆, ZZZ, nboot = 1000, alpha = 0.05, eps = 0.1)[[3]],
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whereXXX = (X1, . . . , Xn1 ;Xn1+1, . . . , Xn), ∆∆∆ = (∆1, . . . ,∆n1 ; ∆n1+1, . . . ,∆n), whileZZZ = (1, . . . , 1; 0, . . . , 0)

is the group indicator (i.e., 1 for the first group and 0 for the second one), nboot is the number of

the bootstrap replications, alpha is the fixed significance level α, and eps means ε, which is one

of the parameters describing the second stage procedure. For more comments, see the description

of the package and the related paper. The function returns p-value of the two-stage test, which we

use in the sequel. We will denote this procedure as QS.

The next competitor will be the so-called improved log-rank-type test using adaptive weights

proposed by Yang and Prentice (2010). Just like above, we use, for the inference, the ready function

YPmodel.adlgrk from the package YPmodel. For this purpose, we built a data frame

data.set = data.frame(V1 = XXX, V2 = ∆∆∆, V3 = ZZZ).

Then, the function

YPmodel.adlgrk(data=data.set)$pval

returns the p-value of the adaptively weighted log-rank test, calculated using the formula (19), p.

33, Yang and Prentice (2010), based on the test statistic given by the left-hand side of the inequality

(15), p. 32, with Φ1 and Φ2 estimated as described is section 2.3 of that paper. In the sequel, we

will denote this procedure as Y P .

The Liu and Yin (2017) statistic has the form

LY = max
1≤j≤n

{
L̃Y j ∆j:n

}
,

where

L̃Y j =

[
j∑
i=1

(O2i − E2i)∆i:n

]2 ( j∑
i=1

Y1(Xi:n)Y2(Xi:n)Oi[Y (Xi:n)−Oi]
Y 2(Xi:n)[Y (Xi:n)− 1]

)−1
+

 n∑
i=j+1

(O2i − E2i)∆i:n

2  n∑
i=j+1

Y1(Xi:n)Y2(Xi:n)Oi[Y (Xi:n)−Oi]
Y 2(Xi:n)[Y (Xi:n)− 1]

−1 ,
cf. the definition on pp. 403-404 of the above paper. We reject the null hypothesis for large values

of the LY statistic.

To define the nonparametric combination test of Arboretti et al. (2018), NPC for short,

we introduce a technique of calculation of the p-values of the related test. For this purpose, we

consider the Mantel (1966) statistic stressing its dependence from τ̂ and ∆∆∆, i.e, M = M(τ̂ ,∆∆∆). Let

M1 = M(∞,∆∆∆) and M0 = M(∞,111n −∆∆∆), where 111n is the vector (1, . . . , 1) of the length n. First,

we calculate the permutation p-values of M1 and M0 as

pMk
=

0.5 +
∑npr

s=1 1(|M (s)
k | ≥ |M

(0)
k |)

npr + 1
, k = 0, 1,

where npr is the number of the permutations runs, M
(0)
k is a value of the Mk statistic calculated

on the basis of the data, while M
(s)
k is a value of the Mk statistic calculated on the basis of the sth
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permutation of the data at hand. Next, we compute the auxiliary quantities

ξ
(s)
k =

0.5 +
∑npr

j=1,j 6=s 1(|M (j)
k | ≥ |M

(s)
k |)

npr + 1
, s = 1, . . . , npr, k = 0, 1.

The empirical p-value of the NPC test with the Tippet combination function is defined as

pNPC =
0.5 +

∑npr
s=1 1(min{ξ(s)1 , ξ

(s)
0 } ≤ min{pM1 , pM0})

npr + 1
.

It should also be mentioned that if in M
(s)
1 = M(∞,∆(s)∆(s)∆(s)), a part of the vector ∆(s)∆(s)∆(s) corresponding

to the first or second sample is equal to 000nl
or 111nl

, l = 1, 2, respectively, we exclude such a permu-

tation from the calculations as suggested in Arboretti et al. (2018). See the related paragraph in

section 3.3 of the paper ibidem.

APPENDIX F: DESCRIPTION OF THE R CODE

In a separate R file, a computer program, enabling to compute values of the statistic WT and the

related permutation p-values is presented. The auxiliary functions permitting to calculate value of

the Laguerre polynomial Lj and the standardized weighted log-rank statistic Cj are also given.

The notation used in the program is similar to that used in the paper. Let

X1 = (x11, . . . , x1n1) and X2 = (x21, . . . , x2n2)

together with

Delta1 = (∆11, . . . ,∆1n1) and Delta2 = (∆21, . . . ,∆2n2)

be the vectors of the observations. Let n1 = n1, n2 = n2, and n = n be the sample size in the first,

second, and pooled sample, respectively.

We start the code with the function pol.L returning the value of the jth Laguerre polynomial in

the point x. Cf. formula (7) in the paper. Next, we introduce the function st.wlr.test which re-

turns the value of the component Cj , see formula (14), where j = nr. Finally, given c and d(n) = d

(in the routine, c and d, respectively), the procedure W.T.test provides the value of the statistic

WT , cf. (16) and (21), while the function p.value W.T.test yields the p-value of the related permu-

tation test based on npr permutation runs. Cf. steps 1–7 of the algorithm described in Appendix D.

APPENDIX G: POWER COMPARISONS, G1 6= G2G1 6= G2G1 6= G2

Here, we present the results of the simulation study briefly discussed in Section 4.3.2.
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A10 : Exp(1)/Exp(1.5), G1 ∼ U(0, 1.5), G2 ∼ U(0, 2.5), [52%, 26%]
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A11(0.2, 0.4) : E(2, 0.75, 1)/E(0.75, 2, 1), G1 ∼ U(0, 1.5), G2 ∼ U(0, 2.5), [45%, 34%]
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A12(0.1, 0.4, 0.7) : E(2, 3, 0.75, 1)/E(2, 0.75, 3, 1), G1 ∼ U(0, 1.5), G2 ∼ U(0, 2.5), [32%, 27%]
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Figure S1 Left panel: Survival functions S1 (—), S2 (- -), in the first and second sample,

respectively. The bars represent the average values of the components Cjs, j = 1, . . . , 12, under

n = 200. Right panel: Empirical powers against n; α = 0.05; n1 = n2; d = 12; c = 2. Based on

1000 MC runs and 1000 permutation/bootstrap runs. Powers multiplied by 100.
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A13(0.2, 0.6, 0.9) : E(2, 3, 0.75, 1)/E(2, 0.75, 3, 1), G1 ∼ U(0, 1.5), G2 ∼ U(0, 2.5), [30%, 26%]
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A14(0.6) : E(2, 4)/E(2, 0.4), G1 ∼ U(0, 1.5), G2 ∼ U(0, 2.5), [28%, 30%]
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A15(0.1, 0.4, 0.5, 0.7) : E(2, 2, 2, 4, 4)/E(2, 3, 0.75, 0.75, 1), G1 ∼ U(0, 1.5), G2 ∼ U(0, 2.5), [27%, 22%]
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Figure S2 Left panel: Survival functions S1 (—), S2 (- -), in the first and second sample,

respectively. The bars represent the average values of the components Cjs, j = 1, . . . , 12, under

n = 200. Right panel: Empirical powers against n; α = 0.05; n1 = n2; d = 12; c = 2. Based on

1000 MC runs and 1000 permutation/bootstrap runs. Powers multiplied by 100.
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A16 : Exp(1)/LH(0.3, 1), G1 ∼ U(0, 1.5), G2 ∼ U(0, 2.5), [52%, 40%]
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A17(0.7, 1) : Exp(1)/LH(0, 4; 8.4,−8; 0.4, 0), G1 ∼ U(0, 1.5), G2 ∼ U(0, 2.5), [52%, 35%]
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A18 : Cos(7, 0.6)/Cos(7,−0.6), G1 ∼ U(0, 1.5), G2 ∼ U(0, 2.5), [51%, 37%]
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Figure S3 Left panel: Survival functions S1 (—), S2 (- -), in the first and second sample,

respectively. The bars represent the average values of the components Cjs, j = 1, . . . , 12, under

n = 200. Right panel: Empirical powers against n; α = 0.05; n1 = n2; d = 12; c = 2. Based on

1000 MC runs and 1000 permutation/bootstrap runs. Powers multiplied by 100.
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