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Abstract
The paper presents a novel approach to solve a classical two-sample problem with 
right-censored data. As a result, an efficient procedure for verifying equality of the 
two survival curves is developed. It generalizes, in a natural manner, a well-known 
standard, that is, the log-rank test. Under the null hypothesis, the new test statistic 
has an asymptotic Chi-square distribution with one degree of freedom, while the 
corresponding test is consistent for a wide range of the alternatives. On the other 
hand, to control the actual Type I error rate when sample sizes are finite, permuta-
tion approach is employed for the inference. An extensive simulation study shows 
that the new test procedure improves upon classical solutions and popular recent 
developments in the field. An analysis of the real datasets is included. A routine, 
written in R, is attached as Supplementary Material.

Keywords  Incomplete observations · Laguerre polynomials · Permutation test · 
Survival analysis · Two-sample test · Weighted log-rank test

1  Introduction

We consider the two-sample censorship model with n = n1 + n2 independent 
observations made of nl individuals from the lth population, l = 1, 2 . The ith sub-
ject in the lth sample has nonnegative, independent, latent survival and censor-
ing times X0

li
 and Uli with the corresponding continuous distribution function Fl 

and Gl , respectively, i = 1,… , nl , l = 1, 2 . The observable random variables are 
Xli = min{X0

li
,Uli} together with their censoring statuses Δli = �(X0

li
≤ Uli) , where 
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�(⋅) is the indicator of the set ⋅ . As a result, what we have at our disposal is the set of 
incomplete observations

On their basis, we will test

in the presence of infinite-dimensional nuisance parameters G1 and G2.
The problem is very important and has an enormous significance in practice. 

Reliability, social sciences, and medicine are the disciplines, where the censored 
data are commonplace. Therefore, a really good solution is highly desirable. Not-
withstanding, there are a lot of solutions of the above problem; many of them 
have serious drawback, i.e., they are sensitive to some specific discrepancies from 
the null model. For instance, the popular log-rank test (Mantel 1966) is asymptot-
ically optimal for the Lehmann’s alternatives of the form F1(x) = 1 − [1 − F2(x)]

� , 
𝜃 > 0, 𝜃 ≠ 1, x ≥ 0 , when G1 = G2 . So, it means that, if F1 and F2 are the cumula-
tive distribution functions of an exponential distribution, a proportional hazard 
difference occurs under the alternative. The generalized Wilcoxon test (Gehan 
1965; Peto and Peto 1972) inherits the weaknesses of its counterpart for complete 
data. The reason is that it is the most sensitive to one direction, which is an early 
hazard difference, while the other ones can be barely detectable, cf. Sect.  4.2.2 
and Appendix G in Supplementary Material. In late seventies, Prentice (1978) 
provides a general source of a construction of the linear rank statistics sensitive 
mainly to one direction. It covers, among others, the log-rank and Wilcoxon-
type tests. Those and many other solutions belong to a wider class of statistics, 
called the weighted log-rank statistics (WLR for brevity), while a difference 
between them simply relies on a choice of a weight function. Efron (1967), Tar-
one and Ware (1977), Gill (1980), Harrington and Fleming (1982), and Flem-
ing et al. (1987) are just a few of them. For an overview of such solutions, see, 
for instance, Letón and Zuluaga (2005). Furthermore, the tests based on the Kol-
mogorov–Smirnov statistic (Fleming et  al. 1980; Schumacher 1984), the Cra-
mér–von Mises statistic (Koziol 1978; Schumacher 1984), as well as the weighted 
Kaplan–Meier statistic, WKM for short, (Pepe and Fleming 1989, 1991; Lee 
et  al. 2008), although consistent (in the case of the WKM test under stochasti-
cally ordered alternatives), for small and moderate sample sizes, are able to detect 
only certain specific deviations from the null hypothesis. For the evidence in 
the case of Renyi-type Kolmogorov–Smirnov test, see Sect. 4.2.2 and Appendix 
G in Supplementary Material. Therefore, there were many attempts to increase 
the range of their sensitivity. Lu et  al. (1994) introduced a bootstrap version of 
the test based on the horizontal shift function related to the Q–Q plot, while Li 
et  al. (1996) proposed a Chi-square test and a Kolmogorov-type test based on 
the vertical shift function related to the P–P plot employing the bootstrap pro-
cedure of Efron (1981) as well. Lee (1996) proposed a linear combination of the 
four weighted log-rank statistics sensitive to the early, middle, late, and crossing 

(Xli,Δli) = (min{Xo
li
,Uli}, �(X

o
li
≤ Uli)), i = 1,… , nl, l = 1, 2.

H ∶ F1(x) = F2(x), for all x ≥ 0,

A ∶ F1(x) ≠ F2(x), for some x ≥ 0,
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hazard differences, as well as a maximum type test statistic based on them. Lin 
and Kosorok (1999) introduced a huge class of function-indexed test statistics 
and, also, defined a versatile procedure based on them. Chi and Tsai (2001) devel-
oped some versatile tests being a function of the log-rank and WKM statistics. 
Wu and Gilbert (2002) proposed a weighted log-rank tests optimal for detection 
early and/or late survival differences. Also, on their basis, they defined two kinds 
of versatile test procedures. Lin and Wang (2004) defined a test statistic, which is 
a standardized sum of squares of differences between the observed and condition-
ally expected, given the past, number of events in the first group at each failure 
time point. Lee (2007) suggested for testing a combination of the two selected 
WLR statistics. Qiu and Sheng (2008) proposed a two-stage procedure for com-
paring two hazard rate functions. In the first stage, the log-rank test is used, while 
in the second stage, a subtle procedure focused on detection crossing hazard rates 
is employed. Kraus (2009) worked out an adaptive test related to a system of 
Legendre polynomials providing a generalization of the log-rank and Wilcoxon 
test simultaneously. Martínez-Camblor (2010) defined the test, which is based 
on the idea of adaptation of the likelihood ratio statistic proposed by Zhang and 
Wu (2007) for uncensored data. His approach simply relies on the replacement 
of the nonparametric estimator of the unknown cumulative distribution functions 
by the Kaplan and Meier (1958) estimate. Yang and Prentice (2010) developed 
several new generalizations of the log-rank test including an adaptively weighted 
log-rank test based on the Yang and Prentice (2005) model. Darilay and Naranjo 
(2011) proposed a pretest for using log-rank or Wilcoxon solution. Chang et al. 
(2012) proposed a combination of the WLR and WKM statistics with a jackknife 
selection of the dominating solution. Chauvel and O’Quigley (2014) describe a 
class of tests based on O’Quigley (2003) approach and discuss several represent-
ants of them. Koziol and Jia (2014) introduced a weighted (Lin and Wang 2004) 
statistic for crossing hazards. By contrast, Brendel et  al. (2014) investigated an 
adaptive projection-type test sensitive to the three directions corresponding to the 
proportional, crossing, and central hazards. Their procedure is patterned after the 
Behnen and Neuhaus (1983) solution for complete data. Callegaro and Spiessens 
(2017) defined new tests sensitive, in particular, to nonproportional hazard differ-
ence. Garès et al. (2017) investigated the Fleming–Harrington test for late hazard 
difference, see Fleming and Harrington (1991, p. 257), for the general definition 
of the Gp,q class of tests. Hsieh and Chen (2017) introduced two strategies for 
testing equality of survival functions based on several, known from the literature, 
test procedures. Liu and Yin (2017) proposed the partitioned log-rank test for the 
homogeneity of two hazard rates by partitioning the weighted log-rank statistic at 
a certain time point. Next, they defined a versatile procedure based on the supre-
mum of such partitioned log-rank statistics over all distinct death times in the 
pooled sample. Arboretti et al. (2018) recommended nonparametric combination 
tests under the constraint that the observations are exchangeable. Also, cf. Arbo-
retti et al. (2010), as well as chapter 9 in Pesarin and Salmaso (2010), for earlier 
contributions.

In spite of the rich arsenal of the two-sample tests for censored data, it seems 
that there is still some space for the introduction of a new solution which improves 
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upon their finite sample properties. Therefore, in this paper, we develop an efficient 
generalization of the log-rank test, which is sensitive to an arbitrary large number of 
directions determine by the efficient score functions. It leads to a consistent test for a 
wide range of deviations from the null model.

The paper is organized as follows. Section 2 reveals the details of a construction 
of a new test statistic. The asymptotic outcomes and some finite sample theoretical 
properties of the proposed test are gathered in Sect. 3. Section 4 and Appendix G 
demonstrate the results of the conducted simulation study, while Sect. 5 presents the 
real data examples. Section 6 concludes with some discussion. A derivation of the 
efficient score functions, an additional interpretation of the related WLR statistic, 
and the proofs are deferred to Appendices A, B, and C, respectively. Appendix D 
presents a description of the algorithm enabling estimation of the power function of 
a test. A detailed description of the competitive solutions is given in Appendix E. 
An R code permitting to calculate, among others, values of the new test statistic and 
p values of the related test is included in Supplementary Material. A description of 
the R code is placed in Appendix F. All the appendices are part of Supplementary 
Material.

2 � A new test statistic

In this section, we construct a new data-driven test in the problem (H,A) . First, 
we reparametrize H in term of the weighted difference of the hazard functions 
a(⋅)[�1(⋅) − �2(⋅)] and expand that function in a Fourier series in a system of ortho-
normal functions. Next, we estimate the Fourier coefficients in the expansion. Then, 
we justify a selection of the system. After that, we built a quadratic form, Wd , being 
a sum of squares of the standardized empirical (estimated) Fourier coefficients. 
Finally, the selection rule T finishes the job selecting the number of the summands 
from the data at hand.

2.1 � Reparametrization of H

Assume, in this subsection, that the respective derivatives f1, f2 of F1,F2 exist. Then,

are the unknown hazard functions, while the null hypothesis is equivalent to

Let n = n1 + n2 and � = limn→∞(n1∕n) , � ∈ (0, 1) . Let f (y) = �f1(y) + (1 − �)f2(y) , 
y ≥ 0 , be the pooled density function. Set 𝜋l(x) = [1 − Fl(x)][1 − Gl(x)] = P(Xl1 > x) , 
l = 1, 2, �(x) = ��1(x) + (1 − �)�2(x) , and � = inf{x ∶ �1(x)�2(x) = 0} , x ∈ [0,+∞) . 
Multiplying both sides of (2) by �1(y)�2(y)∕[�(y)f (y)] =∶ a(y) , y ∈ [0, �] , we obtain 
that the null hypothesis, restricted to the interval [0, �] , is equivalent to

(1)�l(y) =
fl(y)

1 − Fl(y)
, y ∈ [0,∞), l = 1, 2,

(2)�1(y) = �2(y), for all y ≥ 0.
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It should be emphasized, in this place, that a difference between F1 and F2 can only 
be detected on the interval [0, �] . Therefore, a restriction of the comparisons to them 
is actually not a limitation. Since we prefer to work on [0, 1) instead on the half-line 
[0,+∞) , we make a transformation via the cumulative distribution function in the 
combined sample, i.e., F = �F1 + (1 − �)F2.

This yields

where F−1 is the inverse function. Now, we expand the left-hand side of the above 
equation in a system {�0

j
}∞
j=1

 of orthonormal functions in L2([0, 1), dt) . As a result, 
under the null model, all the Fourier coefficients in the expansion, i.e.,

j = 1, 2, 3,… , vanish.

2.2 � Empirical Fourier coefficients

Recall that, we only know the incomplete observations

For the notational convenience, we will also write that set skipping the first subscript

having in mind that the first n1 observations belong to the first group, while the 
remaining ones are a part of the second group. On their basis, we define the follow-
ing counting processes

The process Nl counts the observed deaths in group l through time x. There-
fore, it is called the death process. The process Yl is the number of subjects 
still at risk at x in the lth group. In the literature, it is known as the at-risk pro-
cess. We also put N(x) = N1(x) + N2(x), Y(x) = Y1(x) + Y2(x) , x ∈ [0,+∞) . 
Set 𝜏 = inf{x ∶ Y1(x)Y2(x) = 0} , F̂(x) = 1 −

∏
Xi<x

{[Y(Xi) − 1]∕[Y(Xi)]}
Δi , i.e., 

(3)a(y)[�1(y) − �2(y)] = 0, for all y ∈ [0, �].

(4)a(F−1(t))[�1(F
−1(t)) − �2(F

−1(t))] = 0, for all t ∈ [0,F(�)],

∫
F(�)

0

�
0
j
(t) a(F−1(t))[�1(F

−1(t)) − �2(F
−1(t))]dt

= ∫
�

0

�
0
j
(F(y))

�1(y)�2(y)

�(y)
d[Λ1(y) − Λ2(y)],

(Xli,Δli) = (min{Xo
li
,Uli}, �(X

o
li
≤ Uli)), i = 1,… , nl, l = 1, 2.

(Xi,Δi) = (min{Xo
i
,Ui}, �(X

o
i
≤ Ui)), i = 1,… , n, n = n1 + n2,

(5)

Nl(x) =

nl∑

i=1

Nli(x) =

nl∑

i=1

Δli �(Xli ≤ x),

Yl(x) =

nl∑

i=1

Yli(x) =

nl∑

i=1

�(Xli ≥ x), l = 1, 2, x ∈ [0,+∞).
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the left-continuous version of the Kaplan and Meier (1958) estimate. Since 
∫ y

0
[dNl(x)∕Yl(x)] is the estimate of Λl(y) , l = 1, 2 , a natural, from a counting pro-

cesses viewpoint, estimator of the jth Fourier coefficient is the rescaled weighted 
log-rank statistic

On the other hand, Lj is the rescaled, by the factor 
√
n1n2∕n , jth empirical (esti-

mated) Fourier coefficient in the expansion of the function 
a(F−1(⋅))[�1(F

−1(⋅)) − �2(F
−1(⋅))] in the system {�0

j
}∞
j=1

.

2.3 � A selection of the system

There are a lot of systems of orthonormal functions in L2([0, 1), dt) . The Legendre 
polynomials, the Haar functions, and the trigonometric functions are just a few of 
them. In this subsection, we define a system of transformed Laguerre polynomials 
and justify their usefulness in survival analysis settings.

Let {Lj}∞j=0 be the system of Laguerre polynomials on [0,+∞) . The first four poly-
nomials have the following form

while the general description provides that

The system is complete in L2([0,∞), e−xdx) and Lj s satisfy

Therefore, the related system of functions on [0, 1) given by

where − log(1 − t) is the quantile function of the exponential distribution with the 
parameter 1, is orthonormal and complete in L2([0, 1), dt).

We will build the test statistic on the basis of the weighted log-rank statistics related 
to the projected functions from the basis {�j}

∞
j=0

 . The goal of usage of a projection is a 
possible elimination of the infinite-dimensional nuisance parameters. To be specific, 
we calculate the projection of a score function �j onto the space spanned by the nui-
sance parameters G1 and G2 in the parametrization of Neuhaus (2000, p. 487), formula 

(6)
√

n

n1n2
Lj =

n

n1n2 ∫
𝜏

0

�
0
j
(F̂(x))

Y1(x)Y2(x)

Y(x)

(
dN1(x)

Y1(x)
−

dN2(x)

Y2(x)

)

.

L0(x) = 1, L1(x) = −x + 1, L2(x) = (1∕2)(x2 − 4x + 2),

L3(x) = (1∕6)(−x3 + 9x2 − 18x + 6),

(7)Lj(x) =
ex

j!

dj

dxj
(xje−x) =

j∑

k=0

(−1)k

k!

(
j

k

)

xk, j = 0, 1, 2,… , x ∈ [0,+∞).

(8)�
∞

0

Li(x)Lj(x)e
−xdx =

{
1, i = j,

0, i ≠ j.

(9)�j(t) = Lj(− log(1 − t)), j = 0, 1, 2,… , t ∈ [0, 1),
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(3.5), and exploit their residuum. Actually, we utile Neuhaus’ recipe for the so-called 
efficient score function �0

j
 , formula (3.33), p. 491, which leads to the formula

in our notation. A prompt calculation yields

The details are given in Supplementary Material, Appendix A. The system of the 
efficient score functions {�0

j
}∞
j=1

 is orthonormal and complete because it is equiva-
lent to the system of the score functions {�j}

∞
j=0

 . It looks like there is no other system 
of orthonormal functions having such a property and, therefore, there is no other one 
better suited for the employment in our problem. Furthermore, the work of Prentice 
(1978) provides the interpretation of the components in (10). Namely, the minuend 
is the score function corresponding to the uncensored observations, while the sub-
trahend is the score function related to the censored data.

2.4 � An auxiliary statistic

In this subsection, we introduce the standardized weighted log-rank statistics related to 
the efficient score functions from the system {�0

j
}∞
j=1

 and define the auxiliary statistic 
being the sum of their squares.

The weighted log-rank statistic with the weight function corresponding to the jth 
efficient score function, in the above sense, has the form

An instantaneous integration provides

where wj(Xi) = �
0
j
(F̂(Xi)) �

(
Y1(Xi)Y2(Xi) > 0

)
 , i = 1,… , n . Under the null hypothe-

sis, Lj has an asymptotic normal distribution N(0, �2
j
) , see Appendix C in Supple-

mentary Material, with

(10)�
0
j
(t) = �j(t) −

1

1 − t ∫
1

t

�j(s)ds, j = 0, 1, 2,… ,

(11)�
0
0
(t) = 0 and �

0
j
(t) = �j−1(t), j = 1, 2, 3,… , t ∈ [0, 1).

(12)

Lj =

√
n

n1n2 ∫
𝜏

0

�
0
j
(F̂(x))

Y1(x)Y2(x)

Y(x)

(
dN1(x)

Y1(x)
−

dN2(x)

Y2(x)

)

, j = 1, 2, 3,… .

Lj =

√
n

n1n2

{
n1∑

i=1

wj(Xi)
Y1(Xi)Y2(Xi)

Y(Xi)

Δi

Y1(Xi)
−

n∑

i=n1+1

wj(Xi)
Y1(Xi)Y2(Xi)

Y(Xi)

Δi

Y2(Xi)

}

=

√
n1n2

n

{
1

n1

n1∑

i=1

wj(Xi)
Y2(Xi)

n2

n

Y(Xi)
Δi −

1

n2

n∑

i=n1+1

wj(Xi)
Y1(Xi)

n1

n

Y(Xi)
Δi

}

,

(13)�2
j
= ∫

�

0

[
�
0
j
(F(x))

]2 �1(x)�2(x)

�(x)
dΛ(x),
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where Λ is the pooled cumulative hazard function under H . Its consistent estimator, 
under the null model,

cf. formula (3.3.12), p. 47, Gill (1980), allows us to define the components

which, under the null hypothesis, have the asymptotic N(0,  1) distribution. Obvi-
ously, they are correlated, while the asymptotic correlation of the ith and jth compo-
nent is �ij∕(�i �j) , where

It should be noted that, when at least one sample is heavy censored, a value of Lj 
can be 0 and a value of 𝜎̂j can be 0 as well. As a result, the symbol 0/0 occurs, which 
simply means that Cj = 0.

Note that the component C1 is the standardized log-rank statistic and 
the corresponding two-sided asymptotically level � test has the form 
{C1 < Φ−1(𝛼∕2)} ∪ {C1 > Φ−1(1 − 𝛼∕2)} , where Φ is the cumulative distribution 
function of the N(0, 1) distribution. Therefore, its natural generalization can be writ-
ten as the quadratic form

which measures deviations from H in the first d standardized Fourier coefficients 
(directions). Even though the components are (asymptotically) correlated, for sim-
plicity and also keeping in mind their interpretation, we do not utile their corre-
lations to define the statistic Wd . Now, the choice of the parameter d is a delicate 
question. The reason is that it has a great influence on the finite sample behavior of 
the resulting test. Therefore, we will select the number of summands in Wd in a data-
driven way.

2.5 � A new selection rule and the corresponding test

It is known that, in many cases, when the data are complete, a simplified Schwarz 
(BIC) selection rule

where d(n) is a nondecreasing sequence of natural numbers, is a good device to 
choose d. For the evidence, see, for instance, Janic-Wróblewska and Ledwina (2000) 

𝜎̂2
j
=

n

n1n2 ∫
𝜏

0

[
�
0
j
(F̂(x))

]2 Y1(x)Y2(x)

Y(x)

dN(x)

Y(x)
=

n

n1n2

n∑

i=1

[
wj(Xi)

]2 Y1(Xi)Y2(Xi)

Y(Xi)

Δi

Y(Xi)
,

(14)Cj =
Lj

𝜎̂j
, j = 1, 2, 3,… ,

(15)�ij = �
�

0

�
0
i
(F(x))�0

j
(F(x))

�1(x)�2(x)

�(x)
dΛ(x), i, j = 1, 2, 3,… , i ≠ j.

(16)Wd =

d∑

j=1

Cj
2,

(17)S = min
{
d ∶ 1 ≤ d ≤ d(n), Wd − d log n ≥ Wj − j log n, j = 1,… , d(n)

}
,
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or Wyłupek (2010), where the two-sample problem for complete data was consid-
ered. Therefore, we will use it.

However, under the alternative, when the source of deviations from the null 
model comes from the further directions, the penalty d log n for the dimension d can 
be too heavy, and, a better choice relies on the usage of the Akaike’s penalty and the 
corresponding (AIC) selection rule

Since, in practice, we do not know what kind of deviations from the null model 
occurs, if any, a compromise will be provided as a data-driven combination of those 
two rules. First, note that under the null hypothesis Cj s should take small values, 
which find a reflection in a value of the indicator

The above will serve as a switch between the rule S, desirable under the null model 
assuring relatively small critical values, and the rule A, welcome under the alterna-
tive leading to the selection of higher dimensions, which results in more frequent 
rejections of the null hypothesis. The idea behind comes from Inglot and Ledwina 
(2006). The random penalty

leads us to the rule

which under a proper selection of the parameter c inherits good properties of the 
rules S and A. Usually, the choice of the parameter c c.a. 2 leads to a sensible behav-
ior of the corresponding test. Finally, we will reject the null hypothesis for large 
values of the statistic WT.

Basic asymptotics of the new test procedure based on WT , as well as finite sample 
properties of their permutation counterpart are presented in the next section.

3 � Theoretical results

3.1 � Asymptotic outcomes

Let 𝜏L = sup{ x ∶ L(x) < 1 } for any cumulative distribution function L. Put H(x) = 1 − � 
[1 − F

1
(x)][1 − G

1
(x)] − (1 − �)[1 − F

2
(x)][1 − G

2
(x)] , x ∈ [0,∞) , and H−1(t) = inf

{ x ∶ H(x) ≥ t } , t ∈ [0, 1) . Define t
max

= 1 − �[1 − F
1
(�

G
2
)][1 − G

1
(�

G
2
)] − (1 − �)

[1 − F
2
(�

G
1

)][1 − G
2
(�

G
1

)] . Obviously, tmax = 1 , if and only if, either 
max{�F1

, �F2
} ≤ min{�G1

, �G2
} or �G1

= �G2
 .

(18)A = min
{
d ∶ 1 ≤ d ≤ d(n), Wd − 2d ≥ Wj − 2j, j = 1,… , d(n)

}
.

(19)J(n, c) = �

�
max

1≤j≤d(n)
��Cj

�� ≤
√
c log n

�
, c > 0.

(20)Πd =

{
d log n, if J(n, c) = 1,

2d, if J(n, c) = 0,

(21)T = min
{
d ∶ 1 ≤ d ≤ d(n), Wd − Πd ≥ Wj − Πj, j = 1,… , d(n)

}
,
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Theorem 1  Assume that d(n) = d is fixed and does not depend on n, while c is an 
arbitrary positive constant. If the null hypothesis H is true and � ∈ (0,H−1(tmax)) , 
we have Cj

D

⟶N(0, 1) , j = 1, 2, 3,… , T
P

⟶1 , and WT

D

⟶�2
1
.

Theorem 2  Assume that d(n) = d is fixed and does not depend on n, while c is an 
arbitrary positive constant. If � ∈ (0,H−1(tmax)) , and

then limn→∞ P(T ≥ j) = 1 , while the test rejecting H for large values of WT is 
consistent.

Assumption on � is natural from the point of view of the statistical practice and is 
dictated by unboundedness of the Laguerre polynomials. Under finite sample sizes, 
to apply the test procedure, we need to set d(n). Therefore, the fixed d(n) is also suf-
ficient in practical applications. An alternation of the parameter d(n) in Theorem 1 
does not change the asymptotic outcomes concerning the rule T and the statistic WT . 
Since d(n) is fixed, Theorem 2 asserts the consistency of the proposed test for an 
arbitrary large class of the alternatives set in advance. Our experience prompts that a 
selection d(n) = d = 12 allows one to detect any desirable departure from the null 
model, see Sect. 4.2.2 and Appendix G in Supplementary Material. Theorem 1 also 
implies that the test Φn,𝛼 = �(WT > q𝜒2

1
(1 − 𝛼)) , where q�2

1
(1 − �) is the (1 − �)

-quantile of the Chi-square distribution with one degree of freedom, is asymptoti-
cally distribution-free. However, under H , the convergence of the test statistic WT to 
the limiting �2

1
 distribution is slow. Therefore, it is of no practical usage. Further-

more, under finite sample sizes, infinite-dimensional nuisance parameters G1,G2 , do 
not make the corresponding test distribution-free any more. Therefore, to control the 
error of the first kind in this case, we treat our solution as a permutation test. See the 
algorithm in Appendix  D in Supplementary Material. Such approach leads to an 
exact test under the restricted null hypothesis H0 , i.e., H0 ∶ F1 = F2,G1 = G2 , and 
provides reasonable control of the power function, under H , when G1 ≠ G2 . A for-
mal justification of those facts is given below.

3.2 � Permutation approach

Define the vectors of the order statistics X() = (X1∶n,… ,Xn∶n) together with the vec-
tor of their concomitants �() = (Δ1∶n,… ,Δn∶n) . Moreover, we introduce the vector 
of anti-ranks of X1,… ,Xn , that is, D = (D1,… ,Dn) , where Xi∶n = XDi

 . Now, we 
will implicitly start to consider the statistic WT as a function of (D;(X(),�())) . Given 
(X(),�()) = (x, �) , let qWT

(1 − �, x, �) be the permutation (1 − �)-quantile of the 
WT (D;(x, �)) statistic. Then, Φn,𝛼,perm = �(WT > qWT

(1 − 𝛼, x, �)) is the correspond-
ing permutation test.

Lemma 1  Under H0 (the restricted H ), the vector D is independent from (X(),�()) , 
and has a uniform distribution on the set of all permutations of the vector (1,… , n).

�
�

0

�
0
j
(F(x))

�1(x)�2(x)

�(x)
d[Λ1(x) − Λ2(x)] ≠ 0, for some j ∈ {1,… , d},
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Lemma 2 

	 (i)	 Under H0 , the test Φn,�,perm is distribution-free.
	 (ii)	 Under H , the tests Φn,� and Φn,�,perm are asymptotically equivalent.
	 (iii)	 Under H , the test Φn,�,perm is asymptotically distribution-free.

Lemma  1 is well known and explains the above notation. The construction 
of Φn,�,perm implies (i) in Lemma 2. That statement means that the permutation 
test is an exact level � test under finite sample sizes when the restricted null 
hypothesis H0 ∶ F1 = F2,G1 = G2 holds. However, the statement (ii) says that 
under the null hypothesis H ∶ F1 = F2,G1,G2 – nuisance parameters, the uncon-
ditional Φn,� test and the conditional Φn,�,perm test are asymptotically equivalent. 
It means that under H , the permutation WT (D;(x, �)) test statistic has the asymp-
totic Chi-square distribution with one degree of freedom. As a result, the permu-
tation Φn,�,perm test is an asymptotic level � test in the problem (H,A) . Such an 
outcome assures that, for sufficiently large sample sizes, we are able to control 
the Type I error under F1 = F2 , G1 ≠ G2 , i.e., when H is true, but H0 does not 
hold. The results of the simulation study presented in Sect. 4.3.1 show that, in 
this case, the Type I error is controlled even under small sample sizes. This is 
an appealing feature, which each reasonable solution of the considered testing 
problem should have. The proofs of the properties (ii) and (iii), as well as Theo-
rems 1 and 2 are relegated to Supplementary Material, Appendix C.

4 � Numerical experiment

Since the problem is classical and its history is very long, to provide pro-
found comparisons, we have tried to select, on the one hand, a few classical 
well known solutions which are frequently applied in practice, and, on the other 
hand, to include into the simulation study several recent, quite new, supposedly 
powerful and versatile procedures. The specially selected competitors are intro-
duced in Sect. 4.1. Next, in Sect. 4.2, we consider equal censoring distributions, 
i.e., the case when G1 = G2 , and investigate their behavior in comparison with 
the proposed test checking the errors of both kinds under small and moderate 
sample sizes. After that, in Sect. 4.3, we analyze the behavior of the tests under 
comparison when the censoring distributions are distinct. In that case, we also 
examine the errors of the first kind and investigate the powers. All computa-
tions have been carried out in R under the seed 1 and at the significance level 
� = 0.05 . The parameters defining the test statistic WT are set to be c = 2 and 
d = 12 . In the simulations, we estimated the values of the power functions of 
the tests using 1000 Monte Carlo runs and 1000 permutation or bootstrap runs 
unless the asymptotic critical values have been used. See, for instance, Table 1, 
hereunder.
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4.1 � Competitive tests

We included into the simulation study the most popular: Wilcoxon (Gehan 1965) 
and log-rank (Mantel 1966) tests, the classical: Renyi-type Kolmogorov–Smirnov 
(Gill 1980), Fleming and Harrington (1991, p. 257), [ p = 0, q = 1 ] statistics, as well 
as the selected recent developments in the field: the Lin and Wang (2004) proposal, 
the Qiu and Sheng (2008) test procedure, the Yang and Prentice (2010) solution, 
the Liu and Yin (2017) statistic, and the Arboretti et al. (2018) Tippet nonparamet-
ric combination test. In the figures, they are denoted as G, M, R, FH, LW, QS, YP, 
LY, and NPC, respectively. For their exact forms and additional computational com-
ments, see Appendix E in Supplementary Material.

4.2 � Equal censoring distributions

4.2.1 � ‘Type I error’s control, G
1
= G

2

In the first step, we examine the errors of the first kind of the tests under comparison.
Notwithstanding, all of the tests are asymptotically level � tests, under finite sample 

sizes, the control of the Type I error can sometimes be a challenge. A well-known 
remedy can be permutation approach or a bootstrap method. In our paper, the for-
mer is apply to the G, M, R, FH, and WT test statistics, while the latter is exploited 
in the QS and LY procedures. The detailed algorithm is presented in Supplementary 
Material, Appendix D. By contrast, the Lin and Wang (2004) and Yang and Pren-
tice (2010) solutions are investigated as the asymptotic tests, while the p value of the 
NPC test of Arboretti et al. (2018) is calculated using the nonparametric combination 
technique described in Supplementary Material, Appendix E. The errors obtained in 
such a way completes Table 1. Specifically, we display Type I errors under F1 = F2 , 
which are fixed to be an exponential distribution with parameter 1, while the censoring 

Table 1   Empirical errors of the first kind under H
0
∶ F

1
= F

2
∼ Exp(1),G

1
= G

2
∼ U(0, 2) against 

n, n
1
= n

2
, d = 12, c = 2 , � = 0.05 , 1000 MC runs, 1000 permutation/bootstrap runs. Errors multiplied 

by 100

n 26 50 100 150 200 250 300
Test Type I errors under H

0
Method

G 6.6 4.7 6.0 4.8 4.1 4.4 5.2 Permutation
M 5.9 4.8 5.2 6.2 4.5 4.3 5.3 Permutation
R 6.1 5.2 5.4 5.8 4.4 4.5 5.0 Permutation
FH 6.0 4.5 4.8 5.8 4.6 4.9 4.4 Permutation
LW 5.1 5.3 3.9 5.7 4.3 4.4 5.7 Asymptotic
QS 5.7 6.6 6.3 5.6 4.7 4.4 5.1 Bootstrap
YP 6.5 6.9 6.7 6.5 5.6 5.1 6.0 Asymptotic
LY 7.0 7.6 6.2 7.0 6.3 5.8 6.7 Bootstrap
NPC 4.9 5.1 5.2 5.7 5.2 6.2 4.6 NPC technique
W

T
5.8 5.3 6.0 5.8 4.7 4.7 5.6 Permutation
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distributions G1 , G2 are equal and set to be the uniform ones on [0, 2]. This leads to c.a. 
43% censored observations in each sample. The sample sizes in both groups are equal, 
i.e., n1 = n2 . We increase the total sample size, n = n1 + n2 , from 50 to 300, by 50, 
and investigate the errors. Furthermore, we include the case n1 = n2 = 13 , which cor-
responds to the sample sizes considered in the real data example, see Sect. 5.2, hereun-
der. It can be seen that the actual Type I error of the YP and LY solutions is a little bit 
inflated, while all the remaining tests keep the nominal level well. We also verified the 
cases when the underlying distribution F1 = F2 is log-normal or Weibull one. Since 
the outcomes were similar, we do not present them.

4.2.2 � Power comparisons, G
1
= G

2

In the second step, we examine powers analyzing the behavior of the tests considered 
under nine examples covering a large set of possible deviations from the null model. 
Most of the cases either have been frequently analyzed in the literature or are their 
simple modifications. Cf. Fleming et al. (1987), Letón and Zuluaga (2005), Flem-
ing et al. (1980), Schumacher (1984), Pepe and Fleming (1989), Lee et al. (2008), 
Lu et al. (1994), Li et al. (1996), Lee (1996), Chi and Tsai (2001), Wu and Gilbert 
(2002), Lin and Wang (2004), Lee (2007), Qiu and Sheng (2008), Kraus (2009), 
Martínez-Camblor (2010), Chang et al. (2012), Brendel et al. (2014), Callegaro and 
Spiessens (2017), Hsieh and Chen (2017), Liu and Yin (2017), and Arboretti et al. 
(2018), among others. They include models with proportional, early, middle, late, 
crossing, and subtle difference hazard rates. All the alternatives are expressed in 
terms of the hazard functions.

Description of the alternatives

Example 1  �1(t) = 1 , �2(t) = 1.5.

Example 2  �1(t) = 2 ⋅ �[0,0.2)(t) + 0.75 ⋅ �[0.2,0.4)(t) + �[0.4,+∞)(t),
�2(t) = 0.75 ⋅ �[0,0.2)(t) + 2 ⋅ �[0.2,0.4)(t) + �[0.4,+∞)(t).

Example 3  �1(t) = 2 ⋅ �[0,0.1)(t) + 3 ⋅ �[0.1,0.4)(t) + 0.75 ⋅ �[0.4,0.7)(t) + �[0.7,+∞)(t),
�2(t) = 2 ⋅ �[0,0.1)(t) + 0.75 ⋅ �[0.1,0.4)(t) + 3 ⋅ �[0.4,0.7)(t) + �[0.7,+∞)(t).

Example 4  �1(t) = 2 ⋅ �[0,0.2)(t) + 3 ⋅ �[0.2,0.6)(t) + 0.75 ⋅ �[0.6,0.9)(t) + �[0.9,+∞)(t),
�2(t) = 2 ⋅ �[0,0.2)(t) + 0.75 ⋅ �[0.2,0.6)(t) + 3 ⋅ �[0.6,0.9)(t) + �[0.9,+∞)(t).

Example 5  �1(t) = 2 ⋅ �[0,0.6)(t) + 4 ⋅ �[0.6,+∞)(t) , �2(t) = 2 ⋅ �[0,0.6)(t) + 0.4 ⋅ �[0.6,+∞)(t).

Example 6  �1(t) = 2 ⋅ �[0,0.5)(t) + 4 ⋅ �[0.5,+∞)(t),
�2(t) = 2 ⋅ �[0,0.1)(t) + 3 ⋅ �[0.1,0.4)(t) + 0.75 ⋅ �[0.4,0.7)(t) + �[0.7,+∞)(t).

Example 7  �1(t) = 1 , �2(t) = t + 0.3.
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Example 8  �1(t) = 1 , �2(t) = 4t ⋅ �[0,0.7)(t) + [8.4 − 8t] ⋅ �[0.7,1)(t) + 0.4 ⋅ �[1,+∞)(t).

Example 9  �1(t) = 1 + 0.6 cos(7t) , �2(t) = 1 − 0.6 cos(7t).

In each case, the censoring distributions in both samples are equal, G1 = G2 , and 
set to be the uniform ones on [0, 2]. It leads to the so-called moderate censoring, 
which seems to be the most frequent in statistical practice.

The first alternative is Proportional Hazard Model, the second one is Early Haz-
ard Difference, the third one can be labeled by Middle/Early Hazard Difference, the 
fourth Middle Hazard Difference, the fifth Late Hazard Difference. The remaining 
alternatives are Crossing Hazard Difference, whereas the last of them can be treated 
as a Subtle Hazard Difference.

To calculate powers, we fix the alternative. The sample sizes in both groups are 
equal, n1 = n2 . We increase the total sample size, n = n1 + n2 , from 50 to 300, by 
50, and investigate the powers. The results are depicted in Figs. 1, 2, and 3. The sig-
nificance level � = 0.05.

Since the density function can be expressed as the function of the hazard rate �(t)

the von Neumann accept/reject algorithm allows one to generate the observations 
from the above models with ease.

The notation in the figures is as follows. The first alternative is denoted as 
A1 ∶ Exp(1)∕Exp(1.5) , while the last one as A9 ∶ Cos(7, 0.6)∕Cos(7,−0.6) . The 
notation of the remaining alternatives is similar and will be explained on the basis 
of the second example: A2(0.2, 0.4) ∶ E(2, 0.75, 1)∕E(0.75, 2, 1) . The string (0.2, 
0.4) means that the half-line [0,∞) has been partitioned into the intervals [0, 0.2), 
[0.2, 0.4), [0.4,∞) , while the values of the hazard functions on the successive inter-
vals are defined as 2, 0.75, 1, and 0.75, 2, 1, in the first and second groups, respec-
tively, (cf. the definition of Example 2). Note that the second distribution in the 
alternative A7 is the linear hazard with the coefficients 0.3, 1, i.e., �2(t) = t + 0.3 . A 
similar description is used in the case of A8 . However, this time, the linear hazard 
is different on the intervals [0, 0.7), [0.7, 1), [1,∞) . Cf. the definition of Example 8. 
In the label of each alternative, one can also find the information on the censoring 
distributions and the percentages of the censored observations in the first and second 
groups, respectively. Each figure consists of two panels. The right panel presents the 
powers of the tests against the total sample size n. The left panel shows the survival 
functions in both groups together with the average values of the first 12 components, 
Cj s, calculated under 1000 MC runs, when n = 200 . Such a manner of the presenta-
tion demonstrates real differences between the consecutive alternatives and enables 
one to investigate the deviations from the null model in terms of those objects.

Under the first alternative, the first component is dominating, which results well 
behavior of the Mantel (1966) test. Slightly larger powers of the Yang and Prentice 
(2010) procedure are caused by the larger errors of the first kind of that test under 
the null model, see Table 1. Also, the Renyi-type Kolmogorov–Smirnov test of Gill 

f (t) = �(t) exp

[

−∫
t

0

�(s)ds

]

,
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(1980) is the leading test. Except the Lin and Wang (2004) procedure, the remain-
ing tests do not lose too much to the best ones. The second alternative is difficult to 
detect for the Mantel (1966) test because the first component is the smallest one. 

A1 : Exp(1)/Exp(1.5), G1 = G2 ∼ U(0, 2), [43%, 32%]
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A2(0.2, 0.4) : E(2, 0.75, 1)/E(0.75, 2, 1), G1 = G2 ∼ U(0, 2), [37%, 40%]
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A3(0.1, 0.4, 0.7) : E(2, 3, 0.75, 1)/E(2, 0.75, 3, 1), G1 = G2 ∼ U(0, 2), [27%, 32%]
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Fig. 1   Left panel: Survival functions S
1
 (—), S

2
 (- -), in the first and second samples, respectively. The 

bars represent the average values of the components Cj s, j = 1,… , 12 , under n = 200 . Right panel: 
Empirical powers against n; � = 0.05 ; n

1
= n

2
 ; d = 12 ; c = 2 . Based on 1000 MC runs and 1000 permu-

tation/bootstrap runs. Powers multiplied by 100
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The Fleming and Harrington (1991) test, the NPC test of Arboretti et al. (2018), as 
well as the Lin and Wang (2004) solution also behave badly. The Gehan (1965) test 
works better, but still weakly. The R test and the recent developments based on the 

A4(0.2, 0.6, 0.9) : E(2, 3, 0.75, 1)/E(2, 0.75, 3, 1), G1 = G2 ∼ U(0, 2), [24%, 31%]
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A5(0.6) : E(2, 4)/E(2, 0.4), G1 = G2 ∼ U(0, 2), [21%, 34%]
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A6(0.1, 0.4, 0.5, 0.7) : E(2, 2, 2, 4, 4)/E(2, 3, 0.75, 0.75, 1), G1 = G2 ∼ U(0, 2), [20%, 27%]
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Fig. 2   Left panel: Survival functions S
1
 (—), S

2
 (- -), in the first and second samples, respectively. The 

bars represent the average values of the components Cj s, j = 1,… , 12 , under n = 200 . Right panel: 
Empirical powers against n; � = 0.05 ; n

1
= n

2
 ; d = 12 ; c = 2 . Based on 1000 MC runs and 1000 permu-

tation/bootstrap runs. Powers multiplied by 100
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QS and YP statistics are inefficient in detection of this type of disturbance from the 
null model, whereas the advantage of the new solution can be clearly seen. The rea-
son is a large number of the significant components in combination with the flexible 
model selection. The competitive (Liu and Yin 2017) procedure works even better 
than our proposal, but analyzing the behavior under the alternative, we should also 
have in mind what is going on under H . The third alternative is similar to the previ-
ous one, but there, middle hazard difference also occurs. In those cases, the worst 
solutions, among the competitive tests, are the Fleming and Harrington (1991) and 
Lin and Wang (2004) tests. The Arboretti et  al. (2018), Mantel (1966), Yang and 
Prentice (2010), Qiu and Sheng (2008), and Gehan (1965) tests have moderate pow-
ers. In this case, the Renyi-type test of Gill (1980) works very well. The new test is 
better, while the power of the Liu and Yin (2017) procedure is even slightly greater. 
Under the fourth alternative, the ordering of the best three tests is the same as in 
the previous case, whereas the remaining solutions lose much. In the next exam-
ple, the Gehan (1965) test completely breaks down. The powers of the Renyi-type 
Gill (1980), Mantel (1966), and NPC (Arboretti et  al. 2018) tests are small. This 
time the Fleming and Harrington (1991) test supposedly optimal has the moderate 
power. The behavior of the Liu and Yin (2017) test is the best. The Lin and Wang 
(2004), Qiu and Sheng (2008), as well as Yang and Prentice (2010) procedures work 
equally well. In this example, the new test loses the power because the components 
are less informative. Under the sixth alternative two the most popular classical solu-
tions, that is, the Gehan (1965) and Mantel (1966) tests completely break down. The 
optimal situation for the QS solution results in their high power. Nevertheless, the 
new test is slightly better, while the LY test outperforms it. The next two alternatives 
were studied by Liu and Yin (2017). The crossing hazard difference results in very 
good behavior of the new test, which is the best one. The last alternative demon-
strates subtle deviations from the null model. Since the first component is the small-
est one, the Mantel (1966) test poorly works, just like the Fleming and Harrington 
(1991), Arboretti et al. (2018), and Lin and Wang (2004) solutions. The behavior of 
the Gehan (1965) test is slightly better, but still insufficient. The same concerns the 
R, QS, and YP procedures. Since the larger the number of the component the larger 
their magnitude, the new solution has high power and together with the LY test sig-
nificantly outperforms the remaining procedures.

4.3 � Different censoring distributions

In this section, we consider the same configurations of the distributions of the sur-
vival times as in Sect. 4.2; however, the censoring distributions are different. In each 
scenario, we set that the censoring distribution in the first group is uniform on [0, 
1.5], while the censoring distribution in the second group is uniform on [0, 2.5]. In 
Sect. 4.3.1, we check how the solutions under comparison control the error of the 
first kind, while in Sect. 4.3.2, we examine their behavior under the alternatives.
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A7 : Exp(1)/LH(0.3, 1), G1 = G2 ∼ U(0, 2), [43%, 49%]
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A8(0.7, 1) : Exp(1)/LH(0, 4; 8.4,−8; 0.4, 0), G1 = G2 ∼ U(0, 2), [43%, 40%]
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A9 : Cos(7, 0.6)/Cos(7,−0.6), G1 = G2 ∼ U(0, 2), [43%, 44%]
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Fig. 3   Left panel: Survival functions S
1
 (—), S

2
 (- -), in the first and second samples, respectively. The 

bars represent the average values of the components Cj s, j = 1,… , 12 , under n = 200 . Right panel: 
Empirical powers against n; � = 0.05 ; n

1
= n

2
 ; d = 12 ; c = 2 . Based on 1000 MC runs and 1000 permu-

tation/bootstrap runs. Powers multiplied by 100
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4.3.1 � ‘Type I error’s control, G
1
≠ G

2

In Table 2, we present the errors of the first kind of the investigated procedures under 
F1 = F2 , which are fixed to be an exponential distribution with parameter 1, and 
different censoring distributions, specifically, G1 ∼ U(0, 1.5) , G2 ∼ U(0, 2.5) . This 
leads to c.a. 52% and 37% censored observations in the first and second samples, 
respectively. The sample sizes in both groups are equal, i.e., n1 = n2 . We increase 
the total sample size, n = n1 + n2 , from 50 to 300, by 50, and investigate the errors. 
Furthermore, we include the case n1 = n2 = 13 , which corresponds to the sample 
sizes considered in the real data example, see Sect. 5.2, hereunder.

It can be seen that the actual Type I error of the Liu and Yin (2017) test sig-
nificantly exceeds the significance level � = 5% . It makes that solution an unsafe 
procedure. We also verified the cases when the underlying distribution F1 = F2 is 
log-normal or Weibull one. The outcomes were similar. Therefore, we exclude it 
from further comparisons. In the case of the NPC test of Arboretti et al. (2018), the 
situation is even more dramatic. The Type  I error grows together with the sample 
sizes and already exceeds 95% when n1 = n2 = 100 . This is the reason why we also 
exclude that solution from the further comparisons.

4.3.2 � Power comparisons, G
1
≠ G

2

We repeat the experiment from Sect. 4.2.2 changing the censoring distributions into 
different ones. The obtained results are depicted in Figures S1–S3 in Supplementary 
Material, Appendix G. Commenting very briefly on the outcomes, we can say that 
the ordering of the tests under comparison is similar to the case when the censoring 
distributions were equal. Therefore, the advantages of the new solution have been 
shown.

5 � Real data examples

In this section, we analyze two medical real datasets.

5.1 � Locally unresectable gastric cancer: chemotherapy versus chemotherapy 
with radiation therapy

We analyze the data frequently investigated in the literature. The dataset repre-
sents n = 90 individuals divided into two equal groups of n1 = n2 = 45 patients. 
There are two and six censored observations in the first and second samples, 
respectively. The problem concerns comparing chemotherapy with combined 
chemotherapy and radiation therapy, in the treatment for locally unresectable gas-
tric cancer, and is based on the work of the Gastrointestinal Tumor Study Group 
(1982). The data is easily accessible in the R package YPmodel.
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Figure 4 presents the estimated Kaplan–Meier survival curves as well as the 
values of the first 12 components Cjs.

It can be seen that the estimated survival curves are different and cross each 
other. Undeniable evidence in favor of the alternative A , at the asymptotic nomi-
nal level, is provided by the second, third, and fourth components. Nevertheless, 
we calculated their permutation p values. The results for all the components con-
sidered are displayed in Table 3.

Table  4 contains the p values of the tests under consideration calculated using 
either permutation, bootstrap, or asymptotic approach. A selection of a method is 
the same as in the conducted simulation study, cf. Tables 1 and 2.

Two classical solutions, that is, the Mantel (1966) and Renyi-type (Gill 1980) 
tests, do not reject the null hypothesis. The Arboretti et al. (2018) procedure is also 
insignificant. The p values of the Gehan (1965), as well as Fleming and Harrington 

Table 2   Empirical errors 
of the first kind under 
H ∶ F

1
= F

2
∼ Exp(1) , 

G
1
∼ U(0, 1.5) , G

2
∼ U(0, 2.5) 

against n, n
1
= n

2
, d = 12, c = 2 , 

� = 0.05 , 1000 MC runs, 1000 
permutation/bootstrap runs. 
Errors multiplied by 100

n 26 50 100 150 200 250 300
Test Type I errors under H Method

G 5.5 4.8 5.7 4.9 4.6 4.9 5.0 Permutation
M 6.0 5.0 5.2 5.4 4.3 5.1 4.7 Permutation
R 6.1 5.1 5.5 5.5 4.7 4.5 4.7 Permutation
FH 5.4 6.3 6.8 6.0 5.5 6.8 6.2 Permutation
LW 4.7 5.1 4.8 6.5 5.9 5.0 5.2 Asymptotic
QS 4.7 4.9 6.1 5.1 4.5 3.7 4.6 Bootstrap
YP 6.6 6.3 6.7 6.1 5.1 4.9 4.8 Asymptotic
LY 8.3 6.5 8.1 8.7 10.0 9.6 10.8 Bootstrap
NPC 10.7 30.8 60.9 85.0 95.5 98.0 99.3 NPC technique
W

T
4.4 6.0 5.9 5.7 4.8 5.5 4.8 Permutation
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Fig. 4   Left panel: Estimated survival functions Ŝ
1
 (—), Ŝ

2
 (- -), in the first and second samples, respec-

tively. Right panel: The bars represent the values of the components Cj , j = 1,… , 12
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(1991) tests are close to the nominal significance level � = 0.05 . The remaining 
tests, except the asymptotic (Lin and Wang 2004) solution, reject the null hypoth-
esis. The new proposal is one of the two tests, which provide the strongest evidence 
against the null model with p value 0.0114.

5.2 � Advanced ovarian carcinoma: cyclophosphamide versus cyclophosphamide 
plus adriamycin

Here, we analyze the data investigated in Edmonson et al. (1979). The patients were 
treated using either cyclophosphamide alone (1 g/m2 ) or cyclophosphamide (500 
mg/m2 ) plus adriamycin (40 mg/m2 ). The data are easily accessible in the R package 
survival with the label ovarian. There are n1 = n2 = 13 observations in each 
sample. Six observations in the first group and eight in the second one are censored.

Figure 5 presents the estimated Kaplan–Meier survival curves, as well as the val-
ues of the first 12 components Cjs.

Large values of the components C5,C6,C7 suggest the alternative A at the asymp-
totic nominal level smaller than 0.01. The permutation p values of all the compo-
nents considered are presented in Table 5.

Table  6 contains the p values of the tests under consideration calculated using 
either permutation, bootstrap, or asymptotic approach. A selection of a method is 
the same as in the conducted simulation study, cf. Tables 1 and 2.

The classical solutions, that is, the Gehan (1965), Mantel (1966), Renyi-type 
(Gill 1980), as well as Fleming and Harrington (1991) tests do not reject the null 
hypothesis with large p values. The same concerns the Lin and Wang (2004), Qiu 
and Sheng (2008), and Arboretti et al. (2018) tests. The remaining competitive pro-
cedures are also insignificant at the significance level � = 0.05 . The only test which 
validates the hypothesis H in favor of the alternative A with p value 0.0170 is the 
new proposal.

Table 3   Empirical p values of the components Cj , j = 1,… , 12 , n
1
= n

2
= 45 . Based on 10,000 permu-

tation runs

Cj

j 1 2 3 4 5 6 7 8 9 10 11 12

p value 0.553 0.001 0.001 0.002 0.016 0.195 0.649 0.933 0.714 0.645 0.686 0.788

Table 4   Empirical p values of the tests under consideration, n
1
= n

2
= 45, d = 12, c = 2 . Based on 

10,000 permutation/bootstrap runs

Test G M R FH LW QS YP LY NPC WT

p value 0.0465 0.5530 0.2825 0.0501 0.2788 0.0257 0.0304 0.0026 0.8687 0.0114
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6 � Discussion

The paper has been aimed at proposing a solution, which controls the error of the 
first kind and is sensitive in detection of a wide range of the alternatives, general-
izing the popular log-rank test, as well as providing a new source of characterization 
of the discrepancies from the null model.

The first issue has been addressed by a permutation idea resulting in an exact test 
under finite sample sizes and the restricted null hypothesis H0 , as well as asymptotic 
distribution-freeness under general H . An employment of the Laguerre polynomi-
als together with the weighted log-rank statistics and building on their basis a kind 
of an efficient score statistic in combination with a proper model selection realizes 
the remaining goals. The relation (11) shows that usage of that system presumably 
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Fig. 5   Left panel: estimated survival functions Ŝ
1
 (—), Ŝ

2
 (- -), in the first and second samples, respec-

tively. Right panel: the bars represent the values of the components Cj , j = 1,… , 12

Table 5   Empirical p values of the components Cj , j = 1,… , 12 , n
1
= n

2
= 13 . Based on 10,000 permu-

tation runs

Cj

j 1 2 3 4 5 6 7 8 9 10 11 12

p value 0.455 0.229 0.090 0.032 0.013 0.007 0.009 0.013 0.022 0.033 0.048 0.074

Table 6   Empirical p values of the tests under consideration, n
1
= n

2
= 13 , d = 12, c = 2 . Based on 

10,000 permutation/bootstrap runs

Test G M R FH LW QS YP LY NPC WT

p value 0.2102 0.4548 0.6154 0.1477 0.8291 0.1362 0.0785 0.0827 0.4701 0.0170
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leads to the one and only natural generalization of the log-rank test, where the Fou-
rier coefficients defined corresponding to the consecutive polynomials allow one 
to characterize the source of discrepancies from the null model, whereas the newly 
proposed test procedure enables one to detect them. Such an approach leads to the 
flexible solution which competes well with the best tests and simultaneously is a 
safe procedure controlling the Type I error at the assumed significance level �.
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