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Abstract

This supplementary material is to complete the mathematical techniques of the

proof involved in the main text and additional numerical conclusions are presented for

illustrating the theoretical results more explicitly.
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S1 Proofs of Theorems in Section 3

Proof of Theorem 1. Recall the definition of k in (2.3). From the construction of k̂1, to

derive that P(k̂1 = k) → 1 as n → ∞, all needed to do are to prove that, in probability,∣∣∣∣∣ λ̂k+1 − λ̂k+2 + cn

λ̂k − λ̂k+1 + cn

∣∣∣∣∣ ≤ τ1,

and uniformly over all i > k, ∣∣∣∣∣ λ̂i+1 − λ̂i+2 + cn

λ̂i − λ̂i+1 + cn

∣∣∣∣∣ > τ1.

These inequalities show that by the definition, k̂1 is not possible to be smaller than k in

probability. By Lemma 2 for any k < i ≤ L − 2, λ̂i − d+ = Op(n
−2/3) and λ̂i − λ̂i+1 =

Op(n
−2/3). Thus, by the rate of cn with n−2/3c−1

n → 0, we have that, in probability,∣∣∣∣∣ λ̂i+1 − λ̂i+2 + cn

λ̂i − λ̂i+1 + cn

∣∣∣∣∣ =
∣∣∣∣∣(λ̂i+1 − λ̂i+2) · c−1

n + 1

(λ̂i − λ̂i+1) · c−1
n + 1

∣∣∣∣∣ = oP (1) + 1

oP (1) + 1
→ 1 > τ1,

As L is a fixed integer, this convergence can then be uniformly for all i with k < i ≤ L− 2.

Consider in the case of i = k. Again by Lemma 2, λ̂k−γk = Op(n
−1/2) and when i = k, k+1,

λ̂i+1 − d+ = Op(n
−2/3). In other words, λ̂k − λ̂k+1 → γk − d+.

Notice, for i ≥ k, γi = λi(1− c1 + c1λi
−1)(1− c2 + c2λi

−1) and d+ = c1(1− c2) + c2(1−
c1) + 2

√
c1c2(1− c1)(1− c2), then we have

γi − d+ = λi[(1− c1)(1− c2) + c2(1− c1)λ
−1
i + c1(1− c2)λ

−1
i + c1c2λi

−2]

− [c1(1− c2) + c2(1− c1) + 2
√

c1c2(1− c1)(1− c2)]

= λi(1− c1)(1− c2) +
c1c2
λi

− 2
√
c1c2(1− c1)(1− c2).

From Assumption 1, we also have c1 > 0, c2 > 0, 1 − c1 > 0, 1 − c2 > 0, and Assumption 2

reveals λi > 0, hence,

λi(1− c1)(1− c2) +
c1c2
λi

≥ 2
√

c1c2(1− c1)(1− c2),

and the equality holds if and only if λi = rc =
√

c1c2
(1−c1)(1−c2)

. So, under the model in

Assumption 2, if λi > rc, then λ̂k − λ̂k+1 → γk − d+ > 0.
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Then,∣∣∣∣∣ λ̂k+1 − λ̂k+2 + cn

λ̂k − λ̂k+1 + cn

∣∣∣∣∣ =
∣∣∣∣∣ λ̂k+1 − d+ − (λ̂k+2 − d+) + cn

λ̂k − γk + γk − d+ − (λ̂k+1 − d+) + cn

∣∣∣∣∣ = op(cn) + cn
γk − d+ + op(1) + cn

→ 0 < τ1.

The proof is completed.

Proof of Theorem 2. Recall the definition of k in (2.3). From the construction of k̂2, to

derive that P(k̂2 = k) → 1 as n → ∞, all needed to do are to prove that, in probability,∣∣∣∣∣ λ̂k+1 − d+ + cn

λ̂k − d+ + cn

∣∣∣∣∣ ≤ τ2,

and uniformly over all i > k, ∣∣∣∣∣ λ̂i+1 − d+ + cn

λ̂i − d+ + cn

∣∣∣∣∣ > τ2.

These inequalities show that by the definition, k̂2 is not possible to be smaller than k in

probability. Note that for any k < i ≤ L− 1, we have, in probability,∣∣∣∣∣ λ̂i+1 − d+ + cn

λ̂i − d+ + cn

∣∣∣∣∣ =
∣∣∣∣∣ (̂λi+1 − d+) · c−1

n + 1

(̂λi − d+) · c−1
n + 1

∣∣∣∣∣ = oP (1) + 1

oP (1) + 1
→ 1 > τ2,

by applying Lemma 2 and n−2/3c−1
n → 0. As L is a fixed integer, this convergence can

then be uniformly for all i with k < i ≤ L − 1. Further, when i = k, again by Lemma 2,

λ̂k+1 − d+ = Op(n
−2/3) and in probability λ̂k − d+ → γk − d+.

Notice, for i ≥ k, γi = λi(1− c1 + c1λi
−1)(1− c2 + c2λi

−1) and d+ = c1(1− c2) + c2(1−
c1) + 2

√
c1c2(1− c1)(1− c2), then we have

γi − d+ = λi[(1− c1)(1− c2) + c2(1− c1)λ
−1
i + c1(1− c2)λ

−1
i + c1c2λi

−2]

− [c1(1− c2) + c2(1− c1) + 2
√

c1c2(1− c1)(1− c2)]

= λi(1− c1)(1− c2) +
c1c2
λi

− 2
√
c1c2(1− c1)(1− c2).

From Assumption 1, we also have c1 > 0, c2 > 0, 1 − c1 > 0, 1 − c2 > 0, and Assumption 2

reveals λi > 0, hence,

λi(1− c1)(1− c2) +
c1c2
λi

≥ 2
√

c1c2(1− c1)(1− c2),

and the equality holds if and only if λi = rc =
√

c1c2
(1−c1)(1−c2)

. So, under the model in
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Assumption 2, if λi > rc, then λ̂k − λ̂k+1 → γk − d+ > 0.

Thus,∣∣∣∣∣ λ̂k+1 − d+ + cn

λ̂k − d+ + cn

∣∣∣∣∣ =
∣∣∣∣∣ λ̂k+1 − d+ + cn

λ̂k − γk + γk − d+ + cn

∣∣∣∣∣ = op(cn) + cn
γk − d+ + op(1) + cn

→ 0 < τ2.

The proof is completed.

S2 Additional numerical results

Additional simulations are operated to further illustrate the performance for all method-

ologies mentioned in the main text.

Model S1: This model has higher eigenvalue multiplicity on the boundary:

(λ1, λ2, λ3, λ4, λ5, λ6, λ7) = (0.8, 0.6, 0.4, 0.2, 0.2, 0.2, 0.2), and λ8 = · · · = λq = 0. The results

are presented in Table S1. As the multiplicity on the boundary is 4 and thus the true rank

is much more difficult to detect. The results obviously suggest that all methods cannot work

as well as them for the previous models. Further comparisons also indicate that AIC, BIC

and Cp basically fail to work in rank determination and the scree plot method tends to have

more serious under-estimation issue than our criteria. Again, the original eigenvalue-based

ratio criterion works better than eigenvalue difference-based one. When p = 210, although

k = 7 = q1, it is not easy to be determined.

Table S1: The proportions of estimated rank in 1000 replications for Model S1.

p=60, rc = 0.0445, γ7 = 0.2778, d+ = 0.1674 p=110, rc = 0.0854, γ7 = 0.3514, d+ = 0.2956

k̂1 k̂2 k̂BM k̂A k̂B k̂C k̂1 k̂2 k̂BM k̂A k̂B k̂C
≤ 4 34 0 0 0 1000 0 467 0 0 0 1000 0
5 1 0 0 0 0 0 36 17 237 0 0 0
6 0 6 11 0 0 0 24 607 657 5 0 0
7 922 994 989 904 0 651 395 376 106 703 0 4

≥ 8 43 0 0 96 0 349 78 1 0 292 0 996
p=160, rc = 0.1305, γ7 = 0.4330, d+ = 0.4133 p=210, rc = 0.1809, γ7 = 0.5226, d+ = 0.5206

≤ 4 734 9 625 0 1000 0 942 769 1000 0 1000 0
5 68 401 361 0 0 0 23 227 0 0 0 0
6 55 582 14 17 0 0 13 4 0 17 0 0
7 80 8 0 276 0 0 10 0 0 72 0 0

≥ 8 63 0 0 607 0 1000 12 0 0 607 0 1000
p=260, rc = 0.2379, γ4 = 0.6644, d+ = 0.6174 p=310, rc = 0.2871, γ4 = 0.7222, d+ = 0.7037

≤ 4 949 809 1000 0 1000 0 986 924 1000 0 1000 0
5 21 189 0 0 0 0 8 75 0 0 0 0
6 13 2 0 0 0 0 1 1 0 0 0 0
7 8 0 0 0 0 0 1 0 0 0 0 0

≥ 8 9 0 0 1000 0 1000 4 0 0 1000 0 1000
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As the boundary eigenvalues take small value λ4 = · · · = λ7 = 0.2, with higher dimension,

k = 4 < q1 = 7, the situation gets worse. But when p = 260, γ4 can still be larger than d+

with a reasonable margin. k̂2 can still determine a value of k = 5 with higher probability

than the others. Comparably, k̂2 still uniformly outperforms the other competitors with less

serious underestimation problem.

Model S2: This model we let q1 vary with a higher order of q to demonstrate the

accuracy of estimates braced a number of nonzero eigenvalues. Specifically, let Card(q1) =

⌊q2/3⌋, which is the largest integer less than or equal to q2/3. In this setting, the population

canonical pairs being more larger as the size of dimension diverse. Likewise, we use the vector

q1 = (n1, n2, n3, n4) to present the multiplicity of nonzero eigenvalues of 0.8, 0.6, 0.4, 0.2

respectively. The value of number ni, i = 1, 2, 3, 4 is selected based on the size of q1 which

to be specified in Table S2. The information from Table S2 indicate that k̂B and k̂C almost

bankrupt with the magnitude of Card(q1) increasing. The former forth methods seem display

better performance when Card(q1) = 9. To be surprised, as we increase the size of Card(q1),

the AIC becomes outperform over others, but as continue larger Card(q1) it is tent to

overestimate. This method is more sensitive than our criterion k̂2 and method k̂BM . Overall,

all the methodology not get out the dilemma to avoid information loss under the high-

dimensional setting, but k̂2 still can be viewed as a reliable criterion for statistical inference.

Table S2: The proportions of estimated rank in 1000 replications for Model S2.

p=60, Card(q1) = 9, Mq1 = (2, 2, 3, 2) p=110, Card(q1) = 14, Mq1 = (4, 4, 3, 3)

k̂1 k̂2 k̂BM k̂A k̂B k̂C k̂1 k̂2 k̂BM k̂A k̂B k̂C
≤ 7 5 0 0 0 1000 0 ≤ 12 210 58 354 0 1000 0
8 0 4 5 0 0 0 13 12 913 586 0 0 0
9 875 996 995 879 0 643 14 601 29 60 756 0 28
10 71 0 0 119 0 331 15 85 0 0 237 0 309

≥ 11 49 0 0 2 0 26 ≥ 16 92 0 0 7 0 663
p=160, Card(q1) = 18, Mq1 = (5, 5, 5, 3) p=210, Card(q1) = 22, Mq1 = (7, 7, 7, 2)

≤ 15 442 297 866 0 1000 0 ≤ 19 343 58 398 0 1000 0
16 67 661 134 0 0 0 20 11 754 543 0 0 0
17 92 42 0 17 0 0 21 295 188 59 0 0 0
18 215 0 0 446 0 0 22 132 0 0 0 0 0

≥ 19 184 0 0 537 0 1000 23 219 0 0 1000 0 1000
p=260, Card(q1) = 25, Mq1 = (7, 9, 7, 2) p=310, Card(q1) = 28, Mq1 = (8, 8, 8, 4)

≤ 20 559 212 997 0 1000 0 ≤ 18 807 15 999 0 1000 0
21 27 694 3 0 0 0 19 24 398 1 0 0 0
22 43 94 0 0 0 0 20-23 18 523 0 0 0 0
23 177 0 0 0 0 0 24 58 36 0 0 0 0

24− 25 136 0 0 0 0 0 25-28 76 28 0 0 0 0
≥ 26 58 0 0 1000 0 1000 ≥ 29 17 0 0 1000 0 1000

Model S3: This model has the eigenvalue multiplicity in the middle part as

(λ1, λ2, λ3, λ4, λ5, λ6, λ7) = (0.8, 0.6, 0.6, 0.4, 0.4, 0.4, 0.2), λ8 = · · · = λq = 0. It is used
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to depict the consequence under asymmetric non-normal case. Specifically, we generate the

deviants from chi-square distribution with two degrees of freedom. The results are tubulated

in Table S3. Similarly, the information can be inferred from Table S3 in accordance with

the symmetric Student’s t distribution with ten degrees of freedom. k̂A, k̂B and k̂C cause de-

viation for estimation especially under high dimension. k̂BM is to some extent credible, but

its still lose information obviously with dimension diverse. Our criterion k̂2 can be viewed

as a reliable rule for order determination under this symmetric and asymmetric situation.

Though there is lack persuasive evidence in theoretical to support all methodologies for non-

normal situation, the simulation results imply some heuristic sparks for the pursuit of truth.

Table S3: The proportions of estimated rank in 1000 replications for Model S3 under asym-
metric χ2

df=2.

p=60, rc = 0.0445, γ7 = 0.2778, d+ = 0.1674 p=110, rc = 0.0854, γ7 = 0.3514, d+ = 0.2956

k̂1 k̂2 k̂BM k̂A k̂B k̂C k̂1 k̂2 k̂BM k̂A k̂B k̂C
≤ 4 0 0 0 0 0 0 0 0 0 0 1000 0
5 0 0 0 0 1000 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0
7 1000 1000 1000 1000 0 1000 0 1000 1000 0 0 0

≥ 8 0 0 0 0 0 0 1000 0 0 1000 0 1000

p=160, rc = 0.1305, γ7 = 0.4330, d+ = 0.4133 p=210, rc = 0.1809, γ7 = 0.5226, d+ = 0.5206
≤ 4 0 0 0 0 1000 0 0 0 0 0 1000 0
5 0 0 0 0 0 0 0 0 0 0 0 0
6 1000 0 1000 0 0 0 1000 1000 1000 0 0 0
7 0 1000 0 0 0 0 0 0 0 0 0 0

≥ 8 0 0 0 1000 0 1000 0 0 0 1000 0 1000

p=260, rc = 0.2379, γ6 = 0.6644, d+ = 0.6174 p=310, rc = 0.2871, γ6 = 0.7222, d+ = 0.7037
≤ 4 1000 0 0 0 1000 0 1000 0 1000 0 1000 0
5 0 0 1000 0 0 0 0 0 0 0 0 0
6 0 1000 0 0 0 0 0 1000 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0

≥ 8 0 0 0 1000 0 1000 0 0 0 1000 0 1000
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