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Abstract
For two random vectors whose dimensions are both proportional to the sample size, 
we in this paper propose two ridge ratio criteria to determine the number of canoni-
cal correlation pairs. The criteria are, respectively, based on eigenvalue difference-
based and centered eigenvalue-based ridge ratios. Unlike existing methods, the cri-
teria make the ratio at the index we want to identify stick out to show a visualized 
“valley-cliff” pattern and thus can adequately avoid the local optimal solutions that 
often occur in the eigenvalues multiplicity cases. The numerical studies also sug-
gest its advantage over existing scree plot-based method that is not a visualization 
method and more seriously underestimates the number of pairs than the proposed 
ones and the AIC and Cp criteria that often extremely over-estimate the number, and 
the BIC criterion that has very serious underestimation problem. A real data set is 
analyzed for illustration.

Keywords  Canonical correlation matrix · Eigenvalue-based ridge ratios · High 
dimensionality · The number of canonical correlation pairs

1  Introduction

As the seminal work by Hotelling (1936), canonical correlation analysis (CCA) has 
been a basic approach in statistics to capture the most of correlation between two 
multidimensional vectors through much less number of significant canonical vari-
ate pairs that are the linear combinations of the original sets of variables. How to 
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determine this number to achieve dimension reduction is an important issue. When 
these vectors are of fixed dimensions, the theory has been very mature. In this paper, 
we consider this issue when the dimensions are large in the sense that they are pro-
portional to the sample size.

Let � ∈ ℝ
p and � ∈ ℝ

q be two multivariate random vectors with finite second 
moments and partition the cross-covariance matrix as follows

where Σ11 is the covariance with respect to � of dimension p, Σ22 associates with � of 
dimension q, and Σ⊤

12
= Σ21 is the covariance between � and �. Let S11, S22, S⊤12 = S21 

be the sample counterparts to be specified later.
To be precise, as one of the powerful methodologies, CCA realises dimension 

reduction through exploring the new linear combination of each set to maximize 
the correlation between the new linear combination pairs. It allows us to summarize 
the relationship into a much smaller number of new pairs called canonical variates 
while preserving the main facets of the associations. Specifically, it is to find the lin-
ear combinations (�⊤�, �⊤�) of each set to maximize the canonical correlation

subject to the constraints

where � ∈ ℝ
p and � ∈ ℝ

q are called canonical directions. The pairs (�⊤�, �⊤�) are 
named canonical variates and the number of nonzero pairs of canonical variates or 
the number of nonzero canonical correlations is called the dimensionality in CCA.

In this paper, we consider the issue of determining the number of canonical cor-
relation pairs, which can be transferred to the rank of the CCA-based matrix under 
high-dimensional framework. As mentioned in Hotelling (1936), the optimum solu-
tion of (2) can be obtained by directly applying the singular value decomposition 
(SVD) on the matrix

At the sample level, we usually use the corresponding sample covariance matrix 
instead. Based on the collected sample pairs {(�j, �j) ∶ j = 1, ..., n} , note the sample 
matrix as follows

The sample pairs of the canonical variates are

(1)Σxy =

(
Σ11 Σ12

Σ21 Σ22

)
,

(2)𝜌 =
Cov(�⊤�, �⊤�)√

Var(�⊤�) ⋅
√
Var(�⊤�)

=
�⊤Σ12�√

�⊤Σ11� ⋅
√
�⊤Σ22�

,

�⊤Σ11� = �⊤Σ22� = 1,

Σ
−1∕2

11
Σ12Σ

−1∕2

22
.

(3)S
−1∕2

11
S12S

−1∕2

22
.

Ui = u⊤
i
S
−1∕2

11
�, Vi = v⊤

i
S
−1∕2

22
�,
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where ui, vi are left and right singular vectors in (3), respectively.
To determine the number of pairs, when p and q are fixed, Akaike’s informa-

tion criterion (AIC) (Akaike 1973) and modified Mallows’s Cp (Mallows 1973) 
which originally from model selection criterion for regression analysis, have been 
used, see Fujikoshi and Veitch (1979) and Fujikoshi (1985). The criterion based 
on Bayesian information criterion (BIC) (Schwarz 1978) in canonical correlation 
analysis was studied by Gunderson and Muirhead (1997). To facilitate the determi-
nation in diverging dimension scenarios, Fujikoshi and Sakurai (2009) considered 
the asymptotic distribution of canonical correlations with p∕n → c ∈ [0, 1) while q 
fixed. Fujikoshi (2017a) investigated the asymptotic results under milder conditions. 
When both p and q go to infinity as n tends to infinity, Bao et al. (2019) gave a more 
thorough investigation on these topics and used the typical scree plot approach to 
determine the rank. By using a penalty or a threshold as the tuning parameter, these 
methods either use the global maximizer/minimizer as the estimators or the mini-
mizer over all indices of the quantities that are larger than a threshold value. How-
ever, AIC is not consistent in theory and BIC may seriously rely on the selection 
of the penalty. When there are equal eigenvalues at the population level, the scree 
plot-based estimation would underestimate the true rank/number because it has dif-
ficulty to well separate those outliers of all eigenvalues. Further, as we know, visu-
alization is a very useful auxiliary tool for practical use. When p and q are large and 
the number of canonical correlation pairs could also be relatively large, the scree 
plot is difficult to well present the separation between the outliers and the bulk of 
other eigenvalues. Several other heuristic approaches for selecting rank, under high-
dimensional CCA, have also been studied by Song et al. (2015, 2016). They get the 
canonical correlation by two steps. Specially, first to do principal component analy-
sis (PCA) for � and � to extract the principal components that account for a large 
fraction of the total variance. Second, to perform CCA in the new low-dimensional 
sets. But how to use this PCA-CCA technique to decide the number of principal 
components totally relies on experience. The principal components accounting for 
each set does not directly explain the correlation between two sets. Further, when 
the dimensions p and q are proportional to the sample size, the asymptotic behaviors 
of the PCA and CCA matrix at the sample level is rather different from those of the 
corresponding matrices at the population level (see Bai et al. (2018) and Bao et al. 
(2019)), it needs some theoretical investigation on the consistency of the estimator.

In this paper, we attempt to define some criteria that could make a local mini-
mizer as the estimator of k significantly sticking out from all local minimizers. We 
propose two ridge ratio-based criteria for this purpose. The new criteria have some 
desirable features. First, thanks to the use of ridge cn as a tuning parameter that will 
be specified in Sect. 3 when we construct ratios, the criteria have “valley-cliff” pat-
terns such that the numbers of the corresponding quantities in the criteria can be 
well isolated and identified at “valley bottom”. The identification can be even visual-
ized by plots. This unique nature makes the determination much easier in practice 
than existing criteria in the literature. Second, the estimation is consistent. Third, 
they can better handle the multiplicity of nonzero eigenvalues to avoid the underes-
timation problem some existing criteria encounters in practice. Fourth, again due to 
the “ valley-cliff” pattern, the criteria can also alleviate the multiple local minima 
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problem that could also cause the underestimation problem. To give a better idea 
about the advantages of the new criteria, we will see from the curves of different 
criteria presented in Sects. 3 and 5, the centered eigenvalue-based ratio criterion we 
will propose even has better performance. We also want to point out a limitation of 
the methods, like any criterion in the literature, we indispensably need to select tun-
ing parameters that could have impact for the performance of the methods. A data-
driven approach would be in demand. This issue is beyond the scope of this paper. 
The investigation is ongoing. It is worth of mentioning that when using the original 
estimated eigenvalues to construct a criterion to identify the order of matrix, the 
ridge ratio-based idea has been considered in Zhu et al. (2020). Their method can 
be feasible when p and q are fixed or would be possibly useful when p∕n → 0 and 
q∕n → 0 , and p and q are divergent to infinity. However, for the problem studied in 
this paper with p∕n → c1 > 0 and q∕n → c2 > 0 , the completely different asymp-
totic results of the estimated eigenvalues cause the failure of their method that is 
not possible to separate the ratio at the order we want to identify and the others. The 
reasons behind this difficulty will be described in Sect. 3. Thus, we propose eigen-
value difference-based and centered eigenvalue-based objective function to handle 
the estimation problem in this paper.

The rest of this paper is organized as follows. In Sect. 2 we introduce some neces-
sary preliminaries. The criterion and asymptotic properties are displayed in Sect. 3. 
Simulation results are conducted in Sect. 4 to compare the proposed estimation with 
other methods. The analysis of a real data example is presented in Sect.  5. Some 
technical proofs and numerical studies are included in the supplementary material.

2 � Preliminary facts and assumptions

Without loss of generality, in this context we assume p ≥ q . From Hotelling (1936), 
the canonical correlation coefficients �i between � and � are known as the nonzero 
singular values of matrix Σ−1∕2

11
Σ12Σ

−1∕2

22
 . By Rayleigh quotient, the nonzero singu-

lar values of matrix Σ−1∕2

11
Σ12Σ

−1∕2

22
 are equivalent to the square roots of the nonzero 

eigenvalues �i of matrix Σ−1
11
Σ12Σ

−1
22
Σ21 , which is called canonical correlation matrix. 

Thus, the optimum solution of (2) can be obtained by solving the characteristic 
equation of the latter matrix. To ease the presentation, give the notation as

Similarly, one can define C21 by interchanging the roles of � and � in C12 . Notice that 
C12 and C21 share the same nonzero eigenvalues. Hence, we take matrix C12 into con-
sideration throughout the rest of the paper and C21 can be similarly handled. Write 
the eigenvalues of C12 in descending order

assuming that at least �q = 0 and the rank of Σ12 is equal to q1.
In estimation, write the sample canonical correlation matrix as

(4)C12 ∶= Σ−1
11
Σ12Σ

−1
22
Σ21.

𝜆1 ≥ 𝜆2 ≥ ⋯ = 𝜆q1 > 𝜆q1+1 = ⋯ = 𝜆q = 0,
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and the corresponding eigenvalues as

In the settings with fixed p and q, all estimated eigenvalues 𝜆̂i consistently converge 
to the corresponding ones �i . Thus, any criteria that are based on eigenvalues could 
consistently determine the number of canonical correlation pairs. However, in the 
regime in which the dimensions p and q are proportional to the sample size, the con-
vergence of the estimated eigenvalues 𝜆̂i becomes very different and thus in general, 
the number q1 is not necessarily identifiable. Bao et al. (2019) showed that in theory, 
only the number of some spiked eigenvalues can be determined. We give the related 
assumptions below.

Assumption 1  For the dimensionality of vectors, we need following assumptions

When p ≥ q and thus c1 ≥ c2.

Note that, under the constraint on c1 and c2 , we have 0 < c1 < 1 − c2 and 
0 < c2 < 1 − c1 and thus, (c1c2)∕((1 − c1)(1 − c2)) < 1 . We then consider the follow-
ing assumption.

Assumption 2  Write q1 ∶= rank(Σ12) for fixed integer q1 . Also write

There is a nonnegative integer k such that

and when 𝜆1 < rc , define k = 0.

We now present the asymptotic properties of 𝜆̂i for 1 ≤ i ≤ q . Their empirical 
spectral distribution (ESD) is denoted as

where �A(⋅) is the indicator function of A.

S−1
11
S12S

−1
22
S21,

𝜆̂1 ≥ ⋯ ≥ 𝜆̂q1 ≥ 𝜆̂q1+1 ≥ 𝜆̂q1+2 ≥ ⋯ ≥ 𝜆̂q ≥ 0.

p∕n = a1(n) → c1 ∈ (0, 1),

q∕n = a2(n) → c2 ∈ (0, 1),

s.t. c1 + c2 ∈ (0, 1).

(5)rc ∶=

√
c1c2

(1 − c1)(1 − c2)
.

(6)1 ≥ 𝜆1 ≥ ⋯ ≥ 𝜆k > rc ≥ 𝜆k+1 ≥ ⋯ 𝜆q1 > 𝜆q1+1 = ⋯ = 𝜆q = 0,

Fn(x) ∶=
1

q

q∑
i=1

�(−∞,x](𝜆̂i),
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Lemma 1  (Wachter 1980) For independent Gaussian vector � ∈ ℝ
p and � ∈ ℝ

q , 
when Assumptions 1 and 2 hold, we have Fn(x)

w
→ F(x) , where F(x) gives the density

where

Remark 1  As all estimated eigenvalues follow a continuous distribution with the 
lower and upper bounds d− and d+ , we can very easily see that almost all estimated 
eigenvalues do not converge to the corresponding eigenvalues at the population 
level. The following lemma from Bao et al. (2019) gives some more detailed results.

Lemma 2  (Bao et al. 2019) Under the conditions in Lemma 1, 

	 (i):	 for 1 ≤ i ≤ k , 

where �i = �i(1 − c1 + c1�i
−1)(1 − c2 + c2�i

−1) is a function of �i.
	 (ii):	 for i with k + 1 ≤ i ≤ L < q where L is any large, but fixed integer,

where d+ is the upper bound mentioned in Lemma 1.
	(iii):	 𝛾i > d+ if 𝜆i > rc.

These results present the important feature that shows the significant differ-
ence of the estimated eigenvalues than that when p and q are fixed in the classi-
cal settings. The result (ii) also shows that the weak signals �i+1 ≥ … ≥ �q1 may 
not be detectable as their estimators converge to the same value as all the esti-
mated eigenvalues 𝜆̂j for k + 1 ≤ j ≤ L for any large L whose values at the popu-
lation level are zero at a fast rate n−2∕3 . Clearly, when there are too many weak 
signals, the estimable order k should be much smaller than q1 , otherwise, k can 
be close to q1 . These results will be the base for constructing our criteria below.

3 � Ridge ratio criteria and properties

We give the two criteria in separate subsections below.

F�(x) = f (x) =

�
1

2�c2

√
(d+−x)(x−d−)

x(1−x)
, if x ∈ [d−, d+],

0, otherwise,

(7)d± =
�√

c1(1 − c2) ±
√
c2(1 − c1)

�2

.

𝜆̂i − 𝛾i = Op(n
−1∕2)

𝜆̂i − d+ = Op(n
−2∕3),
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3.1 � The eigenvalues difference‑based ratios

Define

From the description in Sect. 2, we have that �i ≥ 0 for all i and 𝛿q1 > 0 . Further, 
define the ratios as, if 0/0 is temporarily defined as 1,

It is clear that such a function has a local minimum at i = q1 and all consecutive 
ratios take the constant value of 1. In other words, the maximum local minimizer 
is definitely the true value q1 although there would exist other local minima or not. 
(This is the case when there are equal positive eigenvalues.) Note that 0

0
 is indeter-

minant form in general that could cause unstable values when the eigenvalues are 
estimated. We then modify this criterion by adding a positive ridge value cn → 0 as 
n → ∞:

The ridge value, as a tuning parameter, has two functions to make the criterion better 
performed: avoiding the instability of ratios and keeping the property of the ratios at 
the population level. This is different from the tuning parameters used in the other 
criteria in the literature. It makes this criterion function has a valley-cliff pattern at 
the true value of q1 : taking value 0 of the ratio at q1 and value 1 for all successive 
ratios. Clearly a criterion can be based on the above to search for q1 when 𝜆̂i are used 
instead. However, from Lemma  2 in Sect.  2, we know that q1 is not identifiable, 
while k is possible. Recall

The sample ratios are as, when cn is selected properly,

We then construct an estimator as the maximum index of the ratio that is bounded 
by a constant �1 with 0 < 𝜏1 < 1,

(8)�i = �i − �i+1, 1 ≤ i ≤ q − 1.

(9)r1,i =
𝛿i+1

𝛿i
=

𝜆i+1 − 𝜆i+2

𝜆i − 𝜆i+1
=

⎧
⎪⎪⎨⎪⎪⎩

Ci ≥ 0, i < q1,

0

𝛿q1

= 0, i = q1,

0

0
∶= 1, q1 < i ≤ q − 2.

(10)rR
1,i

=
𝛿i+1 + cn

𝛿i + cn
=

𝜆i+1 − 𝜆i+2 + cn

𝜆i − 𝜆i+1 + cn
=

⎧⎪⎨⎪⎩

≥ 0, i < q1,
cn

𝜆q1
+cn

→ 0, i = q1,
cn

cn
= 1, q1 < i ≤ q − 2.

(11)k ∶= #{i ∶ 1 ≤ i ≤ q1, 𝜆i > rc}.

(12)lim
n→+∞

r̂R
1,i

= lim
n→+∞

𝛿i+1

𝛿i

= lim
n→+∞

𝜆̂i+1 − 𝜆̂i+2 + cn

𝜆̂i − 𝜆̂i+1 + cn

=

⎧⎪⎨⎪⎩

≥ 0, i < k,

0, i = k,

1, k < i ≤ L − 2.
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The consistency is stated below.

Theorem  1  Suppose that Assumptions  1 and  2 and the conditions in Lemmas  1 
and 2 hold. When cn = log(log n)∕n2∕3 and n → ∞,

Remark 2  In theory, as long as �1 is between 0 and 1, the consistency holds true. 
Therefore, unlike the thresholding value used in scree-plot methods, the perfor-
mance of the method is relatively insensitive to its selection. But even though, in 
practice, when it is too close to 0, underestimation could happen whereas it is too 
close to 1, the estimator would take large value. Based on our experience in limited 
numerical studies, we recommend a value of �1 = 0.5 as a compromise.

3.2 � Centered eigenvalue‑based ratios

In the difference-based ratios, �i are no longer monotonic with respect to the 
index i, we now propose another sequence of ratios that are based on the esti-
mated eigenvalues themselves.

At the population level, define the eigenvalues-based ratios as

Clearly,

Again, to avoid the instability of 0/0, we also add a ridge value cn → 0 to define 
ridge ratios:

Then, the redefined ratios show the following property:

(13)k̂1 = max
1≤i≤L−2{i ∶

𝜆̂i+1 − 𝜆̂i+2 + cn

𝜆̂i − 𝜆̂i+1 + cn

≤ 𝜏1}.

(14)ℙ(k̂1 = k) → 1.

(15)r2,i =
�i+1

�i
, 1 ≤ i ≤ q − 1.

(16)r2,i =
𝜆i+1

𝜆i
=

⎧⎪⎨⎪⎩

≤ 1, for i < q1,

0, for i = q1,
0

0
∶= 1, for q1 < i ≤ q − 1.

(17)rR
2,i

=
�i+1 + cn

�i + cn
, 1 ≤ i ≤ q − 1.
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However, when the estimated eigenvalues 𝜆̂i are used, Lemma 2 tells that the above 
properties cannot continue to hold. To be precise, 𝜆̂i for all i with 1 ≤ i ≤ L where 
L > q1 do not converge to zero and then the ratios

In other words, this cannot be a criterion to determine the rank as there is no a clear 
separation between the ratio at k and all successive ratios. This confirms the com-
ments at the end of Sect.  2. Thus, we consider centered eigenvalues 𝜆̂i − d+ and 
define modified ridge ratios with the properties:

This function appears again a “valley-cliff” pattern at the index k. We can then con-
struct an estimator, for a constant �2 with 0 < 𝜏2 < 1,

Theorem 2  Under the same conditions in Theorem 1, when cn = log(log n)∕n2∕3 and 
n → ∞,

Remark 3  Similarly as that for Theorem 1, we also need to select a value of �2 . We 
tried several values of �2 around 0.8 and found that the simulation results were simi-
lar. Thus, �2 = 0.8 is recommended.

To better understand these methods, we give the curves of six criteria to vis-
ualize their mechanisms. The formal definitions of the criteria will be given in 
the next section. The data are generated from the model described in the cap-
tion of Fig. 1. We see that AIC, BIC and Cp very easily under- or over-determine 
the rank. The traditional scree plot method, which is not a visualization method, 
completely relies on the separation between the outliers and others by deli-
cately selecting the thresholding value. However, our criteria could intensify the 

(18)rR
2,i

=
𝜆i+1 + cn

𝜆i + cn
=

⎧
⎪⎨⎪⎩

≤ 1, for i < q1,
cn

𝜆i+cn
→ 0, for i = q1,

cn

cn
= 1, q1 < i ≤ q − 1.

(19)lim
n→+∞

r̃R
i
= lim

n→+∞

𝜆̂i+1 + cn

𝜆̂i + cn

=

⎧
⎪⎪⎨⎪⎪⎩

𝛾i+1

𝛾i
≤ 1, for i < k,

d+

𝛾k
< 1, for i = k,

d+

d+
= 1, for k < i ≤ q1,

d+

d+
= 1, for q1 < i ≤ L − 1.

(20)lim
n→+∞

r̂MR
i

= lim
n→+∞

�����
𝜆̂i+1 − d+ + cn

𝜆̂i − d+ + cn

�����
=

⎧⎪⎨⎪⎩

≤ 1, for i < k,

0, for i = k,

1, for k < i ≤ L − 1.

(21)k̂2 = max
1≤i≤L−1{i ∶ r̂MR

i
≤ 𝜏2}.

(22)ℙ(k̂2 = k) → 1.
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separation due to the use of ridge ratios. More importantly, the plots in Fig. 1b, 
c show that, unlike the other criteria, the eigenvalue-based ratio criteria are not 
continuous functions, while show an useful “valley-cliff” pattern. Particularly 
for the centered eigenvalue-based ratio criterion, when i = k + 1 , the ratio takes 
a very large value. This might be because the kth estimated eigenvalue is closer 
to the upper bound d+ than all successive eigenvalues and thus r̂MR

k+1
 could be very 

large. This “valley-cliff” pattern can make the ratio at the true rank stick out and 
thus helps a better separation of r̂MR

k
 from all r̂MR

i
 for i = k + 1,… , L . Therefore, 

in practice, this visualization tool can easily determine the number of canonical 
correlation pairs.

4 � Simulation studies

In this section, we conduct some simulations to illustrate the finite sample behav-
iors of the proposed criteria and to compare with the four competing methods 
studied in Bao et al. (2019) and Fujikoshi (2017b).

1. The AIC criterion. The formula is:

Fig. 1   Model: (�1, �2, �3, �4, �5, �6, �7) = (0.8, 0.6, 0.6, 0.4, 0.4, 0.4, 0.2) , and �8 = ⋯ = �q = 0 . Sample 
size n = 1000 , and the dimensions p = 210 , and q = 105 . The results are based on 1000 replications. The 
horizontal axis is for the number of eigenvalues.
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where K = 2 log{Γp+q(
1

2
n)∕(

1

2
n)

1

2
n(p+q)} , Γ(⋅) is Gamma function. Sxy is the sample 

cross-covariance with respect to Σxy in (1) and 
q∏

i=q+1

(⋅) = 0.

To bypass the nuisance parameter K and brevity, then use next formula instead of 
(23) in practice,

Here for j ∈ {0,… , q} . The estimator is the minimizer of

2. The BIC criterion. Analogous to Aj , the BIC criterion is given as

The minimizer of the following is defined as the estimator:

3). The Cp criterion (Fujikoshi and Veitch 1979, (3.11)). The criterion is:

Also the minimizer of the following is defined as the estimator:

4). The scree plot-based criterion (Bao et al. 2019). Denote k̂BM as the maximizer 
such that

where �n is a positive number only depending on n. Bao et  al. (2019) selected 
�n = log(log n)∕n2∕3.

(23)
AICj = − n log

[
q∏

i=j+1

(1 − 𝜆̂i)

]
+ n(p + q) + (p + q + 1) log |Sxy|

+ K + 2{j(p + q − j) +
1

2
p(p + 1) +

1

2
q(q + 1)},

(24)

Aj = AICj − AICq

= −n log

[
q∏

i=j+1

(1 − 𝜆̂i)

]
− 2(p − j)(q − j),

k̂A = argmin
j∈{0,1,…,q}

Aj.

Bj = −n log

[
q∏

i=j+1

(1 − 𝜆̂i)

]
− log(n)(p − j)(q − j).

k̂B = argmin
j∈{0,1,…,q}

Bj.

Cj = n

q∑
i=j+1

𝜆̂i

1 − 𝜆̂i

− 2(p − j)(q − j).

k̂C = argmin
j∈{0,1,…,q}

Cj.

(25)k̂BM ∶= max{i ∶ 𝜆̂i ≥ d+ + 𝜖n},
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We now present the simulation results with four different models in Tables 1, 2, 3 
and 4. The model settings are described in the captions of the tables.

In the simulations, let the eigenvalues at the population level be 
𝜆1 ≥ 𝜆2,… ,≥ 𝜆q1 > 𝜆q1+1 = ⋯ = 𝜆q = 0 and p∕q = 2 . The results with the sample 
of size n = 1000 and the data (Xi, Yi) being generated from the standard normal dis-
tribution are reported in Tables 1, 2and 3, but the results in Table 4 are with Student’ 
t distribution with ten degrees of freedom. k̂1 and k̂2 are our estimations. The ridge 
value in our approach and the tuning parameter in k̂BM are both �n = log(log n)∕n2∕3 
and rc is a constant in Assumption  1. The thresholding values are �1 = 0.5 and 
�2 = 0.8 in the criteria (13) and (21), respectively. The bold lines in all tables are 
corresponded to the number k, which defined in the criterion (11) in Sect. 3.

Model 1   This model would favor all methods: (�1, �2, �3, �4) = (0.8, 0.6, 0.4, 0.2) , 
�5 = ⋯ = �q = 0 and p∕q = 2 . The results are tubulated in Table 1.

According to Table 1, we can find all the six estimators are performed well in 
low dimension cases. But when the dimension gets higher, AIC and Cp very seri-
ously overestimate the rank and BIC causes a serious underestimation. Compared 

Table 1   The proportions of estimated rank in 1000 replications for Model 1

p = 60, rc = 0.0445, �4 = 0.2778, d+ = 0.1674 p = 110 , 
rc = 0.0854, �4 = 0.3514, d+ = 0.2956

k̂1 k̂2 k̂BM k̂A k̂B k̂C k̂1 k̂2 k̂BM k̂A k̂B k̂C

≤ 2 0 0 0 0 356 0 28 0 0 0 1000 0
3 5 0 0 0 644 0 184 9 99 0 0 0
4 934 992 1000 816 0 447 684 969 901 487 0 0
5 43 8 0 176 0 469 73 22 0 459 0 20
≥ 6 18 0 0 8 0 84 31 0 0 54 0 980

p = 160 , rc = 0.1305, �4 = 0.4330, d+ = 0.4133 p = 210 , 
rc = 0.1809, �4 = 0.5226, d+ = 0.5206

≤ 2 70 0 0 0 1000 0 131 0 1 0 1000 0
3 525 203 698 0 0 0 709 494 972 0 0 0
4 306 783 302 56 0 0 115 493 27 0 0 0
5 63 14 0 351 0 0 26 13 0 2 0 0
≥ 6 36 0 0 593 0 1000 19 0 0 998 0 1000

p = 260 , rc = 0.2379, �3 = 0.6644, d+ = 0.6174 p = 310 , 
rc = 0.2871, �3 = 0.7222, d+ = 0.7037

≤ 2 347 0 61 0 1000 0 697 7 646 0 1000 0
3 573 654 937 0 0 0 257 670 353 0 0 0
4 46 341 2 0 0 0 29 321 1 0 0 0
5 11 5 0 0 0 0 4 2 0 0 0 0
≥ 6 23 0 0 1000 0 1000 13 0 0 1000 0 1000
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with AIC, BIC and Cp , our estimators obviously work much better, and k̂2 is uni-
formly better than k̂1 . The classical scree plot-based method k̂BM also works well. 
Note that when the dimension gets higher, k̂1 , k̂2 and k̂BM cannot well estimate the 
true rank, typically, all these methods gradually have the underestimation issue. 
When p = 260 and 310, �3 is just slightly larger than the upper bound d+ and thus, 
k = 3 although q1 = 4 . But overall with high dimension, k̂2 uniformly outperforms 
the other competitors.

Model 2   Consider the eigenvalue multiplicity on the middle part as 
(�1, �2, �3, �4, �5, �6, �7) = (0.8, 0.6, 0.6, 0.4, 0.4, 0.4, 0.2) , �8 = ⋯ = �q = 0 . The 
results are tubulated in Table 2. The results tell us that k̂A, k̂B and k̂C very much either 
under-estimate or over-estimate the true rank particularly when the dimensions are 
even moderate. The scree plot method tends to underestimate the rank although it is 
much better than k̂A, k̂B and k̂C . Overall, the original eigenvalue-based ratio criterion 
k̂2 overwhelms the other competitors. When p ≥ 260 , k = 6 < q1 = 7 , the results 
also show that q1 = 7 is difficult to be determined.

Table 2   The proportions of estimated rank in 1000 replications for Model 2

p = 60 , rc = 0.0445, �7 = 0.2778, d+ = 0.1674 p = 110 , 
rc = 0.0854, �7 = 0.3514, d+ = 0.2956

k̂1 k̂2 k̂BM k̂A k̂B k̂C k̂1 k̂2 k̂BM k̂A k̂B k̂C

≤ 4 1 0 0 0 117 0 51 0 0 0 1000 0
5 0 0 0 0 510 0 0 0 0 0 0 0
6 7 0 1 0 373 0 122 84 181 1 0 0
7 926 1000 999 854 0 584 736 915 819 581 0 33
≥ 8 66 0 0 146 0 416 91 1 0 418 0 967

p = 160 , rc = 0.1305, �7 = 0.4330, d+ = 0.4133 p = 210 , 
rc = 0.1809, �7 = 0.5226, d+ = 0.5206

≤ 4 159 0 0 0 1000 0 270 0 0 0 1000 0
5 0 0 0 0 0 0 1 1 13 0 0 0
6 441 550 855 0 0 0 553 866 982 0 0 0
7 310 449 145 72 0 0 114 133 5 0 0 0
≥ 8 62 1 0 828 0 1000 91 0 0 1000 0 1000

p = 260 , rc = 0.2379, �6 = 0.6644, d+ = 0.6174 p=310, 
rc = 0.2871, �6 = 0.7222, d+ = 0.7037

≤ 4 566 0 50 0 1000 0 854 8 829 0 1000 0
5 17 38 561 0 0 0 43 406 169 0 0 0
6 351 920 389 0 0 0 70 575 2 0 0 0
7 39  42  0  0 0 0 20 11 0 0 0 0
≥ 8 27 0 0 1000 0 1000 13 0 0 1000 0 1000
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Model 3   To see whether the method is workable in larger q1 cases, we consider 
in this model Card(q1) = ⌊q1∕2⌋ that is the largest integer less than or equal to q1∕2 . 
Recall q is the dimension of vector Y. Use the vector Mq1

= (n1, n2, n3, n4) to pre-
sent the multiplicity of nonzero eigenvalues of 0.8, 0.6, 0.4, 0.2, respectively. The 
numbers ni, i = 1, 2, 3, 4 are shown in Table 3. The results indicate that when q1 is 
relatively small, all competitors except k̂B and k̂C work well. In general, k̂B does often 
underestimate while k̂C overestimates. The methods are gradually and reasonably 
losing efficiency with increasing q1 . Our criterion k̂2 works the best among all com-
petitors although it also tends to underestimate the true number. We also conduct the 
simulation with Card(q1) = ⌊q2∕3⌋ . To save the space, all results are postponed to 
the supplementary material. The message is similar to that here, showing that when 
q1 is large, the estimation works worse. Thus in large q1 cases, the asymptotic prop-
erties would need a further study.

Further, although our criteria are theoretically rooted in Gaussian distribution, 
it is natural to wonder whether they are in practice feasible to non-Gaussian cases 
as there are no asymptotic results with non-Gaussian distributions. Consider 

Table 3   The proportions of estimated rank in 1000 replications for Model 3

p = 60 , Card(q1) = 5 , Mq1
= (2, 1, 1, 1) p = 110 , Card(q1) = 7 , Mq1

= (2, 2, 2, 1)

k̂1 k̂2 k̂BM k̂A k̂B k̂C k̂1 k̂2 k̂BM k̂A k̂B k̂C

≤ 4 4 0 0 0 1000 0 15 0 0 0 1000 0
5 871 996 1000 820 0 488 0 0 0 0 0 0
6 74 4 0 173 0 430 98 78 178 0 0 0
7 27 0 0 7 0 80 684 922 822 581 0 1
≥ 8 24 0 0 0 0 2 203 0 0 419 0 999

p = 160 , Card(q1) = 8 , Mq1
= (3, 2, 2, 1) p = 210 , Card(q1) = 10 , Mq1

= (3, 3, 2, 2)

≤ 6 60 0 0 0 1000 0 166 0 0 0 1000 0
7 363 607 845 0 0 0 3 0 3 0 0 0
8 400 393 155 87 0 0 499 691 984 0 0 0
9 68 0 0 458 0 0 109 309 13 0 0 0
10 31 0 0 385 0 0 85 0 0 1 0 0
≥ 11 78 0 0 70 0 1000 128 0 0 999 0 1000

p = 260 , Card(q1) = 11 , Mq1
= (3, 3, 3, 2) p = 310 , Card(q1) = 12 , Mq1

= (3, 4, 3, 2)

≤ 8 462 102 753 0 1000 0 718 47 948 0 1000 0
9 337 873 247 0 0 0 77 739 52 0 0 0
10 84 25 0 0 0 0 123 213 0 0 0 0
11 43  0  0  0 0 0 35 1 0 0 0 0
12 24 0 0 0 0 0 14 0 0 0 0 0
≥ 13 50 0 0 1000 0 1000 33 0 0 1000 0 1000
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some examples in simulations. To generate data (�, �) with non-Gaussian distri-
bution, we first generate W with mean �W = 0 and variance Var(W) = 1 . Consider 
the following with the fifth-order polynomial transformation method proposed by 
Headrick (2002). Specifically, the target variable can be expressed as

Recall the central moments of W:

and the definition of cumulants given by Kendall and Stuart (1977)

(26)W = c0 + c1Z + c2Z
2 + c3Z

3 + c4Z
4 + c5Z

5, where Z ∼ i.i.d. N(0, 1).

�j = ∫ (w − c)jdF(w), where c = �W,

k1 = �1 = 0, k2 = �2,

k3 = �3, k4 = �4 − 3�2
2
,

k5 = �5 − 10�3�2,

k6 = �6 − 15�4�2 − 10�2
3
+ 30�3

2
.

Table 4   The proportions of estimated rank in 1000 replications for Model 4 under tdf=10
p = 60 , rc = 0.0445, �7 = 0.2778, d+ = 0.1674 p = 110 , 

rc = 0.0854, �7 = 0.3514, d+ = 0.2956

k̂1 k̂2 k̂BM k̂A k̂B k̂C k̂1 k̂2 k̂BM k̂A k̂B k̂C

≤ 4 0 0 0 0 0 0 0 0 0 0 1000 0
5 0 0 0 0 1000 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0
7 1000 1000 1000 1000 0 1000 1000 1000 1000 1000 0 0
≥ 8 0 0 0 0 0 0 0 0 0 0 0 1000

p = 160 , rc = 0.1305, �7 = 0.4330, d+ = 0.4133 p = 210 , 
rc = 0.1809, �7 = 0.5226, d+ = 0.5206

≤ 4 0 0 0 0 1000 0 0 0 0 0 1000 0
5 0 0 0 0 0 0 0 0 0 0 0 0
6 1000 1000 1000 0 0 0 1000 1000 1000 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0
≥ 8 0 0 0 1000 0 1000 0 0 0 1000 0 1000

p = 260 , rc = 0.2379, �6 = 0.6644, d+ = 0.6174 p = 310 , 
rc = 0.2871, �6 = 0.7222, d+ = 0.7037

≤ 4 0 0 0 0 1000 0 1000 0 1000 0 1000 0
5 0 0 1000 0 0 0 0 0 0 0 0 0
6 1000 1000 0 0 0 0 0 1000 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0
≥ 8 0 0 0 1000 0 1000 0 0 0 1000 0 1000
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To circumvent the magnitude of kj toward to arbitrarily large, consider the standard-
ized cumulants

Note that �1 and �2 are skewness and kurtosis, respectively. Inasmuch as the odd 
moments of standard normal distribution are zero, the expectation of W is

and the variance of W is derived as Var(W) = �W2 − (�W)2 and can be parameter-
ized as follows

By the definition above, for any given density function one can calculate the asso-
ciated �i, i = 1, 2, 3, 4 directly. Therefore, substituting these calculated �i into (26) 
and integrating �W3,�W4,�W5,�W6 as well as (27) and (28) yield the solutions 
ci, i = 0, 1, 2, 3, 4, 5.

Further, it is worth noting that taking the block diagonal transformation on (�, �) 
to (��,��) , the canonical correlation coefficients are invariant as long as matrices 
�p×p and �q×q are nonsingular. Hence, to approximate the eigenvalues of matrix 
defined in (4) we tentatively assume that Σ11 = Ip,Σ22 = Iq . In other words, we can 
start with

where T = diag(
√
𝜆1, ...,

�
𝜆q1 )⊕ �(p−q1)×(q−q1) . Then, we gather the (p + q) × n 

sample matrix of (�, �) as

where the (p + q) × n matrix W1 has i.i.d. entries generated by (26), X  and Y  are 
data matrices of � and � , respectively.

Model 4   The parameter settings of this model are the same with Model 2 except 
for the distribution change from Gaussian to Student’s t with ten degrees of freedom. 
The comparison between Tables 2 and 4 provide a very interesting phenomena. That 
is, the criterion with Student’s t-distribution works even better than it with Gaussian 

0 =
k1

k
1∕2

2

, 1 =
k2

k2
,

�1 =
k3

k
3∕2

2

, �2 =
k4

k2
2

,

�3 =
k5

k
5∕2

2

, �4 =
k6

k3
2

.

(27)�W = c0 + c2 + 3c4 = 0,

(28)
Var(W) = c2

1
+ 2c2

2
+ 24c2c4 + 6c1(c3 + 5c5) + 3(5c2

3
+ 32c2

4
+ 70c3c5 + 315c2

5
) = 1.

(29)Σxy =

(
Ip T

T � Iq

)
,

(
X

Y

)
= Σ1∕2

xy
W1,
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distribution. Also, it is somewhat of interest to see that the decision is always 100% 
in all cases. This suggest that the current theory of CCA would be feasible in some 
non-Gaussian cases. As this is beyond the score of this paper, we will not give any 
investigation on relevant theoretical exploration.

To display the performance of the methodology in non-Gaussian distribution 
cases, we have also taken an asymmetric distribution, chi-square distribution with 
two degrees of freedom, into consideration. The simulation results resemble to the 
Gaussian case and are included in the supplementary material. The corresponding 
constants ci, i = 0, 1, 2, 3, 4, 5 of chi-square distribution can be found in Table 1 of 
Headrick (2002).

5 � A real data example

In this section, we take the breast cancer datasets from The Cancer Genome Atlas 
(TCGA) project into consideration. This project collected human tumor specimens 
and conducted molecular studies to reveal higher-order structure of cancer by large-
scale genomic data such as mRNA expression arrays and DNA methylation arrays. 
TCGA contains the data from several diverse genomic platforms on the same can-
cerous tumor samples. The two datasets used in this paper are available at https​://
gdc.cance​r.gov/about​-data/publi​catio​ns, the web portal of The Genomic Data Com-
mons (GDC). The DNA methylation data quantify the methyaltion level using the 
ratio of intensities methylated and unmethylated alleles, from the first TCGA breast 
cancer study (Cancer Genome Atlas Network 2012). TCGA only analyzed on 466 
breast tumors of the total 940 samples. The mRNA expression data set was collected 
from Ciriello et al. (2015) which reported the results on nearly twice as many breast 
tumors from TCGA ( n = 817 ) than (Cancer Genome Atlas Network 2012). As Shu 
et al. (2019), we in this paper focus on 660 samples that are contained in each of the 
larger group mentioned above. That is, for each selected tumor sample, it records 
both mRNA expression data and DNA methylation data. Specifically, the assayed 
660 clinical samples consist of 112 basal-like, 55 HER2-enriched, 331 luminal A 
and 162 luminal B tumors. To numerically gauge the extent of suptype distinction, 
we adopt, as Cabanski et  al. (2010) did, the standardization within class sum of 
squares (SWISS) in practice. That is, noted the matrix Y = (Yij)p×n as the sample 
collection of all observations of p-dimensional vector, then the SWISS score that 
identifies subtype distinctions can be described as follows

 where s(j) = {k: samples k and j are signed as the same subtype}, Ȳi,s(j) is the aver-
age within samples of the jth subtype on the ith row and Ȳi⋅ is the overall mean of 
the ith row of the matrix. The SWISS amounts to a proportion of the total variation 
decided by the variability within the subtypes, hence a lower score does a better 

SWISS(Y) =

∑p

i=1

∑n

j=1
(Yij − Ȳi,s(j))∑p

i=1

∑n

j=1
(Yij − Ȳi⋅)

,

https://gdc.cancer.gov/about-data/publications
https://gdc.cancer.gov/about-data/publications
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subtype distinction. Preprocessing the mRNA expression data, we filter out the sub-
set by appropriately removing the missing data from raw data firstly from the origi-
nal 20,531 genes. The final subset consists of p = 265 variably expressed genes with 
marginal SWISS ≤ 0.7 . In the same way, we select q = 86 methylated probes from 
the original 21,986 probes of DNA methylation data with marginal SWISS ≤ 0.7 . 
The purpose of this part is to determine the number of canonical correlation pairs. 
We apply our proposed criteria to analyze this genomic datasets.

We summarize the analysis results for this dataset by the used methods in Fig. 2. 
Note that the tuning parameters cn and �n used here are identical to those in the sim-
ulations. From Fig.  2, we can see the following. The scree plot in Fig.  2a shows 
that the canonical correlations are adjacent closely, except the largest one, there is 
no apparent gap between any two consecutive eigenvalues and then such an aux-
iliary visualization tool has no way to be useful for the determination in practice. 
Figure  2b depicts that the values of difference-based ratios are not stable. When 
�1 = 0.5 , the estimated rank seems underdeterminated. However, it still offers the 
information that the number 20 would be a potential value as the value is smaller 
than 𝜏1 = 0.6 < 1 . From Fig. 2c, we can see that the sequence can obviously have 
a local minimum at the 16th ratio followed by a very big value of the next ratio. In 
other words, the 16th eigenvalue is closer to the upper bound d+ than any succes-
sive eigenvalue. Thus, we can consider it as the boundary of the outliers we can 
separate from others. The visualized curve is very informative. AIC and Cp criteria 
are clearly to overestimate the rank and BIC to underestimate it. Together with the 
simulation results showing that the scree plot method is also easy to underestimate 

Fig. 2   The 660 tumor samples used in this figure were classified into 4 types by Ciriello et al. We filtered 
out the mRNA expression genes, p = 265 , and DNA methylation probes, q = 86 , from the original data. 
We figured out the results described by each methods and signed the estimated point by vertical dotted 
line in sub-figures separately
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the rank, we may consider 16 as a reasonable estimation of the potential rank. We 
also notice that Shu et al. (2019) used a different criterion for the genes and probes, 
when the SWISS value was set to be 0.9, to determine a much smaller number k = 2 
of the canonical correlation pairs. When we consider the data with the SWISS value 
of 0.7, the estimated number should be much larger. Even though, as the dimension-
ality has been greatly reduced, we can conveniently use these dimension-reduced 
variable pairs to do further analysis such that possible loss of information could be 
avoided when the variables pairs are too few.

Supplementary Information  The online version contains supplementary material available at (https​://doi.
org/10.1007/s1046​3-020-00776​-x).
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