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Abstract
The mean density estimation of a random closed set in ℝd , based on a single obser-
vation, is a crucial problem in several application areas. In the case of stationary 
random sets, a common practice to estimate the mean density is to take the n-dimen-
sional volume fraction with observation window as large as possible. In the present 
paper, we provide large and moderate deviation results for these estimators when 
the random closed set Θ

n
 belongs to the quite general class of stationary Boolean 

models with Hausdorff dimension n < d . Moreover, we establish a central limit the-
orem and a Berry–Esseen bound for the family of estimators under study. Our find-
ings allow to recover some well-known results in the literature on Boolean models. 
Finally, we also provide a guideline for the estimation of the mean density of non-
stationary Boolean models characterized by high intensity of the underlying Poisson 
point process.
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1 Introduction

Random sets in ℝd with integer Hausdorff dimension n < d are used to model sev-
eral real situations: Fiber processes, boundaries of germ–grain models, n-facets of 
random tessellations, and surfaces of full-dimensional random sets represent only 
few simple examples. We refer the reader to Beneš and Rataj (2004) for a more 
extensive account. The random set, denoted here by Θn , is typically assumed to have 
locally finite n-dimensional Hausdorff measure Hn , and in many of the examples 
mentioned above one is usually interested in the estimation of the so-called mean 
density of Θn , which is defined as the density of the measure �[Hn

(Θn ∩ ⋅)] on ℝd , 
whenever it exists. Such a density will be here denoted by �

Θn
(x) . Recently, a series 

of asymptotic results concerning the estimation of �
Θn

 in the non-stationary setting 
has been provided whenever an i.i.d. random sample for Θn is available; moreover, 
the asymptotic properties of the proposed estimators have been studied when the 
sample size goes to infinity. See, e.g.,  Camerlenghi et al. (2014a,b) (2016), Camer-
lenghi and Villa(2018) and references therein. Actually, in a lot of real problems, the 
sample size is equal to 1, i.e., only one observation of the random set is available: 
Our goal is to analyze the theoretical properties of mean density estimators in this 
noteworthy situation. More precisely, in the stationary setting, a widely used estima-
tor of the mean density is

provided that the observation window Wr is sufficiently large, i.e., Wr = rW with 
r > 0 sufficiently large and W ⊂ ℝ

d . A series of papers and results on the estima-
tor (1) are available in the literature; nevertheless, only partial results on large and 
moderate deviations are known for special kinds of processes: Our goal is to fill this 
gap in the framework of Boolean models. Indeed, in the present paper, we provide 
large and moderate deviation principles for random quantities associated with the 
family of random variables {Hn

(Θn ∩ rW)}r>0 (see Theorems 2 and 3) when Θn is 
a Boolean model (see, for instance,  Chiu et  al. (2013)). Our theoretical findings 
generalize known results in the literature for stationary Poisson cluster point pro-
cesses (Burton and Dehling 1990; Hwang  2000;  Jiang et al. 1992) to the case of 
stationary Boolean models; moreover, as a by-product, our main theorems allow 
to recover well-known results on consistency and asymptotic normality of suit-
able estimators of the mean density �

Θn
 , as stated in Corollaries 1 and  2, respec-

tively. We mention that consistency is usually proved exploiting ergodic arguments, 
whereas normal convergence by means of characteristic functions. See, e.g.,  Chiu 
et  al. (2013,  p.  115), Beneš and Rataj (2004,  Theorem  3.50), Pawlas and Beneš 
(2004, Theorem 3.1, Sect. 4), and  Pawlas (2003). Among the several papers deal-
ing with consistency and asymptotic normality of functionals of Boolean models we 
also mention:  Hug et al.(2016) which provides multivariate limit theorems (and the 
corresponding rates of convergence) for additive, translational invariant, and locally 
bounded functionals of stationary Boolean models with convex grains;  Heinrich 
and Pawlas(2008) where the authors present convergence theorems for empirical 

(1)
H

n
(Θn ∩Wr)

H
d
(Wr)

, Wr ⊂ ℝ
d
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distribution functions of size characteristics of stationary germ–grain models; and  
Penrose and Yukich (2003) and Penrose and Yukich(2005) which contain results 
on law of large numbers and normal approximations in geometric probability. The 
asymptotic normality result that we provide in Corollary  2 is strengthened by a 
Berry–Esseen bound (Theorem 4) which quantifies the rate of convergence of the 
family of estimators under study to the limiting normal distribution. From the one 
hand, our strategy of proof borrows ideas from Heinrich and Schmidt (1985) who 
focus on shot-noise processes, and, from the other hand, it takes advantage of geo-
metric measure theory. We underline that Berry–Esseen bounds for functionals of 
Boolean models in the case of full-dimensional random sets, i.e., n = d , have been 
already derived in the literature by Heinrich (2005) and Hug et al.  (2016).

We point out that the assumption n strictly less than d is crucial in the proofs 
of the results we provide throughout the paper. In particular it is worth observing 
that under such assumption, Hn

(Θn ∩ rW) is actually a compound Poisson process 
if one omits the effects of the observation window rW; large deviation results for 
compound Poisson processes may be obtained much more straightforwardly (see, for 
instance, Dembo and Zeitouni  (1998)), and they coincide with those associated with 
the family of random variables {Hn

(Θn ∩ rW)}r>0 , provided here. Our main theo-
rems provide the reader with a rigorous proof of this intuition taking into account 
the border effect of the observation window. Typically this argument does not apply 
to the d-dimensional case, which has been deeply investigated by  Heinrich(2005).

We also stress that the stochastic process we consider here {Hn
(Θn ∩ rW)}r>0 

resembles a shot-noise process (see Eq. (9)): Our results on normal convergence of 
the sequence {Hn

(Θn ∩ rW)}r>0 (Corollary 2), and the Berry–Esseen bound (Theo-
rem 4), are comparable to those for Poisson shot-noise processes of Heinrich and 
Schmidt (1985, Sect. 3). Indeed, as in the case of shot-noise processes, the moment 
generating function of Hn

(Θn ∩ rW) can be expressed as exponential of an integral 
which contains all information of the process, and this is relatively easy to use for 
proving normal convergence as well as large and moderate deviation principles. 
See also Sect. 5 for a more extensive discussion on the connection with shot-noise 
processes.

Finally, in this paper we also discuss the case of non-stationary Boolean models, 
and we provide the statistician with a guideline for the estimation of the mean den-
sity in presence of a single observation when the underlying Poisson process has 
high intensity. To the best of our knowledge, nothing is known until now in the case 
of a single observation for non-stationary random closed sets Θn , unless by assum-
ing local stationarity (see, e.g.,  Capasso and Micheletti (2008), Sect. 4.1). We point 
out that the proposed estimator of �

Θn
(x) , for a fixed point x ∈ ℝ

d , in the non-sta-
tionary case, is actually the same of the stationary one, by replacing Wr with a ball 
centered at the point x with a suitable optimal radius r depending on the intensity 
of the underling Poisson point process. It is worth noticing that such a radius r has 
to be taken equal to infinity if Θn is stationary, in accordance with intuition and the 
results shown in Sect. 3, but this is not obviously the case when �

Θn
(x) depends on 

the choice of x ∈ ℝ
d.

The paper proceeds as follows: In Sect. 2 we recall some preliminaries on Boolean 
models and large deviations, also setting useful notations. In Sect.  3 we extensively 
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discuss large and moderate deviations for estimators as (1) in the case of stationary 
Boolean models, whereas in Sect. 4 we propose a guideline for the estimation of the 
mean density in the non-stationary setting. Section 5 depicts the relevant connections 
with the existent literature.

2  Preliminaries and notation

Before stating our results concerning the asymptotic behavior of the mean density esti-
mators, in the present section we provide some basics on Boolean models and large 
deviations, very useful in the sequel.

2.1  Preliminaries on Boolean models

To lighten the presentation we shall use similar notation to previous works (see, e.g., 
Camerlenghi et al. (2014a), Villa (2014)). For any fixed n < d , Hn is the n-dimensional 
Hausdorff measure in ℝd , dx stands for the Lebesgue measure on ℝd , and B

ℝd is the 
Borel �-algebra of the d-dimensional Euclidean space ℝd . The set Br(x) and the number 
bd will denote the closed ball with center x and radius r > 0 and the volume of the unit 
ball in ℝd , respectively. Further, for any A ⊂ ℝ

d and r > 0 , the Minkowski enlargement 
of A at size r is denoted by A⊕r ∶= {x ∈ ℝ

d
∶ dist(x,A) ≤ r} , where dist(x,A) is the 

Euclidean distance of the point x to the set A; the diameter of the set A will be denoted 
by diam(A) = sup{|x − y| ∶ x, y ∈ A}.

We recall that, given a probability space (Ω,F,ℙ) , a random closed set Θ in the 
d-dimensional Euclidean space ℝd is a measurable map

where �  denotes the class of the closed subsets in ℝd , and �
�
 is the �-algebra gener-

ated by the so-called Fell topology that is the topology generated by the set system

where G  and C  are the system of the open and compact subsets of ℝd , respectively 
(see, e.g., Matheron(1975)). A wide class of random closed sets in ℝd can be repre-
sented as germ–grain model by means of marked point processes in ℝd with marks 
in the class of compact subset of ℝd , as follows:

where � = {(Xi, Si)}i∈ℕ is a marked point process in ℝd with marks in a suitable 
mark space � so that Zi = Z(Si), i ∈ ℕ , is a random set containing the origin. Here 
the Xi ’s are the germs, whereas the Zi = Z(Si) ’s are the grains of the process. Each 
Zi = Z(Si) denotes the shape of the grain centered at the associated germ Xi , and 
it is conveniently identified by the value of a suitable random parameters Si ∈ � , 
that is, Z is a deterministic function from � to the family C0 of compact sets of ℝd 

Θ ∶ (Ω,F) ⟶ (� , �
�
),

{FG ∶ G ∈ G} ∪ {F
C
∶ C ∈ C}

(2)Θ(�) =
⋃

(xi,si)∈� (�)

xi + Z(si), � ∈ Ω,
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containing the origin. For instance, in the very simple case of random balls, � = ℝ
+ 

and S stands for the radius of a ball containing the origin; in segment processes in 
ℝ

2 , � = ℝ
+
× [0, 2�] and S = (L, �) where L and � are the random length and orien-

tation of the segment attached to the origin, respectively. See also Matheron (1975) 
and Molchanov(2005) for additional details on random closed sets.

Throughout the paper, we shall denote by Θn any random closed set in ℝd with 
integer dimension 0 ≤ n < d , represented as in (2), having locally finite n-dimen-
sional Hausdorff measure Hn . In particular � will be a marked Poisson point pro-
cess with intensity measure Λ(d(x, s)) = f (x, s)dxQ(ds) , so that Θn is an n-dimen-
sional Boolean model. The function f is called the intensity of the process, while 
Q is a probability measure on � . The expected measure induced by Θn defined 
as 𝔼[�

Θn
](A) ∶= 𝔼[H

n
(Θn ∩ A)], A ∈ B

ℝd , turns out to be absolutely continuous 
with respect to the d-dimensional Hausdorff measure Hd , and its density (i.e., its 
Radon–Nikodym derivative) with respect to Hd is called mean density of Θn, and 
denoted by �

Θn
( ⋅ ) . In particular it holds (see (Villa (2014), Proposition 5)):

for Hd-a.e. x ∈ ℝ
d , where −Z(s) is the reflection of Z(s) at the origin. Finally we 

remind that, if � is a Poisson point process on a general Polish space � , having 
intensity measure � , then, for any measurable function g ∶ 𝕏 → ℝ such that

it holds

for any complex number � . Such a result, which can be found in (Kingman (1993), 
p. 28) will be applied to the point process � in the proof of the two main theorems 
of the paper.

2.2  Preliminaries on large deviations

The theory of large deviations is concerned with the asymptotic estimation of prob-
abilities of rare events, by giving an asymptotic computation of small probabilities 
in exponential scale; see Dembo and Zeitouni(1998) as a reference on this topic.

We start with some basic definitions of large deviations on the real line ℝ , which 
is the case we need in our paper. A rate function on ℝ is a lower semicontinuous 
function I ∶ ℝ → [0,∞] or, equivalently a function whose level sets {x ∶ I(x) ≤ a} 
are closed; moreover, I is said to be a good rate function if its level sets are compact.

Finally we say that a family of probability measures 
{
𝜇r

}
r>0

 on (ℝ,B
ℝ
) satisfies 

the Large Deviation Principle (LDP from now on), as r → ∞ , with speed vr and rate 
function I if the following conditions hold: vr → ∞ ; for every A ∈ B

ℝ
 we have

(3)�
Θn
(x) = ∫

�
∫x−Z(s)

f (y, s)Hn
(dy)Q(ds),

(4)∫
�

min {|g(x)|, 1}𝜇(dx) < ∞,

(5)�

[
exp

{
�
∑
x∈�

g(x)
}]

= exp
{
∫
�

(e�g(x) − 1)�(dx)
}
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and

where 
◦

A and A are the interior and the closure of A, respectively. Moreover we say 
that a family of (real valued) random variables satisfies the LDP if the family prob-
ability measures induced by them (on ℝ ) does.

An important large deviation tool is the Gärtner–Ellis theorem (see, e.g., Dembo 
and Zeitouni (1998, Theorem 2.3.6); see also Dembo and Zeitouni(1998, Definition 
2.3.5) for the concept of essentially smooth function). Here we recall its statement 
for real valued random variables.

Theorem 1 (Gärtner–Ellis Theorem) Let 
{
Zr
}
r>0

 be a family of real valued random 
variables and vr a speed function. We assume that, for all t ∈ ℝ,

exists as an extended real number. We further suppose that 0 ∈

◦

D(G) , where 
D(G) ∶= {t ∈ ℝ ∶ G(t) < +∞} . Then, if G is essentially smooth and lower semicon-
tinuous, 

{
Zr
}
r>0

 satisfies the LDP with speed vr and good rate function G∗ defined by

The function G∗ is called Legendre transform of G. We recall that the function G 
above is essentially smooth if: 

(1) 
◦

D(G) is non-empty;
(2) G is differentiable throughout 

◦

D(G);
(3) G is steep, i.e., |G�

(t)| tends to infinity whenever t converges to a boundary point 
of 

◦

D(G).

In particular it is known (see, e.g., den Hollander (2008,  Theorem V.6, p. 54) or 
Ellis (1985, the comment just after the definition of essentially smooth function, 
p. 224)) that (3) holds vacuously if the function G is finite (i.e., D(G) = ℝ ) and 
differentiable.

In this paper we use Theorem 1 to prove our main results (Theorems 2–3), and 
in all the cases under study the function G turns out to be finite and differentiable 
everywhere, thus we do not need to check that G is essentially smooth in our proofs. 
While Theorem 2 concerns a LDP, in Theorem 3 we focus on Moderate Deviations, 
obtaining a class of LDPs with the same rate function; in some sense, these LDPs 
fill the gap between a central limit theorem and a strong law of large numbers (see 
Corollaries  2 and   1). For completeness, among the references on large/moderate 

lim inf
r→+∞

1

vr
log�r(A) ≥ − inf

x∈
◦

A

I(x)

(6)lim sup
r→+∞

1

vr
log�r(A) ≤ − inf

x∈A

I(x),

G(t) ∶= lim
r→+∞

1

vr
log�[evrtZr ]

G∗
(y) ∶= sup

t∈ℝ

{ty − G(t)}.
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deviations and central limit theorems, we recall the paper by Bryc(1993) in which, 
under a suitable regularity condition, an asymptotic normality result can be obtained 
as a consequence of a LDP as the one in Theorem 2.

3  Stationary Boolean models

Let us consider a Boolean model Θn with integer Hausdorff dimension n < d as 
in (2), where � has intensity measure Λ(d(x, s)) = �dxQ(ds) , for a certain con-
stant 𝛼 > 0 . In this case we can speak about typical grain Z0 , that is, all the grains 
Zi = Z(Si) are independent and identically distributed as Z0 = Z0(S) , where the ran-
dom parameter S ∈ � has distribution Q. Hence, in the rest of the paper, the Z(Si) ’s 
are i.i.d. random variables distributed as Z0.

It directly follows by (3) that the mean density �
Θn

 of Θn is independent of x and it 
will be denoted by

We remind that, as well known in the literature, in the stationary case a good estima-
tor of �

Θn
 is provided by the quantity

where W is a compact convex set containing B�(0) for some 𝜀 > 0 . So {rW}r>0 is a 
convex averaging sequence as r → ∞ , that is: {rW}r>0 is an increasing sequence of 
convex and compact subsets of ℝd such that

see, e.g., (Chiu et al. (2013), p. 114). Thus, rW may be interpreted as an observation 
window whose width goes to infinity as r → +∞ , with volume (Lebesgue measure) 
|rW| ∶= H

d
(rW) , see, e.g., (Diggle (1983), p. 34). Therefore a problem of interest 

is the study of large and moderate deviation principles associated with the family of 
random variables {Xr(W)}r>0 where

for any W ∈ B(ℝd
) and r > 0 . Note that �[Xr(W)] = rd|W|�

Θn
 , where �

Θn
 is defined 

in (7); moreover, by (Villa (2014), Lemma 3), in what follows it is useful to recall 
that

holds for any lower dimensional (i.e., with Hausdorff dimension n < d ) Boolean 
model Θn in ℝd with intensity measure of the type Λ(d(x, s)) = f (x, s)dxQ(ds) . In 
the rest of the section we prove the main results, which concern large and moderate 

(7)�
Θn
(x) ≡ �

Θn
≡ ��Q[H

n
(Z0)].

(8)�̂(r)
Θn

∶=
H

n
(Θn ∩ rW)

|rW| ,

sup
𝜌>0

{B𝜌(x) ⊂ Wr for some x} → +∞ as r → +∞,

Xr(W) ∶= X(rW) ∶= H
n
(Θn ∩ rW)

(9)H
n
(Θn ∩ A)

a.s.
=

∑
(xi,si)∈�

H
n
((xi + Z(si)) ∩ A) ∀A ∈ B

ℝd
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deviation principles for the estimator (8) (see Theorems 2 and 3). These results are 
useful from both a probabilistic and statistical standpoint, allowing to obtain a strong 
laws of large numbers for the estimator in (8) (see Corollary 1) as well as its asymp-
totic normality (see Corollary 2). In Sect. 3.3 we strengthen the result on asymptotic 
normality proving a Berry–Esseen bound.

3.1  Large deviations

In the present section we state and prove the LDP for the estimators �̂(r)
Θn

 as in (8) 
(Theorem 2); moreover, as a by-product, we obtain the well-known strong law of 
large numbers for Xr(W) in Corollary 1.

Theorem 2 Assume that �Q[e
tHn

(Z0)] < ∞ for all t > 0 . Then the family of estimators {
Xr(W)

rd|W|
}

r>0
 satisfies the LDP with speed function vr = rd|W| (as r → +∞ ) and good 

rate function

Proof We want to apply Theorem 1. Then we shall show that, for all t ∈ ℝ , we have

where

The case t = 0 is immediate. It is useful to remark that, since �Q[e
tHn

(Z0)] < ∞ for all 
t > 0 , we have �Q[(H

n
(Z0))

k
] < ∞ for all k ∈ ℕ . Moreover, by (9), we have

Then we can evaluate the last expression (in the right hand side) by using Equation 
(5) with g(x, s) = H

n
((x + Z(s)) ∩ rW) , � = t and � = � ; note that the integrability 

condition (4) for g is satisfied; indeed,

Therefore we get

J∗(y) = sup
t∈ℝ

{ty − �𝔼Q[e
tHn

(Z0) − 1]}.

(10)lim
r→+∞

1

rd|W| log�
[
exp

{
tHn

(Θn ∩ rW)

}]
= J(t),

(11)J(t) ∶= ��Q[e
tHn

(Z0) − 1].

�

[
exp

{
tHn

(Θn ∩ rW)

}]
= �

[
exp

{
t

∑
(xi,si)∈�

H
n
((xi + Z(si)) ∩ rW)

}]
.

(12)

∫
ℝd×�

H
n
((x + Z(s)) ∩ rW)Λ(d(x, s))

= 𝔼Q

[
∫
ℝd

(
∫
ℝd

�x+Z0
(y)�rW (y)H

n
(dy)

)
𝛼dx

]

= 𝔼Q

[
∫
ℝd

�Z0
(𝜉)

(
∫
ℝd

�rW(𝜉 + x)dx
)
𝛼Hn

(d𝜉)

]

= rd|W|𝛼𝔼Q[H
n
(Z0)] < ∞.
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Now we are ready to study the limit in (10). We start from (13), and we get

then, thanks to the change of variables (x, y) → (z, �) ∶= (y∕r, y − x) , we finally 
obtain

Now we can apply the dominated convergence theorem to determine the limit of 
(14) as r → ∞ . In order to do this, we observe that

where we have exploited the inequality |1 − ew| ≤ |w|e|w| (for any w ∈ ℝ ); moreo-
ver, the required integrability condition holds noting that

(here we take into account that �Q[e
tHn

(Z0)] < +∞ for all t > 0 ). Then we have to 
evaluate

We remark that, for all z ∈ W and Q almost surely, we have

(13)
log𝔼

[
exp

{
tHn

(Θn ∩ rW)

}]

= 𝔼Q

[
∫
ℝd

(
etH

n
((x+Z0)∩rW)

− 1
)
�dx

]
.

1

rd|W| log𝔼
[
exp

{
tHn

(Θn ∩ rW)

}]

=
1

rd|W|𝔼Q

[
∫
ℝd

(
etH

n
((x+Z0)∩rW)

− 1
)Hn

((x + Z0) ∩ rW)

H
n
((x + Z0) ∩ rW)

�dx

]

=
1

rd|W|𝔼Q

[
∫
ℝd ∫ℝd

etH
n
((x+Z0)∩rW)

− 1

H
n
((x + Z0) ∩ rW)

�
(x+Z0)

(y)�rW (y)H
n
(dy)�dx

]

=
1

rd|W|𝔼Q

[
∫
ℝd ∫ℝd

etH
n
((x+Z0)∩rW)

− 1

H
n
((x + Z0) ∩ rW)

�Z0
(y − x)�rW (y)H

n
(dy)�dx

]
;

(14)

1

rd|W|𝔼Q

[
∫
ℝd

(
etH

n
((x+Z0)∩rW)

− 1
)
�dx

]

=
�
|W|𝔼Q

[
∫
ℝ2d

etH
n
((r(z−�∕r)+Z0)∩rW)

− 1

H
n
((r(z − �∕r) + Z0) ∩ rW)

× �Z0
(�)�W (z)H

n
(d�)dz

]
.

||||
etH

n
((r(z−�∕r)+Z0)∩rW)

− 1

H
n
((r(z − �∕r) + Z0) ∩ rW)

|||| ≤ |t|e|t|Hn
((r(z−�∕r)+Z0)∩rW) ≤ |t|e|t|Hn

(Z0)

𝔼Q

[
�
ℝ2d

|t|e|t|Hn
(Z0)�Z0

(𝜉)�W (z)H
n
(d𝜉)dz

]

= |t| ⋅ |W| ⋅ 𝔼Q[H
n
(Z0)e

|t|Hn
(Z0)] ≤ |t| ⋅ |W| ⋅ 𝔼Q[e

2|t|Hn
(Z0)] < +∞,

(15)lim
r→+∞

etH
n
((r(z−�∕r)+Z0)∩rW)

− 1

H
n
((r(z − �∕r) + Z0) ∩ rW)

�Z0
(�)�W (z).
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in fact, one has Hn
(Z0) < +∞ because �Q[H

n
(Z0)] < +∞ , and the last limit holds 

true by an application of the dominated convergence theorem.
Thus, for z ∈ W , the limit in (15) boils down to

In conclusion the dominated convergence theorem applied to the integral on the 
right hand side of (14) yields

Thus the limit (10) is checked and the conclusion follows.   ◻

Now we present a standard consequence of Theorem 2.

Corollary 1 Under the assumptions of Theorem 2, we get

as r → +∞.

Proof We start with some remarks on the convex functions J and J∗ in Theo-
rem  2 (and its proof). We can say that J∗(y) uniquely vanishes at the point 
y0 = J�(0) = ��Q[H

n
(Z0)] . In fact, for every y > 0 , there exists a unique ty ∈ ℝ such 

that

moreover, t ↦ J�(t) is strictly increasing and, by a standard argument of convex anal-
ysis (see, e.g., Theorem 26.5 in Rockafellar (1970)), its inverse function y ↦ ty is 

H
n
((r(z − �∕r) + Z0) ∩ rW) = ∫

ℝd

�
(rz−�+Z0)

(y)�W (y∕r)H
n
(dy)

= ∫
ℝd

�Z0
(y − rz + �)�W (y∕r)H

n
(dy)

= ∫
ℝd

�Z0
(y�)�W ((y

�
+ rz − �)∕r)Hn

(dy�)

= ∫
ℝd

�Z0
(y�)�W (y

�
∕r + z − �∕r)Hn

(dy�) → H
n
(Z0) (as r → ∞);

lim
r→+∞

etH
n
((r(z−�∕r)+Z0)∩rW)

− 1

H
n
((r(z − �∕r) + Z0) ∩ rW)

=
etH

n
(Z0) − 1

H
n
(Z0)

.

lim
r→+∞

1

rd|W|𝔼Q

[
∫
ℝd

(
etH

n
((x+Z0)∩rW)

− 1
)
�dx

]

=
�
|W|𝔼Q

[
∫
ℝ2d

etH
n
(Z0) − 1

H
n
(Z0)

�Z0
(�)�W (z)H

n
(d�)dz

]

= �𝔼Q[e
tHn

(Z0) − 1] = J(t).

(16)
Xr(W)

rd|W| ⟶ ��Q[H
n
(Z0)] almost surely

J∗(y) = tyy − J(ty);
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the derivative of J∗(y) ; thus, J∗(y) uniquely attains its minimum at some y such that 
ty = 0 , i.e., if and only if y = J�(0) , and we have J∗(J�(0)) = 0 because J(0) = 0.

Then we take 𝛿 > 0 , and we consider the closed set

Then J∗(C�) ∶= infy∈C�
J∗(y) is positive and, by Theorem 2 and by the upper bound 

for closed sets (6) with C = C� (obviously with Zr =
Xr(W)

rd|W| and vr = rd|W| ) we get

thus, for every � ∈ (0, J∗(C�)) , there exists r0 such that, for every r > r0 , we have

In conclusion (16) holds by a standard application of the first Borel–Cantelli lemma.  
 ◻

Equation (16) may also be written as

and this clarifies why Corollary 1 is a strong law of large numbers for the estimator 
�̂(r)
Θn

 of the mean density �
Θn

.

Remark 1 Typically the function J in (11) comes up when one applies Theorem 1 
to a suitably normalized compound Poisson process; see, e.g., (Dembo and Zei-
touni (1998),  Exercise 2.3.18). In this regard, we underline that if one omits the 
border effect of the window rW, i.e., considering the compound Poisson process ∑

(xi,si)∈�
H

n
(Z(si))�rW (xi) in place of Xr(W) , the LDP stated in Theorem  2 holds 

again with the same speed vr = rd|W| and rate function J∗ . We have provided a rig-
orous proof of this intuition in Theorem 2, which duly takes into account the border 
effect of the observation window. We finally note that the limit value ��Q[H

n
(Z0)] in 

Corollary 1 coincides with J�(0).

3.2  Moderate deviations and asymptotic normality

Typically moderate deviations concern a class of LDPs for suitable families of centered 
random variables and governed by the same quadratic rate function which uniquely 
vanishes at the origin. More precisely, as we shall see in Theorem 3, for every choice of 
positive numbers {ar}r>0 such that

C� ∶= {y ∈ ℝ ∶ |y − y0| ≥ �}.

lim sup
n→+∞

1

rd|W| logℙ
(Xr(W)

rd|W| ∈ C�

) ≤ −J∗(C�);

ℙ

(
Xr(W)

rd|W| ∈ C�

)
≤ e−r

d|W|(J∗(C� )−�).

(17)lim
r→+∞

H
n
(Θn ∩ rW)

|rW| = ��Q[H
n
(Z0)] ≡ �

Θn
a.s.

(18)lim
r→∞

ar√
rd

= 0 and lim
r→∞

ar = +∞
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hold, we consider the centered random variables 
�

Xr(W)−�[Xr(W)]

ar

√
rd

�

r>0

 and we prove 

the LDP with speed vr = a2
r
→ +∞ , and the same rate function J̃∗ which does not 

depend on the choice of ar . In some cases we use the terminology moderate devia-
tion principle (MDP for short). One will immediately realize that the statement of 
Theorem 3 has a close analogy with the analogue results in Hwang (2000), and in 
Jiang et al. (1992) for the particular case of cluster Poisson processes; this will be 
clarified in Sect. 5.

We can also say that moderate deviations fill the gap between two asymptotic 
regimes which can be seen as a particular choices of ar such that only one condi-
tion in (18) holds: 

1. the weak convergence to a centered normal distribution (case ar = 1 , where only 
the first condition in (18) holds), stated in Corollary 2 below;

2. the convergence to zero (case ar =
√
rd , where only the second condition in (18) 

holds), which is an immediate consequence of the convergence stated in Corol-
lary 1.

We are now ready to state and prove the MDP.

Theorem 3 Let {ar}r>0 be a family of positive numbers such that (18) holds. Assume 
that there exists t0 > 0 such that �Q[e

t0H
n
(Z0)] < +∞ . Then

satisfies the LDP with speed vr = a2
r
→ +∞ and good rate function

Proof We want to apply Theorem 1. Then we shall show that, for all t ∈ ℝ , we have

where

We observe that

�
Xr(W) − �[Xr(W)]

ar

√
rd

�

r>0

J̃∗(y) =
y2

2�|W|�Q[H
n
(Z0)

2]
.

(19)lim
r→+∞

1

a2
r

log�
�
exp

�
a2
r
t
Xr(W) − �[Xr(W)]

ar

√
rd

��
= J̃(t),

J̃(t) ∶=
�|W|t2�Q[H

n
(Z0)

2
]

2
.
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where we have also noticed that �[Xr(W)] = rd|W|�
Θn

 . Now we compute the first 
term, and for the expected value we use (5) with g(x, s) = H

n
((x + Z(s)) ∩ rW) , 

� =
ar√
rd
t and � = � ; then,

where in the last equality we consider Taylor series expansion of the exponential 
function.

Moreover, for k = 1 , we have

and, for k = 2 , a standard application of the dominated convergence theorem implies 
that

Thus (19) holds true, and we complete the proof, if we check that

log�
�
exp

�
a2
r
t
Xr(W) − �[Xr(W)]

ar

√
rd

��

(7)
= log�

�
exp

� art√
rd
Xr(W)

��
− art

√
rd�W���Q[H

n
(Z0)]

(9)
= log�

�
exp

� ar√
rd
t

�
(xi,si)∈�

H
n
((xi + Z(si)) ∩ rW)

��

− art
√
rd�W���Q[H

n
(Z0)],

log𝔼
�
exp

�
a2
r
t
Xr(W) − 𝔼[Xr(W)]

ar

√
rd

��

= 𝔼Q

�
�
ℝd

�
eartH

n
((x+Z0)∩rW)∕

√
rd
− 1

�
�dx

�
− art

√
rd�W��𝔼Q[H

n
(Z0)]

= 𝔼Q

�
�
ℝd

�
k≥1

(artH
n
((x + Z0) ∩ rW)∕

√
rd)k

k!
�dx

�

− art
√
rd�W��𝔼Q[H

n
(Z0)],

𝔼Q

�
∫
ℝd

ar√
rd
tHn

((x + Z0) ∩ rW)�dx

�
(12)
= art

√
rd�W��𝔼Q[H

n
(Z0)]

lim
r→+∞

1

2a2
r

𝔼Q

[
∫
ℝd

a2
r

rd
t2[Hn

((x + Z0) ∩ rW)]
2�dx

]
= t2

�|W|𝔼Q[H
n
(Z0)

2
]

2
.

(20)
lim

r→+∞

1

a2
r

𝔼Q

⎡
⎢⎢⎣�ℝd

�
k≥3

1

k!

�
ar√
rd
tHn

((x + Z0) ∩ rW)

�k

�dx
⎤
⎥⎥⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶Rr

= 0.
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In order to do that we proceed as follows. By Fubini–Tonelli theorem and by the 
change of variable y → y� = y − x for the last equality we have

Moreover, the inequality Hn
((x + Z0) ∩ rW) ≤ H

n
(Z0) trivially holds true; then, we 

get

Now we recall that, by the first condition in (18), there exists r̄(t) > 0 such that 
ar�t�√
rdt0

< 1 for r > r̄(t) ; thus, for r large enough, by Fubini–Tonelli theorem we have

In conclusion (20) holds true by the first condition in (18), and the proof is com-
plete.   ◻

�Rr� ≤ 1

a2
r

𝔼Q

�
�
ℝd

�
k≥3

ak
r
�t�k

(

√
rd)k

1

k!
(H

n
((x + Z0) ∩ rW))

k�dx
�

=

�
k≥3

ak−2
r

�t�k
k!(

√
rd)k

𝔼Q

�
�
ℝd

(H
n
((x + Z0) ∩ rW))

k−1

× �
ℝd

�
(x+Z0)∩rW

(y)Hn
(dy)�dx

�

=

�
k≥3

ak−2
r

�t�k
k!(

√
rd)k

𝔼Q

�
�
ℝd

(H
n
((x + Z0) ∩ rW))

k−1

× �
ℝd

�Z0
(y�)�rW(y

�
+ x)Hn

(dy�)�dx
�
.

�Rr� ≤
�
k≥3

ak−2
r

�t�k
k!(

√
rd)k

𝔼Q

�
H

n
(Z0)

k−1

× �
ℝd �ℝd

�Z0
(y�)�rW(y

�
+ x)Hn

(dy�)�dx
�

=

�
k≥3

�ak−2
r

�t�k
k!(

√
rd)k−2

�W�𝔼Q[H
n
(Z0)

k
]

= ��W��
k≥3

�
ar√
rd

�k−2 �t�k
tk
0

1

k!
𝔼Q[(t0H

n
(Z0))

k
]

= ��W�
��t�
t0

�3
ar√
rd

�
k≥3

�
ar�t�√
rdt0

�k−3
𝔼Q[(t0H

n
(Z0))

k
]

k!
.

�Rr� ≤ 𝛼�W�
��t�
t0

�3
ar√
rd

�
k≥3

�Q[(t0H
n
(Z0))

k
]

k!

≤ 𝛼�W�
��t�
t0

�3
ar√
rd

�Q[e
t0H

n
(Z0)]

�����������
<+∞

.
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Now, as we said at the beginning of this section, we can state a central limit 
theorem for the family of random variables considered in Theorem  3. In the 
sequel use the notation �

⟶
 for the convergence in law. In particular we write 

�
⟶N(0, �2

) when the limit in law is a centered normal distribution with variance 
�2.

Corollary 2 As r → +∞ , we have

Proof The computations in the proof of Theorem 3 still work well if ar = 1 , even if 
the second condition in (18) fails. So we have

for all t ∈ ℝ , where the limit is the moment generating function of the centered nor-
mal distributed random variables with variance �|W|�Q[H

n
(Z0)

2
] . This completes 

the proof.   ◻

Some remarks are in order.

Remark 2 Along similar lines to those of Remark  1, one may consider the com-
pound Poisson process 

∑
(xi,si)∈�

H
n
(Z(si))�rW (xi) in place of Xr(W) ; hence, the 

MDP in Theorem 3 and the asymptotic normality result in Corollary 2 still hold as 
a by-product of the available results on compound Poisson processes. Our proofs 
have the merit to take into account the border effect of rW providing a rigorous deri-
vation of MDP for the random processes under study. If we refer to the function J 
in (11), we also point out that the asymptotic variance �|W|�Q[H

n
(Z0)

2
] in Corol-

lary 2, appearing in the denominator of the rate function J̃∗ in Theorem 3, coincides 
with J��(0)|W|.

Remark 3 Finally we explain how Corollary  2 implies the asymptotic normality 
result for the estimator (8) of the mean density. Recall that

is the estimator of the mean density �
Θn

 . So we can say that Corollary 2 concerns the 
asymptotic normality of this estimator: Indeed, the convergence in law stated in that 
theorem can be rephrased as follows:

with r → +∞.

Xr(W) − �[Xr(W)]√
rd

�
⟶N(0, ��W��Q[H

n
(Z0)

2
]).

lim
r→∞

�

�
exp

�
t(Xr(W) − �[Xr(W)])∕

√
rd
��

= exp
�
1

2
t2��W��Q[H

n
(Z0)

2
]

�

�̂(r)
Θn

=
H

n
(Θn ∩ rW)

|rW|
(
=

Xr(W)

rd|W|
)

√�W�rd(�̂(r)
Θn

− �
Θn
)

�
⟶N(0, ��Q[H

n
(Z0)

2
]),
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3.3  Rate of convergence: a Berry–Esseen bound

In Corollary  2 we proved the convergence in law of (Xr(W) − �[Xr(W)])∕

√
rd 

to a centered normal random variable with variance �|W|�Q[H
n
(Z0)

2
] ; here 

we would like to estimate the rate of this convergence through a Berry–Esseen 
bound. More precisely, if we denote by Fr( ⋅ ) the c.d.f. of the random variable 
(Xr(W) − �[Xr(W)])∕

√
rd  and by F( ⋅ ) the c.d.f. of the limiting Gaussian random 

variable with mean 0 and variance �|W|�Q[H
n
(Z0)

2
] , respectively, we aim to 

determine an upper bound for the Kolmogorov distance

In order to do this, we apply the Berry–Esseen inequality  (Loève1977), along simi-
lar lines as (Heinrich and Schmidt1985). Our bound relies on the geometric property 
of the observation window W and on the additional assumption of uniform bound-
edness of the diameter of the typical grain Z0 , say diam(Z0) , usually fulfilled in real 
applications. First of all we remind that the set W is compact and convex in ℝd ; as a 
consequence its boundary �W is a countably Hd−1-rectifiable compact set satisfying 
the condition

for some 𝛾 > 0 and some Radon measure � absolutely continuous with respect to 
H

d−1 in ℝd . Refer to (Ambrosio et al.2008) for the details on this standard result in 
geometric measure theory, which is also related to the existence of the Minkowski 
content of a set (Ambrosio et  al.  2000). We are able to prove the following 
inequality.

Theorem  4 Assume that there exists t0 > 0 such that �Q[e
t0H

n
(Z0)] < +∞ and that 

diam(Z0) ≤ K for some constant K > 0 . Then, for any a ∈ (0, 1) , we have

where r > max{K∕2, 2C(𝛾)∕(a|W|)} , whereas �(a) and C(�) are the constants 
defined as

and C(�) ∶= 2d−14dbdK∕� , with � the constant which appears in (21).

D(r) ∶= sup
x∈ℝ

|Fr(x) − F(x)|.

(21)�(Br(x))) ≥ �rd−1 ∀x ∈ �W, ∀r ∈ (0, 1)

(22)

D(r) ≤ 1

r

C(�)

�W��(1 − a)
+

1√
rd

�
24

�3∕2�(a)

�
2��W��Q[H

n
(Z0)

2]

+

√
2�Q[e

t0H
n
(Z0)]

√
���W�t3

0
(1 − a)3∕2(�Q[H

n
(Z0)

2])3∕2

�

�(a) ∶= min

{
t0,

t3
0
a�Q[H

n
(Z0)

2
]

4�Q[e
t0H

n
(Z0)]

}
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Proof In the first part of the proof, we bound the difference between the charac-
teristic function of (Xr(W) − �[Xr(W)])∕

√
rd , denoted as �r , and the characteristic 

function of the limiting Gaussian random variable, denoted as � ; in the last part of 
the proof, we apply the Berry–Esseen inequality (Loève1977, p. 297), along with 
the determined upper bound involving the two characteristic functions, to find (22).

Proceeding along similar lines as in the proof of Theorem 3 we easily realize that 
the logarithm of the characteristic function of (Xr(W) − �[Xr(W)])∕

√
rd equals

where i denotes the imaginary unit. We now focus on the terms in (23) for k = 2 and 
k ≥ 3 separately: For k = 2, straightforward calculations lead to

for k ≥ 3 we follow the same lines of the proof of Theorem 3 (see the upper bound 
for |Rr| ) and, by taking into account that |i| = 1 , we obtain

for all �t� ≤ √
rdt0 . Hence we get the following bound for the difference between the 

logarithms of the characteristic functions �r and �:

(23)log�r(t) = 𝔼Q �
ℝd

�
k≥2

(itHn
((x + Z0) ∩ rW))

k

(

√
rd)kk!

�dx,

(24)
𝔼Q ∫

ℝd

i2t2Hn
((x + Z0) ∩ rW))

2

rd2
�dx = −

�t2

2
𝔼Q ∫

ℝ2d

2∏
i=1

�Z0
(�i)

× ∫
ℝd

�W (y)�W

(
y +

�2 − �1
r

)
dyHn

(d�1)H
n
(d�2);

(25)
���𝔼Q �

ℝd

�
k≥3

(itHn
((x + Z0) ∩ rW))

k

(

√
rd)kk!

�dx
��� ≤ �W�� �t�

3

t3
0

𝔼Q[e
t0H

n
(Z0)]

√
rd
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for all �t� ≤ √
rdt0 . By observing that

we get

for all �t� ≤ √
rdt0 . An application of Ambrosio et al. (2009, Lemma 7) gives

for all r > K∕2 and �t� ≤ √
rdt0 , where C(�) = 2d−14dbdK∕� , with � the constant 

appearing in (21).
Now we use the elementary inequality |ez − 1| ≤ |z|e|z| to bound the difference 

between the characteristic functions:

� log�r(t) − log�(t)� = ��� log�r(t) + ��W�𝔼Q[H
n
(Z0)

2
]
t2

2

���
(25)≤ �W�� �t�

3

t3
0

𝔼Q[e
t0H

n
(Z0)]

√
rd

+
�����W�𝔼Q[H

n
(Z0)

2
]
t2

2
− 𝔼Q �

ℝd

t2Hn
((x + Z0) ∩ rW))

2

rd2
�dx

���
(24)≤ �W�� �t�

3

t3
0

𝔼Q[e
t0H

n
(Z0)]

√
rd

+
�t2

2
𝔼Q �

ℝ3d

�W (y)
���1 − �W

�
y +

�2 − �1
r

����dy
2�
i=1

�Z0
(�i)H

n
(d�i)

= �W�� �t�
3

t3
0

𝔼Q[e
t0H

n
(Z0)]

√
rd

+
�t2

2
𝔼Q �

ℝ3d

�W (y)�Wc

�
y +

�2 − �1
r

�
dy

2�
i=1

�Z0
(�i)H

n
(d�i)

y ∈
(
Wc

−
𝜉2 − 𝜉1

r

)
⊆ Wc

⊕diam(Z0)∕r
⊆ Wc

⊕K∕r
,

� log𝜑r(t) − log𝜑(t)�

≤ �W�𝛼 �t�
3

t3
0

𝔼Q[e
t0H

n
(Z0)]

√
rd

+
𝛼t2

2
𝔼Q �

ℝ3d

�W (y)�Wc
⊕K∕r

(y)dy

2�
i=1

�Z0
(𝜉i)H

n
(d𝜉i)

= �W�𝛼 �t�
3

t3
0

𝔼Q[e
t0H

n
(Z0)]

√
rd

+
𝛼t2

2
𝔼Q[H

n
(Z0)

2
]H

d
�
Wc

⊕K∕r
⧵Wc

�

≤ �W�𝛼 �t�
3

t3
0

𝔼Q[e
t0H

n
(Z0)]

√
rd

+
𝛼t2

2
𝔼Q[H

n
(Z0)

2
]H

d
�
(𝜕W)⊕K∕r

�

(26)� log�r(t) − log�(t)� ≤ �W�� �t�
3

t3
0

�Q[e
t0H

n
(Z0)]

√
rd

+
�t2

2r
�Q[H

n
(Z0)

2
]C(�)
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By the fact that r ≥ 2C(�)∕(a|W|) and assuming

one can use again Eq. (26) to see that

The last inequality can be used to bound (27):

whose validity is guaranteed for all t satisfying

where �(a) is the constant defined in the statement of the theorem. We can now 
apply the Berry–Esseen inequality (Loève  1977, p. 297) to obtain

Thus the desired estimate of D(r) in (22) now follows by substituting (28) in the pre-
vious inequality and by computing the integral over the whole positive real line ℝ+ 
with standard calculations.   ◻

(27)

��r(t) − �(t)� = �(t)
���
�r(t)

�(t)
− 1

��� = �(t)
���e

log�r(t)−log�(t) − 1
���

≤ elog�(t)� log�r(t) − log�(t)�e� log�r(t)−log�(t)�

(26)≤
�
�W�� �t�

3

t3
0

�Q[e
t0H

n
(Z0)]

√
rd

+
�t2

2r
�Q[H

n
(Z0)

2
]C(�)

�

× exp
�� log�r(t) − log�(t)� − t2��W��Q[H

n
(Z0)

2
]∕2

�
.

�t� ≤ t3
0

√
rda�Q[H

n
(Z0)

2
]

4�Q[e
t0H

n
(Z0)]

| log�r(t) − log�(t)| ≤ a
t2|W|��Q[H

n
(Z0)

2
]

2
.

(28)
��r(t) − �(t)� ≤

�
�W�� �t�

3

t3
0

�Q[e
t0H

n
(Z0)]

√
rd

+
�t2

2r
�Q[H

n
(Z0)

2
]C(�)

�

× exp
�
−t2(1 − a)��W��Q[H

n
(Z0)

2
]∕2

�
,

�t� ≤ min

⎧⎪⎨⎪⎩

√
rdt0,

t3
0

√
rda�Q[H

n
(Z0)

2
]

4�Q[e
t0H

n
(Z0)]

⎫⎪⎬⎪⎭
=

√
rd�(a)

D(r) ≤ 2

� �
√
rd�(a)

0

��r(t) − �(t)�
t

dt +
24

�
√
rd�(a)

sup
x∈ℝ

�F�
(x)�

≤ 2

� �
√
rd�(a)

0

��r(t) − �(t)�
t

dt +
24

�
√
rd�(a)

�
2���W�𝔼Q[H

n
(Z0)

2]

.



1030 F. Camerlenghi et al.

1 3

We remark that Theorem  4 provides us with a rate of convergence of 
(Xr(W) − �[Xr(W)])∕

√
rd to the limiting centered Gaussian distribution with vari-

ance �|W|�Q[H
n
(Z0)

2
] : The Kolmogorov distance D(r) goes to zero at the rate 

max{1∕r, 1∕
√
rd} as r → +∞ . It is worth pointing out that one can try to optimize 

numerically the constant a appearing in (22) to obtain the best bound.

4  Discussion on the non‑stationary case

In Sect. 3 we have focused on stationary Boolean models, proving asymptotic results 
for the estimator �̂(r)

Θn

 of the mean density �
Θn

 based on a single realization of Θn as in 
(2). More precisely, as r grows to infinity, we have been able to determine a strong 
law of large numbers (Corollary 1), also referred to as ergodic-type (or strong con-
sistency) result, and an asymptotic normality result (Remark 3) for the estimator �̂(r)

Θn

 . 
As a consequence of this asymptotic theory, the estimator �̂(r)

Θn

=
Xr(W)

rd|W| of �
Θn

 has 
good statistical properties, when the Boolean model is stationary and the observa-
tion window W is sufficiently large. The non-stationary case is much more involved 
and the determination of good estimators of the mean density based on a single real-
ization of Θn is still an open question. In the present section we want to provide a 
guideline on how to choose the estimator of the mean density �

Θn
(x) , for a fixed 

x ∈ ℝ
d , based on a single observation in the non-stationary case. We shall do this by 

taking advantage of the infinite divisibility property of the Poisson random variable, 
together with already known results in Camerlenghi et al.(2014a) for the estimation 
of the mean density �

Θn
(x) based on a sample of big size N.

Our basic idea consists in writing the Boolean model as the superposition of i.i.d. 
Boolean models with rescaled intensity measure. Thus, by using similar notation as 
in the previous sections, let Θ(N)

n
 be an n-dimensional Boolean model in ℝd defined 

as in (2), whose intensity depends on N ≥ 1 , which is assumed to grow to infinity. 
More precisely

and, for a certain N ≥ 1 , we assume that the intensity fN of the associated marked 
Poisson point processes of � (N) is of the type

It is well known that the superposition of independent Poisson point process is still a 
Poisson point process, whose intensity measure is the sum of the intensity measures 
of the involved processes. Thus it easily follows that, for any fixed N, Θ(N)

n
 equals ⋃N

i=1
Θ̃

(i)
n

 in distribution, where {Θ̃(i)
n
}i is a sequence of i.i.d. Boolean models distrib-

uted as Θ̃n ∶=
⋃

(xi,si)∈�̃
xi + Z(si), where �̃ is a marked Poisson point process in ℝd 

with marks in � and intensity measure Λ̃(d(x, s)) = f̃ (x, s)dxQ(ds).
Now, for any x ∈ ℝ

d , let us consider the sequence {LN(x)}N≥1 of random vari-
ables defined as

Θ
(N)
n

=

⋃
(xi,si)∈�

(N)

xi + Z(si),

fN(x, s) = Nf̃ (x, s).
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with limN→∞
rN = 0 . We expect that the higher fN is (equivalently N), much more is 

the information about Θ(N)
n

 contained in a neighborhood of x, so that NLN(x) might 
provide a good approximation of �

Θ
(N)
n
(x).

We observe that LN(x) coincides ℙ-a.s. with the so-called natural estimator of 
the mean density �

Θ̃n
(x) of the random closed set Θ̃n introduced in Camerlenghi 

et al. (2014a), and defined by

indeed, one has

The last equality is a consequence of Lemma 3 in Villa (2014) and the fact that the 
event that different grains of Θ(N)

n
 (and so of the Θ̃(i)

n
’s) overlap in a subset of ℝd of 

positive Hn-measure, has null probability. The estimator �̂�,N
Θ̃n

(x) , called natural esti-
mator, can be seen as a particular case of a more general class of kernel-type estima-
tors (denoted by �̂�,N

Θ̃n

(x) , introduced in Camerlenghi et al. (2014a) as well, and fur-
ther studied in Camerlenghi and Villa(2018)), by choosing as particular kernel � on 
ℝ

d the function �(z) ∶= 1

bd
�B1(0)

(z) . Hence all the results proved in Camerlenghi and 
Villa (2018) may be applied to {LN(x)}N≥1 , provided that suitable regularity assump-
tions (generally fulfilled in real applications) are satisfied. It is then possible to state 
LDP and MDP for the sequence {LN(x)}N≥1 . Moreover, one can also use the results 
proved in Camerlenghi et al. (2014a) to determine the best value of r̄N in (29) which 
minimizes the asymptotic mean squared error of �̂�,N

Θ̃n

(x) and hence providing best 
estimate of �

Θ
(N)
n
(x) . This suggests that a good estimate of �

Θ
(N)
n
(x) = N�

Θ̃n
(x) based 

on a single observation of the Boolean model Θ(N)
n

 , with N sufficiently big, is given 
by

with r̄N as in (Camerlenghi et al. (2014a), Eq. (17)). It can be easily observed that 
whenever fN is constant, then r̄ = +∞ (see (Camerlenghi et al. (2014a), Sect. 3.3.3) 
for a detailed discussion), and so �𝜆r̄

Θ
(N)
n

(x) is in accordance with Eq. (17).

LN(x) ∶=
H

n
(Θ

(N)
n

∩ BrN
(x))

Nbdr
d
N

,

(29)�̂�,N
Θ̃n

(x) ∶=

∑N

i=1
H

n
(Θ̃

(i)
n
∩ BrN

(x))

Nbdr
d
N

;

H
n
(Θ

(N)
n

∩ BrN
(x))

a.s.
=

N∑
i=1

H
n
(Θ̃

(i)
n
∩ BrN

(x)).

�𝜆r̄
Θ

(N)
n

(x) ∶=
H

n
(Θ

(N)
n

∩ Br̄N
(x))

bdr̄
d
N
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5  Connections with the existing literature

In this section we illustrate the relationship of our theoretical findings with some 
known results in the literature. First of all we show how our results provide a gen-
eralization of asymptotic properties of Poisson point processes. More precisely, 
let � be a stationary Poisson point process in ℝd with intensity � . This corre-
sponds to consider a trivial Boolean model Θ0 of dimension n = 0 as in (2) with 
� = ℝ

d and deterministic typical grain Z0 = {0} . Indeed, with these choices, we 
have that � (⋅ ×�) = � , and Q(ds) = �0(s)ds , where �0 is the Dirac delta function 
at 0. Hence the random variable Xr(W) under study boils down to

whose mean coincides with �[Xr(W)] = �|rW| , and, by Equation (3), the mean den-
sity is simply the intensity of the Poisson process, i.e., �

Θ0
≡ � . From Corollary 1 

we get that

where �̂�(W, r) is also known as the Berman–Diggle estimator (see, e.g., Diggle 
(1985);  Berman and Diggle (1989)). Moreover, Theorem 3 applies to the random 
variables

with rate function J̃∗(y) = 1

2�|W|y
2 , which is in accordance with (Hwang (2000), 

Theorem 3.1).
Our large deviation results specialize for a class of Poisson processes, called 

cluster Poisson point processes. We remember that � is a Poisson cluster point 
process in ℝd if

where �p is a Poisson point process ℝd with intensity 𝜆p(x) ≡ 𝛼 > 0 , and {Ni}i≥1 
is a sequence of i.i.d. point processes in ℝd as well as N0 . If the typical clus-
ter N0 is such that 𝔼[N0(ℝ

d
)] < ∞ , then � is a point process with constant inten-

sity �𝔼[N0(ℝ
d
)] . Equivalently, � may be viewed as a Boolean model Θ0 as in 

(2), with Hausdorff dimension n = 0 , where in this case the mark space � is the 
space of counting measures (point processes) in ℝd , � (⋅ ×�) = �p , and typical 
grain Z0 ≡ N0 . Note that, by interpreting N0 as sequences of points in ℝd , we may 
equivalently write 𝔼[N0(ℝ

d
)] = 𝔼[H

0
(N0)] . It follows that Theorem 2 applies, and 

we obtain here as particular case the same results proved in (Burton and Dehling 
(1990), Theorem 3.2): 

Xr(W) = �(rW) =

∑
x∈�

�rW(x)

�̂�(rW) ∶=
𝛷(rW)

|rW|
a.s.
⟶𝛼, as r → +∞,

�(rW) − �[�(rW)]

ar

√
rd

� =

⋃
xi∈�p

(xi + Ni),
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(a) lim
r→∞

1

rd
log𝔼[et�(rW)

] = �|W|
(
𝔼[etN0(ℝ

d
)
] − 1

)

(b) {𝛷(rW)∕rd}r>0 satisfies the LDP with rate function 

Such a result is also in accordance with Theorem  5.1.1 in Bordenave and Torrisi 
(2007), which provides a large deviation principle for Poisson cluster point processes 
and Hawkes point processes; here the authors do not study moderate deviations; how-
ever, they present a sample-path versions of their results.

With regards to moderate deviations for the Poisson cluster process � , Theorem 3 in 
this paper allows to recover the results proved in (Jiang et al. (1992), Theorem 3.1) and 
in (Hwang(2000), Theorem 3.3), i.e., for every family of positive numbers {ar}r>0 such 
that (18) holds, the family of random variables

satisfies the LDP with velocity a2
r
 , and rate function J̃∗(y) = y2

2�|W|𝔼[(N0(ℝ
d))2]

 . Actually 
(Hwang (2000),  Theorem  3.3) is proved under a stronger condition, i.e., 
�[etH

n
(Z0)] < ∞ for all t ∈ ℝ.

As already mentioned in the Introduction, Corollary 2 on asymptotic normality and 
the related result on the estimator �̂(r)

Θn

 derived in Remark  3 are in accordance with 
known results in the literature, retrieved here as a by-product of moderate deviation 
results. Among the papers cited in the Introduction, it is worth mentioning Pawlas 
(2003), where a central limit theorem for random measures generated by stationary 
processes of compact sets is proved. More precisely, the more general quantity (9) with 
H

n replaced by an arbitrary translation invariant Borel measure on ℝd , and � stationary 
marked point process, non-necessarily Poisson, is considered; the normal convergence 
is obtained through the study of the characteristic function, under the assumption that a 
similar central limit theorem holds for � , together with second order conditions ensur-
ing the existence of appropriate variances. Our Corollary 2 may be obtained also as a 
special case in Pawlas(2003).

We already observed that the assumption n strictly less than d is crucial for the valid-
ity of

As the window W increases to the whole space, the border effects vanish 
and Hn

(Θn ∩W) behaves like a compound Poisson process, as pointed out in 
Remarks  1–2. Moreover, (30) reminds the definition of a multidimensional shot-
noise Poisson processes, which is a random field {v(y)}y∈ℝd of the type

J∗(y) = sup
t∈ℝ

{
ty − �|W|(𝔼[etN0(ℝ

d
)
] − 1)

}
.

�
𝛷(rW) − �[𝛷(rW)]

ar

√
rd

�

r>0

(30)H
n
(Θn ∩W)

a.s.
=

∑
(xi,si)∈�

H
n
((xi + Z(si)) ∩W).
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where � is a stationary marked Poisson point process and g ∶ ℝ
d
×� → ℝ is a 

measurable function, as defined in Heinrich and Schmidt (1985). If we replace W 
with Br(y) in (30), one can easily see that

and one could wish to relate the results in Heinrich and Schmidt (1985) on shot-
noise Poisson processes to our setting. For instance, one could find similarities 
between the asymptotic results discussed in Sect. 4 concerning the non-stationary 
case, and the asymptotic normality results for suitable high density Poisson shot-
noise process in Heinrich and Schmidt (1985).
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