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Abstract
A new class of survival frailty models based on the generalized inverse-Gaussian 
(GIG) distributions is proposed. We show that the GIG frailty models are flexible 
and mathematically convenient like the popular gamma frailty model. A piecewise-
exponential baseline hazard function is employed, yielding flexibility for the pro-
posed class. Although a closed-form observed log-likelihood function is available, 
simulation studies show that employing an EM-algorithm is advantageous concern-
ing the direct maximization of this function. Further simulated results address the 
comparison of different methods for obtaining standard errors of the estimates and 
confidence intervals for the parameters. Additionally, the finite-sample behavior of 
the EM-estimators is investigated and the performance of the GIG models under 
misspecification assessed. We apply our methodology to a TARGET (Therapeuti-
cally Applicable Research to Generate Effective Treatments) data about the survival 
time of patients with neuroblastoma cancer and show some advantages of the GIG 
frailties over existing models in the literature.

Keywords  EM-algorithm · Frailty · Generalized inverse-Gaussian models · 
Neuroblastoma · Robustness

1  Introduction

When dealing with time to event data, the most popular statistical approach is the 
proportional hazards model by Cox (1972). This model is based on the hazard func-
tion and accommodates well censored and truncated data, which are key elements in 
survival analysis.
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One situation in which the proportional hazards model can be deficient occurs 
when unobserved sources of heterogeneity are present in the data. This might be 
explained by the lack of important covariates in the study, which are difficult to 
measure or were not collected because the researcher did not know its importance 
in the first place. In this case, the deficiency of the proportional hazards model is the 
assumption of a homogeneous population. Another common situation in which the 
proportional hazards model is problematic occurs when there is correlated survival 
data. The correlation arises, for example, when repeated measures are collected for 
each individual or when some common traits such as biological or environmental 
factors are shared.

The described situations are usually treated by assuming a frailty model config-
ured as a natural extension to the Cox model. This approach introduces a latent ran-
dom component that acts multiplicatively in the hazard function for an individual 
or a group of individuals. The univariate frailty modeling can handle unobserved 
sources of heterogeneity, and independence is assumed among individual frailties. 
One of the multivariate versions of this methodology known as the shared frailty 
model was introduced by Clayton (1978), which was motivated by the analysis of 
familial tendency in disease incidence. The author assumed that individuals in the 
same group share the frailty term and a positive dependence between those individu-
als is created.

In both univariate and multivariate versions, fitting the unobserved risk compo-
nents is of most importance to properly evaluate the covariate effects. Some dis-
tributions in ℝ+ are commonly assumed for the frailty term having certain desired 
mathematical properties since the inferential aspects of the frailty models pose addi-
tional difficulties in comparison with the usual mixed models due to censoring and 
truncation. The gamma distribution is the most common choice for this task. This 
is a model that became very popular due to its mathematical convenience, being 
explored by several authors such as Vaupel et al. (1979), Oakes (1982, (1986), Klein 
(1992) and Yashin et al. (1995). Other well-known options in this field are the par-
ametric inverse-Gaussian (Hougaard 1984), positive stable (Hougaard 1986), log-
normal (McGilchrist and Aisbett 1991) and power variance family (Crowder 1989; 
Hougaard et  al. 1992) frailty models. Inference methods for shared frailty models 
are discussed for instance by Duchateau et al. (2002) and Vu and Knuiman (2002). 
For an account on computational tools with important practical information for users 
when dealing with shared frailty models, we refer to Hirsch and Wienke (2012).

Semiparametric versions of a frailty model are often preferred in the literature 
since it allows the estimation of regression effects without the need to explicitly 
impose a particular form for the baseline hazard function. Assuming a parametric 
formulation for this function can be restrictive since the analysis is bounded by the 
possible shapes of the chosen function. In addition, the parametric formulation can 
be difficult to identify or to test for adequacy. There are different methods to develop 
semiparametric versions of frailty models. For instance, the approach introduced by 
Klein (1992) is based on a modified EM-algorithm involving the Cox proportional 
hazards model. Other possible strategies are the penalized partial likelihood func-
tions introduced by Therneau et  al. (2003), piecewise constant hazards (Kim and 
Proschan 1991) with raising number of pieces and splines, among others.
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We will focus on the piecewise constant hazards approach. Although this is a 
parametric model at all, it is quite flexible since we do not have to assume any spe-
cific form for the baseline hazard function. For a discussion about the advantages of 
this choice, we refer Lawless and Zhan (1998). Other contributions on frailty mod-
eling are due to Balakrishnan and Peng (2006), Wang and Klein (2012), Callegaro 
and Iacobelli (2012), Chen et al. (2013), Putter and van Houwelingen (2015), Bal-
akrishnan and Pal (2016), Leão et  al. (2017), Barreto-Souza and Mayrink (2019), 
and Schneider et al. (2019), just to name a few. For a good account on frailty models, 
we recommend the books by Hougaard (2000), Wienke (2011) and Hanagal (2019).

Our chief goal in this paper is to introduce a new class of frailty models based 
on the generalized inverse-Gaussian (GIG) distributions, which has some advan-
tages over existing models in the literature, as it will be shown along with the paper. 
Our proposal praises for efficiency in terms of computation and flexibility without 
compromising mathematical tractability, since all the main expressions have closed 
forms, like in the gamma model.

It is worth mentioning that both GIG and power variance function (PVF) families 
are infinitely divisible [for instance, see, respectively, Barndorff-Nielsen and Hal-
green (1977) and Hanagal (2019)] so that a natural question can arise: Is there some 
connection between them? In fact, they share the inverse-Gaussian model as a com-
mon member (in our case this model is obtained by taking � = −1∕2 ; see Remark 
1), but the other cases are different; the Laplace transform of the GIG distributions 
given in Eq. (2) of this paper is different from the PVF Laplace transform given in 
Section 5.5 from Hanagal (2019).

We now highlight some important contributions of this present paper as follows. 
(1) Robustness. In simulation studies, we show that the GIG distribution ensures 
the flexibility we seek, as the model can return optimal results when data are gener-
ated with different frailty distributions. (2) Mathematical tractability. We provide 
closed forms for the unconditional density, survival, and hazard functions related to 
the generalized inverse-Gaussian frailty model. Further, the conditional distribution 
of the frailty given the data is again GIG distributed. This kind of conjugacy, also 
true for the gamma case, is attractive, and it allows us to provide an EM-algorithm 
with closed E-step. Therefore, our proposed frailty models enjoy the same math-
ematical and analytical tractability of the gamma model. We are unaware of other 
existing frailty models having all these features. (3) Cluster survival data. Although 
the neuroblastoma data considered here is not clustered, we introduce our model in 
a more general setting allowing clustered data analysis. (4) Computational tracta-
bility. Some numerical problems are experienced in the data analysis through the 
gamma frailty model, in contrast with our proposed class of GIG models.

This paper is organized as follows. In Sect.  2, we introduce the class of GIG 
frailty models and obtain some basic results. In Sect. 3, we discuss maximum like-
lihood estimation and propose an EM-algorithm (Dempster et  al. 1977) for esti-
mating the parameters with a focus in the piecewise exponential baseline assump-
tion, where the key expressions and detailed description are provided. In Sect.  4, 
we present comprehensive Monte Carlo simulation studies aiming at (a) motivation 
for the proposed EM-algorithm; (b) discussion and comparison of strategies for get-
ting standard errors. Statistical analysis based on GIG frailty models to a TARGET 
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(Therapeutically Applicable Research to Generate Effective Treatments) data about 
the survival time of patients with neuroblastoma cancer is addressed in Sect. 5. Dis-
cussion about our findings and some points to be attacked in future works are pre-
sented in Sect. 6. This paper contains Supplementary Material, which include addi-
tional technical results and Monte Carlo simulations about the robustness of the GIG 
frailty model under misspecification.

2 � Model specification and basic results

This section introduces the GIG frailty models. We begin by discussing the case 
without covariates. The inclusion of covariates will be addressed in next section. 
The generalized inverse-Gaussian distribution with parameters � ∈ ℝ , a > 0 and 
b > 0 has the following density function:

where K�(t) =
1

2
∫ ∞

0
u�−1 exp{−

t

2
(u + u−1)}du denotes the third kind modified Bes-

sel function, which is available in base R program (R Core Team 2020), more spe-
cifically via besselK function. A random variable X with density function (1) is 
denoted by X ∼ GIG (a, b, �).

Some basic properties of the GIG distribution are presented next. The Laplace 
transform associated to (1) is given by

The moments of a GIG distributed random variable X are given by

Having a closed form for the Laplace transform is an advantage in the construc-
tion of frailty models since the marginal survival and density functions of the frailty 
depend on this function. The fact that the Laplace transform of the gamma distribu-
tion has a closed form is one of the reasons for the popularity of such a model. The 
main structure of our proposed class of frailty models is given in what follows.

Definition 1  Assume Z is a random variable following a GIG distribu-
tion with parameters a = �−1 , b = �−1 and 𝜆 > 0 , where 𝛼 > 0 ; we denote 
Z ∼ GIG (�−1, �−1, �) . Consider the time to event of an individual to be denoted by 
a random variable T, where the latent effect Z acts multiplicatively in the baseline 
hazard function. Conditional on Z, the hazard function is given by h(t|Z) = Z h0(t) . 
Here h0(t) is the baseline hazard function and Z is the frailty variable.

(1)g(x) =
(a∕b)𝜆∕2

2K𝜆(
√
ab)

x𝜆−1 exp{−(ax + bx−1)∕2}, for x > 0,

(2)L(t) =
K𝜆(

√
(a + 2t)b)

K𝜆(
√
ab)

�
a

a + 2t

�𝜆∕2

, for t > −a∕2.

(3)E(Xk) =
K�+k(

√
ab)

K�(
√
ab)

(b∕a)k∕2, k ∈ ℝ.
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Remark 1  A motivation for assuming the GIG distribution for the frailty term is that, 
for a fixed � , there are several known special cases of this distribution. The inverse-
Gaussian (IG), reciprocal inverse-Gaussian (RIG), hyperbolic (HYP) and positive 
hyperbolic (PHYP) frailty models are obtained by choosing � = −1∕2 , � = 1∕2 , 
� = 0 and � = 1 , respectively. Hence, by changing the value of � , one can fit differ-
ent frailty distributions to the data.

Remark 2  The parameterization considered for our frailty class is such that the IG 
case ( � = −1∕2 ) satisfies E(Z) = 1 and Var (Z) = � . This is the parameterization 
considered for IG frailty model in the literature; see Wienke (2011).

Through known results on frailty modeling, we can obtain the marginal survival 
function S(⋅) and density f (⋅) of T. In line with Definition 1, we denote by h0(t) the 
baseline hazard function and H0(t) = ∫ t

0
h0(u)du the cumulative baseline hazard 

function. The marginal survival function is

From (4) and by using the recurrence identity of the Bessel function 
Kv(z) =

z

2v
[Kv+1(z) − Kv−1(z)] , we obtain that the marginal density function assumes 

the form

Next, we discuss another way of characterizing the frailty distribution that was intro-
duced by Farrington et  al. (2012), which is the relative frailty variance (hereafter 
RFV). The RFV is a measure of how the heterogeneity of the population evolves 
over time. This function can be used as a way to compare patterns of dependence 
among different frailty models and is obtained through the Laplace transform of the 
frailty distribution. Let J(s) = logL(−s) , where L(⋅) is the Laplace transform and � 
is the expected value of the frailty. Then, RFV (s) = J��(−s∕�)∕J�(−s∕�)2 ; see Eq. 
(3) from Farrington et al. (2012). The expressions required to calculate the RFV for 
the GIG frailty model are given in the Supplementary Material.

In Fig. 1, we present the evolution of the RFV(s) function for the IG, RIG, HYP, 
and PHYP frailties. For the four distributions under comparison, we find for each 
of them the root of the equation RFV (0) − 0.7 = 0 . That is the value of � for which 
RFV(0) is equal to 0.7. In this way, we can better compare how their evolutions dif-
fer, since they have the same starting point.

The results of Fig. 1 evidence similarity within the GIG family regarding the RVF 
evolution. All special cases have shown decreasing RFV over time, which means 
that individuals who survive tend to be less heterogeneous (or less dependent) over 

(4)

S(t) = L(H0(t)) =

(
1

1 + 2𝛼H0(t)

)𝜆∕2K𝜆

(√
𝛼−1

[
𝛼−1 + 2H0(t)

])

K𝜆(𝛼
−1)

, for t > 0.

f (t) =
h0(t)

(1 + 2𝛼H0(t))
𝜆+1

2

K𝜆+1

�√
𝛼−1[𝛼−1 + 2H0(t)]

�

K𝜆(𝛼
−1)

, for t > 0.
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time. What differentiates among the distributions under comparison is the speed in 
which this happens. This can be observed in the curvature of the trajectory RFV (s) 
versus s. The most strong curvature is related to the inverse-Gaussian model. As a 
consequence, in this frailty distribution, the decrease in heterogeneity (or depend-
ence) occurs more quickly. The PHYP frailty shows a slower decay. The HYP and 
RIG models have intermediate behaviors for the evolution of the relative frailty 
variance.

We end this section by calling attention to the fact that the proposed methodology 
is not restricted to the four options of � discussed in Remark 1. These special cases 
are considered in the simulation studies developed ahead, and we believe that they 
provide enough material to understand the main aspects related to the GIG class. 
Another strategy indicated for practical applications, as we will consider for the 
neuroblastoma data analysis, is testing a grid of � values and choosing the one that 
maximizes the log-likelihood function. In other words, the strategy is to perform a 
profile likelihood approach for estimating �.

3 � GIG frailty model for clustered survival data

This section deals with GIG frailty models allowing for a regression structure and 
also considers a framework extending the analysis to the multivariate case. In the 
univariate approach, each individual has its own frailty. This version is applica-
ble, for example, when important covariates are missing from the analysis or when 
individual heterogeneity is naturally present. On the other hand, in shared frailty 

Fig. 1   Relative frailty variance evolution for IG, RIG, HYP and PHYP frailties with � chosen such that 
RFV(0) = 0.7 in each case
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models, individuals in a group share the frailty, which creates a positive dependence 
among them. With that, we are able to model correlated or clustered survival data. 
Evidently, this can be reduced to the univariate approach when groups are formed by 
one observation each. As mentioned previously, although the data considered here 
is univariate, we introduce our class of frailty models in a more general setting and, 
therefore, they can be applied for broad situations.

Assume m clusters with the ith cluster having ni individuals, for i = 1,… ,m . 
Here T0

ij
 and Cij denote the failure and censoring times for the individual j = 1,… , ni 

in the ith cluster. The total sample size is n =
∑m

i=1
ni . In addition, let 

Tij = min{T0
ij
,Cij} be the observable response variables and �ij = I{T0

ij
≤ Cij} the 

failure indicator. Naturally, the frailty Zi is associated to the ith cluster. In order to 
complete the model specification, we make the assumptions that given Zi , 
{(T0

ij
,Cij);j = 1,… , ni} are conditionally independent and that T0

ij
 and Cij are inde-

pendent for all j. Another assumption we rely on is that the censoring times within a 
cluster {Cij;j = 1,… , ni} are non-informative with respect to Zi for all i.

Conditional on the frailty, the model has a structure similar to the proportional 
hazards model by Cox (1972). The frailty term Zi is inserted as follows: 
h(tij|Zi) = Zih0(tij) exp(x

⊤
ij
𝛽) , for tij > 0 , where xij is the vector of covariates of the jth 

individual from the ith cluster.
In the forthcoming discussion, we present maximum likelihood estimation for the 

parametric case, where a specific form for the baseline hazard function needs to be 
assumed. Further, we propose an EM-algorithm for estimating the model parameters 
with a focus on the piecewise exponential baseline hazard function, which provides 
model flexibility since we do not impose any specific shape for that function.

3.1 � Maximum likelihood estimation

In this section, we present the unconditional survival and density functions to con-
struct the likelihood function and perform maximum likelihood estimation under the 
parametric approach. The joint survival function of a cluster can be found through 
the Laplace transform of the frailty variable in (2). The joint survival function asso-
ciated with the ith cluster is

(5)

S(ti1,… , ti ni) =L

�
ni�
j=1

H0(tij)e
x⊤
ij
𝛽

�

=

⎛⎜⎜⎝
1

1 + 2𝛼
∑ni

j=1
H0(tij)e

x⊤
ij
𝛽

⎞⎟⎟⎠

𝜆∕2

K𝜆

��
𝛼−1

�
𝛼−1 + 2

∑ni
j=1

H0(tij)e
x⊤
ij
𝛽
��

K𝜆(𝛼
−1)

,
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for tij > 0 ∀i, j . By using Lemma 1 from Supplementary Material, we obtain that 
the joint density associated to this survival function is

where � (k)(x) = (−1)k
�

�xk

K�(
√
x)

x�∕2
 , for k ∈ ℕ.

Let 𝜃 = (𝛽,𝜙, 𝛼)⊤ be the parameter vector, where � denotes the parameter vector 
associated to the baseline hazard function H0 , and �(�) denotes the log-likelihood func-
tion. Here, � is assumed to be fixed. Using the expressions in (5) and (6) together with 
Lemma 1 from the Supplementary Material, we can write the log-likelihood function 
as

where ��(x) = K�(
√
x)∕x�∕2 . In order to fit a GIG frailty model, we specify the 

baseline hazard function h0(⋅) and obtain the parameter estimates by maximizing the 
log-likelihood function through numerical optimization methods. Some of them are 
available in R (R Core Team 2020) through the function optim; this includes the 
BFGS and Nelder-Mead methods (Fletcher 2000). Another possible strategy for this 
optimization is to use the Newton–Raphson algorithm (via the R function nlm) as 
discussed by Duchateau and Janssen (2008) and Emura et al. (2019).

A GIG frailty model can be fitted after specifying the form of the baseline risk 
function. For instance, a Weibull baseline hazard leads to the following formula-
tion: h0(t) = ��t�−1 and H0(t) = �t� , for t > 0 , and 𝜎, 𝛾 > 0 . However, often is the 
case where one does not have enough information to be able to designate the form 
of h0(⋅) . In this case, we adopt a piecewise-constant hazard function (also known as 
piecewise exponential hazard function), a general framework that serves the purpose 
of approximating baseline-hazard functions of any shape, providing flexibility. This 
approach is commonly adopted and well accepted in the frailty models literature. 
For instance, Lawless and Zhan (1998) argue that the use of the piecewise-constant 
hazard function avoids many problems associated with nonparametric and semipa-
rametric methods for incomplete survival data, but still provides a high degree of 
robustness. We will denote this approach by the PE-GIG frailty model, where PE 
stands for piecewise exponential baseline hazard function.

The baseline hazard function of a piecewise exponential distribution is given by

where k cut points (or knots) are specified satisfying 
0 ≡ t(0) < min{t1,… , tn} < t(1) < … < t(k) < max{t1,… , tn} < t(k+1) ≡ ∞ , 𝜂l > 0 

(6)

f (ti1,… , ti ni ) =
𝛼−𝜆

K𝜆(𝛼
−1)

(2∕𝛼)ni𝜒 (ni)

(
𝛼−1

[
𝛼−1 + 2

ni∑
j=1

H0(tij)e
x⊤
ij
𝛽

]) ni∏
j=1

h0(tij) e
x⊤
ij
𝛽
,

(7)

�(𝜃) = log

�
m�
i=1

𝛼
−(

∑ni
j=1

𝛿ij+𝜆)

K𝜆(𝛼
−1)

𝛹𝜆+
∑ni

j=1
𝛿ij

�
𝛼−1

�
𝛼−1 + 2

ni�
j=1

H0(tij)e
x⊤
ij
𝛽

��

ni�
j=1

�
h0(tij)e

x⊤
ij
𝛽
�𝛿ij

�
,

(8)h0(t) = 𝜂l, for t(l−1) ≤ t < t(l) and l = 1,… , k + 1 ,
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for l = 1,… , k + 1 , and 𝜂 = (𝜂1,… , 𝜂k+1)
⊤ . Hence, the cumulative baseline function 

is

Kim and Proschan (1991) introduced the estimation of the survival function through 
the piecewise exponential estimator; they considered as many partitions as the num-
ber of observed failures. However, we will follow the steps in Lawless and Zhan 
(1998) that showed, through simulation studies, that frailty models based on the 
piecewise constant hazards often provide satisfactory results for estimating parame-
ters when 8-10 pieces are admitted. In this paper, our choice for the cut points/knots 
is data-driven through empirical quantiles of the uncensored survival times. More 
specifically, t(i) is the 

(
i

k+1

)
-quantile of the uncensored times, for i = 1,… , k . For 

instance, by taking k = 3 , we have t(1) , t(2) , and t(3) being the first quartile, the median, 
and the third quartile, respectively.

3.2 � EM‑algorithm

In this section, we propose an Expectation-Maximization (EM) algorithm (Dempster 
et al. 1977) for estimating the parameters by assuming a piecewise exponential baseline 
hazard function h0(⋅) as defined in (8). Although we can integrate out the latent frailties 
and obtain the parameter estimates by maximizing the observed log-likelihood in (7), 
our simulation studies have shown there are advantages in considering an EM approach 
instead. These studies will be presented in Sect. 4, illustrating how an EM estimation 
procedure provides better or equivalent parameter estimates in contrast with the direct 
optimization procedure, where the greatest distinction among the methods lies on the 
estimation of the frailty variance parameter.

An EM type of algorithm is appropriate to handle the presence of missing/latent data 
in the likelihood function and has been used in the literature of frailty models by Klein 
(1992), Wang and Klein (2012), Callegaro and Iacobelli (2012) and more recently by 
Barreto-Souza and Mayrink (2019) and Schneider et  al. (2019), just to name a few. 
In the Expectation (E) step, we compute the conditional expectation of the complete 
log-likelihood function given the observed data, evaluated at the current parameter 
estimates; this is called Q-function. In the Maximization (M) step, we maximize the 
Q-function. The new estimates obtained in the M step are used to update the Q-func-
tion. We iterate between these two steps until a pre-specified convergence criterion is 
reached.

The complete data set is denoted by (tij, �ij, Zi) , for j = 1,… , ni and i = 1,… ,m . 
We observe the pairs (tij, �ij) and the Zi ’s are the latent random effects. The complete 
log-likelihood function can be written as �c(�) = �1(�, �) + �2(�) , where

H0(t) =

i∑
j=0

𝜂j+1[min{t, t(j+1)} − t(j)], for t(i) ≤ t < t(i+1).

�1(𝛽, 𝜂) ∝

m∑
i=1

ni∑
j=1

𝛿ij

(
x⊤
ij
𝛽 + log h0(tij)

)
−

m∑
i=1

ni∑
j=1

ZiH0(tij)e
x⊤
ij
𝛽
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and

In order to determine the E-step, we need to find the conditional distribution of Zi 
given the observed data 

{
(tij, �ij)

}ni

j=1
 . By using basic properties of conditional densi-

ties, it can be shown that this conditional distribution is a GIG law. More specifi-
cally, we have that

The Q-function is the conditional expected value of the complete log-likelihood 
function given the observed data at the current estimated parameter values. In other 
words, we can write

where �(r) denotes the estimated vector of parameters of the EM-algorithm in the rth 
step,

and

with �i(�) ≡ E
(
Zi|{(tij, �ij)}nij=1

)
 and �i(�) ≡ E

(
Z−1
i
|{(tij, �ij)}nij=1

)
 , for i = 1,… ,m . 

Expressions for these conditional expectations are presented in next proposition.

Proposition 1  (E-step of the EM-algorithm) For i = 1,… ,m , we have that

and

�2(�) ∝ −m logK�(�
−1) −

1

2�

m∑
i=1

(
Zi + Z−1

i

)
.

(9)Zi|
{
(tij, 𝛿ij)

}ni

j=1
∼ GIG

(
𝛼−1 + 2

ni∑
j=1

H0(tij)e
x⊤
ij
𝛽
, 𝛼−1, 𝜆 +

ni∑
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Proof  It follows immediately by using (3) and (9). 	�  ◻

Using the previous expressions and providing a fixed set of cut points for the piece-
wise exponential hazard function, we have fully defined our Q-function. The associated 
score function to the Q-function �Q(�;�(r))∕�� has its components given by

and

where

for s = 1,… , k + 1.
The EM-algorithm establishes simpler expressions to be maximized rather than 

running a direct maximization procedure based on the observed likelihood function in 
(7). More specifically, in the EM approach, the Bessel function is only involved in the 
maximization regarding � , which relies on a problem of finding the root of a nonlin-
ear equation. On the other hand, the maximization of the observed log-likelihood func-
tion (7) is more cumbersome since the argument of the Bessel function involves all the 
parameters. In addition, applying the EM approach allows us to do the optimization 
separately for (�, �) and �.

A complete description of the EM-algorithm for the GIG frailty models is given in 
Algorithm 1 including initial guesses for initialization of the procedure.
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We now discuss some strategies of how to obtain standard errors of the 
parameter estimates. Let 𝜃∗ = (𝛽, 𝛼)⊤ . Following the procedure discussed in 
Klein (1992), we get the standard error through the partial observed informa-
tion matrix Jn(𝜃∗) ≡ −𝜕2�(𝜃)∕𝜕𝜃∗𝜕𝜃

⊤
∗

 , where � is treated as a nuisance parameter 
vector. The explicit elements of this matrix are provided in Appendix A.1. The 
strategy to use partial information instead of the total information is common 
in frailty models and aims at avoiding numerical issues due to possible high-
dimensional matrices to be inverted. After getting convergence of the EM-algo-
rithm, we replace (�, �, �) by their EM-estimates in Jn(�∗) to assess the standard 
errors. We also consider the partial information matrix In(�∗) given in (10) due 
to the EM-algorithm (Louis 1982), where its elements are provided in Appendix 
1.

Another important strategy to obtain the standard errors of the parameter esti-
mates is the nonparametric bootstrap (Efron 1979). The bootstrap replicas are 
obtained by resampling the survival data with replacement. When data are clus-
tered and the number of clusters is moderate or large, we suggest resampling the 
clusters. The case where the number of clusters is small, one way is to perform 
the two-step bootstrap method discussed by Xiao and Abrahamowicz (2010), 
which involves both resamplings from the clusters and from individuals within 
each selected cluster. We call the attention that the knots, to be considered when 
fitting the PE-GIG frailty model for the bootstrap samples, will be probably dif-
ferent among the replications. This is due to our data-driven choice, which was 
discussed at the end of Sect. 3.1.

The methods for getting the standard errors discussed here will be compared 
and contrasted via Monte Carlo simulation in Sect. 4.2. As we will see, the boot-
strap method provides much better results than the other two approaches based 
on the observed information matrices. Recommendations for the construction of 
bootstrap-based confidence intervals for the parameters are also provided and 
evaluated in Sect. 4.2.
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4 � Simulation studies

In this section, we present Monte Carlo studies aiming at (a) motivation for the 
proposed EM-algorithm and (b) discussion and comparison of strategies for get-
ting standard errors, in Sects. 4.1 and 4.2, respectively. Simulated results about the 
robustness of the GIG frailty models under misspecification are addressed in the 
Supplementary Material.

4.1 � Comparison between direct maximization and EM‑algorithm

In this section, we illustrate through simulation studies that employing the proposed 
EM-algorithm for finding the maximum likelihood estimates of GIG frailty model 
parameters is advantageous in contrast with the direct maximization of the observed 
log-likelihood function, hereby denoted by DMLE. To do this, we simulate 1000 
synthetic data sets under the four GIG special cases and, under the correctly speci-
fied frailty distribution, estimate the parameters using both methods. In this experi-
ment, the setting without clustering structure is investigated, that is, ni = 1∀i , and 
the sample sizes are set to m = 200 and m = 400 . For the scenarios where m = 200 , 
5 cutoff points are stipulated for the piecewise constant hazards function, based on 
data quantiles. As the number of observations increases to 400, we also increase the 
number of cutoff points to k = 10.

The data is simulated as follows. Given the frailties, the failure times T0
ij
 were 

simulated from a Weibull distribution with � = 2 and � = 0.25 . The censoring times 
Cij were generated, independently of T0

ij
 , following a Weibull distribution with 

parameters � = 2 and � = 0.05 . The observed data are Tij = min{T0
ij
,Cij} and 

�ij = I{T0
ij
≤ Cij} . With this configuration, we have a percentage of approximately 

30% of censored observations. We employ two covariates that were generated from 
the Bernoulli(0.5) and Uniform(−1, 1) distributions with the true values of their 
effects being (�1, �2) = (1.5,−1) . The true value of � was set to 0.5.

Table 1 displays the results of this comparison study. Under each frailty model, 
mean and standard errors (in parenthesis) of the parameter estimates are given for 
the EM and DMLE methods. On the left side, the results of the study with sample 
size equal to 200 are shown, while the right side columns contain the results for the 
same simulation study performed with m = 400 . It can be seen that the mean param-
eter estimates obtained by applying the EM-algorithm are considerably closer to the 
true values, something that holds for all frailty distributions in consideration. When 
m is 200, the frailty variance parameter is underestimated by both methods. How-
ever, the estimation bias is much larger under the direct maximization procedure. 
As expected, such bias decreases as the sample size grows, improving the average 
estimation in both cases. Nonetheless, the distinction between the two estimation 
procedures is evident. The mean estimates of � obtained using the EM-algorithm 
approaches to the true value for all frailty distributions, contrarily to the DMLE case 
in which this parameter is still largely underestimated. Although the most striking 
difference among the methods lies in the estimation of � , it is seen that the EM 
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procedure is also preferred for the regression parameters. It yields parameter esti-
mates that are closer to the true values, in comparison to the DMLE procedure.

Figure 2 illustrates the results of the simulation study when m = 400 through box-
plots of the parameter estimates. From this figure, we can observe the superior per-
formance of the EM-algorithm for estimating all the parameters over the direct max-
imization approach, which does not produce satisfactory results even for m = 400 , 
under the four frailty models considered.

We conclude that although we can integrate out the unobserved frailty values 
and estimate the parameters by maximizing directly the observed log-likelihood 

Table 1   Mean and standard error (in parenthesis) of parameter estimates based on the EM-algorithm and 
direct maximization of the log-likelihood function (DMLE) among GIG frailty models

Frailty Method � = 200(k = 5) � = 400(k = 10)

� = 0.5 �
1
= 1.5 �

2
= −1 � = 0.5 �

1
= 1.5 �

2
= −1

IG EM 0.361 
(0.213)

1.423 
(0.216)

−0.989 
(0.337)

0.471 
(0.214)

1.477 
(0.167)

−0.989 
(0.243)

DMLE 0.117 
(0.187)

1.336 
(0.199)

−0.785 
(0.319)

0.237 
(0.281)

1.374 
(0.178)

−0.866 
(0.233)

HYP EM 0.305 
(0.177)

1.403 
(0.218)

−0.986 
(0.316)

0.432 
(0.224)

1.466 
(0.165)

−0.997 
(0.256)

DMLE 0.128 
(0.226)

1.336 
(0.221)

−0.812 
(0.336)

0.256 
(0.323)

1.375 
(0.185)

−0.910 
(0.258)

RIG EM 0.288 
(0.162)

1.395 
(0.209)

−0.968 
(0.329)

0.433 
(0.366)

1.461 
(0.170)

−0.975 
(0.245)

DMLE 0.134 
(0.241)

1.313 
(0.216)

−0.855 
(0.355)

0.281 
(0.273)

1.379 
(0.194)

−0.907 
(0.256)

PHYP EM 0.303 
(0.198)

1.406 
(0.211)

−0.957 
(0.321)

0.430 
(0.216)

1.470 
(0.167)

−0.989 
(0.232)

DMLE 0.145 
(0.277)

1.325 
(0.221)

−0.872 
(0.331)

0.264 
(0.325)

1.377 
(0.190)

−0.923 
(0.233)

Fig. 2   Boxplots of the maximum likelihood estimates obtained with direct maximization ( ◦ ) and EM-
algorithm ( △ ) under different GIG frailty models with m = 400 . Dashed line corresponds to the true 
value of the parameter
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function, better results are achieved by employing an EM-algorithm. Through Monte 
Carlo simulation studies, we illustrated how this procedure yields a superior estima-
tion of both the frailty variance parameter and the regression coefficients and hence 
should be preferred for the class of GIG frailty models.

4.2 � Standard error studies

Having found that the EM-algorithm is favored for the estimation of the GIG frailty 
model parameters, we now investigate the derivation of their standard errors and 
confidence intervals. This is a problem on which there is no agreement in the frailty 
models literature, and the best solution seems to depend on the problem at hand. 
For instance, Wang and Klein (2012) and Barreto-Souza and Mayrink (2019), who 
also estimate the parameters using an EM-algorithm, utilize the observed informa-
tion matrix from the observed log-likelihood function for this task. Contrastingly, 
in the model proposed by Callegaro and Iacobelli (2012), an EM approach is used 
for estimation, but the strategy for obtaining the standard error differs. The authors 
consider a reduced version of the EM information matrix (Louis 1982), a strategy 
which is indicated by Abrahantes and Burzykowski (2005). Finally, in the work by 
Balakrishnan and Pal (2016), parameters are estimated by maximization of a numer-
ical approximation of the observed log-likelihood function, and their standard errors 
computed via bootstrap. According to the authors, a bootstrap method is preferred to 
the Hessian approach, as the second underestimates the variability of the parameters.

We propose to assess this for the class of GIG frailty models via a small simula-
tion study where different approaches are compared and contrasted. In the method to 
be referred to as Hessian, standard errors are computed according to the Hessian of 
the observed log-likelihood function, with the parameters of the PE baseline hazard 
function taken as a nuisance. This is calculated analytically, with the expressions 
provided in Appendix A.1. A second approach works similarly, utilizing the infor-
mation matrix of the EM-algorithm by Louis (1982). We provide the expressions 
required to obtain this matrix in Appendix A.2. Then, confidence intervals for the 
Hessian and EM procedures are constructed under asymptotic normality. A third 
and last approach is based on nonparametric bootstrap. In this case, we sample the 
observations with replacement and fit the model to a certain number of resampled 
data sets. The bootstrap sample size is taken as the number of observations in the 
original data set. After this procedure is repeated B times, we obtain bootstrap esti-
mates of the standard errors. In the bootstrap case, we will assess two types of con-
fidence intervals. We denote by percentile bootstrap the confidence intervals which 
are constructed based on the quantiles of the B bootstrap parameter estimates. Alter-
natively, a confidence interval based on asymptotic normality employs the bootstrap 
estimates of the standard errors. We refer to the former method as normal-approxi-
mation bootstrap. In the proposed study, 500 Monte Carlo replicas are considered, 
and the data are generated under the IG and HYP frailties. The synthetic data are 
drawn with the same configurations of Sect.  4.1, that is, �1 = 1.5 , �2 = −1 , and 
� = 0.5 , with sample size m = 400 ( ni = 1 ∀i ), and k = 10 . Additionally, bootstrap-
based procedures use B = 200 replicas.
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We first focus on the standard errors of the parameter estimates, where the mean 
estimates of these quantities under the Hessian, EM, and bootstrap methodologies 
are contrasted with the Monte Carlo standard deviations. For each synthetic data set, 
we fit the correctly specified GIG frailty model via the proposed EM-algorithm and 
calculate their standard errors via the three competing approaches. In Table 2, the 
empirical standard errors obtained from the bootstrap, Hessian, and EM approaches 
are reported for each parameter. Ideally, these would resemble the Monte Carlo 
standard deviations in column MC, which stands for Monte Carlo.

It is observed that the Hessian and EM approaches significantly underestimate 
the standard deviation (SD) of the estimated regression coefficients, something that 
holds for both the IG and HYP scenarios. This is evidence by looking at the results 
related to the parameter �2 , with associated continuous covariate, for which there is 
a striking difference among the MC and Hessian/EM methods. On the other hand, 
the empirical bootstrap standard error is very close to the Monte Carlo standard 
deviation for both estimates of �1 and �2 , as desired. Concerning the frailty variance 
parameter � , the EM and bootstrap approaches are competitive and advantageous 
over the Hessian method. Through this simulation study, we can conclude that the 
bootstrap approach is preferred for calculating the standard errors of the GIG frailty 
model parameter estimates. Contrarily to the other methods under comparison, the 
bootstrap approach produced satisfactory results for the estimated regression coef-
ficients standard errors, which is of great interest in practical applications. Addition-
ally, a reasonable result was achieved for the standard errors related to the frailty 
variance parameter estimates.

We now focus our attention on the construction of confidence intervals for the 
parameters. Three intervals based on asymptotic normality are evaluated, uti-
lizing the EM, Hessian, and bootstrap approaches. Additionally, we include the 
percentile-based bootstrap confidence interval. Table  3 displays the results of 
the proposed study for data generated with frailty IG distributed. For the signifi-
cance levels of 1%, 5%, and 10%, the percentage of times the confidence interval 
derived under each methodology contains the true parameter value is reported. It 
is observed that the coverages due to the normal-approximation bootstrap method 
are near the nominal ones for the three significance levels under consideration. 
The percentile bootstrap method behaves well for �1 , related to the binary covari-
ate, but has a worse performance for �2 , related to the continuous regressor. How-
ever, it is still superior to the Hessian and EM methods in both cases. Notably, 

Table 2   Standard deviations 
of the estimates via Monte 
Carlo (MC) and empirical 
standard errors obtained from 
the bootstrap, Hessian, and EM 
methods under the HYP and IG 
frailty models

Model Par. MC Bootstrap Hessian  EM

HYP �
1

0.164 0.170 0.118 0.118
�
2

0.254 0.249 0.152 0.152
� 0.226 0.193 0.170 0.181

IG �
1

0.171 0.173 0.118 0.119
�
2

0.254 0.253 0.154 0.155
� 0.227 0.183 0.174 0.189
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these two approaches underestimate the standard errors of the parameters, creat-
ing narrow confidence intervals whose coverages are far from the desired nomi-
nal level in general. Good results are yielded by the Hessian and EM methods 
for the frailty variance parameter when the significance level is 1%. However, 
this behavior is not persistent, as evidenced by the results of both methods when 
the nominal level is 10%. The best performance for � is due to the percentile 
bootstrap method. Likely, a normality approximation is reasonable for the regres-
sion parameter estimates, but not for estimates of � , causing the percentile-based 
approach to be favored. We will explore this further, but first, we analyze the 
results of this study when the HYP frailty is considered, reported in Table 4.

A similar pattern is found in the second scenario of our study. For all nominal 
levels, the bootstrap confidence intervals are preferred to the Hessian and EM 
approaches. Moreover, the normal-approximation bootstrap confidence intervals 
yield coverages that are very close to the desired levels for both parameters �1 and 
�2 associated with the regressors. As before, the only method producing consist-
ent and satisfactory results for � among all confidence levels is the percentile-
based bootstrap.

Table 3   Empirical confidence 
interval coverages based on 
different methods under the IG 
frailty model parameters with 
significance level (sig.) at 1%, 
5%, and 10%

Sig. Par. Percentile 
bootstrap

Normal-approx. 
bootstrap

Hessian  EM

1% �
1

98.6 98.2 91.4 91.4
�
2

95.0 99.4 88.0 88.2
� 98.2 99.4 99.0 99.2

5% �
1

95.6 93.2 81.2 81.6
�
2

87.4 94.4 76.0 76.0
� 94.6 91.8 83.0 97.2

10% �
1

91.8 89.0 74.6 75.4
�
2

79.0 88.8 71.0 71.0
� 89.0 79.6 74.4 86.2

Table 4   Empirical confidence 
interval coverages based on 
different methods under the 
HYP frailty model parameters 
with significance level (sig.) at 
1%, 5%, and 10%

Sig. Par. Percentile 
bootstrap

Normal-approx. 
bootstrap

Hessian  EM

1% �
1

99.0 99.0 92.0 92.0
�
2

95.0 99.4 88.4 88.4
� 98.0 98.6 97.6 99.4

5% �
1

96.4 93.6 84.4 84.4
�
2

88.6 94.8 78.8 79.0
� 93.4 84.2 78.4 94.6

10% �
1

92.6 90.0 77.6 78.0
�
2

81.4 89.6 69.6 69.8
� 88.8 71.8 67.6 75.8
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Figure 3 displays histograms of the standardized (by the mean and standard devi-
ation) parameter estimates overlayed with the standard normal density curve. The 
top and bottom rows correspond to the standardized �̂1 , �̂2 , and �̂ estimates obtained 
in the IG and HYP scenarios, respectively. This figure supports our claim that the 
estimates of � are further from the normality, causing the worse performance of the 
confidence intervals based on normality. Contrastingly, Gaussianity approximation 
seems to be a reasonable assumption for the regression parameter estimators.

In this subsection, different methods to gather standard errors and construct con-
fidence intervals for the GIG frailty model parameters were compared. Monte Carlo 
simulation studies evidenced how the standard errors obtained via the Hessian and 
EM approaches tend to be underestimated. Confidence intervals for regression coef-
ficients are of high interest in practical applications, but these commonly used meth-
ods produce liberal confidence intervals for the GIG frailty model parameters. Our 
study showed that the bootstrap options are superior, of which the normal-based 
yielded the best results in terms of the regression parameters. Additionally, we iden-
tified that the frailty variance parameter estimates are further from the asymptotic 
normality assumption, causing a percentile-based interval to be preferred.

Following these arguments, we recommend that standard errors and confidence 
intervals for the parameters are derived using bootstrap. More specifically, we advise 
that normality-based intervals are employed for the regression effects, and a percen-
tile-based procedure is taken for the frailty variance parameter. We highlight that the 
same bootstrap replicas are used for the construction of these two types of intervals, 

Fig. 3   Histogram of standardized parameter estimates under the IG (top row) and HYP (bottom row) sce-
narios with standard normal density curve
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where we simply utilize those to obtain estimates of the standard deviation in the 
first case and take percentiles for the former.

5 � TARGET neuroblastoma data analysis

To illustrate the proposed methodology in this paper, we explore clinical data of 
children diagnosed with neuroblastoma cancer collected by the Therapeutically 
Applicable Research to Generate Effective Treatments (TARGET) initiative. Neu-
roblastoma is a type of cancer that originates in primitive forms of the nerve cells 
of the sympathetic nervous system. We aim to evaluate the effect of MYCN gene 
amplification and the presence of hyperdiploid chromosomes in the DNA content 
of the tumor cell on the survival time of patients. Although the amplification of the 
MYCN gene is commonly associated with a worse prognosis, the role of hyperdip-
loid chromosomes in the evolution of tumors still remains an ongoing question in 
cancer research. The prognosis of the presence of an abnormal number of chromo-
somes is not well understood as different conclusions have been drawn with respect 
to different types of cancer.

For instance, Dastugue et  al. (2013) associated higher ploidy to a better the 
prognosis for childhood B-acute lymphoblastic leukemia. In the same vein, Car-
roll (2013) added that hyperdiploidy seems to favor a beneficial impact in leuke-
mogenesis, possible being a consequence rather than a driver of malignancy. How-
ever, Donovan et al. (2014) recognized glioblastoma hyperdiploid tumor cells as a 
potential contributor to tumor evolution and disease recurrence in adult brain cancer 
patients. Following this argument, one of our aims in this data application is to relia-
bly assess the effect of hyperdiploid chromosomes on the prognosis of children with 
neuroblastoma cancer by the usage of appropriate statistical methodology.

5.1 � Neuroblastoma data description and preliminary analysis

The TARGET program is intended to study the molecular changes causing child-
hood cancers. The main goal of this initiative is to collect data allowing researchers 
to work toward the development of effective and less toxic treatments. The program 
makes available online data files of multiple cancer types that can be found in the 
TARGET data matrix section of their Web site https​://ocg.cance​r.gov/progr​ams/
targe​t/data-matri​x; it is necessary to request permission from the National Cancer 
Institute to use this data, as we did. In this paper, we explore the clinical data of the 
neuroblastoma cancer containing patient survival data and multiple covariates. As 
described in their related homepage, the neuroblastoma cancer arises in immature 
nerve cells of the sympathetic nervous system, primarily affecting infants and chil-
dren. It accounts for 12% of childhood cancer mortality, those between 18 months 
and 5 years of age being the most affected.

We work with the subset of patients classified as high risk by the Children’s 
Oncology Group (COG), categorization that determines the type of treatment to be 
received. Of the total of 533 high-risk patients with a known vital status, we selected 

https://ocg.cancer.gov/programs/target/data-matrix
https://ocg.cancer.gov/programs/target/data-matrix
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315 observations that had full information recorded so to test the influence of mul-
tiple variables. Among these 315 individuals, 178 of them deceased until the end of 
the study and the others were right censored. In a preliminary analysis, we assessed 
the significance of several covariates in the survival time of the patients. Some of 
them are: The International Neuroblastoma Staging System (INSS stage) that is a 
clinically and surgically based staging system used to categorize tumor extent; the 
International Neuroblastoma Pathology Classification Mitosis Karyorrhexis Index 
Category (MKI); the patient’s age at diagnosis; the patient’s gender; the Interna-
tional Neuroblastoma Pathology Classification Tumor Cell Differentiation Degree 
Category, among others. At this stage, we selected covariates using the Cox model 
and the log-rank test. From this, we kept the variables MYCN gene amplification 
(categorized and amplified or not amplified) and Ploidy, that is DNA ploidy analy-
sis by flow cytometry result category, described as diploid (DI=1) or hyperdiploid 
(DI>1), with no interaction among them.

An important and well-known tool to explore time to event data is the 
Kaplan–Meier estimate of the survival function, introduced in the seminal paper 
by Kaplan and Meier (1958). In Fig. 4, we report this graph for the two covariates 
selected. We observe that the distance between the curves does not remain pro-
portional over time, indicating that the Cox model is not appropriate for this data 
application.

Our modeling strategy is to apply frailty models where the proportionality of haz-
ards is not suitable. At the same time, such approach allows to account for individual 
heterogeneity not explained by the covariates. For instance, it is reasonable to expect 
that biological distinctions (e.g., genetic features) exist among the patients.

Fig. 4   Descriptive analysis of the TARGET neuroblastoma data set. Kaplan–Meier estimates of the sur-
vival function for the variables MYCN and Ploidy
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In addition to the proposed GIG class, we employ well-established frailty models 
with implementations available in R program, as would most commonly be done in 
practice. We seek among the competitive models a robust estimation of the covariate 
effects and frailty variance. A reliable estimation of this quantities is crucial for our 
data application. The hazard ratios of MYCN and Ploidy will tell us about the influ-
ence of these variables in the patients’ survival times, facilitating a prognosis assess-
ment and contributing to the discussion about the role of hyperdiploid chromosomes 
in cancer cells. In addition, the frailty variance is also of interest as it informs how 
much heterogeneity to expect among the survival times of high risk neuroblastoma 
patients.

5.2 � Statistical analysis of neuroblastoma data

In this section, we analyze the TARGET neuroblastoma data using the proposed 
class of GIG frailties and also well-established frailty models. Our goal is to com-
pare how our models with those commonly used in practice. Our response variable 
is the time (in months) from diagnosis to the last follow-up or death of the patient.

We investigate the effects of two covariates on the survival time of the patients. 
They were selected after the preliminary analysis described in Sect. 5.1. The covari-
ates are (1) MYCN Status, it corresponds to MYCN gene amplification status and is 
categorized as amplified or non-amplified; and (2) Ploidy (DNA ploidy analysis by 
flow cytometry result category), categorizes the DNA content of the tumor cell as 
diploid or hyperdiploid.

We would like to compare the estimation of the hazard ratios and frailty vari-
ance among the four special cases of the GIG class as well as the gamma, positive 
frailty variance (PVF), and log-normal frailties. By using univariate frailty models, 
we account for non-observed individual risk factors. We focus on semiparametric 
and PE baseline hazard implementations of the aforementioned models since no 
information about the parametric form of the baseline risk function is available. 
Besides, testing the adequacy of parametric forms of this function is not an easy 
task. We fit the semiparametric implementations of the gamma, PVF and log-normal 
frailty models available in the R packages frailtyEM (Balan and Putter 2019) and 
frailtySurv (Monaco et al. 2018).

According to Barreto-Souza and Mayrink (2019), the popular gamma frailty 
model can present problems in the estimation of the frailty variance depending on 
the form of the likelihood to be maximized. Trying to circumvent this, two different 
implementations of this model are investigated here. We fit the versions in frail-
tyEM and frailtySurv packages. In the first, a non-penalized log-likelihood 
function is maximized while in the former a pseudo full likelihood approach is 
employed.

We choose the number of cut points (named k) for the GIG class by fitting each 
special case for a range of k from 3 to 30. We notice that for the IG, HYP, RIG, and 
PHYP frailties, the smallest AIC (Akaike 1974) values were among k from 10 to 15, 
with small variation in this range. Hence, we choose k = 10 and present the results 
with this configuration.
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Table  5 contains the results of fitting the aforementioned frailty models to the 
TARGET neuroblastoma data. In addition to the parameter estimates, we report the 
exponential of �mycn and �ploidy , i.e., the hazard ratio, which gives us the practical 
interpretation of the regression coefficients. See Wienke (2011) for a proper inter-
pretation of these hazard ratios for frailty models.

It is immediate that the parameter estimates vary considerably among the fits of 
the different models. There is great variability in the estimation of the frailty vari-
ance, but the regression coefficients are also not immune to that. Furthermore, frailty 
variance-related parameter, indicated in the column � , displays huge standard errors 
under the gamma (frailtySurv) and log-normal models. We highlight that in 
the frailtySurv package standard errors are computed through bootstrap rep-
lication, as are the ones in the GIG class. To provide a fair comparison, the same 
number of replicas (500) was used to produce the results in both cases.

Having found a significant variability of results among different frailty models 
and its implementations, we seek to investigate the robustness of the estimates pro-
duced in each case. We propose to examine this through a bootstrap study where, in 
each replication, we sample 200 out of the 315 observations and fit the models under 
comparison. After a certain number of replications, we can assess the variation of 
the parameter estimates. More specifically, we examine how these vary around the 
maximum likelihood estimates gathered from the fit to the entire data set. Naturally, 
the less variability, more consistent the model is and more reliable are the estimates 
obtained from the complete data. This study is also motivated by the fact that model 
selection tools are scarce in the frailty models literature. It is specially hard in this 
case where the competing models employ different forms of the likelihood and dis-
tinct forms of the baseline risk functions.

The study is performed using 1000 bootstrap replicas. We report the results in 
Figs. 5 and 6 where each box corresponds to one of the models and the colors to 
the frailty distribution. Figure 5 contains the boxplots of the hazard ratio estimates 
for the covariates amplified MYCN and diploid ploidy. We center those around the 
values obtained from fit to the complete data set, that we refer as the “true” value.

In the left-side plot, we can see that there is a greater variability on the estima-
tion of the hazard ratio of MYCN under the fits of the gamma and PVF frailties in 

Table 5   Estimates of the parameters and standard errors (in parentheses) for the neuroblastoma data 
under the GIG, gamma, log-normal, and PVF models

Model �mycn �ploidy Var � e�mycn e�ploidy

Gamma (frailtyEM) 1.312 (0.366) 0.586 (0.341) 3.866 0.259 (0.100) 3.714 1.797
Gamma (frailtySurv) 1.203 (0.907) 0.568 (0.224) 3.117 3.117 (20.996) 3.329 1.765
PVF (frailtyEM) 1.429 (0.317) 0.275 (0.281) 2.021 0.495 (0.303) 4.177 1.317
LN (frailtySurv) 0.561 (0.417) 0.421 (0.213) 40.845 1.933 (16.307) 1.753 1.524
PE-IG ( k = 10) 0.463 (0.278) 0.426 (0.250) 5.939 5.939 (0.919) 1.588 1.530
PE-RIG ( k = 10) 0.430 (0.272) 0.347 (0.241) 0.948 1.467 (0.093) 1.537 1.415
PE-HYP ( k = 10) 0.542 (0.309) 0.491 (0.292) 3.550 7.817 (0.732) 1.721 1.634
PE-PHYP ( k = 10) 0.361 (0.249) 0.327 (0.212) 0.509 0.702 (0.029) 1.435 1.388
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comparison to the competing models. Meanwhile, the log-normal and GIG frail-
ties behave well, which is evidenced by their narrower boxes that are concentrated 
close to the “true” value. As it concerns Ploidy, the right-hand side plot shows 
that there is a less striking difference among the models considered. Although 
both gamma fits seem to produce more outliers, in general, all the models are rea-
sonably robust when estimating the effect of the Ploidy variable.

Fig. 5   Results of bootstrap study for centered hazard ratios of MYCN (left) and Ploidy (right)

Fig. 6   Results of bootstrap study for centered and scaled frailty variances for all models to the left. Plot 
to the right present the same results by excluding the log-normal model
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Figure 6 contains the result of this study for the frailty variance. In this case, we 
center and scale the frailty variance estimates around the “true” values to avoid any 
interference of the different scales. On the left-hand side, all the models under com-
parison are included, where the log-normal frailty clearly does not perform like the 
other ones. It displays high outlier values and is located further from zero than the 
other models. We filter out the log-normal boxplot from the right-side plot to com-
pare among the other cases. Now, we identify the gamma fits to be less consistent 
and can point out advantages toward the HYP and RIG models whose boxplots are 
the narrowest and concentrated more closely to zero.

We conclude that the HYP and RIG special cases of the GIG family were the 
most robust models for estimating the three quantities of interest in the application 
to the TARGET neuroblastoma data set. They return consistent estimates of both the 
hazard ratios and frailty variance, something that is not achieved by the competing 
models. Having shown advantages toward the GIG class in this data application, 
we propose to make the model selection among a broader range of GIG models by 
considering several values of � . Hence, we present the selection of � based on a grid 
of values. The grid of � is set between −5 and 5 with 0.1 spacing. We calculate the 
value of the maximized log-likelihood function (profile likelihood) obtained under 
each different �.

The result is reported in Fig. 7 where it is evident that the value � = 0 achieves the 
highest log-likelihood value. The irregularity of the log-likelihood function on the 
right is most likely due to the numerical instability of the Bessel function, but this 
does not compromise our choice for � = 0 since the function is well behaved around 
this point. This result goes in accordance with the conclusions drawn from our boot-
strap simulation study, where we pointed out the HYP(� = 0 ) or RIG(� = 0.5 ) cases 
to be preferable. Furthermore, by combining these results, we can conclude that the 

Fig. 7   Profile log-likelihood function of the parameter � for the neuroblastoma data
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most suitable model to the data in terms of model selection is also a robust choice, 
as desired.

To summarize, our main goal in the application of frailty models to the TARGET 
neuroblastoma data set was to conclude about the effects of the two genetic covari-
ates and patient heterogeneity. We fitted different frailty models where individual 
heterogeneity not explained by the covariates was captured by a random effect. A 
considerable variability in the results when using different frailty distributions was 
highlighted. We proposed to tackle this by checking the robustness of the estimates 
through a bootstrap study where we fit each model several times to samples of the 
original data set. By doing this, it is evidenced that two special cases of the GIG 
class produce consistent estimates with advantages over the others. Further, we use 
a profile-likelihood approach to select the most suitable � value. In this analysis, we 
used an extensive grid of � values to take into consideration a range of GIG models 
and not only its special cases. The result indicates � = 0 to be preferred, which cor-
responds to the HYP frailty. At the end, we can show that the GIG frailty chosen 
through model selection via profile likelihood is also robust, as ideal.

Hence, we draw our conclusions using parameter estimates of the HYP frailty 
model. We have that the failure rate of patients with amplified MYCN is 1.721 times 
that of patients with the unamplified status, conditional on the same frailty. Also, the 
failure rate of patients with diploid chromosomes is 1.634 times that of patients with 
hyperdiploid chromosomes, given the frailty value. Further, there is large effect of 
the patient individual heterogeneity, reflected by the frailty variance of 3.550. The 
statistical result on the effect of an amplified MYCN gene agrees with what is men-
tioned in Yoshimoto et al. (1999). According to the authors, the MYCN amplifica-
tion has proven to be an independent prognostic factor for identifying rapid tumor 
progression and predicting poor prognosis independent of age and clinical stage. As 
for the presence of hyperdiploid chromosomes in the DNA content of tumor cells, 
this is a factor in which there is no consensus on its prognostic influence and seems 
to differ between different types of cancer. Through the analysis of the TARGET 
neuroblastoma data, we can see that there is evidence that the presence of diploid 
cells is a protective factor in the lifetime of children with high-risk neuroblastoma 
cancer, whose biological reasons have yet to be investigated.

6 � Discussion

In this paper, we proposed a flexible class of frailty models based on the generalized 
inverse-Gaussian (GIG) distributions, which enjoy mathematical tractability like the 
gamma frailty model. Simulation studies were carried to investigate the best meth-
odologies to obtain parameter estimates, standard errors, and confidence intervals 
for the parameters of the proposed class.

The proposed model proved to be robust under misspecification of the frailty 
distribution as it was able to yield satisfactory estimates of the covariate effects in 
all scenarios. Such results were presented in the Supplementary Material. Under 
gamma and generalized exponential artificial data, there was a particular case of our 
class that performed better than the correct specified model. It was also possible 
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to obtain a particular case that performed properly when the true frailty was log-
normal distributed; this is the scenario in which the competing models returned high 
biased estimates. In addition, we explored the fit of the GIG special cases under 
misspecification of � . Our findings indicate that, although it affects the estimation of 
the frailty variance, misspecifying � does not influence largely the estimation of the 
fixed effects.

We highlight that, as expected, there is no single model that is appropriate in all 
situations. The frailties obtained by fitting the special cases of the GIG distribution 
showed different behaviors in the simulation studies. This evidences that they can 
capture distinct dependence structures providing the desired flexibility. We empha-
size the advantage of having a robust and flexible model such as the GIG frailty in 
hand because identifying the true frailty distribution is not a simple task in practical 
problems and using selection and diagnostic methods are still scarce in this field.

A complete statistical analysis was conducted comprising the most commonly 
used frailty models and the class of GIG frailties with the goal of producing reliable 
conclusions about the effects of the amplification of the MYCN gene and the pres-
ence of hyperdiploid chromosomes on the survival times of children with neuroblas-
toma cancer. After identifying that the fitted models yielded considerably different 
results, we compared the robustness of the parameter estimates among them. This 
was done via a bootstrap study which showed the HYP and RIG special cases to 
be the most consistent. A profile likelihood approach was used to select � , indicat-
ing the choice of the HYP frailty. Having agreement between the results from the 
robustness study and the profile likelihood approach, we use the fitted HYP frailty 
model to draw conclusions about the covariate effects and the population heteroge-
neity. We highlight that this real data application illustrates how our class can be 
advantageous in practical situations.

Future research includes applying GIG frailty models in other contexts such as 
current status data. Another point of interest to be attacked is to propose a time-
varying GIG frailty model. One possibility of fulfilling this task is to assume a time-
varying frailty given by Z(t) ≡ w(t, Z) , where w(t, Z) = Zh0(t) , for t > 0 , Z follows 
a GIG distribution as described in this paper and h0(⋅) denotes the baseline hazard 
function. This structure was introduced by Enki et  al. (2014), with Z following a 
generalized gamma distribution. As argued by these authors, time-varying frailty 
models can be applied to study infectious diseases. As suggested by one referee, 
other possible points to be explored are the proposal of GIG frailty models for deal-
ing with clustered dependent censored data and clustered semi-competing risks data 
as alternatives to the works by Schneider et al. (2019) and Emura et al. (2017) (see 
also Peng et al. (2018)), respectively. We feel that our proposed models and asso-
ciated EM-algorithm can be adapted for these cases. Regarding the approach over 
the baseline hazard function, one alternative strategy suggested by one referee is to 
consider H0(⋅) being a non-decreasing step function with jumps only at the observed 
event times and then use counting process notation to rewrite the complete log-like-
lihood function like done by Zeng and Lin (2006) and Zeng and Lin (2007). Hence, 
the Q-function can be obtained, and we do not need to deal with the knots selection 
problem since the number of estimates �s is the number of observed event times. We 
hope to explore some of these points in future works.
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A.2 Louis information matrix

From Louis (1982), we have that the information matrix obtained from the EM-
algorithm, say �n(�∗) , is given by

where we have defined Yobs = {(tij, �ij), j = 1,… , ni, i = 1,… ,m}.
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