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Abstract
In this paper, we consider a robust test for structural breaks in dynamic factor mod-
els. The proposed framework considers structural changes when the underlying 
high-dimensional time series is contaminated by outlying observations, which are 
often observed in many real applications such as fMRI, economics and finance. We 
propose a test based on the robust estimation of a vector autoregressive model for 
principal component factors using minimum density power divergence. The simula-
tions study shows excellent finite sample performance, higher powers while achiev-
ing good sizes in all cases considered. Our method is illustrated to the resting state 
fMRI series to detect brain connectivity changes.
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1 Introduction

Over the last decade, innovations in computer science and technology have rap-
idly shifted our focus to high-dimensional time series (HDTS). Dynamic factor 
models (DFMs), among others, have grown to be among the most popular and 
successful models for HDTS since few latent factors can explain much higher-
dimensional dynamics. DFMs have abundant applications in economics, finance, 
medical engineering, hydrology and related fields. See, for example, Bai and Ng 
(2008), Stock and Watson (2011), Baek et al. (2018))and the references therein.

DFMs are generally assumed to be time-homogeneous, that is, they undergo no 
structural or parameter changes. However, this assumption is no longer valid in 
many applications, especially in HDTS context. Indeed, there is strong evidence 
of structural changes, for example, in macroeconomic time series (e.g., Balke and 
Fomby 1994; Atkinson et al. 1997; Han and Inoue 2015) and in volatility of finan-
cial series (e.g., Lee et al. 2015; Song and Baek 2019). We focus on the problem 
of testing for parameter changes in DFMs. In particular, we study the situation 
where the data are contaminated by outlying observations. It is well known that 
existing naive tests for parameter changes are severely damaged by outliers (e.g., 
Song and Kang 2019; Song 2020). That is, outliers can lead to severe size distor-
tions and power losses. This obviously indicates that, when atypical observations 
are included in a data set being suspected of having parameter changes, whether 
the testing results are due to genuine changes or not cannot be readily determined. 
It is, therefore, crucial to take into account such outlying observations in statisti-
cal tests for detecting parameter changes.

More concrete examples can be found in brain connectivity studies in neuro-
science, where the scientific question of interest involves detecting and locating 
connectivity changes in brain regions (e.g., Cribben et al. 2012; Baek et al. 2021). 
Functional magnetic resonance imaging (fMRI) data measured at hundreds of 
voxels are used in analyses, and fMRI series are widely reported to contain mul-
tiple outlying observations due to issues in acquisition such as the anatomical 
alignment of images and head movement correction. Such outliers can lead to 
poor performance in time-series modeling (e.g., Chen and An 1998; Ledolter 
1989) and can potentially result in wrong inference about brain mapping (e.g., 
Poldrack 2012; Magnotti and Billor 2014).

The widely used practice for handling outliers in multivariate time series is 
to apply univariate outlier detection methods to each component and remove 
the outlier effects before applying multivariate time series modeling. However, 
this approach cannot fully adjust for outlier effects as it ignores joint underlying 
dynamics such as correlation structure in the multivariate system (e.g., Tsay et al. 
2000). Even with the correct detection of outliers, dropping or adjusting outliers 
has the potential to be dangerous depending on the area of interest, particularly 
with temporal correlations. In this study, we do not attempt to remove and ignore 
outliers, but rather reduce the impact of possible outliers in the testing procedure 
by using a divergence-based method.
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Divergence measures such as Kullback–Leibler (KL) divergence were originally 
introduced as a measure of discrepancy between two probability distributions. Later, 
several divergences were proposed for robust estimation (e.g., Basu et al. 1998; Fuji-
sawa and Eguchi 2006; Ghosh and Basu 2017) and were found to accommodate outlier 
effects successfully with little loss in efficiency. More recently, the robust estimation 
problem has moved to the testing area. Several authors have suggested divergence-
based tests and have demonstrated their robustness and efficiency (e.g., Basu et  al. 
2013, 2016; Batsidis et al. 2013; Song and Kang 2019). We focus on the so-called den-
sity power (DP) divergence and a DP divergence version of the score test for parameter 
changes as they enjoy the merits of both the score test and the robustness, as studied in 
Song and Kang (2019). Besides outliers effects, a further challenge is that the dimen-
sion can possibly diverge faster than the sample size. Our strategy is to reduce the struc-
tural changes of DFMs into a finite-dimensional problem by focusing on the structural 
instability of several principal component factors obtained from the whole sample. This 
is in the spirit of Stock and Watson (2002), Breitung and Eickmeier (2011), Chen et al. 
(2014) and Han and Inoue (2015) to name a few. That is, we propose a robust proce-
dure by applying a DP divergence estimation on the principal factors based on VAR(p) 
models. Further details are provided in Sect. 2.

The rest of this paper is organized as follows. We first explain the reasonings behind 
dimension reduction by clarifying models and hypotheses of interest in Sect. 2. Our 
proposed robust testing procedure with the supporting theoretical results is discussed in 
Sect. 3. Finite sample performances are extensively examined in Sect. 4 through Monte 
Carlo simulations. In addition, our method is illustrated to the resting state fMRI series 
in Sect. 5. Section 6 provides the conclusion, and all proofs are given in Sect. 7.

2  Preliminaries

Consider a DFM of q-vector time series {Xn}
n
t=1

 given by

where �t is a loading matrix of dimension q × r , {Yt}nt=1 is an r-vector time series of 
latent r factors, and {�t}nt=1 are idiosyncratic disturbances which are assumed to be 
uncorrelated with the factors {Yt}nt=1 . The factors {Yt}nt=1 are typically assumed to fol-
low a vector autoregressive model of order p (VAR(p)),

where �(B) = I − A1B −…− ApB
p is an autoregressive matrix polynomial 

expressed in terms of the backshift operator B, Ai , i = 1,… , p , are r × r coefficients 
matrices, and innovations {�t}nt=1 are assumed to follow multivariate normal distri-
bution, denoted by N(0,�) . The factors are usually estimated through the princi-
pal component analysis (PCA), as follows: Compute the sample covariance matrix 
�𝛴X ∶= n−1

∑n

t=1
XtX

T
t
= �Udiag(ê1,… , êq)

�UT , where ê1 ≥ ê2 … ≥ êq are ordered 
eigenvalues and �U = (û1,… , ûq) is q × q orthogonal matrix. Then, r(≤ q) principal 
factors are obtained by

Xt = �tYt + �t,

�(B)Yt = �t,
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where �Ur = (û1,… , ûr) . The number of factors r is crucial in finite sample perfor-
mance and the information criteria of Bai and Ng (2002) is widely used in practice.

We are interested in testing structural stability in the factor loadings:

against the alternative hypothesis of common structural changes,

at a common date k. As has been studied in Stock and Watson (2009), Breitung and 
Eickmeier (2011), Chen et  al. (2014), Han and Inoue (2015) and elsewhere, the 
size of the break should be sufficiently large to detect changes. More importantly, 
this problem can be reduced to that of detecting instabilities of the r latent prin-
cipal component factors since the PCA implicitly imposes the restriction that the 
estimated factor loadings are time-homogeneous. The intuition is that a DFM with 
structural changes in loadings can be rewritten as another DFM with constant load-
ing but with a larger set of factors.

For example, consider a simple DFM with one common structural change at k 
and factors are distinct for all dimensions. In the matrix form, this can be written as

where �T
1
= (X1,… ,Xk) , � T

1
= (Y1,… , Yk) , eT1 = (e1,… , ek) , �T

2
= (Xk+1,… ,Xn) , 

�
T
2
= (Yk+1,… , Yn) and eT

2
= (ek+1,… , en) , �1 and �k+1 are the loading matrices 

before/after the change at k, respectively. Then, this can be rewritten as

This is another larger set of a factor model with a constant loading matrix 
(�1 �k+1)

T . Furthermore, under mild assumptions on the approximate factor models 
where temporal, spatial correlation and heteroskedasticity are allowed in idiosyn-
cratic errors, PCA factors consistently estimate the factors on the extended space 
(e.g., Theorem 1 of Bai 2003, Proposition 1 of Chen et al. 2014) and the information 
criteria of Bai and Ng (2007) consistently estimates the number of equivalent factor 
models (1) (e.g., Proposition 1 of Han and Inoue 2015). Therefore, principal factors 
can be used as good low-dimensional proxies under the alternative hypothesis once 
factors are obtained from the whole sample using PCA. Most of the tests for the 
structural instability of factor loadings are based on the instability of factors rather 
than the loading matrix. For instance, Chen et al. (2014) proposed a structural break 
test based on the first principal factor after regressing out the remaining factors. Han 
and Inoue (2015) proposed Wald and LM-like statistics based on the pre- and post-
break subsample averages of ŶtŶT

t
.

Ŷt =
1
√
q
ÛT

r
Xt, t = 1,… , n,

H0 ∶ �1 = … = �n

H1 ∶ �1 = … = �k ≠ �k+1 = … = �n

�1 = �1�
T
1
+ e1, �2 = �2�

T
k+1

+ e2,

(1)
(
�1

�2

)
=

(
�1 0

0 �2

)(
�T

1

�T
k+1

)
+

(
e1
e2

)
.



825

1 3

Robust test for structural instability in DFMs 

However, to the best of our knowledge, no tests have been proposed that accom-
modate outlying observations. To address this gap, we transformed the structural 
instability of DFMs into parameter changes of VAR(p) models on principal factors. 
This turns the hypotheses of the loading matrices into parameter changes of the 
VAR(p) model as

That is, we intend to test H′
0
 against H′

1
 , particularly in the presence of outliers. 

Our proposed method is based on the so-called minimum DP divergence estimator 
(MDPDE) of VAR(p) parameters on the principal factors. It can also be used for the 
robust testing of parameter changes in VAR(p) models if the data are directly used 
in a moderate dimension instead of factors. Hence, for simplicity and independent 
interest on the smaller dimension, we shall first describe the results with VAR(p) 
models, then we describe the results for DFM with estimated factors under suita-
ble additional assumptions. We introduce the MDPDE for the VAR(p) parameter in 
Sect. 3.1, and a DP divergence-based test for parameter change in Sect. 3.2.

3  Main results

In this section, we introduce a robust test for parameter changes in DFMs based 
on DP divergence with factors being assumed as VAR models. We first consider 
VAR(p) models and then extend to DFM with factors following VAR(p) models.

3.1  Minimum DP divergence estimator for Gaussian VAR models

For the given two density functions f and g, Basu et al. (1998) introduced the DP 
divergence d� defined as

For a parametric family {F�; � ∈ �} possessing densities {f�} and a distribution 
G with density g, Basu et  al. (1998) defined the minimum DP divergence func-
tional T�(G) by the requirement that d�(g, fT� (G)) = min�∈� d�(g, f�). In particular, 
if G = F�0

∈ {F�} , then T�(F�0
) = �0 . Based on the above, given a random sample 

{Y1,… , Yn} with an unknown density g, the MDPDE is defined by

where H�,n(�) =
1

n

∑n

t=1
h�,t(�) and

H�
0
∶ The VAR(p) model parameter for Yt does not change over Y1,… , Yn,

against

H�
1
∶ not H�

0
.

d𝛼(g, f ) =

{ ∫ {
f 1+𝛼(y) − (1 +

1

𝛼
)g(y)f 𝛼(y) +

1

𝛼
g1+𝛼(y)

}
dy, 𝛼 > 0,

∫ g(y){log g(y) − log f (y)}dy, 𝛼 = 0.

�̂�𝛼,n = argmin 𝜃∈𝛩H𝛼,n(𝜃),
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Note that when � = 0 and 1, the MDPDE is the same as the MLE and L2-distance 
estimator, respectively. The tuning parameter � controls the trade-off between the 
robustness and asymptotic efficiency of the MDPDE. That is, if � increases, the 
robustness of the MDPDE improves, but the asymptotic efficiency decreases. Basu 
et  al. (1998) demonstrated that the estimator is robust against outliers, but still 
retains high efficiency when the true distribution belongs to a parametric family {F�} 
and � is close to zero. Although they introduced the MDPDE based on the independ-
ent and identically distributed (i.i.d.) random variables, we extend their method to a 
multivariate time series.

To apply the above procedure to the VAR models, we prepare the conditional 
version of the MDPDE. Let {f�(y|x)} be a parametric family of regression models 
indexed by the parameter � , and let f�0(y|x) be the true conditional density of Y given 
X = x . Then, the conditional version of the DP divergence can be defined as

Given the observations (X1, Y1),… , (Xn, Yn) , the conditional version of the MDPDE 
is defined as

where H�,n(�) =
1

n

∑n

t=1
h�,t(�) and

(cf. Section 2 of Lee and Song 2009).
The MDPDE for the VAR models is constructed as follows. Suppose that 

r-dimensional multivariate time series Yt follows VAR(p);

where c is a r-dimensional vector, Ai are r × r matrices for i = 1,… , p , and �t is a 
sequence of i.i.d. multivariate normal random vectors with a zero mean and covari-
ance matrix � , which is symmetric and positive definite. For notational conveni-
ence, we denote � as the dimension of the parameters, i.e., � = r + r2p + r(r + 1)∕2 , 
and set � = (�1,… , ��)

T = (cT , vec(A1)
T ,… , vec(Ap)

T , vech(�)T )T ∈ 𝛩 ⊂ ℝ
𝜂 , 

where vec(A) transforms matrix A into a column vector by stacking all columns of 
A, and vech(A) converts the lower triangular elements of A into a column vector. 

h𝛼,t(𝜃) =

{ ∫ f 1+𝛼
𝜃

(y)dy −
(
1 +

1

𝛼

)
f 𝛼
𝜃
(Yt), 𝛼 > 0,

− log f𝜃(Yt), 𝛼 = 0.

d𝛼
(
f𝜃0(⋅|x), f𝜃(⋅|x)

)

=

{ ∫ {
f 1+𝛼
𝜃

(y|x) − (1 +
1

𝛼
)f𝜃0(y|x)f

𝛼
𝜃
(y|x) + 1

𝛼
f 1+𝛼
𝜃0

(y|x)
}
dy, 𝛼 > 0,

∫ f𝜃0(y|x)
{
log f𝜃0(y|x) − log f𝜃(y|x)

}
dy, 𝛼 = 0.

�̂�𝛼,n = argmin 𝜃∈𝛩H𝛼,n(𝜃),

(2)h𝛼,t(𝜃) =

{ ∫ f 1+𝛼
𝜃

(y|Xt)dy −
(
1 +

1

𝛼

)
f 𝛼
𝜃
(Yt|Xt), 𝛼 > 0,

− log f𝜃(Yt|Xt), 𝛼 = 0,

(3)Yt = c +

p∑

i=1

AiYt−i + �t,
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Suppose that Y1,… , Yn are observed from (3) and let Ya∶b denote the observations 
from t = a to t = b . Then, conditional on the initial values Y1−p∶0 , Yt|Yt−p∶t−1 follows 
N(c +

∑p

i=1
AiYt−i,�) for t = 1,… , n . If we denote the conditional density of Yt by 

f�(y|Yt−p∶t−1) , then from (2), we can define the MDPDE as

where H�,n(�) =
1

n

∑n

t=1
h�,t(�),

and �t = Yt − c −
∑p

i=1
AiYt−i.

Now, we establish the consistency and asymptotic normality of the MDPDE. 
Throughout this paper,

denotes the true value of � , and E(⋅) is taken under �0 . To study the asymptotic prop-
erties of the MDPDE, we assume that the following conditions hold. 

(A1)  det(Ir −
∑p

i=1
Aiz

i) ≠ 0 for |z| ≤ 1 , where Ir is an r × r identity matrix.
(A2)  �0 ∈ � and � is compact. In addition, for all � such that vech(�) belongs to 

� , there exist positive constants �L and �U satisfying 

where �min(�) and �max(�) denote the smallest and largest eigenvalues of � , 
respectively.
(A3)  �0 is an interior point of �.

Remark 1 It is well known that under (A1), Yt is weakly stationary and ergodic. 
However, since we assume that �t is an i.i.d. multivariate normal random vector, Yt 
constitutes a Gaussian process (cf. p.16 of Lütkepohl 2005). Hence, condition (A1) 
also ensures the strict stationarity of Yt.

Note that, regardless of the values of Y1−p∶0 , {h�,t(�)|t ≥ p + 1} becomes a sta-
tionary and ergodic process under (A1). J� and K� defined in the following theorem 
are obtained from the stationary process.

Remark 2 Under the conditions (A1) and (A2), it can be shown that J� and K� are 
non-singular matrices, and hence invertible. See Lemma 2.

�̂�𝛼,n = argmin 𝜃∈𝛩H𝛼,n(𝜃),

h𝛼,t(𝜃) =

{ ∫ f 1+𝛼
𝜃

(y|Yt−p∶t−1)dy −
(
1 +

1

𝛼

)
f 𝛼
𝜃
(Yt|Yt−p∶t−1), 𝛼 > 0,

− log f𝜃(Yt|Yt−p∶t−1), 𝛼 = 0,

=

{
1

{(2𝜋)r det(𝛴)}𝛼∕2

{
1

(1+𝛼)r∕2
−
(
1 +

1

𝛼

)
exp

(
−

𝛼

2
𝜖T
t
𝛴−1𝜖t

)}
, 𝛼 > 0,

r

2
log 2𝜋 +

1

2
log det(𝛴) +

1

2
𝜖T
t
𝛴−1𝜖t, 𝛼 = 0,

�0 = (�01,… , �0�)
T = (cT

0
, vec(A01)

T ,… , vec(A0p)
T , vech(�0)

T )T

0 < 𝜆L ≤ 𝜆min(𝛴) ≤ 𝜆max(𝛴) ≤ 𝜆U < ∞,
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Under the above conditions, we obtain the following asymptotic results.

Theorem 1 Suppose that conditions (A1) and (A2) hold. Then,

Theorem 2 Suppose that conditions (A1)–(A3) hold. Then,

where

Remark 3 The Gaussianity of VAR(p) model is needed in our framework. One may 
consider a quasi-MDPD estimation. However, our unreported simulations study sug-
gests that it may require non-trivial assumptions for asymptotics. For example, the 
sufficient conditions for the positive definiteness of −J� and K� are not straightfor-
ward for non-Gaussian cases.

Remark 4 The robustness of an estimator can be assessed through the so-called 
influence function (IF), which measures the gross error sensitivity by considering 
contaminated distribution. See Chapter  8.3b of Hampel et  al. (1986). When the 
IF of an estimator is bounded, the estimator is called B-robust. It corresponds to 
finite gross error sensitivity, meaning that the influence of outlier is limited like the 
trimmed sample mean. Indeed, one can show that our MDPDE for VAR(p) model is 
B-robust by using the results in the proof of Lemma S1 in Supplementary Material.

3.2  DP divergence‑based test for parameter changes in VAR models

Here, we propose a robust test for parameter changes in VAR(p) models. Recall that, 
one wish to test the following hypotheses, particularly in the presence of outliers:

To this end, we follow the procedure by Song and Kang (2019) to introduce a test 
statistics. That is, we use the objective function of the MDPDE , i.e., H�,n(�) , to con-
struct a robust test similar in form to a score test. According to Taylor’s theorem, we 
have, for each s ∈ [0, 1],

�̂�𝛼,n
a.s.
⟶𝜃0 as n → ∞.

√
n(�̂�𝛼,n − 𝜃0)

d
⟶N(0, J−1

𝛼
K𝛼J

−1
𝛼
) as n → ∞,

J� = −E

(
�2h�,t(�0)

����T

)
and K� = E

(
�h�,t(�0)

��

�h�,t(�0)

��T

)
.

H�
0
∶ The true parameter �0 does not change over Y1,… , Yn, against

H�
1
∶ not H�

0
.

(4)
[ns]
√
n

𝜕H𝛼,[ns](�̂�𝛼,n)

𝜕𝜃
=

[ns]
√
n

𝜕H𝛼,[ns](𝜃0)

𝜕𝜃
+

[ns]

n

𝜕2H𝛼,[ns](𝜃
∗
𝛼,n,s

)

𝜕𝜃𝜕𝜃T

√
n
�
�̂�𝛼,n − 𝜃0

�
,
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where �∗
�,n,s

 is an intermediate point between �0 and �̂�𝛼,n . Here, since 𝜕H𝛼,n(�̂�𝛼,n)∕ 
�� = 0 , we have, for s = 1,

It can thus be written as

where B�,n = �2H�,n(�
∗
�,n,1

)∕����T and J� is given in Theorem 2. By (4), we obtain

This is the building block for our test statistics. In the proof of Sect.  7, we show 
that the first two terms in the right-hand side of (5) converge weakly to a Brownian 
bridge, and the last term is asymptotically negligible. The results are formally stated 
in the following theorem.

Theorem 3 Suppose that conditions (A1)–(A3) hold. Then, under H′
0
 , we have

where Bo
�
 is a �-dimensional standard Brownian bridge, and thus,

Remark 5 T�
n
 with � = 0 becomes the score test for parameter changes defined by

where �̂�0,n is the MLE, H0,k(�) and h0,t(�) correspond to H�,k(�) and h�,t(�) with 
� = 0 , respectively, and I = E

(
�2h0,t(�0)∕����

T
)
 . Since the score function is 

induced from Kullback–Leibler divergence, our test is a DP divergence version of 
the score test.

Remark 6 As an estimator of K� , we can use

√
n
𝜕H𝛼,n(𝜃0)

𝜕𝜃
+

𝜕2H𝛼,n(𝜃
∗
𝛼,n,1

)

𝜕𝜃𝜕𝜃T

√
n
�
�̂�𝛼,n − 𝜃0

�
= 0.

√
n
�
�̂�𝛼,n − 𝜃0

�
= J−1

𝛼

√
n
𝜕H𝛼,n(𝜃0)

𝜕𝜃
+ J−1

𝛼

�
B𝛼,n + J𝛼

�√
n
�
�̂�𝛼,n − 𝜃0

�
,

(5)

[ns]
√
n

𝜕H𝛼,[ns](�̂�𝛼,n)

𝜕𝜃
=
[ns]
√
n

𝜕H𝛼,[ns](𝜃0)

𝜕𝜃
+

[ns]

n

𝜕2H𝛼,[ns](𝜃
∗
𝛼,n,s

)

𝜕𝜃𝜕𝜃T
J−1
𝛼

√
n
𝜕H𝛼,n(𝜃0)

𝜕𝜃

+
[ns]

n

𝜕2H𝛼,[ns](𝜃
∗
𝛼,n,s

)

𝜕𝜃𝜕𝜃T
J−1
𝛼

�
B𝛼,n + J𝛼

�√
n
�
�̂�𝛼,n − 𝜃0

�
.

K−1∕2
𝛼

[ns]
√
n

𝜕H𝛼,[ns](�̂�𝛼,n)

𝜕𝜃

w
⟶Bo

𝜂
(s) in 𝔻

�
[0, 1], ℝ𝜂

�
,

T𝛼
n
∶= max

1≤k≤n
k2

n

𝜕H𝛼,k(�̂�𝛼,n)

𝜕𝜃T
K−1
𝛼

𝜕H𝛼,k(�̂�𝛼,n)

𝜕𝜃

d
⟶ sup

0≤s≤1
‖‖B

o
𝜂
(s)‖‖

2

2
.

Tn ∶= max
1≤k≤n

k2

n

𝜕H0,k(�̂�0,n)

𝜕𝜃T
I−1

𝜕H0,k(�̂�0,n)

𝜕𝜃
,



830 B. Kim et al.

1 3

For the consistency of the estimator, see Lemma 5.

Remark 7 As addressed in Song and Kang (2019), T�
n
 is a CUSUM-type test because 

it can be expressed that

Hence, when the null hypothesis is rejected, one can locate a change point as the 
maximizer of the test statistics. That is,

For more details on the change-point estimation in CUSUM-type test, see, for exam-
ple, Robbins et al. (2011).

Remark 8 Several authors have investigated the selection criterion of optimal � in 
MDPD estimation procedure. See, for example, Warwick (2005) and Durio and Isaia 
(2011). However, to the best of our knowledge, no in-depth studies have been con-
ducted on systematic selection in the testing problem. Song and Kang (2019) illus-
trated a selecting rule in terms of forecasting performance. Since the aim of our fMRI 
data analysis below is not forecasting, their method may not be plausible in such type 
of data. In our data analysis, we do not try to select an optimal � to locate change-
points. Instead, we implement the test T�

n
 for several � ’s and incorporate the results to 

make a decision on change-points. That is, for each � considered, we estimate change-
points and then decide the points selected in common as final change-points in the 
spirit of model ensemble. Here, it should be importantly noted that the empirical 
power of T�

n
 shows a tendency to decrease with an increase in � (see Sect. 4). Since too 

large � can lead to a significant loss in powers, we recommend to consider � values in 
[0,0.5]. When one wish to make an inference based on an optimal � , one may consider 
the rule used in the data analyses in Song and Kang (2019) and Song (2020).

Remark 9 Binary segmentation (BS) can be used for multiple change-points detec-
tion. The BS is an iterative procedure to identify change-points by splitting the sam-
ple into two based on the previously claimed change point. See, for example, Baek 
and Pipiras (2014) for details.

K̂𝛼 =
1

n

n∑

t=1

𝜕h𝛼,t(�̂�𝛼,n)
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n�
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[ns]
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�
1
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−

1

n − [ns]

n�

t=[ns]+1

𝜕h𝛼,t(�̂�𝛼,n)

𝜕𝜃

�
.

argmax 1≤k≤n
k2

n

𝜕H𝛼,k(�̂�𝛼,n)

𝜕𝜃T
K−1
𝛼

𝜕H𝛼,k(�̂�𝛼,n)

𝜕𝜃
=∶ argmax 1≤k≤nT𝛼

n,k
.
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3.3  DP divergence based test for DFM

Now, consider the DFM where factors are estimated using PCA. Since we have 
established results for VAR(p) process in earlier sections, the results are in fact 
immediate due to the blessing of dimensionality for factor models. We briefly men-
tion required assumptions behind this extension. Detailed rate of convergence is 
beyond the scope of this paper due to the nonlinear structure of the objective func-
tions in the test statistics.

Suppose that the Assumptions A–G of Bai (2003) holds. Then, Theorem 1 and 
Lemma B.3 of Bai (2003) imply that the estimated factors �̂  in a matrix form satisfy

where G is a suitable non-singular transformation such that loading and factors are 
identifiable. Therefore, if

then (6) implies that the estimation errors are negligible and we can treat factors 
{G�Yt} as known (see Bai 2003 p. 146). This is what blessing of dimensionality 
meant in DFMs. Hence, Theorem  2 and Theorem  3 assuming true factors {G�Yt} 
hold for estimated factor models under Assumptions A–G of Bai (2003) as long as 
(7) holds. The true parameters �0 corresponds to VAR(p) model of {G�Yt}.

However, it requires the consistent estimation of the number of factors. This can 
be done by considering the information criteria (IC) of Bai and Ng (2002), namely,

where S(k) is the sum of squared residuals 
S(k) = (qn)−1

∑q

i=1

∑n

j=1
(Xt − �̂tŶt)

�(Xt − �̂tŶt) assuming k factors, and penalty 
function g(q,  n) satisfies g(q, n) → 0 and min(q, n)g(q, n) → ∞ as q, n → ∞ . The 
consistency of IC criteria was provided in Bai and Ng (2002, 2007) under the null 
hypothesis of no parameter changes. Furthermore, Proposition 1 of Han and Inoue 
(2015) showed that IC criteria consistently estimate the number of factors even with 
possible breaks under the alternative hypothesis. However, our simulations result not 
reported here shows that IC criteria tends to overestimate the number of factors due 
to outlying observations. Hence, we slightly modified the IC criteria to accommo-
date outlying observations. The modification is to replace outlying observations by 
nearby values. For example, we identify the tth observation in ith dimension denoted 
by Xt,i is outlying if

(6)
1

n

(
�̂ − �G

)T

�̂ = Op

(
1

min(q, n)

)
,

(7)
√
n

q
→ 0, n, q → ∞,

(8)r̂ = argmin 0≤k≤K {log S(k) + kg(q, n)},

0.6745
|||||

Xt,i −med(X
⋅,i)

mad(X
⋅,i)

|||||
> 2,
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where med(X
⋅,i) and mad(X

⋅,i) are the median and mean absolute deviation of i-th 
dimension. See Iglewicz and Hoaglin (1993) for more details. Then, this observa-
tion is replaced by linearly interpolating nearby observations. Trimmed mean can be 
used to calculate the sum of squared residuals S(k) as well.

Therefore, our proposed instability test is valid for DFM and can be summa-
rized as follows: 

 Step 1. Determine the number of factors r̂  from IC (8) after accommodating outlying 
observations.

 Step 2. Estimate PCA factors {Ŷt} and then estimate parameter using MDPDE.
 Step 3. Apply the proposed test in Sect. 3.2 to the estimated factors {Ŷt}.

All in all, our proposed DP divergence-based test can be naturally extended to 
DFM due to blessing of dimensionality (7) under standard assumptions on factor 
models (e.g., Bai 2003) together with Theorems 2 and 3 in Sect. 3.

4  Simulation study

Here, we report the finite sample performance of our proposed test. We first 
report the finite sample performance in a VAR model, and assessing performance 
in DFMs. The simulation settings are described as follows. We consider a Gauss-
ian bivariate VAR(1) model, Yt = (Yt,1, Yt,2)

T . The performance measures are the 
empirical sizes and powers of the tests, obtained as the number of rejections of 
the null hypothesis out of 2000 replications. The empirical sizes are calculated 
at the nominal levels 0.05 and 0.1, where the corresponding critical values are 
5.635 and 5.060, respectively, which are obtained through Monte Carlo simula-
tions. The empirical powers are evaluated at the nominal level of 0.05, and we 
considered three sample sizes of 500, 1000, and 2000. As a baseline, we compare 
our proposed test, T�

n
 with 𝛼 > 0 , with the score test Tn.

The first scenario is the data free from outliers. The data generating processes 
(DGPs) comprise the following four models: 

Model 1: c =

(
0

0

)
, A =

(
0.1 − 0.2

0.5 1

)
, � =

(
1 0.5

0.5 1

)

Model 2: c =

(
1

−1

)
, A =

(
0.1 − 0.2

0.5 1

)
, � =

(
1 0.5

0.5 1

)

Model 3: c =

(
0

0

)
, A =

(
0.5 − 1

0 − 0.5

)
, � =

(
1 0.5

0.5 1

)

Model 4: c =

(
0

0

)
, A =

(
0.1 − 0.2

0.5 1

)
, � =

(
1 0

0 1

)
.

The results for the empirical sizes are presented in Table 1. Both T�
n
 and Tn achieve rea-

sonable sizes and as n increases, the values become closer to the nominal levels. Note 
that this observation holds for larger values of tuning parameter � , and therefore, we can 
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verify that DP divergence-based test works well in the case of no outlying observations. 
The empirical powers are calculated from Model 1 by adding parameter changes at the 
mid-point, t = [n∕2] . The model parameters after the change are given as 

Model 1.1: c =

(
0.2

−0.2

)
, A =

(
0.1 − 0.2

0.5 1

)
, � =

(
1 0.5

0.5 1

)

Model 1.2: c =

(
0

0

)
, A =

(
0.2 − 0.2

0.5 0.9

)
, � =

(
1 0.5

0.5 1

)

Model 1.3: c =

(
0

0

)
, A =

(
0.1 − 0.2

0.5 1

)
, � =

(
1.5 0.5

0.5 1

)

Model 1.4: c =

(
0

0

)
, A =

(
0.1 − 0.2

0.5 1

)
, � =

(
1 0.2

0.2 1

)
.

Table 2 summarizes the empirical powers. Observe that the score test Tn generally 
shows higher power than T�

n
 when the sample size n = 500 , but both tests are con-

verging to 1 as sample size increases. In addition, the power of our proposed test 
based on T�

n
 shows a decreasing tendency as the tuning parameter � increases, which 

is more pronounced when the sample size is small. However, this is what expected 
for MDPDE and this confirms that MDPDE with large � results in a loss of effi-
ciency. Indeed, the simulations study with no outliers shows that our proposed DP 
divergence-based test achieves good sizes and reasonable powers although there is a 
power loss in small sample with a larger tuning parameter �.

However, such a loss of empirical power is compensated when the data 
are contaminated by outliers. To see this, we generated contaminated data 
Yc,t = (Yc,t,1, Yc,t,2)

T by considering

where s is a constant, and Pt,i, i = 1, 2 are i.i.d. Bernoulli random variables with 
success probability p/2, and sign is a sign function given by sign(x) = 1 if x ≥ 0 and 
−1 if x < 0 . That is, this model randomly adds an atypical value of size s to the orig-
inal data with the same direction of the t-th observation. Thus, s controls the outlier 
size and p determines the frequency of the outlying observations. Here, we consider 
three cases, (p, s) = (0.01, 10), (0.01, 20) , and (0.05, 20).

Tables 3, 4 and 5 report the empirical sizes while Tables 6, 7 and 8 show empiri-
cal powers. A couple of remarks are in order. First of all, Tables 4 and 5 show that 
the score test Tn shows serious size distortions when the size of the jump s is large 
( s = 20 ) and as more frequent outlying observations appear. This is in sharp contrast 
with the smaller jump size s = 10 with less frequent outlying observations p = 0.01 , 
where the size distortions are only around 1–2% for the score test as in Table  3. 
However, our proposed DP divergence-based test shows good sizes for moderate to 
larger values of � , and in fact much smaller size distortions are observed even for 
smaller � = 0.1 . Second, while achieving good sizes, our proposed test also gains 
high power in the presence of outliers. It is more clearly visible when there is a 
huge and frequent outlying observations. For example, in Model 1.3 in Table 6 with 

Yc,t,i = Yt,i + s ⋅ Pt,i ⋅ sign(Yt,i), i = 1, 2,
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n = 2000 , the power of the score test is 0.157 while our DP divergence-based tests 
are close to 1 for all tuning parameters considered. Although the score test shows 
increasing power as the sample size increases, our DP divergence-based tests show 
much faster convergence to 1, even with larger � value. Indeed, the tuning parameter 
� plays a central role as it trades off sizes and powers in MDPDE; however, it shows 
less size distortions and higher power than the score test regardless of the � values 
considered. On the whole, our findings strongly support the assertion that the pro-
posed test is a promising candidate for detecting parameter changes in VAR models 
when outliers are suspected to contaminate the data.

Next, we consider DFMs to test changes in parameter with possible contami-
nation due to outlying observations. We considered DFMs with a dimension of 
q = 300 and two factors r = 2 . The factor loadings � = �jk are generated from i.i.d. 
N(0, 1) random variables, but are rotated and scaled to satisfy

using QR decomposition. The idiosyncratic component is assumed to follow the 
AR(1) model with � = 0.5,

where �j,t ’s are i.i.d. N(0, 3∕4) so that the idiosyncratic component has zero mean 
and unit variance. To generate factors {Yt}nt=1 , we use the same model parameter in 
Model 1 and Model 1.2. That is, the empirical sizes are based on Model 1, and the 
empirical powers are generated from Model 1 for the first half, while Model 1.2 is 
used for the second half. The same settings are used to generate contamination by 
outliers as explained above.

1

r
�T� = Iq

�j,t = 0.5�j,t−1 + �j,t,

Table 2  Empirical powers of Tn and T�
n
 in the case of no outliers

� n Tn T�
n

� = 0.1 � = 0.2 � = 0.3 � = 0.5 � = 1

Model 1.1 500 0.752 0.746 0.720 0.696 0.624 0.420
1000 0.995 0.994 0.992 0.987 0.969 0.863
2000 1.000 1.000 1.000 1.000 1.000 0.999

Model 1.2 500 0.438 0.432 0.420 0.400 0.333 0.209
1000 0.894 0.885 0.869 0.847 0.780 0.589
2000 1.000 1.000 1.000 1.000 0.995 0.945

Model 1.3 500 0.589 0.624 0.609 0.565 0.467 0.303
1000 0.964 0.970 0.962 0.945 0.886 0.673
2000 1.000 1.000 1.000 1.000 0.998 0.969

Model 1.4 500 0.558 0.627 0.625 0.591 0.503 0.302
1000 0.951 0.977 0.975 0.963 0.914 0.655
2000 1.000 1.000 1.000 1.000 1.000 0.965
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Table 9 shows the empirical sizes of the DFM model. When there are no outliers, 
all tests seem to achieve the correct sizes; however, the score test Tn starts distorting 
when there are outlying observations. Note also that the size distortion of Tn appears 
for larger values of s ≥ 30 compared to the usual VAR(1) model. This is consistent 
with Stock and Watson (2002), who showed that the estimated factors are still con-
sistent if the size of break is sufficiently small. If we increase the contamination size, 
then the size distortions are more evident and the usual score test shows severe size 
distortions. However, our proposed method T�

n
 correct sizes in all cases considered 

as expected. In terms of the empirical powers reported in Table 10, we observe that 

Table 6  Empirical powers of Tn and T�
n
 under contamination with p = 0.01 and s = 10

� n Tn T�
n

� = 0.1 � = 0.2 � = 0.3 � = 0.5 � = 1

Model 1.1 500 0.463 0.663 0.681 0.669 0.607 0.435
1000 0.798 0.983 0.986 0.983 0.963 0.835
2000 0.988 1.000 1.000 1.000 1.000 0.997

Model 1.2 500 0.184 0.351 0.388 0.380 0.332 0.220
1000 0.330 0.818 0.839 0.826 0.770 0.585
2000 0.626 0.997 0.998 0.998 0.993 0.940

Model 1.3 500 0.110 0.611 0.606 0.569 0.473 0.295
1000 0.086 0.969 0.959 0.939 0.873 0.658
2000 0.157 1.000 1.000 1.000 0.998 0.969

Model 1.4 500 0.222 0.610 0.617 0.592 0.495 0.268
1000 0.398 0.964 0.962 0.951 0.895 0.657
2000 0.707 1.000 1.000 1.000 1.000 0.968

Table 7  Empirical powers of Tn and T�
n
 under contamination with p = 0.01 and s = 20

� n Tn T�
n

� = 0.1 � = 0.2 � = 0.3 � = 0.5 � = 1

Model 1.1 500 0.471 0.706 0.711 0.684 0.617 0.419
1000 0.615 0.991 0.991 0.988 0.969 0.865
2000 0.830 1.000 1.000 1.000 1.000 0.997

Model 1.2 500 0.313 0.398 0.415 0.396 0.335 0.227
1000 0.333 0.833 0.854 0.825 0.750 0.549
2000 0.495 0.999 0.998 0.995 0.990 0.944

Model 1.3 500 0.214 0.632 0.619 0.578 0.489 0.298
1000 0.146 0.960 0.957 0.934 0.879 0.686
2000 0.126 1.000 1.000 1.000 0.999 0.965

Model 1.4 500 0.271 0.606 0.621 0.600 0.496 0.299
1000 0.253 0.970 0.964 0.951 0.897 0.651
2000 0.296 1.000 1.000 1.000 1.000 0.965
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our proposed test outperforms the score test Tn even when the data are contaminated 
and are quite comparable even without the outliers if the control parameter � is mod-
erate. Again, high efficiency is observed when the jump size is large and frequent 
since the power converges to 1 more rapidly as the sample size increases. All in all, 
our simulation study shows that our proposed method based on MDPDE achieves 
good sizes and powers when the data are contaminated by some outliers.

5  Real applications

In statistical terms, the functional connectivity of the human brain refers to the 
temporal correlation between the brain regions of interest (ROI) calculated from 
the fMRI series. It provides important insights on the functional communica-
tion in the brain network, and the resting state fMRI (rsfMRI) data, in particular, 
received lots of attention in neuroscience because many studies have shown that 
our brain network at rest is not idle, but instead shows spontaneous connectivity 
changes over time (e.g., Van Den Heuvel and Pol 2010). However, the acquisi-
tion of fMRI data involves numerous challenges such as anatomical alignment 
of images and head motion adjustment, in turn outlying observations cannot be 
avoided. Furthermore, it is well-documented that brain connectivity is highly sus-
ceptible to the influence of outlying observations, hence robust inference should 
be used in the analysis to correctly identify change points (e.g., Poldrack 2012; 
Magnotti and Billor 2014). Here, we illustrate our proposed robust procedures 
to detect functional connectivity changes in rsfMRI data using data from the 
Human Connectome Project (HCP) available at www.human conne ctome .org. The 
data set comprises time series on 300 ROIs, and each of the 812 subjects com-
pleted four cycles of rsfMRI runs. The following provides an illustration of the 
results for one subject selected at random on the second run, where the data have 

Table 8  Empirical powers of Tn and T�
n
 under contamination with p = 0.05 and s = 20

� n Tn T�
n

� = 0.1 � = 0.2 � = 0.3 � = 0.5 � = 1

Model 1.1 500 0.323 0.416 0.663 0.651 0.585 0.414
1000 0.440 0.841 0.978 0.975 0.947 0.851
2000 0.652 0.999 1.000 1.000 1.000 0.998

Model 1.2 500 0.244 0.131 0.350 0.350 0.309 0.222
1000 0.335 0.316 0.803 0.797 0.727 0.548
2000 0.505 0.785 0.995 0.995 0.986 0.933

Model 1.3 500 0.198 0.545 0.553 0.527 0.437 0.287
1000 0.204 0.938 0.931 0.903 0.830 0.645
2000 0.218 1.000 1.000 1.000 0.997 0.956

Model 1.4 500 0.186 0.443 0.552 0.538 0.462 0.293
1000 0.218 0.878 0.944 0.923 0.873 0.658
2000 0.239 0.998 1.000 1.000 0.996 0.958

http://www.humanconnectome.org
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a dimension of 300 × 1200 since similar conclusions were drawn for other sub-
jects and runs.

Figure 1 shows the time plot of the rsfMRI series for the four ROIs selected at 
random. There are clear indications of changes in connectivity. For example, there 
are sudden level changes around 750–800 for ROI 1 and ROI 25, and the variability 
appears to be different from 800 to 1000 in ROI 1 etc. In addition, there are notice-
able spikes throughout the time plots; hence, it is not clear whether such changes are 
due to changes in brain connectivity or an artifact of outlying observations. Indeed, 
the time plot shows the typical features widely reported in fMRI data, namely, 
exhibiting both parameter instabilities and spikes. Therefore, we need to apply a 
robust testing method to detect connectivity changes for correct inference instead 
of ignoring the outliers. By assuming that the rsfMRI series follows DFM, the con-
nectivity changes are equivalent to changes in loading matrices at certain unknown 
points. As discussed in Sect. 2, it can be further reduced to detect parameter changes 
on principal factors. Hence, we begin by estimating the number of factors to be 
used in the analysis. The IC criteria of Bai and Ng (2002) with penalty function 
(q + n)∕(qn) log(qn∕(q + n)) and (q + n)∕(qn) log(min(q, n)) selects the number of 
factors r̂ = 5 . Figure 5 shows the estimated five principal factors along with the esti-
mated change-points to be explained in the section below.

Next, we need to determine the order of VAR(p) model in DFM. Figure 2 shows 
the sample partial autocorrelation function of the first factor (left) and the sample 
cross-correlation between first and second factors (middle), and the third and fourth 
factors (right) after prewhitening using AR(1) model. This suggests that the rsfMRI 
series has non-negligible cross-correlations; hence, a univariate approach to handle 

Table 10  Empirical powers of Tn and T�
n
 under DFM

Model 1 to Model 1.2 n Tn T�
n

� = 0.1 � = 0.2 � = 0.3 � = 0.5 � = 1

No outliers 500 0.451 0.456 0.418 0.412 0.350 0.223
1000 0.876 0.874 0.865 0.843 0.774 0.554
2000 0.998 0.998 0.997 0.995 0.988 0.934

p = 0.01 , s = 10 500 0.280 0.425 0.413 0.387 0.336 0.221
1000 0.603 0.868 0.861 0.836 0.767 0.550
2000 0.926 0.999 0.998 0.9995 0.990 0.925

p = 0.01 , s = 20 500 0.266 0.412 0.405 0.385 0.337 0.223
1000 0.340 0.868 0.853 0.832 0.770 0.576
2000 0.486 0.998 0.997 0.996 0.992 0.943

p = 0.01 , s = 30 500 0.363 0.417 0.408 0.387 0.340 0.229
1000 0.310 0.863 0.856 0.830 0.763 0.552
2000 0.302 0.998 0.997 0.996 0.992 0.935

p = 0.05 , s = 40 500 0.243 0.365 0.380 0.366 0.330 0.220
1000 0.239 0.836 0.846 0.824 0.751 0.556
2000 0.351 0.993 0.999 0.995 0.988 0.928
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outlying observations is not suitable but joint modeling with VAR(1) is plausible. 
The BIC selection for the VAR order also coincides with our observations, so we 
perform our procedure based on the robust VAR(1) parameter estimation using 
MDPDE.

We have used � = 0, 0.1, 0.2, 0.3, 0.4 and applied BS to identify multiple change 
points. Figure 3 illustrates the BS procedure with � = 0 . The black solid line shows 
the test statistics T�

n,k
 using whole data, and the maximum value attained at k̂1 = 557 

is selected as the first change point since it is above the critical value 15.65. Then, 
the sample is split into two subsamples, before and after the first break, and the same 
procedure is applied. This gives k̂2 = 293 and k̂3 = 890 as change points. We repeat 
this procedure until no further change points are declared. Figure 4 shows the esti-
mated change points according to the different tuning parameter � values. The num-
ber of change points decrease as � increases, while the change points around 292, 
435 and 882 are common regardless of the � values. We take the average of the 
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estimated change points to produce the final change points (see Remark 8). This also 
shows that the above three change points are indeed due to parameter instabilities, 
while the other identified change points are not as clear as them. Figure 5 shows the 
time plot with three common change points in vertical red lines, and Fig. 6 repre-
sents the estimated VAR(1) coefficients and estimated innovation covariance matri-
ces �̂ on four regimes when � = 0.3 . We observe that both the VAR coefficients 
and innovation covariance matrices change over time, and the association can also 
change in opposite signs. All in all, this observations add one more evidence that our 
brain connectivity indeed changes even in the resting state and such changes are not 
an artifact of outlier effects (e.g., Power et al. 2015).

6  Conclusions

This paper proposed a robust test for parameter changes in a vector autoregres-
sion model, which can be adapted to DFMs for HDTS once principal factors are 
used. The theoretical results substantiated the validity of our method and the 
Monte Carlo simulations study demonstrated the outstanding performance of our 
method in finite samples. We also applied our method to the resting state fMRI 
series that typically show both connectivity changes and atypical observations. 
Our empirical analysis shows that brain connectivity changes even in the resting 
state and such changes are not an artifact of outlying observations. Our method 
incorporates outlier effects in the HDTS context while computationally tractable 
since dimension reduction is accomplished by considering several latent principal 
factors.
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7  Proofs

We provide the proofs of Theorems 1–3 for the case of 𝛼 > 0 . In what follows, 
the symbol ‖ ⋅ ‖ denotes the Euclidean norm for vectors and the spectral norm for 
matrices.

Before proving Theorems 1–3, we prepare the following lemmas (the proofs 
are postponed to “Appendix”).

Time series

0 200 400 600 800 1000 1200

0 200 400 600 800 1000 1200

0 200 400 600 800 1000 1200

0 200 400 600 800 1000 1200

Fig. 5  Time plots of five estimated principal factors with common change points in vertical solid lines
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Lemma 1 Suppose that assumptions (A1) and (A2) hold. Then, we have that for 
t ≥ p + 1,

Lemma 2 Suppose that assumptions (A1) and (A2) hold. Then, J� and K� are 
non-singular.

Lemma 3 Suppose that assumptions (A1) and (A2) hold. Then, under H′
0
 , we have

where B� is a �-dimensional standard Brownian motion.

Lemma 4 Suppose that assumptions (A1)–(A3) hold. Then, under H′
0
 , we have

where {�̄�𝛼,n,k | 1 ≤ k ≤ n, n ≥ 1} is any double array of �-valued random vectors 
with ‖�̄�𝛼,n,k − 𝜃0‖ ≤ ‖�̂�𝛼,n − 𝜃0‖.

Lemma 5 Suppose that assumptions (A1)–(A3) hold. Then, under H′
0
 , we have

Proof of Theorem  1 Since {h�,t(�)|t ≥ p + 1} is stationary and ergodic, and 
E
(
sup𝜃∈𝛩 |h𝛼,t(𝜃)|

)
< ∞ by Lemma S1 of the Supplementary Material, it holds that

Further, it can be shown that

where the equality holds if and only if � = �0 . Thus, if � ≠ �0 , then 
E(h𝛼,t(𝜃)) > E(h𝛼,t(𝜃0)) , which means that E(h�,t(�)) has a unique minimum at �0 . 
Therefore, the theorem is established.   ◻

E

(
sup
𝜃∈𝛩

‖‖‖‖‖

𝜕2h𝛼,t(𝜃)

𝜕𝜃𝜕𝜃T

‖‖‖‖‖

)
< ∞ and E

(
sup
𝜃∈𝛩

‖‖‖‖‖

𝜕h𝛼,t(𝜃)

𝜕𝜃

𝜕h𝛼,t(𝜃)

𝜕𝜃T

‖‖‖‖‖

)
< ∞.

K−1∕2
�

[ns]
√
n

�H�,[ns](�0)

��

w
⟶B�(s) in 𝔻([0, 1],ℝ�),

max
1≤k≤n

k

n

‖‖‖‖‖

𝜕2H𝛼,k(�̄�𝛼,n,k)

𝜕𝜃𝜕𝜃T
+ J𝛼

‖‖‖‖‖
= o(1) a.s.,

1

n

n∑

t=1

𝜕h𝛼,t(�̂�𝛼,n)

𝜕𝜃

𝜕h𝛼,t(�̂�𝛼,n)

𝜕𝜃T

P
⟶E

(
𝜕h𝛼,t(𝜃0)

𝜕𝜃

𝜕h𝛼,t(𝜃0)

𝜕𝜃T

)
.

sup
�∈�

|||||
1

n

n∑

t=1

h�,t(�) − E(h�,t(�))
|||||

a.s.
⟶0 as n → ∞.

E(h�,t(�)) − E(h�,t(�0)) = E
[
E
{
h�,t(�) − h�,t(�0)|Yt−p∶t−1

}]

= E

[

�
{
f 1+�
�

(y|Yt−p∶t−1) −
(
1 +

1

�

)
f �
�
(y|Yt−p∶t−1)f�0 (y|Yt−p∶t−1)

+
1

�
f 1+�
�0

(y|Yt−p∶t−1)
}
dy
] ≥ 0,
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Proof of Theorem 2 By the mean value theorem, we have

where �∗
�,n

 is an intermediate point between �0 and �̂�𝛼,n . By Lemma 3 with s = 1 , we 
have

Due to Lemma 4, we also have

which together with (9) validates the theorem.   ◻

Proof of Theorem 3 We first show that

Owing to Lemma 3, we have

Since 
√
n �H�,n(�0) = OP(1) , it follows from Lemma 4 that

where �∗
�,n,k

 denotes the one corresponding to �∗
�,n,s

 when [ns] = k . Hence, (10) holds.
Next, note that by Lemma 4,

and

0 =
1
√
n

n�

t=1

𝜕h𝛼,t(𝜃0)

𝜕𝜃
+

�
1

n

n�

t=1

𝜕2h𝛼,t(𝜃
∗
𝛼,n
)

𝜕𝜃𝜕𝜃T

�
√
n
�
�̂�𝛼,n − 𝜃0

�
,

(9)
1
√
n

n�

t=1

�h�,t(�0)

��

d
⟶N(0,K�) as n → ∞.

1

n

n∑

t=1

�2h�,t(�
∗
�,n
)

����T

a.s.
⟶ − J� as n → ∞,

(10)
[ns]
√
n

�H�,[ns](�0)

��
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[ns]

n

�2H�,[ns](�
∗
�,n,s
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����T
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√
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��
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�
Bo
�
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√
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��
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�
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�
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�
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n

�����

�2H�,[ns](�
∗
�,n,s
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����T
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�H�,n(�0)

��
+
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�����
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�����
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Then, since 
√
n(�̂�𝛼,n − 𝜃0) = OP(1) by Theorem 2, we have

Therefore, the theorem is established from (5), (10), and (11).   ◻
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Appendix

Proof of Lemma 1 Under (A1), there exist a constant mean vector � and a covariance 
matrix �0 of Yt such that � = E(Yt) and �0 = E(YtY

T
t
) − ��T for all t, which implies 

E(Y2
t,i
) < ∞ for all t and i = 1,… , r . Hence, by Lemma S1 of the Supplementary 

Material and Cauchy–Schwartz inequality, we obtain

and

for i, j = 1,… , � . Therefore, the lemma is validated.   ◻

Proof of Lemma 2 Due to the first part of Lemma 1, J� is finite. Note that

‖‖B�,n + J�
‖‖ ≤ max

1≤k≤n
k

n

‖‖‖‖‖

�2H�,k(�
∗
�,n,k

)

����T
+ J�

‖‖‖‖‖
= o(1) a.s.

(11)sup
0≤s≤1
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�����
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�
B𝛼,n + J𝛼
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n
�
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������
= oP(1).

E
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|||||
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|||||

)
< ∞

E

(
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≤ E
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𝜃∈𝛩
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|||||
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|||||
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< ∞

E
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����T

)
=E

{
E
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����T
|||Yt−p∶t−1
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=(1 + �)E

{

∫ f �−1
�0

(y|Yt−p∶t−1)
�f�0(y|Yt−p∶t−1)

��

�f�0 (y|Yt−p∶t−1)
��T
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https://github.com/crbaek/dpd_VAR
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Letting A be a r(r + 1)∕2 × r(r + 1)∕2 diagonal matrix with Aii = 1 if 
i = (m − 1)(r + 1 − m∕2) + 1 for m = 1,… , r and 2 otherwise, we can write that for 
� = (�T

1
, �T

2
, �T

3
)T ∈ ℝ

r ×ℝ
r2p ×ℝ

r(r+1)∕2,

where �t(�0) = Yt − c0 − A01Yt−1 −⋯ − A0pYt−p ∼ N(0,�0) and the symbol ⊗ stand 
for Kronecker product. Thus, we have

Since Mt(�, �0) has a continuous distribution induced from Gaussian random vari-
ables, one can see that the equality holds only for � = 0 . Hence, J� is a non-singular 
matrix. The non-singularity of K� can be shown by similar arguments, so we omit 
the proof for K� .   ◻

Proof of Lemma 3 Let {Yt|t ∈ ℤ} be the strictly stationary and ergodic solution to 
VAR(p) model (3). Recall that {h�,t(�)|t = 1,… , n} is calculated from the obser-
vations Y1,… , Yn and some initial values for Y−p,… , Y0 . To verify the lemma, 
we introduce stationary version of {h�,t(�)|t = 1,… , n} . Let {ho

�,t
(�)|t ∈ ℤ} and 

{Ho
�,t
(�)|t ∈ ℤ} be the counterparts of {h�,t(�)} and {H�,t(�)} , respectively, obtained 

by using the solution {Yt|t ∈ ℤ} . Then, {�ho
�,t
(�0)∕��} is a strictly stationary and 

ergodic process. Further, noting that

where Ft−1 be the sigma field generated by {Yt−1, Yt−2,…} , we have

𝜈T
𝜕f𝜃0 (Yt|Yt−p∶t−1)

𝜕𝜃

= 𝜈T
1
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𝜕c

+ 𝜈T
2

𝜕f𝜃0 (Yt|Yt−p∶t−1)
𝜕vec(A1,… ,Ap)

+ 𝜈T
3

𝜕f𝜃0 (Yt|Yt−p∶t−1)
𝜕vech(𝛴)
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[
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1
𝛴−1
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, YT

t−2
,… , YT
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0
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−
1

2
𝜈T
3
Avech
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0
− 𝛴−1

0
𝜖t(𝜃0)𝜖t(𝜃0)

T𝛴−1
0

}]

∶= f𝜃0(Yt|Yt−p∶t−1)Mt(𝜈, 𝜃0),

�T (−J�)� = (1 + �)E

{

� f �−1
�0

(y|Yt−p∶t−1)
(
�T

�f�0 (y|Yt−p∶t−1)
��

)2

dy
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= (1 + �)E

{
f �−2
�0

(Yt|Yt−p∶t−1)
(
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�f�0 (Yt|Yt−p∶t−1)
��

)2
}

= (1 + �)E
{
f �
�0
(Yt|Yt−p∶t−1)Mt(�, �0)

2
} ≥ 0.

E

(
f �−1
�0

(Yt|Yt−p∶t−1)
�f�0(Yt|Yt−p∶t−1)

��

|||Ft−1

)

= ∫ f �
�0
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�f�0 (y|Yt−p∶t−1)
��
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Hence, it follows from the functional limit theorem for martingales (cf. Section 18 in 
Billingsley 1999) that

Since ho
�,t
(�0) = h�,t(�0) for t ≥ p + 1 , one can also see that

which establishes the lemma.   ◻

Proof of Lemma 4 By Lemma 1, we have

Since �2h�,t(�)∕����T is continuous in � , for any 𝜖 > 0 , one can take a neighbor-
hood N�(�0) such that

by decreasing the neighborhood to the singleton �0 . Noting that �̂�𝛼,n converges 
almost surely to �0 , we have, for sufficiently large n,

E

(
�ho

�,t
(�0)

��
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< 𝜖

max
1≤k≤n

k

n

‖‖‖‖‖

𝜕2H𝛼,k(�̄�𝛼,n,k)

𝜕𝜃𝜕𝜃T
+ J𝛼

‖‖‖‖‖

≤ max
1≤k≤n

k

n

‖‖‖‖‖

𝜕2H𝛼,k(�̄�𝛼,n,k)

𝜕𝜃𝜕𝜃T
−

𝜕2H𝛼,k(𝜃0)

𝜕𝜃𝜕𝜃T

‖‖‖‖‖
+ max

1≤k≤n
k

n

‖‖‖‖‖

𝜕2H𝛼,k(𝜃0)

𝜕𝜃𝜕𝜃T
+ J𝛼

‖‖‖‖‖

≤ 1

n

n∑

t=1

sup
𝜃∈N𝜖(𝜃0)

‖‖‖‖‖

𝜕2h𝛼,t(𝜃)

𝜕𝜃𝜕𝜃T
−

𝜕2h𝛼,t(𝜃0)

𝜕𝜃𝜕𝜃T

‖‖‖‖‖
+ max

1≤k≤n
k

n

‖‖‖‖‖

𝜕2H𝛼,k(𝜃0)

𝜕𝜃𝜕𝜃T
+ J𝛼

‖‖‖‖‖
∶= In + IIn a.s.
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Using the ergodic theorem and (12), we can see that

Also, from the fact that ‖�2H�,n(�0)∕����
T + J�‖ = o(1) a.s., we have

and

which yield IIn = o(1) a.s. The lemma is therefore obtained.   ◻

Proof of Lemma 5 By the second result in Lemma 1 and the continuity of �h�,t(�)∕�� 
in � , we can also take a neighborhood N�(�0) such that

Since �̂�n
a.s.
⟶ 𝜃0 , one can prove the lemma by using (13) and the ergodic theorem.  

 ◻
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