Supplementary material to

'Mellin-Meijer-kernel density estimation on \mathbb{R}^+ '

GERY GEENENS*

School of Mathematics and Statistics,

UNSW Sydney, Australia

A Operational properties of the Mellin transform

The operational properties of the Mellin transform include:

$$\mathcal{M}\left(\sum_{q=1}^{Q} a_q f_q; z\right) = \sum_{q=1}^{Q} a_q \mathcal{M}(f_q; z), \qquad z \in \bigcap_{q=1}^{Q} \mathcal{S}_{f_q}, a_1, \dots, a_Q \in \mathbb{R}$$
(A.1)

$$\mathcal{M}(f(ax);z) = a^{-z}\mathcal{M}(f;z), \qquad z \in \mathcal{S}_f, a \in \mathbb{R}^+$$
 (A.2)

$$\mathcal{M}(f(x^a); z) = \frac{1}{|a|} \mathcal{M}(f; \frac{z}{a}), \qquad \frac{z}{a} \in \mathcal{S}_f, a \in \mathbb{R} \setminus \{0\}$$
(A.3)

$$\mathcal{M}(x^y f(x); z) = \mathcal{M}(f; z + y), \qquad z + y \in \mathcal{S}_f, y \in \mathbb{C}$$
 (A.4)

$$\mathcal{M}(\log^n(x)f(x);z) = \frac{d^n \mathcal{M}(f;z)}{dz^n}, \qquad z \in \mathcal{S}_f, n \in \mathbb{N}$$
(A.5)

$$\mathcal{M}\left(\frac{d^n f}{dx^n}(x); z\right) = (-1)^n (z-n)(z-n+1)\dots(z-1)\mathcal{M}(f; z-n),\tag{A.6}$$

$$z - n \in \mathcal{S}_f, n \in \mathbb{N}$$

$$\mathcal{M}\left(x^n \frac{d^n f}{dx^n}(x); z\right) = (-1)^n z(z+1) \dots (z+n-1) \mathcal{M}(f; z), \tag{A.7}$$

$$z \in \mathcal{S}_f, n \in \mathbb{N}$$

$$\mathcal{M}\left(\left(x\frac{d}{dx}\right)^n f(x); z\right) = (-1)^n z^n \mathcal{M}(f; z), \qquad z \in \mathcal{S}_f, n \in \mathbb{N},$$
(A.8)

where $(x\frac{d}{dx})$ is the differential operator ('Mellin derivative'). Proofs of these results are straightforward; see Sneddon (1974, Chapter 4).

^{*}email: ggeenens@unsw.edu.au

B Meijer parameterisation of the most common distributions on \mathbb{R}^+

Common name	Density	Parameters	ν	γ	ξ	θ
Chi	$f(x) = \frac{2^{1-k/2}x^{k-1}e^{-x^2/2}}{\Gamma(\frac{k}{2})}$	k > 0	\sqrt{k}	$\frac{1}{\sqrt{2k}}$	$\frac{1}{2}$	0
Chi-squared	$f(x) = \frac{x^{\frac{k}{2} - 1} e^{-x/2}}{2^{k/2} \Gamma(\frac{k}{2})}$	k > 0	k	$\sqrt{rac{2}{k}}$	1	0
Erlang	$f(x) = \frac{x^{k-1}e^{-x/\mu}}{\mu^k(k-1)!}$	$\mu>0, k\in\mathbb{N}$	μk	$\sqrt{rac{1}{k}}$	1	0
Gamma	$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}$	$\alpha, \beta > 0$	$\frac{\alpha}{\beta}$	$\sqrt{\frac{1}{\alpha}}$	1	0
Maxwell	$f(x) = \frac{\sqrt{2}}{\sigma^3 \sqrt{\pi}} x^2 e^{-x^2/(2\sigma^2)}$	$\sigma > 0$	$\sqrt{3}\sigma$	$\frac{1}{\sqrt{6}}$	$\frac{1}{2}$	0
Nakagami	$f(x) = \frac{2m^m}{\Gamma(m)\Omega^m} x^{2m-1} e^{-\frac{mx^2}{\Omega}}$	$m,\Omega>0$	$\sqrt{\Omega}$	$\frac{1}{2\sqrt{m}}$	$\frac{1}{2}$	0
Rayleigh	$f(x) = \frac{x}{\sigma^2} e^{-\frac{x^2}{2\sigma^2}}$	$\sigma > 0$	$\sqrt{2}\sigma$	$\frac{1}{2}$	$\frac{1}{2}$	0
Stacy	$f(x) = \frac{1}{\Gamma(\frac{d}{p})} \frac{p}{a^d} x^{d-1} e^{-(x/a)^p}$	a,d,p>0	$a \left(\frac{d}{p}\right)^{1/p}$	$\frac{1}{\sqrt{dp}}$	$\frac{1}{p}$	0
Weibull	$f(x) = \frac{\eta}{\mu} \left(\frac{x}{\mu}\right)^{\eta - 1} e^{-\left(\frac{x}{\mu}\right)^{\eta}}$	$\mu, \eta > 0$	μ	$rac{1}{\eta}$	$\frac{1}{\eta}$	0
Beta prime	$f(x) = \frac{x^{\alpha-1}(1+x)^{-\alpha-\beta}}{\mathcal{B}(\alpha,\beta)}$	$\alpha, \beta > 0$	α/β	$\sqrt{\frac{1}{\alpha} + \frac{1}{\beta}}$	1	$\tan^{-1}\sqrt{\frac{\alpha}{\beta}}$
Burr	$f(x) = ck \frac{x^{c-1}}{(1+x^c)^{k+1}}$	c, k > 0	1	$\frac{1}{c}\sqrt{1+\frac{1}{k}}$	$\frac{1}{c}$	$\tan^{-1}\sqrt{\frac{1}{k}}$
Dagum	$f(x) = \frac{apx^{ap-1}}{b^{ap}(1+(\frac{x}{b})^a)^{p+1}}$	a,b,p>0	b	$\frac{1}{a}\sqrt{1+\frac{1}{p}}$	$\frac{1}{a}$	$\tan^{-1}\sqrt{\frac{1}{p}}$
Fisher-Snedecor	$f(x) = \frac{(d_1/d_2)^{d_1/2}}{\mathcal{B}\left(\frac{d_1}{2}, \frac{d_2}{2}\right)} \frac{x^{\frac{d_1}{2} - 1}}{\left(1 + \frac{d_1}{d_2} x\right)^{\frac{d_1 + d_2}{2}}}$	$d_1, d_2 > 0$	1	$\sqrt{\frac{2}{d_1} + \frac{2}{d_2}}$	1	$\tan^{-1}\sqrt{\frac{d_1}{d_2}}$
Generalised Pareto	$f(x) = \frac{1}{\sigma} \left(1 + \frac{\zeta x}{\sigma} \right)^{-\frac{1}{\zeta} - 1}$	$\sigma, \zeta > 0$	$\frac{\sigma}{\zeta}$	$\sqrt{\zeta+1}$	1	$\tan^{-1}\sqrt{\zeta}$
Log-logistic	$f(x) = \frac{\beta}{\alpha} \frac{\left(\frac{x}{\alpha}\right)^{\beta - 1}}{\left(1 + \left(\frac{x}{\alpha}\right)^{\beta}\right)^{2}}$	$\alpha, \beta > 0$	α	$\frac{\sqrt{2}}{\beta}$	$\frac{1}{\beta}$	$\frac{\pi}{4}$
Singh-Maddala	$f(x) = \frac{aq}{b} \frac{x^{a-1}}{\left(1 + \left(\frac{x}{b}\right)^a\right)^{q+1}}$	a, b, q > 0	$\frac{b}{q^{1/a}}$	$\frac{1}{a}\sqrt{1+\frac{1}{q}}$	$\frac{1}{a}$	$\tan^{-1}\sqrt{\frac{1}{q}}$
Amoroso	$f(x) = \frac{ p }{\Gamma(\alpha)\sigma} \left(\frac{x}{\sigma}\right)^{\alpha p - 1} e^{-(x/\sigma)^p}$	$\alpha, \sigma > 0, p \neq 0$	$\sigma \alpha^{1/p}$	$\frac{1}{ p \sqrt{\alpha}}$	$\frac{1}{ p }$	$\frac{\pi}{4} \left(1 - \frac{p}{ p } \right)$
Fréchet	$f(x) = \frac{\alpha}{s} \left(\frac{x}{s}\right)^{-1-\alpha} e^{-\left(\frac{x}{s}\right)^{-\alpha}}$	$\alpha, s > 0$	s		$\frac{1}{\alpha}$	$\frac{\pi}{2}$
Inverse Gamma	$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{-\alpha - 1} e^{-\beta/x}$	$\alpha, \beta > 0$	$\frac{\beta}{\alpha}$	$\sqrt{\frac{1}{\alpha}}$	1	$\frac{\pi}{2}$
Lévy	$f(x) = \sqrt{\frac{c}{2\pi}} \frac{e^{-c/(2x)}}{x^{3/2}}$	c > 0	c	$\sqrt{2}$	1	$\frac{\pi}{2}$

Table B.1: Meijer parameterisation $(\nu, \gamma, \xi, \theta \text{ in } L_{\nu,\gamma,\xi,\theta}, \text{ Section 3})$ for the most common \mathbb{R}^+ -supported densities, ordered according to the values of θ : $\theta = 0$, $\theta \in (0, \pi/2)$ and $\theta = \pi/2$. The Amoroso distribution includes the cases $\theta = 0$ an $\theta = \pi/2$, depending on the sign of its parameter p.

C Proofs

First we state a technical lemma that will be used repeatedly in the proofs below. Tricomi and Erdélyi (1951) gave the following asymptotic expansion for the ratio of two Gamma functions. Let $t, \alpha, \beta \in \mathbb{C}$. Then, as $|t| \to \infty$,

$$\frac{\Gamma(t+\alpha)}{\Gamma(t+\beta)} = t^{\alpha-\beta} \left(\sum_{k=0}^{M-1} \frac{1}{k!} \frac{\Gamma(1+\alpha-\beta)}{\Gamma(1+\alpha-\beta-k)} B_k^{(1+\alpha-\beta)}(\alpha) \frac{1}{t^k} + R_M(t) \right), \tag{C.1}$$

where $|R_M(t)| = O(|t|^{-M})$, provided that $|\alpha|, |\beta|$ are bounded and $|\arg(t+\alpha)| < \pi$. Here $B_k^{(a)}(x)$ are the generalised Bernoulli polynomials, which are polynomials in a and x of degree k, see Temme (1996, Section 1.1). The first such polynomials are $B_0^{(a)}(x) = 1$, $B_1^{(a)}(x) = x - a/2$ and $B_2^{(a)}(x) = (3a^2 + 12x^2 - a(1 + 12x))/12$. The following result, proved in Fields (1970), essentially gives a uniform version of (C.1) which allows $|\alpha|$ and $|\beta|$ to grow 'large' as well, if more slowly than |t|.

Lemma C.1. Let $t, \alpha, \beta \in \mathbb{C}$. Then, for all M = 1, 2, ..., one has, as $|t| \to \infty$,

$$\frac{\Gamma(t+\alpha)}{\Gamma(t+\beta)} = t^{\alpha-\beta} \left(\sum_{k=0}^{M-1} \frac{1}{k!} \frac{\Gamma(1+\alpha-\beta)}{\Gamma(1+\alpha-\beta-k)} B_k^{(1+\alpha-\beta)}(\alpha) \frac{1}{t^k} + R_M(t,\alpha,\beta) \right),$$

where $|R_M(t, \alpha, \beta)| = O(|t|^{-M}(1 + |\alpha - \beta|)^M(1 + |\alpha| + |\alpha - \beta|)^M))$, provided that $|\arg(t + \alpha)| < \pi$ and $(1 + |\alpha - \beta|)(1 + |\alpha| + |\alpha - \beta|) = o(|t|)$.

Now we prove the main theoretical results.

Proof of Proposition 1

Let $X_j \sim \text{Gamma}(\alpha_j, \beta_j)$, j = 1, 2, be independent. Then $\frac{\alpha_2\beta_1}{\alpha_1\beta_2}\frac{X_1}{X_2}$ follows the Fisher-Snedecor distribution $F(2\alpha_1, 2\alpha_2)$ (Johnson et al, 1994, Section 27.8). Hence the F-distribution is the distribution of the product of a $\text{Gamma}(\alpha_1, \beta_1)$ r.v. and an Inverse $\text{Gamma}(\alpha_2, \beta_2)$ r.v., rescaled by the constant $\alpha_2\beta_1/\alpha_1\beta_2$. Denoting f_F the $F(2\alpha_1, 2\alpha_2)$ -density, (9)–(10)–(11) yield

$$\mathcal{M}(f_{\mathrm{F}};z) = \left(\frac{\alpha_2}{\alpha_1}\right)^{z-1} \frac{\Gamma(\alpha_1 + z - 1)\Gamma(\alpha_2 + 1 - z)}{\Gamma(\alpha_1)\Gamma(\alpha_2)}, \quad 1 - \alpha_1 < \Re(z) < 1 + \alpha_2. \tag{C.2}$$

Identifying (12) and (C.2), $L_{1,\gamma,1,\theta}$ is seen to be the $F\left(\frac{2}{\gamma^2\cos^2\theta}, \frac{2}{\gamma^2\sin^2\theta}\right)$ -density. From Lemma 1, it follows that $L_{\nu,\gamma,\xi,\theta}$ is the density of the positive random variable $Y = \nu X^{\xi}$, where $X \sim F\left(\frac{2\xi^2}{\gamma^2\cos^2\theta}, \frac{2\xi^2}{\gamma^2\sin^2\theta}\right)$.

Proof of Proposition 2

If $\xi > 2\gamma^2 \sin^2 \theta$, then $\{z \in \mathbb{C} : 2 \leq \Re(z) \leq 3\} \subset \mathcal{S}_{L_{\nu,\gamma,\xi,\theta}}$. Then, the mean μ of $L_{\nu,\gamma,\xi,\theta}$ is $\mu = \int_0^\infty x L_{\nu,\gamma,\xi,\theta}(x) dx = \mathcal{M}(L_{\nu,\gamma,\xi,\theta};2)$, that is,

$$\mu = \nu \left(\frac{1}{\tan^2 \theta} \right)^{\xi} \frac{\Gamma \left(\frac{\xi^2}{\gamma^2 \cos^2 \theta} + \xi \right) \Gamma \left(\frac{\xi^2}{\gamma^2 \sin^2 \theta} - \xi \right)}{\Gamma \left(\frac{\xi^2}{\gamma^2 \cos^2 \theta} \right) \Gamma \left(\frac{\xi^2}{\gamma^2 \sin^2 \theta} \right)}.$$

Also, as $\int_0^\infty x^2 L_{\nu,\gamma,\xi,\theta}(x) dx = \mathcal{M}(L_{\nu,\gamma,\xi,\theta};3)$, the standard deviation of $L_{\nu,\gamma,\xi,\theta}$ is

$$\sigma = \sqrt{\mathcal{M}(L_{\nu,\gamma,\xi,\theta};3) - \mathcal{M}^2(L_{\nu,\gamma,\xi,\theta};2)},$$

which is

$$\sigma = \nu \left(\frac{1}{\tan^2 \theta}\right)^{\xi} \frac{\Gamma\left(\frac{\xi^2}{\gamma^2 \cos^2 \theta} + \xi\right) \Gamma\left(\frac{\xi^2}{\gamma^2 \sin^2 \theta} - \xi\right)}{\Gamma\left(\frac{\xi^2}{\gamma^2 \cos^2 \theta}\right) \Gamma\left(\frac{\xi^2}{\gamma^2 \sin^2 \theta}\right)} \times \sqrt{\frac{\Gamma\left(\frac{\xi^2}{\gamma^2 \cos^2 \theta}\right) \Gamma\left(\frac{\xi^2}{\gamma^2 \sin^2 \theta}\right) \Gamma\left(\frac{\xi^2}{\gamma^2 \sin^2 \theta} + 2\xi\right) \Gamma\left(\frac{\xi^2}{\gamma^2 \sin^2 \theta} - 2\xi\right)}{\Gamma^2\left(\frac{\xi^2}{\gamma^2 \cos^2 \theta} + \xi\right) \Gamma^2\left(\frac{\xi^2}{\gamma^2 \sin^2 \theta} - \xi\right)}} - 1.$$

The coefficient of variation of $L_{\nu,\gamma,\xi,\theta}$ is thus

$$\chi = \frac{\sigma}{\mu} = \sqrt{\frac{\Gamma\left(\frac{\xi^2}{\gamma^2 \cos^2 \theta}\right) \Gamma\left(\frac{\xi^2}{\gamma^2 \sin^2 \theta}\right) \Gamma\left(\frac{\xi^2}{\gamma^2 \cos^2 \theta} + 2\xi\right) \Gamma\left(\frac{\xi^2}{\gamma^2 \sin^2 \theta} - 2\xi\right)}{\Gamma^2\left(\frac{\xi^2}{\gamma^2 \cos^2 \theta} + \xi\right) \Gamma^2\left(\frac{\xi^2}{\gamma^2 \sin^2 \theta} - \xi\right)}} - 1.$$
 (C.3)

Now assume that $\theta \notin \{0, \pi/2\}$ (the proof is simpler if $\theta \in \{0, \pi/2\}$, and is omitted). By (C.1), we have, as $\gamma \to 0$,

$$\begin{split} \frac{\Gamma\left(\frac{\xi^2}{\gamma^2\cos^2\theta}\right)}{\Gamma\left(\frac{\xi^2}{\gamma^2\cos^2\theta} + \xi\right)} \times \frac{\Gamma\left(\frac{\xi^2}{\gamma^2\cos^2\theta} + 2\xi\right)}{\Gamma\left(\frac{\xi^2}{\gamma^2\cos^2\theta} + \xi\right)} &= \left(\frac{\xi^2}{\gamma^2\cos^2\theta}\right)^{-\xi} \left(1 + \frac{1-\xi}{2\xi}\,\gamma^2\cos^2\theta + O(\gamma^4)\right) \\ &\qquad \qquad \times \left(\frac{\xi^2}{\gamma^2\cos^2\theta}\right)^{\xi} \left(1 + \frac{3\xi - 1}{2\xi}\,\gamma^2\cos^2\theta + O(\gamma^4)\right) \\ &\qquad \qquad = 1 + \gamma^2\cos^2\theta + O(\gamma^4). \end{split}$$

Similarly,

$$\frac{\Gamma\left(\frac{\xi^2}{\gamma^2 \sin^2 \theta}\right)}{\Gamma\left(\frac{\xi^2}{\gamma^2 \sin^2 \theta} - \xi\right)} \times \frac{\Gamma\left(\frac{\xi^2}{\gamma^2 \sin^2 \theta} - 2\xi\right)}{\Gamma\left(\frac{\xi^2}{\gamma^2 \sin^2 \theta} - \xi\right)} = 1 + \gamma^2 \sin^2 \theta + O(\gamma^4).$$

Hence

$$\frac{\Gamma\left(\frac{\xi^2}{\gamma^2\cos^2\theta}\right)\Gamma\left(\frac{\xi^2}{\gamma^2\cos^2\theta}+2\xi\right)}{\Gamma^2\left(\frac{\xi^2}{\gamma^2\cos^2\theta}+\xi\right)}\,\frac{\Gamma\left(\frac{\xi^2}{\gamma^2\sin^2\theta}\right)\Gamma\left(\frac{\xi^2}{\gamma^2\sin^2\theta}-2\xi\right)}{\Gamma^2\left(\frac{\xi^2}{\gamma^2\sin^2\theta}-\xi\right)}=1+\gamma^2+O(\gamma^4),$$

and the announced result follows from (C.3).

Proof of Proposition 3

The proof is given for the case $\theta \notin \{0, \pi/2\}$ only (the proof is simpler if $\theta \in \{0, \pi/2\}$, and is omitted).

(i) As $\gamma \to 0$, Lemma C.1 ascertains that

$$\left(\frac{\xi^{2}}{\gamma^{2}\cos^{2}\theta}\right)^{-\xi(z-1)} \frac{\Gamma\left(\frac{\xi^{2}}{\gamma^{2}\cos^{2}\theta} + \xi(z-1)\right)}{\Gamma\left(\frac{\xi^{2}}{\gamma^{2}\cos^{2}\theta}\right)} = 1 + \frac{\gamma^{2}\cos^{2}\theta}{2\xi^{2}}\xi(z-1)(\xi(z-1)-1) + \rho_{1}(\gamma,z)$$

$$= 1 + \frac{\gamma^{2}\cos^{2}\theta}{2}(z-1)(z-1-\frac{1}{\xi}) + \rho_{1}(\gamma,z),$$

where $|\rho_1(\gamma, z)| = O(\gamma^4(1+|z-1|)^2)$, provided $|z-1| = o(\gamma^{-2})$. Similarly,

$$\left(\frac{\xi^2}{\gamma^2 \sin^2 \theta}\right)^{-\xi(1-z)} \frac{\Gamma\left(\frac{\xi^2}{\gamma^2 \sin^2 \theta} + \xi(1-z)\right)}{\Gamma\left(\frac{\xi^2}{\gamma^2 \sin^2 \theta}\right)} = 1 + \frac{\gamma^2 \sin^2 \theta}{2\xi^2} \xi(1-z)(\xi(1-z)-1) + \rho_2(\gamma, z)$$

$$= 1 + \frac{\gamma^2 \sin^2 \theta}{2} (z-1)(z-1+\frac{1}{\xi}) + \rho_2(\gamma, z),$$

where $|\rho_2(\gamma, z)| = O(\gamma^4(1+|z-1|)^2)$, provided $|z-1| = o(\gamma^{-2})$. Also, for any $\Delta \in \mathbb{R}$, the binomial series expands as

$$(1 + \Delta \gamma^2)^{z-1} = 1 + \Delta \gamma^2 (z - 1) + \rho_3(\gamma, z)$$

where $|\rho_3(\gamma, z)| = O(\gamma^4 |(z-1)(z-2)|)$, provided $|z-1| = o(\gamma^{-2})$ as $\gamma \to 0$. Multiplying these factors yields

$$(1 + \Delta \gamma^2)^{z-1} \left(\frac{1}{\tan^2 \theta}\right)^{\xi(z-1)} \frac{\Gamma\left(\frac{\xi^2}{\gamma^2 \cos^2 \theta} + \xi(z-1)\right)}{\Gamma\left(\frac{\xi^2}{\gamma^2 \cos^2 \theta}\right)} \frac{\Gamma\left(\frac{\xi^2}{\gamma^2 \sin^2 \theta} + \xi(1-z)\right)}{\Gamma\left(\frac{\xi^2}{\gamma^2 \sin^2 \theta}\right)}$$

$$= 1 + \frac{\gamma^2}{2} (z-1) \left(\cos^2 \theta \left(z-1-\frac{1}{\xi}\right) + \sin^2 \theta \left(z-1+\frac{1}{\xi}\right) + 2\Delta\right) + \rho(\gamma, z)$$

$$= 1 + \frac{\gamma^2}{2} (z-1) \left(z-1-\frac{\cos 2\theta}{\xi} + 2\Delta\right) + \rho(\gamma, z)$$

where $|\rho(\gamma, z)| = O(\gamma^4(1 + |z - 1|)^2)$, provided $|z - 1| = o(\gamma^{-2})$. Taking $\Delta = \frac{1}{2}(1 + \frac{\cos 2\theta}{\xi})$ yields the announced result.

(ii) It can be checked from (12) and Lemma 1 that

$$L_{\nu,\gamma,\xi,\theta}(x) = \frac{1}{\nu\xi} \frac{1}{\Gamma\left(\frac{\xi^2}{\gamma^2\cos^2\theta}\right) \Gamma\left(\frac{\xi^2}{\gamma^2\sin^2\theta}\right)} \left(\tan^2\theta\right)^{\xi} G_{1,1}^{1,1} \left(\tan^2\theta \left(\frac{x}{\nu}\right)^{1/\xi} \left| -\frac{\xi^2}{\gamma^2\frac{Als\sin^2\theta}{\gamma^2\cos^2\theta} - \xi} \right| \right).$$

From Bateman (1954, item (15), p. 349), we have

$$\left\{G_{1,1}^{1,1}\left(\cdot \Big|_{a}^{1-b}\right)\right\}^{2} = \frac{\Gamma^{2}(a+b)}{\Gamma(2a+2b)}G_{1,1}^{1,1}\left(\cdot \Big|_{2a}^{1-2b}\right),$$

which yields

$$\mathcal{M}\left(\left\{G_{1,1}^{1,1}\left(\cdot\left|\begin{smallmatrix} 1-b\\ a\end{smallmatrix}\right)\right\}^2;z\right)=\frac{\Gamma^2(a+b)}{\Gamma(2a+2b)}\Gamma(z+2a)\Gamma(2b-z),$$

by (3). Then we obtain, after some algebraic work,

$$\mathcal{M}(L_{\nu,\gamma,\xi,\theta}^{2};z) = \frac{1}{\xi} \nu^{z-2} \left(\frac{1}{\tan^{2}\theta}\right)^{\xi(z-2)} \frac{\mathcal{B}\left(\frac{2\xi^{2}}{\gamma^{2}\cos^{2}\theta}, \frac{2\xi^{2}}{\gamma^{2}\sin^{2}\theta}\right)}{\mathcal{B}^{2}\left(\frac{\xi^{2}}{\gamma^{2}\cos^{2}\theta}, \frac{\xi^{2}}{\gamma^{2}\sin^{2}\theta}\right)} \times \frac{\Gamma\left(\frac{2\xi^{2}}{\gamma^{2}\cos^{2}\theta} + \xi(z-2)\right)}{\Gamma\left(\frac{2\xi^{2}}{\gamma^{2}\cos^{2}\theta}\right)} \frac{\Gamma\left(\frac{2\xi^{2}}{\gamma^{2}\sin^{2}\theta} + \xi(2-z)\right)}{\Gamma\left(\frac{2\xi^{2}}{\gamma^{2}\sin^{2}\theta}\right)}, \quad (C.4)$$

where $\mathcal{B}(\cdot,\cdot)$ is the Beta function, on the strip of holomorphy

$$S_{L^2_{\nu,\gamma,\xi,\theta}} = \left\{ z \in \mathbb{C} : 2 - \frac{2\xi}{\gamma^2 \cos^2 \theta} < \Re(z) < 2 + \frac{2\xi}{\gamma^2 \sin^2 \theta} \right\}. \tag{C.5}$$

Now, resorting to Lemma C.1, one obtains, as $\gamma \to 0$,

$$\nu^{z-2} \left(\frac{1}{\tan^2 \theta} \right)^{\xi(z-2)} \frac{\Gamma\left(\frac{2\xi^2}{\gamma^2 \cos^2 \theta} + \xi(z-2) \right)}{\Gamma\left(\frac{2\xi^2}{\gamma^2 \cos^2 \theta} \right)} \frac{\Gamma\left(\frac{2\xi^2}{\gamma^2 \sin^2 \theta} + \xi(2-z) \right)}{\Gamma\left(\frac{2\xi^2}{\gamma^2 \sin^2 \theta} \right)} = 1 + \omega(\gamma, z),$$

where $|\omega(\gamma,z)| = O(\gamma^2(1+|z-2|))$ for $|z-2| = o(\gamma^{-2})$. On the other hand, for any a,b>0,

$$\begin{split} \frac{\mathcal{B}\left(2a,2b\right)}{\mathcal{B}^{2}\left(a,b\right)} &= \frac{\Gamma(2a)}{\Gamma(a)} \frac{\Gamma(2b)}{\Gamma(b)} \frac{\Gamma(a+b)}{\Gamma(2(a+b))} \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \\ &= \frac{1}{2\sqrt{\pi}} \frac{\Gamma(a+1/2)}{\Gamma(a)} \frac{\Gamma(b+1/2)}{\Gamma(b)} \frac{\Gamma(a+b)}{\Gamma(a+b+1/2)} \quad \text{ (duplication formula)}. \end{split}$$

Now, as $a, b \to \infty$, use (C.1) and see

$$\begin{split} \frac{\mathcal{B}\left(2a,2b\right)}{\mathcal{B}^{2}\left(a,b\right)} &= \frac{1}{2\sqrt{\pi}} \, a^{1/2} (1 + O(a^{-1})) \, b^{1/2} (1 + O(b^{-1})) \, (a+b)^{-1/2} (1 + O(a+b)^{-1})) \\ &= \frac{1}{2\sqrt{\pi}} \frac{1}{\left(\frac{1}{a} + \frac{1}{k}\right)^{1/2}} \, (1 + O(a^{-1}) + O(b^{-1}) + O((a+b)^{-1})). \end{split}$$

With $a = \frac{\xi^2}{\gamma^2 \cos^2 \theta}$ and $b = \frac{\xi^2}{\gamma^2 \sin^2 \theta}$, see that $1/a + 1/b = \gamma^2/\xi^2$, hence

$$\frac{\mathcal{B}\left(\frac{2\xi^2}{\gamma^2\cos^2\theta}, \frac{2\xi^2}{\gamma^2\sin^2\theta}\right)}{\mathcal{B}^2\left(\frac{\xi^2}{\gamma^2\cos^2\theta}, \frac{\xi^2}{\gamma^2\sin^2\theta}\right)} = \frac{1}{2\sqrt{\pi}} \frac{\xi}{\gamma} (1 + O(\gamma^2)).$$

It follows

$$\mathcal{M}(L^2_{\nu,\gamma,\xi,\theta};z) = \frac{1}{2\sqrt{\pi}} \frac{1}{\gamma} (1 + \omega(\gamma,z)),$$

where $|\omega(\gamma, z)| = O(\gamma^2(1 + |z - 2|))$ for $|z - 2| = o(\gamma^{-2})$.

Proof of Theorem 2

Apply Parseval's identity (8) to $\hat{f} - f$ to get

$$\int_0^\infty x^{2c-1} \left(\hat{f}(x) - f(x) \right)^2 dx = \frac{1}{2\pi} \int_{\Re(z) = c} |\mathcal{M}(\hat{f} - f; z)|^2 dz, \tag{C.6}$$

for any $c \in \mathcal{S}_{\hat{f}-f}$. Then we resort to the following lemma.

Lemma C.2. Under Assumptions 1-4, the strip of holomorphy $S_{\hat{f}-f}$ of $\hat{f}-f$ is such that

$$\mathcal{S}_{\hat{f}-f} \supseteq \left\{ z \in \mathbb{C} : 1 - \min(\alpha, \xi/\cos^2\theta) \le \Re(z) \le 1 + \min(\beta, \xi/\sin^2\theta) \right\}.$$

Proof. From (19) and (A.1),

$$\mathcal{M}(\hat{f}; z) = \frac{1}{n} \sum_{k=1}^{n} \mathcal{M}(L_{\eta}^{(k)}; z) X_{k}^{z-1},$$

with $S_{\hat{f}} = \bigcap_{k=1}^{n} S_{L_{\eta}^{(k)}}$. From (13) and (21), we see that

$$\begin{split} \mathcal{S}_{L_{\eta}^{(k)}} &= \left\{z \in \mathbb{C} : 1 - \frac{\xi(\eta^2 + X_k)}{\eta^2 \cos^2 \theta} < \Re(z) < 1 + \frac{\xi(\eta^2 + X_k)}{\eta^2 \sin^2 \theta} \right\} \\ &\supseteq \left\{z \in \mathbb{C} : 1 - \frac{\xi}{\cos^2 \theta} \leq \Re(z) \leq 1 + \frac{\xi}{\sin^2 \theta} \right\} \quad \text{for all } k, \end{split}$$

whence

$$\mathcal{S}_{\hat{f}} \supseteq \left\{ z \in \mathbb{C} : 1 - \frac{\xi}{\cos^2 \theta} \le \Re(z) \le 1 + \frac{\xi}{\sin^2 \theta} \right\}.$$

Assumption 2 implies that

$$\{z \in \mathbb{C} : 1 - \alpha \le \Re(z) \le 1 + \beta\} \subseteq S_f. \tag{C.7}$$

The result follows as $\mathcal{S}_{\hat{f}-f} = \mathcal{S}_{\hat{f}} \cap \mathcal{S}_f$, from (A.1).

Lemma C.2 ascertains that (C.6) is valid for any $c \in [1 - \min(\alpha, \xi/\cos^2\theta), 1 + \min(\beta, \xi/\sin^2\theta)]$. In particular, it is true for c satisfying (31), as $1 - \min(\alpha, \xi/\cos^2\theta) \le \max(2 - \alpha, 1 - \xi/\cos^2\theta)$ and $1 + \min(\beta, \xi/\sin^2\theta) \ge \min((3 + 2\beta)/4, 1 + \xi/\sin^2\theta)$.

Now, because $\mathcal{M}(\hat{f}-f;z)$ is holomorphic on $\mathcal{S}_{\hat{f}-f}$ and $\hat{f}-f$ is real-valued, $\mathcal{M}^*(\hat{f}-f;z)=\mathcal{M}(\hat{f}-f;z^*)$, where \cdot^* denotes complex conjugation. Hence, $|\mathcal{M}(\hat{f}-f;z)|^2=\mathcal{M}(\hat{f}-f;z)\times\mathcal{M}(\hat{f}-f;z^*)$. By (A.1), $\mathcal{M}(\hat{f}-f;z)=\mathcal{M}(\hat{f};z)-\mathcal{M}(f;z)$. Hence (C.6) is

$$\int_{0}^{\infty} x^{2c-1} \left(\hat{f}(x) - f(x) \right)^{2} dx = \frac{1}{2\pi} \int_{\Re(z) = c} \mathcal{M}(\hat{f}; z) \mathcal{M}(\hat{f}; z^{*}) dz$$
$$- \frac{1}{2\pi} \int_{\Re(z) = c} \mathcal{M}(f; z) \mathcal{M}(\hat{f}; z^{*}) dz$$
$$- \frac{1}{2\pi} \int_{\Re(z) = c} \mathcal{M}(\hat{f}; z) \mathcal{M}(f; z^{*}) dz$$
$$+ \frac{1}{2\pi} \int_{\Re(z) = c} \mathcal{M}(f; z) \mathcal{M}(f; z^{*}) dz$$
$$\doteq \widehat{\mathbb{A}} + \widehat{\mathbb{B}} + \widehat{\mathbb{C}} + \widehat{\mathbb{D}},$$

and

$$\mathbb{E}\left(\int_{0}^{\infty} x^{2c-1} \left(\hat{f}(x) - f(x)\right)^{2} dx\right) = \mathbb{E}\left(\widehat{\mathbb{A}}\right) + \mathbb{E}\left(\widehat{\mathbb{C}}\right) + \mathbb{D}.$$
 (C.8)

From (20), we have

$$\begin{split} \mathcal{M}(\hat{f};z)\mathcal{M}(\hat{f};z^*) &= \frac{1}{n^2} \sum_{k=1}^n \mathcal{M}(L_{\eta}^{(k)};z) \mathcal{M}(L_{\eta}^{(k)};z^*) X_k^{2\Re(z)-2} \\ &+ \frac{1}{n^2} \sum_{k=1}^n \sum_{k' \neq k} \mathcal{M}(L_{\eta}^{(k)};z) \mathcal{M}(L_{\eta}^{(k')};z^*) X_k^{z-1} X_{k'}^{z^*-1}, \end{split}$$

whence

$$\widehat{\mathbb{A}} = \frac{1}{n^2} \sum_{k=1}^{n} X_k^{2c-2} \frac{1}{2\pi} \int_{\Re(z)=c} |\mathcal{M}(L_{\eta}^{(k)}; z)|^2 dz
+ \frac{1}{n^2} \sum_{k=1}^{n} \sum_{k' \neq k} \frac{1}{2\pi} \int_{\Re(z)=c} \mathcal{M}(L_{\eta}^{(k)}; z) \mathcal{M}(L_{\eta}^{(k')}; z^*) X_k^{z-1} X_{k'}^{z^*-1} dz. \quad (C.9)$$

Given that $c \in \bigcap_{k=1}^n \mathcal{S}_{L^{(k)}_{\eta}}$, it holds for all k

$$\frac{1}{2\pi} \int_{\Re(z)=c} |\mathcal{M}(L_{\eta}^{(k)};z)|^2 dz = \int_0^{\infty} x^{2c-1} L_{\eta}^{(k)^2}(x) dx = \mathcal{M}(L_{\eta}^{(k)^2};2c),$$

from (8) back and forth. Hence the first term in (C.9), say (A)-1, is

Note that $c \in \bigcap_{k=1}^n \mathcal{S}_{L_\eta^{(k)}} \iff 2c \in \bigcap_{k=1}^n \mathcal{S}_{L_\eta^{(k)^2}}$, as seen from (13) and (C.5).

The second term in (C.9), say (A)-2, has expectation

$$\begin{split} \mathbb{E}\left(\widehat{\mathbb{A}}\text{-}2\right) &= \left(1 - \frac{1}{n}\right) \frac{1}{2\pi} \int_{\Re(z) = c} \mathbb{E}\left(\mathcal{M}(L_{\eta}^{(k)}; z) X_{k}^{z-1}\right) \mathbb{E}\left(\mathcal{M}(L_{\eta}^{(k)}; z^{*}) X_{k}^{z^{*}-1}\right) \, dz \\ &\doteq \left(1 - \frac{1}{n}\right) \mathbb{E}\left(\widehat{\mathbb{A}}\text{-}2\text{-}\mathrm{a}\right), \end{split}$$

for a generic $k \in \{1, ..., n\}$. Interchanging expectation and integral is justified as c belongs to both \mathcal{S}_f and $\mathcal{S}_{L_n^{(k)}}$ (for all k), making the corresponding integrals both absolutely convergent. Likewise,

$$\mathbb{E}\left(\mathbb{B}\right) = -\frac{1}{2\pi} \int_{\Re(z)=c} \mathcal{M}(f;z) \mathbb{E}\left(\mathcal{M}(L_{\eta}^{(k)};z^*) X_k^{z^*-1}\right) dz$$
and
$$\mathbb{E}\left(\mathbb{C}\right) = -\frac{1}{2\pi} \int_{\Re(z)=c} \mathcal{M}(f;z^*) \mathbb{E}\left(\mathcal{M}(L_{\eta}^{(k)};z) X_k^{z-1}\right) dz.$$

It is easily seen that

$$\mathbb{E}\left(\widehat{\mathbb{Q}}-2-a\right) + \mathbb{E}\left(\widehat{\mathbb{C}}\right) + \mathbb{E}\left(\widehat{\mathbb{C}}\right) + \widehat{\mathbb{D}} = \frac{1}{2\pi} \int_{\Re(z)=c} \left| \mathbb{E}\left(\mathcal{M}(L_{\eta}^{(k)};z)X_{k}^{z-1}\right) - \mathcal{M}(f;z) \right|^{2} dz, \tag{C.11}$$

which is clearly the integrated squared bias term, say IB_c^2 , in the Weighted Mean Integrated Square Error expression (C.8). The remaining $\mathbb{E}\left(\mathbb{A}-1\right)-\frac{1}{n}\mathbb{E}\left(\mathbb{A}-2-a\right)$ thus forms the integrated variance, say IV_c . Below, we show that $\mathrm{IB}_c^2=O(\eta^4)$ and $\mathrm{IV}_c=O((n\eta)^{-1})$ as $n\to\infty$, under our assumptions.

Integrated squared bias term: Under condition (31), $c > 2 - \alpha$, hence $0 < \frac{c + \alpha - 2}{c + \alpha - 1} < 1$. Let $\epsilon \doteq \epsilon_n \to 0$ as

 $n \to \infty$, such that $\epsilon \sim \eta^b$ for

$$0 < b < \frac{c+\alpha-2}{c+\alpha-1}.\tag{C.12}$$

Note that this implies $\eta/\epsilon \to 0$ as $n \to \infty$. Write

$$\mathcal{M}(L_{\eta}^{(k)};z)X_{k}^{z-1} = \mathcal{M}(L_{\eta}^{(k)};z)X_{k}^{z-1} \mathbb{I}_{\{X_{k} \geq \eta^{2}\left(\frac{1}{\epsilon^{2}}-1\right)\}} + \mathcal{M}(L_{\eta}^{(k)};z)X_{k}^{z-1} \mathbb{I}_{\{X_{k} < \eta^{2}\left(\frac{1}{\epsilon^{2}}-1\right)\}}, \tag{C.13}$$

where $I_{\{\cdot\}}$ is the indicator function, equal to 1 if the condition $\{\cdot\}$ is satisfied and 0 otherwise. See that $X_k \geq \eta^2 \left(\frac{1}{\epsilon^2} - 1\right) \iff \frac{\eta}{\sqrt{\eta^2 + X_k}} \leq \epsilon \to 0$, hence one can make use of the asymptotic expansion (16) with (21)-(22) to write, as $n \to \infty$,

$$\mathcal{M}(L_{\eta}^{(k)};z)X_{k}^{z-1}\mathbb{I}_{\{X_{k}\geq\eta^{2}\left(\frac{1}{\epsilon^{2}}-1\right)\}}=\left(1+\frac{1}{2}\frac{\eta^{2}}{\eta^{2}+X_{k}}z(z-1)+R_{k}(\eta,z)\right)X_{k}^{z-1}\mathbb{I}_{\{X_{k}\geq\eta^{2}\left(\frac{1}{\epsilon^{2}}-1\right)\}}$$

where $|R_k(\eta,z)| \leq C \frac{\eta^4}{(\eta^2 + X_k)^2} (1 + |z-1|)^2$ for some constant C. From this and (C.13) we have

$$\begin{split} \mathbb{E}\left(\mathcal{M}(L_{\eta}^{(k)};z)X_{k}^{z-1}\right) - \mathcal{M}(f;z) &= \mathbb{E}\left(X_{k}^{z-1}\mathbb{I}_{\left\{X_{k} \geq \eta^{2}\left(\frac{1}{\epsilon^{2}}-1\right)\right\}}\right) - \mathbb{E}\left(X_{k}^{z-1}\right) \\ &+ \frac{1}{2}\eta^{2}z(z-1)\mathbb{E}\left(\frac{1}{\eta^{2}+X_{k}}X_{k}^{z-1}\mathbb{I}_{\left\{X_{k} \geq \eta^{2}\left(\frac{1}{\epsilon^{2}}-1\right)\right\}}\right) \\ &+ \mathbb{E}\left(R_{k}(\eta,z)X_{k}^{z-1}\mathbb{I}_{\left\{X_{k} \geq \eta^{2}\left(\frac{1}{\epsilon^{2}}-1\right)\right\}}\right) \\ &+ \mathbb{E}\left(\mathcal{M}(L_{\eta}^{(k)};z)X_{k}^{z-1}\mathbb{I}_{\left\{X_{k} < \eta^{2}\left(\frac{1}{\epsilon^{2}}-1\right)\right\}}\right), \end{split}$$

that is,

$$\mathbb{E}\left(\mathcal{M}(L_{\eta}^{(k)};z)X_{k}^{z-1}\right) - \mathcal{M}(f;z) = \frac{1}{2}\eta^{2}z(z-1)\mathbb{E}\left(\frac{1}{\eta^{2} + X_{k}}X_{k}^{z-1}\mathbb{I}_{\{X_{k} \geq \eta^{2}\left(\frac{1}{\epsilon^{2}} - 1\right)\}}\right) + \mathbb{E}\left(\left(\mathcal{M}(L_{\eta}^{(k)};z) - 1\right)X_{k}^{z-1}\mathbb{I}_{\{X_{k} < \eta^{2}\left(\frac{1}{\epsilon^{2}} - 1\right)\}}\right) + \mathbb{E}\left(R_{k}(\eta, z)X_{k}^{z-1}\mathbb{I}_{\{X_{k} \geq \eta^{2}\left(\frac{1}{\epsilon^{2}} - 1\right)\}}\right).$$

Hence the integrated squared bias (C.11) is such that

$$\begin{split} \mathrm{IB}_{c}^{2} &\leq 2 \left(\frac{1}{4} \eta^{4} \frac{1}{2\pi} \int_{\Re(z) = c} \left| z(z - 1) \mathbb{E} \left(\frac{1}{\eta^{2} + X_{k}} X_{k}^{z - 1} \mathbb{I}_{\{X_{k} \geq \eta^{2} \left(\frac{1}{\epsilon^{2}} - 1 \right) \}} \right) \right|^{2} dz \\ &+ \frac{1}{2\pi} \int_{\Re(z) = c} \left| \mathbb{E} \left(\left(\mathcal{M}(L_{\eta}^{(k)}; z) - 1 \right) X_{k}^{z - 1} \mathbb{I}_{\{X_{k} < \eta^{2} \left(\frac{1}{\epsilon^{2}} - 1 \right) \}} \right) \right|^{2} dz \\ &+ \frac{1}{2\pi} \int_{\Re(z) = c} \left| \mathbb{E} \left(R_{k}(\eta, z) X_{k}^{z - 1} \mathbb{I}_{\{X_{k} \geq \eta^{2} \left(\frac{1}{\epsilon^{2}} - 1 \right) \}} \right) \right|^{2} dz \right) \\ &\stackrel{=}{=} 2 \times \left(\mathbb{E} + \mathbb{E} + \mathbb{G} \right). \end{split}$$
(C.14)

As $\frac{1}{(\eta^2+X_k)} \leq \frac{1}{X_k}$, $\textcircled{E} \leq \frac{1}{4}\eta^4 \frac{1}{2\pi} \int_{\Re(z)=c} \left| z(z-1) \mathbb{E}\left(X_k^{z-2}\right) \right|^2 dz$. By combining (A.4) and (A.7), it is seen that $z(z-1) \mathbb{E}\left(X_k^{z-2}\right) = z(z-1) \mathcal{M}(f;z-1) = \mathcal{M}(xf''(x);z)$ if $z-1 \in \mathcal{S}_f$, which is the case here by (C.7)

and because $\Re(z) = c > 2 - \alpha$ by (31). With (8), $\widehat{\mathbb{E}} \leq \frac{1}{4} \eta^4 \int_0^\infty x^{2c+1} f''^2(x) dx$, hence

Given that $c \in \bigcap_{k=1}^n \mathcal{S}_{L_{\eta}^{(k)}}$, $\sup_{z \in \mathbb{C}: \Re(z) = c} \max_{k=1,\dots,n} |\mathcal{M}(L_{\eta}^{(k)}; z)| \leq C$ for some constant C and

$$\widehat{\mathbb{P}} \le (1+C)^2 \frac{1}{2\pi} \int_{\Re(z)=c} \left| \mathbb{E} \left(X_k^{z-1} \mathbb{I}_{\{X_k < \eta^2 \left(\frac{1}{\epsilon^2} - 1 \right) \}} \right) \right|^2 dz.$$

Now,

$$\mathbb{E}\left(X_k^{z-1}\mathbb{I}_{\{X_k<\eta^2\left(\frac{1}{\epsilon^2}-1\right)\}}\right) = \int_0^{\eta^2\left(\frac{1}{\epsilon^2}-1\right)} x^{z-1}f(x)\,dx = \mathcal{M}\left(f(x)\mathbb{I}_{\{x<\eta^2\left(\frac{1}{\epsilon^2}-1\right)\}};z\right).$$

Clearly the strip of holomorphy of f is contained in that of any of its restriction on \mathbb{R}^+ , so by (8) again,

$$\widehat{\mathbb{F}} \le (1+C)^2 \int_0^\infty x^{2c-1} f^2(x) \mathbb{I}_{\{x < \eta^2 \left(\frac{1}{\epsilon^2} - 1\right)\}} dx = (1+C)^2 \int_0^{\eta^2 \left(\frac{1}{\epsilon^2} - 1\right)} x^{2c-1} f^2(x) dx.$$

By Assumpion 2, $\mathbb{E}(X^{-\alpha}) < \infty$, which implies $f(x) = o(x^{\alpha-1})$ as $x \to 0$. Hence

following Example 4 in (Paris and Kaminski, 2001, Section 1.1.1). With $\epsilon \sim \eta^b$ and condition (C.12), it can be checked that this is

$$\widehat{\mathbb{E}} = o(\eta^4). \tag{C.16}$$

Finally,

$$\begin{split} |R_k(\eta,z)| \, I\!\!I_{\{X_k \geq \eta^2 \left(\frac{1}{\epsilon^2} - 1\right)\}} &\leq C \frac{\eta^4}{(\eta^2 + X_k)^2} (1 + |z - 1|)^2 I\!\!I_{\{X_k \geq \eta^2 \left(\frac{1}{\epsilon^2} - 1\right)\}} \\ &= C \frac{\eta^2}{\eta^2 + X_k} (1 + |z - 1|)^2 \frac{\eta^2}{\eta^2 + X_k} \, I\!\!I_{\{X_k \geq \eta^2 \left(\frac{1}{\epsilon^2} - 1\right)\}} \\ &\leq C \frac{\eta^2}{X_k} (1 + |z - 1|)^2 \epsilon^2, \end{split}$$

and it follows

$$\widehat{\mathbb{G}} \le C \frac{1}{2\pi} \eta^4 \epsilon^4 \int_{\Re(z) = c} (1 + |z - 1|)^2 \left| \mathbb{E} \left(X_k^{z-2} \right) \right|^2 dz.$$

The integral may be seen to be bounded by (A.8), as $z - 1 \in S_f$ for $\Re(z) = c > 2 - \alpha$ under condition (31), hence

$$\widehat{\mathbb{G}} = O(\eta^4 \epsilon^4) = o(\eta^4). \tag{C.17}$$

It follows from (C.14), (C.15), (C.16) and (C.17) that

$$\mathrm{IB}_c^2 = O(\eta^4).$$

Integrated variance term: Consider again $\epsilon \doteq \epsilon_n \to 0$ with $\eta/\epsilon \to 0$ as $n \to \infty$. Then write (C.10) as

$$\widehat{\mathbb{A}} - 1 = \frac{1}{n^2} \sum_{k=1}^{n} X_k^{2c-2} \mathcal{M}(L_{\eta}^{(k)^2}; 2c) \mathbb{I}_{\{X_k \ge \eta^2 \left(\frac{1}{\epsilon^2} - 1\right)\}} + \frac{1}{n^2} \sum_{k=1}^{n} X_k^{2c-2} \mathcal{M}(L_{\eta}^{(k)^2}; 2c) \mathbb{I}_{\{X_k < \eta^2 \left(\frac{1}{\epsilon^2} - 1\right)\}}$$

$$\stackrel{:}{=} \widehat{\mathbb{A}} - 1 - \mathbf{a} + \widehat{\mathbb{A}} - 1 - \mathbf{b}.$$

Seeing again that $X_k \geq \eta^2 \left(\frac{1}{\epsilon^2} - 1\right) \iff \frac{\eta}{\sqrt{\eta^2 + X_k}} \leq \epsilon \to 0$, one can write the expansion (17) for $\mathcal{M}(L_{\eta}^{(k)^2}; 2c)$ in A-1-a, that is, making use of (21)-(22),

$$\mathcal{M}(L_{\eta}^{(k)^2}; 2c) = \frac{1}{2\sqrt{\pi}} \frac{\sqrt{\eta^2 + X_k}}{\eta} (1 + \Omega_k(\eta, 2c)),$$

where $|\Omega_k(\eta, 2c)| = O\left(\frac{\eta^2}{\eta^2 + X_k}(1 + |2c - 2|)\right) = O(\epsilon^2)$. Also, $\sqrt{\eta^2 + X_k}/\sqrt{X_k} = \sqrt{1 + \eta^2/X_k} \le 1/\sqrt{1 - \epsilon^2} \le 1 + \epsilon^2$, for n large enough. This means that, as $n \to \infty$,

$$\mathcal{M}({L_{\eta}^{(k)}}^2;2c) = \frac{1}{2\sqrt{\pi}} \frac{\sqrt{X_k}}{\eta} (1 + \Omega_k'(\eta, 2c)),$$

where $|\Omega'_k(\eta, 2c)| \leq C\epsilon^2$ for some constant C, yielding

$$\widehat{\mathbb{A}}\text{-1-a} = \frac{1}{n^2 \eta} \frac{1}{2\sqrt{\pi}} \sum_{k=1}^n X_k^{2c-3/2} \mathbb{I}_{\{X_k \ge \eta^2 \left(\frac{1}{\epsilon^2} - 1\right)\}} (1 + O(\epsilon^2)).$$

Assumption 2 ensures that $f(x) = o(x^{\alpha-1})$ as $x \to 0$, whence

$$\mathbb{P}\left(X_k \ge \eta^2 \left(\frac{1}{\epsilon^2} - 1\right)\right) = 1 - \int_0^{\eta^2 \left(\frac{1}{\epsilon^2} - 1\right)} f(x) \, dx = 1 - O\left(\left(\frac{\eta^2}{\epsilon^2}\right)^{\alpha}\right) = 1 - o(1).$$

It follows

$$\mathbb{E}\left(\widehat{\Delta}-1-\mathbf{a}\right) = \frac{1}{n\eta} \frac{1}{2\sqrt{\pi}} \mathcal{M}(f; 2c - 1/2) \left(1 - o(1)\right) \left(1 + O(\epsilon^2)\right).$$

This is $O((n\eta)^{-1})$ if $2c - 1/2 \in \mathcal{S}_f$, which is the case under condition (31).

Now, because $2c \in \bigcap_{k=1}^n \mathcal{S}_{L_{\eta}^{(k)^2}}$, each $|\mathcal{M}(L_{\eta}^{(k)^2}; 2c)|$ is finite and $\max_{1 \leq k \leq n} |\mathcal{M}(L_{\eta}^{(k)^2}; 2c)| \leq C$, for C some constant. Hence

$$\widehat{A}-1-b \le \frac{C}{n^2} \sum_{k=1}^{n} X_k^{2c-2} \mathbb{I}_{\{X_k < \eta^2 \left(\frac{1}{\epsilon^2} - 1\right)\}}.$$
(C.18)

Similarly to above,

$$\mathbb{E}\left(X^{2c-2}\mathbb{I}_{\{X<\eta^2\left(\frac{1}{\epsilon^2}-1\right)\}}\right) = \int_0^{\eta^2\left(\frac{1}{\epsilon^2}-1\right)} x^{2c-2}f(x)\,dx = o\left(\left(\frac{\eta^2}{\epsilon^2}\right)^{2c-2+\alpha}\right)$$

as $n \to \infty$, making use again of $f(x) = o(x^{\alpha-1})$ as $x \to 0$. Taking expectations in (C.18) yields

$$\mathbb{E}\left(\widehat{\mathbf{A}}\text{-}1\text{-}\mathrm{b}\right) = o\left(n^{-1} \left(\frac{\eta^2}{\epsilon^2}\right)^{2c-2+\alpha}\right).$$

It can be checked that, for $c \ge 3/4 - \alpha/2$, $\left(\frac{\eta^2}{\epsilon^2}\right)^{2c-2+\alpha} = O(\eta^{-1})$. Hence, $\mathbb{E}\left(\widehat{\mathbb{A}}\text{-1-b}\right) = o((n\eta)^{-1})$, leading

to

$$\mathbb{E}(\widehat{\mathbb{A}}-1) = O((n\eta)^{-1}).$$

The dominant term in $\mathbb{E}(\widehat{\mathbb{Q}}-2-a)$ can be understood to be $\widehat{\mathbb{D}}$. Yet,

$$\widehat{\mathbb{D}} = \frac{1}{2\pi} \int_{\Re(z)=c} \mathcal{M}(f;z) \mathcal{M}(f;z^*) dz$$

$$= \frac{1}{2\pi} \int_{\Re(z)=c} |\mathcal{M}(f;z)|^2 dz$$

$$= \int_0^\infty x^{2c-1} f^2(x) dx$$

which is bounded for any $c \in \mathcal{S}_f$. Hence $\mathbb{E}\left(\widehat{\mathbb{A}}\text{-2-a}\right)/n = O(n^{-1}) = o((n\eta)^{-1})$, which shows

$$IV_c = O((n\eta)^{-1}).$$

Proposition C.1. Under Assumptions 1-4, with $\alpha > 1/2$ in Assumption 2 and $\xi/\cos^2\theta > 1/2$ in Assumption 3, the Mellin-Meijer kernel density estimator (19) is such that $\mathbb{E}\left(\int_0^\infty \left(\hat{f}(x) - f(x)\right)^2 dx\right) = O(\eta^4) + O((n\eta)^{-1}) \to 0$ as $n \to \infty$, provided that $\int_0^\infty (xf''(x))^2 dx < \infty$.

Proof. We just show that (C.15) holds true if $\int_0^\infty (xf''(x))^2 dx < \infty$. From (C.14),

$$\widehat{\mathbb{E}} \leq \frac{1}{4} \eta^4 \frac{1}{2\pi} \int_{\Re(z) = c} \left| z(z - 1) \mathbb{E} \left(X_k^{z - 2} \mathbb{I}_{\{X_k \geq \eta^2 \left(\frac{1}{\epsilon^2} - 1\right)\}} \right) \right|^2 dz.$$

Now,

$$\mathbb{E}\left(X_k^{z-2}\mathbb{I}_{\{X_k\geq \eta^2\left(\frac{1}{\epsilon^2}-1\right)\}}\right) = \int_{\eta^2\left(\frac{1}{\epsilon^2}-1\right)}^{\infty} x^{z-2}f(x)\,dx = \mathcal{M}\left(f(x)\mathbb{I}_{\{x\geq \eta^2\left(\frac{1}{\epsilon^2}-1\right)\}}; z-1\right).$$

The strip of holomorphy of $f(x) \mathbb{I}_{\{x \geq \cdot\}}$ is $(-\infty, 1 + \beta)$, as $f(x) \mathbb{I}_{\{x \geq \cdot\}} \equiv 0$ for $x \simeq 0$ ('flat' head). So for any $c \leq 1 + \beta$,

$$\widehat{\mathbb{E}} \leq \frac{1}{4} \eta^4 \frac{1}{2\pi} \int_{\Re(z)=c} \left| z(z-1) \mathcal{M} \left(f(x) \mathbb{I}_{\{x \geq \eta^2 \left(\frac{1}{\epsilon^2} - 1\right)\}}; z - 1 \right) \right|^2 dz
= \frac{1}{4} \eta^4 \int_0^\infty x^{2c-1} (xf''(x))^2 \mathbb{I}_{\{x \geq \eta^2 \left(\frac{1}{\epsilon^2} - 1\right)\}} dx
\leq \frac{1}{4} \eta^4 \int_0^\infty x^{2c-1} (xf''(x))^2 dx,$$

by (8). Taking c = 1/2 yields the result, as $\int_0^\infty (xf''(x))^2 dx < \infty$.

References

Bateman, H., Table of integral transforms, Vol. 1, McGraw-Hill, New York, 1954.

Fields, J.L. (1970), The uniform asymptotic expansion of a ratio of Gamma functions, In: Proc. Int. Conf. on Constructive Function Theory, Varna, May 1970, 171-176.

Johnson, N.L., Kotz, S. and Balakrishnan, N., Continuous Univariate Distributions, Vol. 2, Wiley Series in Probability and Statistics, 2nd Edition, 1994.

Paris, R.B. and Kaminski, D. (2001), Asymptotics and Mellin-Barnes integrals, Cambridge University Press.

Sneddon, I.N., The Use of Integral Transforms, McGraw-Hill, New York, 1974.

Temme, N.M., An Introduction to Classical Functions of Mathematical Physics, Wiley, New York, 1996.

Tricomi, F.G. and Erdélyi, A. (1951), The asymptotic expansion of a ratio of Gamma functions, Pacific J. Math., 1, 133-142.