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A Operational properties of the Mellin transform

The operational properties of the Mellin transform include:

M (iaqfq;z) :zQ;aq/\/l(fq;z), 2 e ﬁlsfq,al,...,aQeR (A1)
M(flaz);z) = a*M(f;2),  z€SpaeRT (A.2)
M(fa):2) = oM D). 2 espae o) (A3)

M@ f(z);2) = M(fiz+y), z2+y€eSpyeC (A.4)
M(log™(z) f(z); 2) = W, zeSpneN (A.5)
M <ZZ£($); z> — (D) (z =)z —n+1)... (2 = DYM(f; 2 — n), (A.6)
s—neS,neN
M <x”§;‘£(a@),z> =(-D"2(z+1)...(z4+n—1M(f; 2), (A.7)
zeSpneN
M <(xdi>n F(2); z) = (“1)""M(f;2),  zeSpneN, (A.8)

where (x%) is the differential operator (‘Mellin derivative’). Proofs of these results are straightforward;

see Sneddon (1974, Chapter 4).
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B Meijer parameterisation of the most common distributions on R*

Common name Density Parameters v y £ 0
Chi flz) = % k>0 NG L 1 0
Chi-squared f(z) = W k>0 k % 1 0
Erlang fl@) = St p>0keN | uk i1 0
Gamma flz) = Fﬁ(:) role=hz a, >0 3 & 1 0
Maxwell fz) = U;(% 22e—1%/(20%) 2 o >0 V3o % % 0
Nakagami f(z) = F(%Qm p2m—1o="g m, >0 VQ ﬁ % 0
Rayleigh flz) = %e_;:? oc>0 V2o % % 0
Stacy )= et adpso a(8)T gy b
Weibull fl@)=1 (5)"*1 () >0 B 1 1 0
Beta prime f(z) = % a,8>0 a/p \/é + % 1 tan~! 3
Burr f(x) =ck % ¢, k>0 1 % 1+ % % tan—1 \/%
Dagum f@) = e a,b,p >0 b L+l 1
Fisher-Snedecor flz) = ﬁ(f{:; I%_;ﬁdg di,d2 >0 1 \/ﬁ 1 tan! %
2 %) (g
Generalised Pareto  f(z) = 1 (1 + %x) e g, >0 Z VCF+T 1 tan '/
Log-logistic fla)=2 <1<f()f);>2 05> 0 o 21 s
Singh-Maddala flx) = % m 93;; — a,b,qg>0 qlb/a % 1+ % % tan—1 \/%
Amoroso f(z) = F(‘ZEU (g)ap_l e=@/) 4 o>0,p£0| callr |p‘1/& \T}I x (1 _ I%\)
Fréchet flay=2 (2" e () a,s>0 s 1 1 r
Inverse Gamma f(z) = lfzz)x_o‘_le_ﬁ/x o, B3>0 g 1 1 5
Levy N = . -

Table B.1: Meijer parameterisation (v, vy, &, 6 in L, - ¢ 9, Section 3) for the most common RT-supported
densities, ordered according to the values of : § =0, 6 € (0,7/2) and § = 7/2. The Amoroso distribution
includes the cases # = 0 an 6 = 7/2, depending on the sign of its parameter p.




C Proofs

First we state a technical lemma that will be used repeatedly in the proofs below. Tricomi and Erdélyi
(1951) gave the following asymptotic expansion for the ratio of two Gamma functions. Let t,«, 5 € C.

Then, as [t| — oo,

Tit+a) asf(s~1 TA+a—p) _atap, .1
T+ ﬁ(;:oldf(l—i—a—ﬁ—k‘)BkJr (@) 5 + Bur(t) | (C.1)

where |Rys(t)] = O(]t|=™), provided that |a/,|3| are bounded and |arg(t + a)| < 7. Here B,ia) (x) are the
generalised Bernoulli polynomials, which are polynomials in a and z of degree k, see Temme (1996, Section
1.1). The first such polynomials are B(()a) (x) =1, B%a) () =z — a/2 and Béa) (r) = (3a® + 1222 — a(1 +
12z))/12. The following result, proved in Fields (1970), essentially gives a uniform version of (C.1) which

allows |a| and |3] to grow ‘large’ as well, if more slowly than |¢|.
Lemma C.1. Let t,a, € C. Then, for all M =1,2,..., one has, as |t| — oo,

Pit+a)  op(1 T+a=8) _aiap, 1
T+ (kz_:_()klr(1+a—5_k)3k (@) + Rur(t, o 0) |

where |Ry(t, o, 8)| = O (|t ™ (1 + |a = B)M(1 + |a| + |a — B)M))), provided that |arg(t + )| < 7 and

(1+la=B)A+|af +|a—=8]) = of|t]).
Now we prove the main theoretical results.

Proof of Proposition 1

Let X; ~ Gamma(c;, §5), j = 1,2, be independent. Then 3?% % follows the Fisher-Snedecor distribution
F(2aq,202) (Johnson et al, 1994, Section 27.8). Hence the F-distribution is the distribution of the product
of a Gamma(aq, £1) r.v. and an Inverse Gamma(ae, 82) r.v., rescaled by the constant ag/31 /a1 f2. Denoting

fr the F(2aq, 2ai)-density, (9)—(10)—(11) yield

z—1
Qg MNor+2z—1DNae+1—2)
i2) = — 1-— R 1 . C.2
M(fr;2) <a1> (o) (0a) ) ap < R(z) <14 o (C.2)
Identifying (12) and (C.2), L1 4,1, is seen to be the F (m, m»density. From Lemma 1, it follows

that L, - ¢ ¢ is the density of the positive random variable ¥ = v X ¢ where X ~ F (L L)

72 cos? 6’ 42sin? 0



Proof of Proposition 2

If ¢ > 29%sin?0, then {z € C : 2 < R(2) < 3} C Sp, Then, the mean p of L,¢c9 is p =

v,7,€,0°

fooo TLy~c0 (z)dx = M(L,,,%E’Q; 2), that is,

& ¢
,u—lj< 1 >§ F(72C0829+€)F<’72Sin29_§>
- \tan?6 ¢ & '
r (7200526'> r (725in29)

Also, as fooo xQLl,m@g(a:) dx = M(Ly,¢6:3), the standard deviation of L, ¢ is

0= \/M(LV777£79; 3) - M2(LV777§79; 2)7
which is

(2 )”(vszszwf)P(ﬁf;@—f)
o F(W2§§S29)F(’y?s§fn29>

« F(VQE;Z(’)F(7251129>F(72§§s29 +25)F<725517129—2§> L
rz(wfijsze+g>r2(72§;0_§)

The coefficient of variation of L, ¢ ¢ is thus

£ £2 £2 £2

o F(7260529)F(725in20>r<7260529+2€)F<w2sin26‘ _Qé‘) )

= . . L
8 FQ(W+§>F2<W—§)

Now assume that 6 ¢ {0,7/2} (the proof is simpler if § € {0,7/2}, and is omitted). By (C.1), we have, as

(C.3)

v — 0,

r(_€ I (5, +2¢ 2 \7¢ -
(72 cos2 9) " (72 cos2 6 ) _ ( § ) <1 + 17 72 cos® 0 + 0(74)>

2 a2
r (72 055526 +€) r (72 c§02529 +§> 7* cos®d 2
3
£ -1 5 1
—_— 1
><<72COSQ€ + T = cos® 0+ O(y")
=1+4~%cos?0+ O(y?).
Similarly,
F( & ) r( & —25)
7 sin” 0 X 7 sin® =14+~2%sin?6 + 0(74).
JE=nR
~2sin? 0 ~2sin? 0
Hence

£ & & &
r (72 00329) r (72 cos? 0 + 25) r ('yzsinQO) r (725in20 o 25) .
€2 €2
I (72 cos2 0 + 5) I <72 sin?6 é‘)

and the announced result follows from (C.3).




Proof of Proposition 3
The proof is given for the case 6 ¢ {0,7/2} only (the proof is simpler if § € {0,7/2}, and is omitted).

(1) As v — 0, Lemma C.1 ascertains that

2
( 52 >§(Zl) T (m + 5(2 - 1)> M

Vo5 T (52 =1+ €G- DEGE =) =)+ pi(r:2)
Y= cos
2 2
1+ 25— D - 1= ) a2,

where |p1(7, 2)| = O(v*(1 + |z — 1])?), provided |z — 1| = o(y~2). Similarly,

2 —£(1-2) T SSmQ +£(1—2) 24in2¢
(ﬁ) (ke F(e ) ) = 1+ gt = 2)(EL—2) = 1) + (3, 2)
~2sin? @
2 in2
— 1+ TR - D - 14 )+ ),

where [p2(7, 2)| = O(y*(1 + |z — 1])?), provided |z — 1| = o(y~2). Also, for any A € R, the binomial series
expands as

1+ Ay )7 = 14+ Ay (2 = 1) + p3(7, 2),
where |p3(7, 2)] = O(v*|(z — 1)(z — 2)]), provided |z — 1| = o(y~2) as v — 0. Multiplying these factors

yields

. >s(z—1) [ (&g +€6—1) T (i +€0-2)

tan? 0 €2 e
2

147 (z—1) ((30526 (z—l—§)+sin29 (z—1+2)+2A> + p(v, 2)

(1+ Ay?)*! (

2
2
1+%(2—1) (z—l—C0520+2A> + p(7,2)

where [p(7,2)] = O(y*(1 + |z — 1])?), provided |z — 1| = o(y2). Taking A = (1 + 00229) yields the

announced result.

(17) It can be checked from (12) and Lemma 1 that

Ly~eo(x) = 1/1£F< o >1P< o ) (tan2 9)§G (tan 9(1/)1/5

2 cos? 0 72 sin? 0

2
2Alssm +1§>
g2 )
'yzcosQG 5
From Bateman (1954, item (15), p. 349), we have
+b) 1
GLL (o 1-b } _ TI*a abl (. [1=2b
{ 1,1(}(1) F(2a—|—2b) 1,( 2a)’
which yields

M <{G}j (- \1517)}2 ; z> = MF@ +2a)T(2b — 2),

5



by (3). Then we obtain, after some algebraic work,

_ 262 2¢?
MU i) = Ly (L) B (55 e
j2) =<V
7,607 £ tan2 6 BQ( % g2 )
72 cos? 07 42 sin? 0

P (i +6(: =) T (5 +6C2-

X

262 262
r (m) r (m)
where B(+, ) is the Beta function, on the strip of holomorphy
2€ 2€
SLﬁ,w,g,e N {z eC:2- ~v2 cos? 6 <R(z) <2+ 2 sin249} '

Now, resorting to Lemma C.1, one obtains, as v — 0,

Z_2< 1 >€(z—2) F(%O;(ﬂrg(z—z)) F(v an 5 +E(2—z)>
v

tan? 6

¥2 cos2 ~2sin2 @

where |w(v, 2)| = O(v*(1 + |z — 2])) for |z — 2| = o(y72). On the other hand, for any a,b > 0,

B(2a,2b) T(2a)T(2b) T'(a+b) I'(a+b)

B2 (a,b)  T'(a) T'(b) T'(2(a+ b)) T(a)l'(b)
1 I'a+1/2)T(b+1/2) T(a+0)
2y Tf(a) ree) T(a+b+1/2)

Now, as a,b — o0, use (C.1) and see

B (2a,2b) 1 1/2 —1\\ p1/2 -1 —1/2 -1
B2 (a.0) _2\/7?(1 (I14+0(@ )b /“(1+0(b ")) (a+D) (1+0(a+b)7"))
1 1 -1 -1 -1
2f( )1/2 (1+0(@ " )+0b " )+0(a+b))).
With a = — ’5 g and b= 729, see that 1/a + 1/b = ~2/£2, hence
2¢2 2¢2
B (72C§JSQG’ 72515n29> 1 f

(1+0(*).

72 cos2 0’ 72 Sin2 0

Bz(i L) NG

It follows

1 1
ML, ¢ %) = SN (1+w(y,2)),

where |w(y, 2)| = O(y2(1 + |z — 2)) for |2 — 2| = o(y2).

Proof of Theorem 2

Apply Parseval’s identity (8) to f— f to get

/OOO 2 (f(a) - f(:v))2 d = % /MC IM(F = f:2)[2d,

for any ce S Fop Then we resort to the following lemma.

r () r(2)

(duplication formula).

(C.4)

(C.5)



Lemma C.2. Under Assumptions 1-4, the strip of holomorphy Sf—f off— f is such that
Sp_p2 {2 €C:1—min(a,&/ cos’ ) < R(z) < 1+min(B,&/sin?0)} .

Proof. From (19) and (A.1),
. 1 & L
M(f;2) = n;M@g’f);z)Xk g

with S; = Mi—1 SL%@. From (13) and (21), we see that

_ o EP + Xy) £ + Xi)
SL%;C) = {Z eC:1 7 cos2 0 <R(z) <1+ 2 sin? 0
§ §
D 1 — < <1 f 11
D {z cC wo2g = R(z) <1+ g or all k,
whence
S; D ze(C:l—i<§R(z)<1+i .
f= cos2f — - sin? @

Assumption 2 implies that

{zeC:1-a<R(z) <1+8}CS).

The result follows as S, = §; N Sy, from (A.1).

(C.7)

O

Lemma C.2 ascertains that (C.6) is valid for any ¢ € [1 — min(a,&/cos?6), 1 + min(B,¢/sin?60)]. In

particular, it is true for ¢ satisfying (31), as 1 — min(a, &/ cos?0) < max(2 — a,1 — &/ cos?6) and 1 +

min(3, ¢/ sin? 0) > min((3 + 28)/4,1 + £/ sin? 6).

Now, because M(f — f; z) is holomorphic on Sp_;and f — f is real-valued, M*(f — f;2) = M(f — f; 2%),

where -* denotes complex conjugation. Hence, |M(f — f;2)|? = M(f — f;2) x M(f — f;2%). By (A.1),

/\/l(f— fiz)= ./\/l(f, z) — M(f;z). Hence (C.6) is

[ (e - s@) de= g [ MM i
1

2m R(z)=c
1

- % R(z)=c
1

% R(z)=c

=D+B®+O+D,

M(f;2)M(f;2%) dz
M(f;2)M(f;2%) dz

M(f;2)M(f;27) d=

and

B([" a1 (f@) - 1) de) =B (@) +E(®) +E(C) + O



From (20), we have

whence

oo 1
@-ngz Xpt | M) a

R(z)=c

222 / ML YM(LE); ) X; 1 X5 Lz, (C.9)

k=1 k’;ék

Given that ¢ € (,_, SL;’“)’ it holds for all k

1

2 e |M(L$ﬁ>;z)|2dz:/0 xQC—lLW(z)dx:M(Lgk>2;2c),
zZ)=cC

from (8) back and forth. Hence the first term in (C.9), say A1, is

@A-1 = % > X,fHM(Lg’f)?; 2). (C.10)

k=1

Note that ¢ € (}_; S,m = 2ce€ My SL““)Q’ as seen from (13) and (C.5).
n n

The second term in (C.9), say A)-2, has expectation

2 @2)=(1-1) 5 [, BB (s ) o

2
(1— > (@-2-a),

for a generic k € {1,...,n}. Interchanging expectation and integral is justified as ¢ belongs to both Sy

and S L) (for all k), making the corresponding integrals both absolutely convergent. Likewise,
n

1 * z*—
E(®) = ~5r m(z):cM(f;Z)E <M(L£7k);z ) X5 1) dz
and E (O) = —% §R(Z):C/\/l(f;Z*)IE ( (L(k) )X 1) d.

It is easily seen that

E (MEZP:2)x; ) - (f;z)‘z dz, (C.11)

B (@2a) +E(®) +E(0) + O -5 |
T JR(z)=c
which is clearly the integrated squared bias term, say IB2, in the Weighted Mean Integrated Square Error
expression (C.8). The remaining E (@—1) - %E (@-Q-a) thus forms the integrated variance, say IV.. Below,
we show that IB? = O(n*) and IV, = O((nn)~') as n — oo, under our assumptions.

Integrated squared bias term: Under condition (31), ¢ > 2 — «, hence 0 < iigj <1 Lete=¢, —0as




n — 0o, such that e ~ n® for
ct+a—2

_— C.12
O<b<c+a—1 ( )

Note thas this implies /e — 0 as n — co. Write

MLP; ) X7 = ML, 2) X7 n ML ) X7 (C.13)

(Xizn?(%-1)} {(Xe<n? (1))

where 1, is the indicator function, equal to 1 if the condition {-} is satisfied and 0 otherwise. See that

X > = —1) <— < e — 0, hence one can make use of the asymptotic expansion (16) with
k n ( ) \/m ymp p ( )
(21)-(22) to write, as n — oo,

1 2
(). ) x-1 1 7
MEP X T 1)y = (1 +

_ z—1
2% 1 Xy z(z 1)—|—Rk(7],2)> Xy E{X _— (7_1)}

where |Ri(n, z)| < Cral—z 2+X E (1+ |z — 1])? for some constant C. From this and (C.13) we have

E (ML 2)X;™) = M(f:2) = E (X,j‘llf{xk>n2<121>}> ~E(x:7Y)
1

that is,

1 1
E (ML )X ) = M(f52) = sn’2(z = DE | 5—=X7 "0 00,
2 n? + X, {Xk>n (62 )}

+E <<M(L7(7’“); z) — 1) X,j‘lﬂ{xk@Q(:Q_l)})

Hence the integrated squared bias (C.11) is such that

1 41 1 2
2 < L — z—1
IBC =~ 2 (477 o /§R(z)c Z(Z 1)E <?7 +X]<;X I{Xk>772<612—1)}> dz
1 2
-— (k) _ z—1
+ 2T (Z):c E ((M(LTI 72) 1) Xk E{Xk<772(€12—1)}> dz
i E(R ( )Xz_lﬂ 2 d
27 JR(z)=c RL25E Txen (L) )| F
=2x (®B+®+0). ©.14)

222 - o
As m < Xik, ® < Ints f%(z):c |2(z = DE (X 2)‘ dz. By combining (A.4) and (A.7), it is seen
that z(z — 1)E (X %) = z2(z — )M(f; 2 — 1) = M(zf"(2); 2) if z— 1 € S, which is the case here by (C.7)



and because R(z) = ¢ > 2 — a by (31). With (8), ® < 10" [;° 22" f"%(z) dz, hence

® = o(nh). (C.15)

Given that ¢ € (y_; S; (), SUPzeC:R(z)=c MAXk=1,...n ]M(L%k); z)| < C for some constant C' and
n

1 2
® N (1 - C) 2m /§R(z)c . <Xk I{Xk<n2<6121>})

dz.

Now,

E(Xz 11 —/nQ(ElQ_l)mz_lf($)dm—M flz)I iz
M (an) < =M T p ()

Clearly the strip of holomorphy of f is contained in that of any of its restriction on R, so by (8) again,

0 2 %71
®<(1+0) / PO (4 gyt = (14 C) / : >372“f2(9:)dx-

0

By Assumpion 2, E(X %) < oo, which implies f(z) = o(x®~!) as  — 0. Hence

o-o((2)7).

following Example 4 in (Paris and Kaminski, 2001, Section 1.1.1). With € ~ 1* and condition (C.12), it

can be checked that this is

Finally,
774 2
<o T _
B A e (1) = Ot T W e (1))
7 2
N Cn2 + X Atl==1D n? + Xy I{X@"Q(ﬁ‘l)}
2
n 2 2
< _r _
_CXk(1+|z 1])%€”,

and it follows

G < 0217T774e4/ (1+]z—1)*|E (X,j—2)\2 dz.

R(z)=c

The integral may be seen to be bounded by (A.8), as z — 1 € Sy for R(z) = ¢ > 2 — a under condition
(31), hence

@ = 0(n'e") = o(n"). (C.17)

It follows from (C.14), (C.15), (C.16) and (C.17) that

IBZ = O(n").

10



Integrated variance term: Consider again € = ¢, — 0 with /e — 0 as n — oo. Then write (C.10) as

1N g2 (k)2 LS~ y2e (1),
@-1_112;1)(,6 M(LY ,2c)11{Xk2n2(:2_1)}+n2;Xk M(Ly ’20)”{xk<n2(}2—1)}

= Ar1-a + @A-1-b.

Seeing again that X; > n? (6% — 1) — i < € — 0, one can write the expansion (17) for

VP +Xe
2
M(L,(f) :2¢) in A-1-a, that is, making use of (21)-(22),

1 24X
M(LE? 20) = T2k 4 Qu(n, 2¢)),

PN n
where [Q(n,2¢)| = O (772172)%(1 +|2¢ — 2’)) = 0(e?). Also, V17?2 + X3 /VXk = V1 + 72/ Xp < 1/V1 -2 <
1 + €2, for n large enough. This means that, as n — oo,

M(L(k)Q;QC) _ b 7Xk
n

n - 2\/77. (1—’_92(77720))7

where [€} (1, 2¢))| < Ce? for some constant C, yielding

IR T ey 2
@1_a_n2n2ﬁ;x’k ZI{XkZWQ(G%_l)}(leO(e ).

afl)

Assumption 2 ensures that f(z) = o(z as © — 0, whence

p(xz (5-1)) 1= [T a0 ((2)) <1

E (@r1-a) = 711772\1/%/\4(]0; 2¢—1/2) (1 —o(1)) (1 + O(e?)) .

This is O((nn)~1) if 2¢ — 1/2 € Sy, which is the case under condition (31).

It follows

2 2
Now, because 2¢ € (;_, 8L<’“)2’ each ]M(Lg,k) ;2¢)] is finite and max;<g<p \M(L%k) ;2¢)| < C, for C some
n
constant. Hence

¢ - 2¢—2
@1-b< - ;Xk ﬂ{sz(e%_l)}. (C.18)

Similarly to above,

. 772<%2*1> . 772 2c—2+4a
2 ) = [ e ((5))

a—l)

as n — oo, making use again of f(z) = o(z as ¢ — 0. Taking expectations in (C.18) yields

E (@-1-b) =0 <n—1 <Z§)QC_2+Q> :

)2cf2+a

It can be checked that, for ¢ > 3/4 — /2, (Z—j = O(n™'). Hence, E (&-1-b) = o((nn) ™), leading

11



to

E(@-1) = O((nn) ™).

The dominant term in E (@—2—&) can be understood to be ©). Yet,

D=5 [ MM
T JR(2z)=c
o L UDRE
27 R(z)=c

— /oo 112071](.2(%) dax
0

which is bounded for any ¢ € Sy. Hence E (&»-2-a) /n = O(n™') = o((nn)~'), which shows
IV. = O((nn) ™).
O

Proposition C.1. Under Assumptions 1-4, with o > 1/2 in Assumption 2 and &/cos®>0 > 1/2 in As-

R 2
sumption 3, the Mellin-Meijer kernel density estimator (19) is such that E (fooo <f(a:) — f(a:)) dac) =
O(n*) + O((nn)™1) = 0 as n — oo, provided that [;°(zf"(x))* dz < co.

Proof. We just show that (C.15) holds true if [;*(xf"(2))? dz < co. From (C.14),
® < i 2(z - DE (X721 2
— 47 27 R(z)=c k {Xk2n2<%2*1>}

dz.

Now,

208 o) = =108 =M (M 1)

The strip of holomorphy of f(z)f{;>. is (—o0,1+ B), as f(x)Lz>., = 0 for z ~ 0 (‘flat’ head). So for

any ¢ <1+ f,
® 141/ (z— DM [ f(=)1 12d
— 4 2n R(z)=c 2z o {z>n ( 1)}72 &
L SR R PN
=t e @ e
<t [ e s @) da,
4 0
by (8). Taking ¢ = 1/2 yields the result, as [~ (zf"(2))*dz < oc. O
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