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Abstract
Kernel density estimation is a nonparametric procedure making use of the smooth-
ing power of the convolution operation. Yet, it performs poorly when the density 
of a positive variable is estimated, due to boundary issues. So, various extensions 
of the kernel estimator allegedly suitable for ℝ+-supported densities, such as those 
using asymmetric kernels, abound in the literature. Those, however, are not based on 
any valid smoothing operation. By contrast, in this paper a kernel density estimator 
is defined through the Mellin convolution, the natural analogue on ℝ+ of the usual 
convolution. From there, a class of asymmetric kernels related to Meijer G-functions 
is suggested, and asymptotic properties of this ‘Mellin–Meijer kernel density esti-
mator’ are presented. In particular, its pointwise- and L

2
-consistency (with optimal 

rate of convergence) are established for a large class of densities, including densities 
unbounded at 0 and showing power-law decay in their right tail.

Keywords  Kernel density estimator · Boundary issues · Asymmetric kernels · 
Mellin transform · Meijer G-functions

1  Introduction

Kernel density estimation is a very popular nonparametric method which simply 
makes use of the smoothing power of the convolution operation for estimating an 
unknown probability density function. Let {Xk, k = 1,… , n} be a sample drawn 
from a distribution F admitting a density f with respect to the Lebesgue measure, 
and ℙn =

1

n

∑n

k=1
�Xk

 be its empirical measure. The conventional kernel density esti-
mator of f is just
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where K is a unit-variance probability density symmetric around 0 and 
Kh(⋅) = K(⋅∕h)∕h is the rescaled version of K with standard deviation h > 0 . The 
properties of f̂  are well understood (Wand and Jones 1995). A major downside of 
(1) is that it suffers from boundary bias when the support of f is not the whole real 
line: the terms Kh(x − Xk) ’s corresponding to Xk ’s close to a boundary overflow 
beyond it in the forbidden area, preventing consistency of the estimator (Wand and 
Jones 1995, Section 2.11). Hence boundary corrections for (1) abound in the litera-
ture, such as the ‘cut-and-normalised’ method and its variants based on ‘boundary 
kernels’ (Cheng et al. 1997; Dai and Sperlich 2010; Jones 1993; Jones and Foster 
1996; Müller 1991; Zhang et al. 1999) or the reflection method (Karunamuni and 
Alberts 2005; Schuster 1985). Those are essentially ad hoc manual surgeries on (1) 
at the boundary, though.

In the important particular case where the density f is supported on ℝ+ = [0,+∞),1 
a more global approach has been to construct an estimator in the form

where Kh(⋅;x) is an asymmetric ℝ+-supported density whose parameters are func-
tions of x ≥ 0 and a smoothing parameter h > 0 . Using asymmetric kernels suppos-
edly enables the estimator to take the constrained nature of the support of f into 
account. In his pioneering work, Chen (2000) studied the ‘first’ gamma kernel den-
sity estimator2

corresponding to (2) with Kh(⋅;x) the gamma density with shape parameter 
� = 1 + x∕h2 and rate � = 1∕h2 . Other asymmetric kernels were investigated, e.g., 
log-normal (Igarashi 2016; Jin and Kawczak 2003), Birnbaum-Saunders (Igar-
ashi and Kakizawa 2014; Jin and Kawczak 2003; Marchant et al. 2013), or inverse 
Gaussian (Igarashi and Kakizawa 2014; Scaillet 2004), while Hirukawa and Sakudo 
(2015), Igarashi and Kakizawa (2018) and Kakizawa (2018) described families of 
‘generalised gamma’ and ‘mixture inverse Gaussian’ kernels in an attempt to stand-
ardise those results for a variety of asymmetric kernels.

Yet, such asymmetric kernel estimators do not entirely fix boundary issues, and 
they need another manual correction around 0 for performing satisfyingly (‘second’ 
or ‘modified’ gamma kernel estimator in Chen (2000); see also Hirukawa and Sakudo 

(1)f̂ (x) =
(
Kh ∗ ℙn

)
(x) =

1

n

n∑
k=1

Kh(x − Xk),

(2)f̂ (x) =
1

n

n∑
k=1

Kh(Xk;x),

f̂ (x) =
1

n

n∑
k=1

X
x∕h2

k
e−Xk∕h

2

h2x∕h
2+2𝛤

(
x∕h2 + 1

)

1  Estimation of a density supported on [a,∞) or (−∞, b] , a, b ∈ ℝ , is achieved in the exact same way 
through a straightforward change of origin and/or reflection.
2  We use h2 instead of Chen’s original b for the smoothing parameter.
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(2015, Conditions 1 and 2) or Kakizawa (2018, Section 3))—note that even these cor-
rected versions may show disappointing boundary behaviour (Malec and Schienle 
2014; Zhang 2010). Those problems originate in that estimators like (2) are not induced 
by any valid smoothing operation on ℝ+ . Among unpleasant consequences, this implies 
that (2) does not automatically integrate to one, hence is not a bona fide density. Note 
that Jones and Henderson (2007) and Jeon and Kim (2013) obtained bona fide asym-
metric kernel density estimators by swapping around the roles of x and Xk in (2), that is, 
estimators of the form

where Kh is this time a proper density in x whose parameters depend on Xk.
In this paper, we revisit the idea of ‘asymmetric kernel density estimation’ on ℝ+ 

from a novel perspective, by defining an estimator based on the natural smoothing 
operation on ℝ+ . The convolution of two probability densities g1 ∗ g2 is known to be 
the density of the sum of two independent random variables having respective densities 
g1 and g2 . Hence, smoothing is achieved in (1) through ‘diluting’ each observation Xk 
by adding to it some continuous random noise � with density Kh . Indeed it is incoher-
ent if f is ℝ+-supported: as Xk + � may be negative, it produces estimates f̂  which ‘spill 
over’, which implies the boundary issues. In algebraic terms, the conventional estimator 
(1) is justified on ℝ but not on ℝ+ because (ℝ,+) is a group but not (ℝ+,+) . By con-
trast, (ℝ+,×) is a group, which motivates an estimator realising smoothing by multiply-
ing each Xk by a positive random disturbance �.

If X1 and X2 are two independent positive random variables with respective densities 
g1 and g2 , then the density of their product is

This operation, hereafter denoted by g1 ∗M g2 , is called Mellin convolution, as it is 
strongly associated with the Mellin transform, the natural analytical tool for study-
ing products of independent random variables (Epstein 1948). Consequently, for 
estimating a density f supported on ℝ+ , this paper proposes and fully investigates a 
‘Mellin version’ of the kernel estimator, whose basic definition is

for an ℝ+-supported density L� whose ‘spread’ (to make precise later) is driven by a 
smoothing parameter 𝜂 > 0 . In particular, it will be seen that kernel functions L� that 
fit naturally in this framework belong to a family of distributions strongly related 
to Meijer G-functions (Meijer 1936)—the duality between the Mellin transform 
and Meijer G-functions in statistics was already elucidated in Kabe (1958). Hence 
we call the whole methodology Mellin–Meijer kernel density estimation. We will 
mainly study the case where L� is a scaled-powered F-density, as well as a refined 

(3)f̂0(x) =
1

n

n∑
k=1

Kh(x;Xk),

(4)g(x) = ∫
∞

0

g1

(
x

v

)
g2(v)

dv

v
.

(5)f̂0(x) = (L𝜂 ∗M ℙn)(x) =
1

n

n∑
k=1

1

Xk

L𝜂

(
x

Xk

)
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‘sample-smoothing’ version of (5) allowing the parameters of that kernel to vary 
with Xk—see details in Sect. 4.

Clearly (5) is just the multiplicative analogue of (1), and assesses which observa-
tions Xk are local to x through the ratios x∕Xk . Note that (5) shares similarities with 
expression (2) in Comte and Genon-Catalot (2012) and expression (2.4) in Mnat-
sakanov and Sarkisian (2012),3 although they are different. In particular, neither of 
those two estimators integrates to one, whereas f̂0 always defines a bona fide density. 
Indeed (5) is an asymmetric kernel density estimator of type (3).

After reviewing the main properties of the Mellin transform useful here (Sect. 2), 
this paper lays the foundations of Mellin–Meijer kernel density estimation by defin-
ing the class of Meijer distributions, natural kernels in this framework (Sect.  3), 
and the estimator (Sect. 4). Asymptotic results are obtained in Sect. 5, while Sect. 6 
explores a novel way of selecting the smoothing parameter � in practice, again tak-
ing advantage of the ‘Mellin’ perspective. Sections 7 and 8 investigate the perfor-
mance of the estimator in practice through simulations and real data examples. Sec-
tion 9 concludes.

2 � Mellin transform

The Mellin transform of any locally integrable ℝ+-supported function f is the func-
tion defined on the complex plane ℂ = {z ∶ z = c + i�;c,� ∈ ℝ} as

when the integral exists. If, for some 𝛿 > 0 and a < b , f (x) = O(x−(a−�)) as x → 0+ 
and f (x) = O(x−(b+�)) as x → +∞ , then (6) converges absolutely on the vertical strip 
of the complex plane Sf = {z ∈ ℂ ∶ a < ℜ(z) < b} . It can be shown that M(f ;⋅) is 
holomorphic on Sf—therefore known as the strip of holomorphy of M(f ;⋅)—and 
uniformly bounded on any closed vertical strip contained in Sf  . There is a one-to-
one correspondence between f and the couple (M(f ;⋅),Sf ) , in the sense that two 
different functions may have the same Mellin transform, but defined on two non-
overlapping vertical strips of ℂ . It is thus equivalent to know f or M(f ;⋅) in a given 
vertical strip of ℂ . In particular, f can be recovered from M(f ;⋅) by the inverse Mel-
lin transform:

for any real c ∈ Sf  . Cauchy’s residue theorem allows the integration path (a vertical 
line in ℂ ) to be displaced sideways inside Sf  without affecting the value of integral, 
which is independent of c ∈ Sf  . In addition, for any c ∈ Sf ,

(6)M(f ;z) = ∫
∞

0

xz−1f (x) dx,

(7)f (x) =
1

2�i ∫ℜ(z)=c

x−zM(f ;z) dz

3  Mnatsakanov and Ruymgaart (2012) and Mnatsakanov and Sarkisian (2012) briefly mentioned estima-
tor (5) as such, but gave up the idea and focused on a modified version.
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which is the Mellin version of Parseval’s identity. See Paris and Kaminski 
(2001, Chapter 3) for a comprehensive treatment of the Mellin transform.

Now, if f is the probability density of a positive random variable X, then 
M(f ;1) = ∫ ∞

0
f (x) dx = 1 . Hence, the line {z ∈ ℂ ∶ ℜ(z) = 1} is always part of Sf  , 

which allows f to be unequivocally represented by its Mellin transform M(f ;⋅) . From 
(6), one has M(f ;z) = �(Xz−1) . Thus M(f ;⋅) actually defines all real, complex, inte-
gral and fractional moments of X, and Sf  is determined by the existence (finiteness) 
of the real moments of f: z ∈ Sf  if and only if �(Xℜ(z)−1) < ∞ . So, b = ∞ for light-
tailed densities whose all positive moments exist, while Sf  is bounded from the right 
( 1 < b < ∞ ) for fat-tailed densities with only a certain number of finite positive 
moments.4 Similarly, a = −∞ for densities whose all negative moments exist—let us 
call such densities ‘light-headed’, while Sf  is bounded from the left ( −∞ < a < 1 ) 
for ‘fat-headed’ densities, for which some negative moments are infinite.

Let X1 , X2 be two independent positive random variables with respective densities 
g1 and g2 , and let g be the density of their product (4). Then

for z ∈ Sg1
∩ Sg2

 . Note that g = (g1 ∗M g2) ⟺ M(g;⋅) = M(g1;⋅)M(g2;⋅) , so 
Mellin transform/Mellin convolution play the same role for products of independent 
variables as Fourier transform/convolution for sums. From the operational proper-
ties of the Mellin transform (Geenens 2020, Section A), one can show:

Lemma 1  Let X be a positive random variable whose density fX has Mellin trans-
form M(fX;z) on SfX

= {z ∈ ℂ ∶ a < ℜ(z) < b} for some a < 1 < b . Then, for 𝜈 > 0 
and � ∈ ℝ , the random variable Y = �X� has density fY whose Mellin transform is 
M(fY ;z) = �z−1M

(
fX;1 + �(z − 1)

)
 on SfY

= {z ∈ ℂ ∶ 1 −
1−a

𝜉
< ℜ(z) < 1 +

b−1

𝜉
} 

( 𝜉 > 0 ) or SfY
= {z ∈ ℂ ∶ 1 −

b−1

|𝜉| < ℜ(z) < 1 +
1−a

|𝜉| } ( 𝜉 < 0).

For illustration, let fGam(x) =
��

� (�)
x�−1e−�x be the Gamma(�, �)-density ( 𝛼, 𝛽 > 0 ). 

By definition, M(e−x;z) = � (z) ( ℜ(z) > 0 ), from which it follows

with (A.2)-(A.4) in Geenens (2020). Now, consider the inverse gamma (�, �)-density 
fIGam , i.e., the density of 1/X when X ∼ Gamma(�, �) . By Lemma 1 with � = −1 , 
M(fIGam;z) = M(fGam;2 − z) , that is,

(8)∫
∞

0

x2c−1f 2(x) dx =
1

2� ∫
ℜ(z)=c

|M(f ;z)|2 dz,

(9)M(g;z) = �((X1X2)
z−1) = �(Xz−1

1
)�(Xz−1

2
) = M(g1;z)M(g2;z)

(10)M(fGam;z) =
1

𝛽z−1
𝛤 (𝛼 + z − 1)

𝛤 (𝛼)
, ℜ(z) > 1 − 𝛼,

4  The qualifiers ‘fat’, ‘heavy’ or ‘long’ sometimes find different meanings in the literature when describ-
ing the tails of a distribution. In this paper, by ‘fat-tailed’ distribution we mean explicitly a distribution 
whose not all positive power moments are finite. Hence here the log-normal is ‘light-tailed’, although it 
is regarded as ‘heavy-tailed’ in many references.
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3 � Meijer densities

For all 𝜈, 𝛾 , 𝜉 > 0 and � ∈ (0,�∕2) , consider the ℝ+-supported function L�,� ,�,� whose 
Mellin transform is

on

The following result establishes that L�,� ,�,� is a scaled-powered-F-density:

Proposition 1  For all 𝜈, 𝛾 , 𝜉 > 0 and � ∈ (0,�∕2) , the ℝ+-supported function 
L�,� ,�,� , whose Mellin transform is (12) on SL�,� ,�,�

 (13), is the density of the random 
variable Y = �X� , where X follows the Fisher–Snedecor F-distribution with 2�2

�2 cos2 �
 

and 2�2

�2 sin2 �
 degrees of freedom.

Proof  This follows from the characterisation of the F-distribution as a (scaled) ratio 
of two independent gamma random variables, (9), (10), (11) and Lemma 1; see 
Geenens (2020, Section C) for details. 	�  ◻

By taking the limit � → 0 or � → �∕2 , we can define

(11)M(fIGam;z) =
1

𝛽1−z
𝛤 (𝛼 + 1 − z)

𝛤 (𝛼)
, ℜ(z) < 1 + 𝛼.

(12)

M(L�,� ,�,�;z) = �z−1
(

1

tan2 �

)�(z−1)

×
�
(

�2

�2 cos2 �
+ �(z − 1)

)
�
(

�2

�2 sin2 �
+ �(1 − z)

)

�
(

�2

�2 cos2 �

)
�
(

�2

�2 sin2 �

)

(13)SL𝜈,𝛾 ,𝜉,𝜃
=

{
z ∈ ℂ ∶ 1 −

𝜉

𝛾2 cos2 𝜃
< ℜ(z) < 1 +

𝜉

𝛾2 sin2 𝜃

}
.

(14)M(L𝜈,𝛾 ,𝜉,0;z) =
𝜈z−1

𝛤
(

𝜉2

𝛾2

)
(
𝛾2

𝜉2

)𝜉(z−1)

𝛤

(
𝜉2

𝛾2
+ 𝜉(z − 1)

)
, ℜ(z) > 1 −

𝜉

𝛾2
,

(15)

M(L𝜈,𝛾 ,𝜉,𝜋∕2;z) =
𝜈z−1

𝛤
(

𝜉2

𝛾2

)
(
𝛾2

𝜉2

)𝜉(1−z)

𝛤

(
𝜉2

𝛾2
+ 𝜉(1 − z)

)
, ℜ(z) < 1 +

𝜉

𝛾2
.



959

1 3

Mellin–Meijer kernel density estimation on ℝ+﻿	

Then L�,� ,�,0 is the density of �X� for X ∼ Gamma
(

�2

�2
,
�2

�2

)
 and L�,� ,�,�∕2 that of �X� 

for X ∼ InvGamma
(

�2

�2
,
�2

�2

)
 , in agreement with the usual interpretation of the F-dis-

tribution with infinite degrees of freedom.
The strip of holomorphy (13) clarifies how the parameters � , � and � act on the 

lightness/fatness of the head and the tail of the density L�,� ,�,� . Playing on � , � and 
� , one can produce a wide variety of different head and tail behaviours for L�,� ,�,� . 
Those include exponential behaviours ( � = 0 or � = �∕2 , or � → ∞ ), and positive-
ness/unboundedness at x = 0 , for 𝜉 < 𝛾2 cos2 𝜃.

We call a probability density whose Mellin transform is (12) (or (14)/(15)) a 
Meijer density, as it is strongly related to Meijer G-functions. These are very gen-
eral functions, conveniently defined by their Mellin transforms (Prudnikov et  al. 
1990, Section 8.2), whose particular cases cover most of the common, useful or spe-
cial functions on ℝ+ (Beals and Szmigielski 2013). In particular, for a, b ∈ ℝ such 
that a − b < 1 , the G-function G1,1

1,1
 has Mellin transform

on {z ∈ ℂ ∶ −b < ℜ(z) < 1 − a} . All probability densities L�,� ,�,� , whose Mellin 
transforms (12) are rescaled products of two gamma functions, are thus rescaled ver-
sions of G1,1

1,1
.

Most of the ℝ+-supported probability distributions of practical interest are actu-
ally Meijer distributions; see Geenens (2020, Section B). These include gamma and 
inverse gamma,5 as well as the generalised F-distribution (Cox 2008). They also 
admit the log-normal as limiting case as � → ∞ . All these distributions have a trac-
table Mellin transform (12), whereas most of them do not admit an explicit charac-
teristic function (Fourier transform).

The following results establish that the parameter � is asymptotically equivalent 
to the coefficient of variation of L�,� ,�,� , say � , and provide asymptotic expansions of 
M(L�,� ,�,�;z) and M(L2

�,� ,�,�
;z) as � → 0.

Proposition 2  Let 𝜈, 𝜉 > 0 and � ∈ [0,�∕2] be fixed. The coefficient of variation � 
of L�,� ,�,� is such that � ∼ � , as � → 0.

Proposition 3  Let 𝜉 > 0 and � ∈ [0,�∕2] be fixed. Let � = 1 +
1

2
�2
(
1 +

cos 2�

�

)
 . 

Then, as � → 0 , 

	 (i)	 the Mellin transform (12) of L�,� ,�,� on SL�,� ,�,�
 (13) is such that

M

(
G

1,1

1,1

(
⋅

||||
a

b

)
;z

)
= � (b + z)� (1 − a − z)

5  It appears from (12) and Lemma 1 that the class of Meijer distributions is closed under the ‘inverse’ 
operation.
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where |�(� , z)| = O(�4(1 + |z − 1|)2) , provided |z − 1| = o(�−2).
	 (ii)	 the Mellin transform of L2

�,� ,�,�
 on SL2

�,� ,�,�
=
{
z ∈ ℂ ∶ z∕2 ∈ SL�,� ,�,�

}
 is such 

that

where |�(� , z)| = O(�2(1 + |z − 2|)) , provided |z − 2| = o(�−2).

Proof  See Geenens (2020, Section C). 	�  ◻

A notable observation is that, with the suggested value of � = 1 +
1

2
�2
(
1 +

cos 2�

�

)
 , 

expansions (16) and (17) do not depend on � or � , but only on �.

4 � Mellin–Meijer kernel density estimation

Like the conventional estimator (Härdle et al. 2004, Section 3.1.5), estimator (5)

(16)M(L�,� ,�,�;z) = 1 +
�2

2
z(z − 1) + �(� , z),

(17)M(L2�,� ,�,�;z) =
1

2
√
��

(1 + �(� , z)),

f̂0(x) =
1

n

n∑
k=1

1

Xk

L𝜂

(
x

Xk

)

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

x

de
ns

ity

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

x

de
ns

ity

Fig. 1   Construction of the basic estimator (5) (left panel) and its refined version (19) with (18) (right 
panel) for an artificial sample of size n = 15 . The observations Xk (big dots) and the associated ‘bumps’ 
�(k)

�  (dashed lines) are shown. The final estimator (thick line) is the sum of those bumps. In both cases, 
the smoothing parameter is � = 0.5 and the kernel is a Meijer density with � = 1∕2 and � = 0 : in (5), 
L� = L

1+�2,�,1∕2,0 ; and in (19), L(k)�  is the Meijer kernel L�(k)� ,� (k)� ,1∕2,0
 , as described below (21) and (22)
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is constructed as a sum of ‘bumps’ �(k)
� (x) ≐ 1

Xk

L�

(
x

Xk

)
 , as illustrated by Fig. 1 (left 

panel) for an artificial sample of size n = 15 . Unlike in the conventional case, 
though, here the ‘bumps’ do not have the same width: if �� is the standard deviation 
of L� , then �(k)

�  has standard deviation �(k)
� = Xk �� , obviously different for each k. 

The bumps �(k)
�  ’s corresponding to the Xk ’s close to the boundary 0 are high and 

narrow, while those in the right tail are wide and flat. More smoothing is thus auto-
matically applied in the tail than close to the boundary, and this is essentially how 
the boundary issue is addressed by (5). What is common to all the �(k)

�  ’s is actually 
their coefficient of variation � (k)

� ≡ �� , that of the ‘canonical bump’ L� . This points 
out the natural role of the coefficient of variation of the kernel L� In this framework, 
suggesting to defining it as the global smoothing parameter �.

Unfortunately, estimator (5) shows very disappointing performance, though, 
which can be related to what Geenens and Wang (2018, Sections 2.2 and 3.1, Fig-
ure 1) described about the ‘log-transformed’ kernel density estimator. Specifically, 
that estimator first sends the observations onto the whole ℝ through the log-trans-
form, performs smoothing by adding to them some random disturbance, and takes 
everything back to ℝ+ by exponentiation. So, on ℝ+ , smoothing is realised by mul-
tiplying each Xk by a positive random disturbance � , exactly as (5), and is thus a 
particular case thereof. Geenens and Wang (2018) explained how and why this leads 
to severe undersmoothing at the boundary and oversmoothing in the tail. Here, given 
that �(k)

� = Xk �� ≃ 0 for Xk ≃ 0 , the effective amount of smoothing applied in the 
boundary area is virtually nil, while it is very high in the tail area, as �(k)

�  gets huge. 
A natural fix is to operate some smoothing transfer: make the estimator use some of 
the amount of smoothing in excess in the tail for filling the shortage of smoothing at 
the boundary. This transfer is achieved by making the coefficient of variation � (k)

�  of 
�(k)

�  a decreasing function of Xk , instead of keeping it constant. Set

a choice driven by theoretical considerations (Sect. 5). Figure 1 (right panel) shows, 
for the same sample and with the same smoothing parameter � as in the left panel, 
how the bumps at the boundary are no more as narrow, and the bumps in the tail no 
more as flat, as in the initial case. On this empirical illustration, the final estimate of 
f seems rightly smooth all over ℝ+ . It highlights another major benefit of allowing 
� (k)
�  to depend on Xk . In the basic case (5), all bumps �(k)

� (x) ’s are rescaled versions 
of L� and have the same shape. In particular, if L�(0) = 0 , then f̂0(0) ≡ 0 automati-
cally (Fig. 1, left).6 This is no more the case when �(k)

�  may have different coeffi-
cients of variation: in Fig. 1 (right), the bumps associated to the data close to 0 are 
no more tied down to 0. As their coefficient of variation increases, they are forced to 
climb along the y-axis, allowing f̂ (0) ≠ 0 . This justifies to define a ‘refined’ version 
of (5) as

(18)� (k)
� =

�√
Xk + �2

,

6  This problem of ‘ f̂ (0) ≡ 0 ’ is shared by many other kernel estimators, e.g., Jin and Kawczak (2003); 
Marchant et al. (2013); Mnatsakanov and Sarkisian (2012); Scaillet (2004).
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where each L(k)�  has a coefficient of variation � (k)
�  given by (18). From (4) and (9), f̂  

admits the Mellin transform

on Sf̂ =
⋂n

k=1
S
L
(k)
𝜂

.

Remark 1  In some sense, (19) is a ‘sample-smoothing’ kernel estimator (Terrell and 
Scott 1992), as the smoothing parameter � (k)

�  associated with the particular bump 
�(k)

�  varies with Xk . However, conventional ‘sample-smoothing’ typically requires 
pilot estimation of f, which is not without causing further issues (Hall et al. 1995). 
Here, it is deterministically articulated around (18).

The connection between the Mellin transform and Meijer densities (Sect.  3) 
suggests to take for L(k)�  in (19) a Meijer density L�,� ,�,� . Fix the parameters 𝜉 > 0 
and � ∈ [0,�∕2] . Those determine more specifically the type of kernels that will 
be used. For instance, with � = 0 and � = 1 , then the L(k)�  ’s are gamma densi-
ties; with � = �∕2 and � = 1 , then the L(k)�  ’s are inverse gamma densities; refer to 
Geenens (2020, Section B) for other choices of kernels. Motivated by (18) and 
Propositions 2 and 3, set

(19)f̂ (x) =
1

n

n∑
k=1

(L(k)𝜂 ∗M 𝛿Xk
)(x) =

1

n

n∑
k=1

1

Xk

L(k)𝜂

(
x

Xk

)
,

(20)M(f̂ ;z) =
1

n

n∑
k=1

M(L(k)𝜂 ;z)Xz−1
k
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Fig. 2   Meijer kernels L(k)� = L�(k)� ,� (k)� ,�,� for � = 0,�∕4,�∕2 and � = 1∕2, 1, 2 for Xk = 1
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for some smoothing parameter 𝜂 > 0 , and

This ensures through (16) that, asymptotically, the behaviour of L�(k)� ,� (k)� ,�,� is inde-
pendent of � and � , which allows an integrated theory, not specific to a particular 
choice of kernel, to be developed. We call kernels L(k)� = L�(k)� ,� (k)� ,�,� with this parame-
terisation, Meijer kernels. Figure  2 shows examples of Meijer kernels for 
� ∈ {1∕2, 1, 2} and � ∈ {0,�∕4,�∕2} , for Xk = 1 . As � approaches 0, the kernels 
concentrate around 1 with a fading effect of the values of � and � on their shape, as 
suggested by expansion (16).

We call the estimator (19) with Meijer kernel L(k)� = L�(k)� ,� (k)� ,�,� , the Mellin–Meijer 
kernel density estimator. Explicitly, following Proposition 1, it is

where �(k)� = 1 +
�2+Xk

2�2
(1 +

cos 2�

�
) and fF(⋅;df1, df2) is the density of the F-distribu-

tion with df1 and df2 degrees of freedom.

5 � Asymptotic properties

Let us assume the following.

Assumption 1  The sample {Xk, k = 1,… , n} consists of i.i.d. replications of a posi-
tive random variable X whose distribution F admits a density f twice continuously 
differentiable on (0,∞);

Assumption 2  There exist �, � ∈ (0,+∞] , with 2𝛼 + 𝛽 > 5∕2 , such that �(X−𝛼) < ∞ 
and �(X𝛽) < ∞;

Assumption 3  For all 𝜂 > 0 and k ∈ {1,… , n} , L(k)�  is a Meijer kernel L�(k)� ,� (k)� ,�,� with 
𝜉 > 0 and � ∈ [0,�∕2] such that 𝜉

cos2 𝜃
> 1

4
−

𝛽

2
 and 𝜉

sin2 𝜃
> 1 − 𝛼;

Assumption 4  The smoothing parameter � ≐ �n is such that � → 0 and n� → ∞ as 
n → ∞.

(21)� ≐ � (k)� =
�√

Xk + �2

(22)� ≐ �(k)� = 1 +
1

2
� (k)�

2
(
1 +

cos 2�

�

)
.

(23)

f̂ (x) =
1

n

n�
k=1

1

𝜉𝜈(k)𝜂 Xk

�
x

𝜈(k)𝜂 Xk

�1∕𝜉−1

× fF

⎛⎜⎜⎝

�
x

𝜈(k)𝜂 Xk

�1∕𝜉

;
2𝜉2(𝜂2 + Xk)

𝜂2 cos2 𝜃
,
2𝜉2(𝜂2 + Xk)

𝜂2 sin2 𝜃

⎞⎟⎟⎠
,
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Assumption 1 fixes the set-up. The requirement that f has two continuous deriva-
tives is classical in kernel density estimation. Assumption 2 is a condition on the exist-
ence of some negative and positive moments of f. It excludes densities with both very 
fat head and tail, but it is very mild. In particular, f is allowed to be positive and even 
unbounded at the boundary x = 0 ( 𝛼 < 1 ), and/or to have power law decay in its tail 
( 𝛽 < ∞ ), provided that it does not show extreme versions of those behaviours simulta-
neously. Assumption 3 requires that the parameters � and � of the Meijer kernels enable 
the estimator to properly reconstruct the head and tail behaviour of f. For instance, for 
� ≃ 0 (f has a very fat head), it would not work to take � ‘small’ and � ≃ �∕2 (lightest 
head for the kernel, see Fig. 2). The imposed conditions leave much freedom about the 
choice of � and � , though, and are restrictive only in extreme cases. For instance, only 
for 𝛽 < 1∕2 (extremely fat tail for f) would the condition 𝜉

cos2 𝜃
> 1

4
−

𝛽

2
 not be trivially 

satisfied. Assumption 4 is standard.
First we study the pointwise bias and variance of estimator (23).

Theorem  1  Under Assumptions 1–4, the Mellin–Meijer kernel density estimator 
(23) at any fixed x ∈ (0,∞) is such that, as n → ∞,

Proof  From (19), we have directly

where B(x) and V(x) denote the pointwise bias and variance of the estimator, respec-
tively. It also holds

Hence, by the inverse Mellin transform (7), we can write

(24)�
(
f̂ (x)

)
= f (x) +

1

2
𝜂2xf ��(x) + o(𝜂2),

(25)�ar
�
f̂ (x)

�
=

f (x)

2
√
𝜋n𝜂

√
x
+ o((n𝜂)−1).

(26)

B(x) = �

(
1

Xk

L(k)�

(
x

Xk

))
− f (x),

V(x) =
1

n

{
�

(
1

X2
k

L(k)�

2
(

x

Xk

))
−

(
�

(
1

Xk

L(k)�

(
x

Xk

)))2
}

,

M

(
�

(
1

Xk

L(k)�

(
⋅

Xk

))
;z

)
= �

(
M(L(k)� ;z)Xz−1

k

)
, and

M

(
�

(
1

X2
k

L(k)�

2
(

⋅

Xk

))
;z

)
= �

(
M(L(k)�

2
;2
z + 1

2
)X

2
z+1

2
−2

k

)
.
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for any c ∈ [1 −min(�, �∕ cos2 �), 1 +min(𝛽, 𝜉∕ sin2 𝜃)] ⊆ Sf̂−f = Sf̂ ∩ Sf  . Indeed 
{z ∈ ℂ ∶ 1 − 𝛼 ≤ ℜ(z) ≤ 1 + 𝛽} ⊆ Sf  by Assumption 2, Sf̂ =

⋂n

k=1
S
L
(k)
𝜂

 by (20), 
where (13) and (21) imply

Making use of the expansion (16) with (21) and (22), the dominant term in B(x) as 
n → ∞ is

from (A.4) and (A.7) in Geenens (2020), provided z − 1 ∈ Sf  , that is, c − 1 ∈ Sf .
Likewise, making use of expansion (17) with (21) and (22), one finds that, 

asymptotically,

which, plugged in V(x), yields the following dominant term:

provided 2c − 1∕2 ∈ Sf  . So, (28) and (29) are the asymptotic bias and variance of 
f̂ (x) , provided that there exists c ∈

[
1 −min(�, �∕ cos2 �), 1 +min(�, �∕ sin2 �)

]
 

such that 1 − 𝛼 < c − 1 < 1 + 𝛽 and 1 − 𝛼 < 2c − 1∕2 < 1 + 𝛽 . Assumptions 2 and 3 
ensure there is such a c. 	�  ◻

(27)

B(x) =
1

2�i ∫ℜ(z)=c

x−z
(
�

(
M(L(k)� ;z)Xz−1

k

)
−M(f ;z)

)
dz,

V(x) =
1

n

{
1

2�i ∫ℜ(z)=2c−1

x−(z+1)�
(
Xz−1
k

M(L(k)�

2
;z + 1)

)
dz

−

(
1

2�i ∫ℜ(z)=c

x−z�
(
M(L(k)� ;z)Xz−1

k

)
dz

)2}

S
L
(k)
𝜂
=

{
z ∈ ℂ ∶ 1 −

𝜉(𝜂2 + Xk)

𝜂2 cos2 𝜃
< ℜ(z) < 1 +

𝜉(𝜂2 + Xk)

𝜂2 sin2 𝜃

}

⊇

{
z ∈ ℂ ∶ 1 −

𝜉

cos2 𝜃
≤ ℜ(z) ≤ 1 +

𝜉

sin2 𝜃

}
for all k.

(28)
B(x) ∼

1

2
�2

1

2�i ∫ℜ(z)=c

x−zz(z − 1)M(f ;z − 1) dz

=
1

2
�2

1

2�i ∫ℜ(z)=c

x−zM(xf ��(x);z) dz =
1

2
�2xf ��(x),

�

�
Xz−1
k

M(L(k)�

2
;z + 1)

�
∼

1

2
√
�

1

�
M(f ;z + 1∕2),

(29)

V(x) ∼
1

2
√
�

1

n�

1

2�i ∫ℜ(z)=2c−1

x−(z+1)M(f ;z + 1∕2) dz

=
1

2
√
�

1

n�

1√
x

1

2�i ∫ℜ(z)=2c−1∕2

x−zM(f ;z) dz =
1

2
√
�

f (x)

n�
√
x
,
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Expressions (24) and (25) are identical to the ‘away-from-boundary’ bias 
and variance of Chen (2000)’s modified gamma kernel estimator. Now, define 
a ‘boundary point’ x0 ≐ �� for some constant 𝜅 > 0 , and assume that f (x0) and 
f ��(x0) are bounded. Then (24) and (25) show that the bias of the estimator at x0 
is of order O(�3) , while the variance at x0 is of order O((n�3∕2)−1) as n → ∞ . Bal-
ancing squared bias and variance yields the rate of convergence O(n−4∕5) , as for 
interior points.

Next the weighted mean integrated squared error (WMISE) of the estimator 
(23) is investigated.

Theorem  2  Under Assumptions 1–4, the Mellin–Meijer kernel density estimator 
(23) is such that

Proof  (outline) (A detailed proof is given in Geenens (2020, Section C)). Write the 
usual bias-variance decomposition of the MSE of f̂ (x) to obtain

where

are the (weighted) integrated squared-bias and integrated variance, respectively. 
From (27), we see that M(B;z) = �

(
M(L(k)� ;z)Xz−1

k

)
−M(f ;z) . By (8) and the 

expansion (16) with (21) and (22), we have

if z − 1 ∈ Sf  , which is the case here as ℜ(z) = c > 2 − 𝛼 by (31). Also, by (26) and 
the expansion (17) with (21), we can directly write

(30)�

(
∫

∞

0

x2c−1
(
f̂ (x) − f (x)

)2
dx

)
= O(𝜂4) + O((n𝜂)−1) as n → ∞,

(31)if c ∈

(
max

(
2 − �,

3 − 2�

4
, 1 −

�

cos2 �

)
, min

(
3 + 2�

4
, 1 +

�

sin2 �

))
.

�

(
�

∞

0

x2c−1
(
f̂ (x) − f (x)

)2
dx

)
≐ IB2

c
+ IVc,

IB2
c
= ∫

∞

0

x2c−1B2(x) dx and IVc = ∫
∞

0

x2c−1V(x) dx

IB2
c
=

1

2� ∫
ℜ(z)=c

||||�
(
M(L(k)� ;z)Xz−1

k

)
−M(f ;z)

||||
2

dz

∼
1

2� ∫
ℜ(z)=c

�4

4
|z(z − 1)M(f ;z − 1)|2 dz

=
�4

4

1

2� ∫
ℜ(z)=c

||M(xf ��(x);z)||2 dz =
�4

4 ∫
∞

0

x2c+1f ��2(x) dx
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This is O((n�)−1) if 2c − 1∕2 ∈ Sf  , which is the case under condition (31). 	�  ◻

Assumptions 2 and 3 ensure that (31) is a non-empty interval. This establishes the 
convergence to 0 of the WMISE of the estimator (23), where the range of weighting 
x2c−1 assuring convergence essentially depends on the assumed negative and positive 
moments of f. The L2-consistency of the estimator follows.

Corollary 1  Suppose 𝛼 > 3∕2 in Assumption 2 and 𝜉∕ cos2 𝜃 > 1∕2 in Assumption 
3. Then, c = 1∕2 belongs to (31), and estimator (23) is such that

The fastest rate of convergence in (32) is achieved for � ∼ n−1∕5 , which is

the optimal rate of convergence for nonparametric density estimation under 
Assumption 1. Corollary 1 establishes this when 𝛼 > 3∕2 , that is, �(X−3∕2) < ∞ . 
This requires f (x) = o(

√
x) as x → 0 , and in particular, f (0) = 0 . By contrast, Chen 

(2000) showed the MISE-consistency of the ‘modified’ gamma kernel estimator 
under the weaker condition ∫ (xf ��(x))2 dx < ∞ . Indeed there exist distributions with 
∫ (xf ��(x))2 dx < ∞ but with �(X−3∕2) = ∞ , like the exponential distribution to cite 
only one.

It is worth noting that the proof of Theorem 2 is exclusively based on the properties 
of M(f ;z) inside its strip of holomorphy. As such, (30) has been proved under condi-
tions on the existence of moments of X only, as those define Sf  . In particular, the proof 
uses the general identity

and the condition ‘ z − 1 ∈ Sf  ’, i.e., ℜ(z) = c > 2 − 𝛼 , requires 𝛼 > 3∕2 if one wants 
c = 1∕2 . Now, this condition may be relaxed if we look at the analytic continua-
tion of M(f ;z) outside Sf  (Paris and Kaminski 2001, p. 86). If f (x) ∼

∑∞

k=0
akx

�k−1 
as x → 0 with 𝛼 < 𝛼0 < 𝛼1 < 𝛼2 < … , then for 1 − 𝛼k∗+1 < ℜ(z) < 1 − 𝛼k∗ , M(f ;z) 
is actually the Mellin transform of fk∗ = f (x) −

∑k∗

k=0
akx

�k−1 = o(f (x)) as x → 0 . 

IVc ≤ 1

n �
∞

0

x2c−1�

��
1

Xk

L(k)�

�
x

Xk

��2
�
dx

=
1

n
�

�
�

∞

0

(yXk)
2c−1 1

Xk

L(k)�

2
(y) dy

�
=

1

n
�

�
M(L(k)�

2
;2c)X2c−2

k

�

∼
1

2
√
�n�

�
�
X2c−3∕2

�
.

(32)�

(
∫

∞

0

(
f̂ (x) − f (x)

)2
dx

)
= O(𝜂4) + O((n𝜂)−1) → 0 as n → ∞.

�

(
∫

∞

0

(
f̂ (x) − f (x)

)2
dx

)
= O(n−4∕5),

(33)M(xf ��(x);z) = z(z − 1)M(f ;z − 1) for z − 1 ∈ Sf ,
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Thus, if −1∕2 ∈ (1 − �k∗+1, 1 − �k∗ ) , then z(z − 1)M(f ;z − 1) is the Mellin trans-
form of xf ��

k∗
(x) . If this is well-behaved, the proof of Theorem 2 would carry over 

without the condition c > 2 − 𝛼 . For instance, the exponential density f (x) = e−x�x≥0 
has Mellin transform M(f ;z) = � (z) for ℜ(z) > 0 . As e−x =

∑∞

k=0

(−x)k

k!
 we have that, 

for ℜ(z) ∈ (−1, 0) , � (z) is the Mellin transform of f1(x) = e−x − 1 . By inversion, 
xf ��

1
(x) =

1

2�i
∫
ℜ(z)=c

x−zz(z − 1)� (z − 1) dz for c ∈ (0, 1) . As f ′′
1
≡ f ′′ , (33) holds true 

for ℜ(z) = 1∕2 even with 𝛼 < 3∕2 . Geenens (2020, Proposition C.1) establishes (32) 
under the condition ∫ ∞

0
(xf ��(x))2 dx < ∞ , as in Chen (2000).

6 � Smoothing parameter selection

Here we propose a data-driven way of selecting � in (23). Although cross-validation 
could be used, Mellin transform ideas provide an easy plug-in selector. From (24) 
and (25), the asymptotically dominant terms in the WMISE (30) are 
1

4
�4 ∫ ∞

0
x2c+1f ��2(x) dx +

1

2
√
�

1

n�
∫ ∞

0
x2c−3∕2f (x) dx , for any c in (31). Balancing the 

two terms, the asymptotically optimal value of � is

Plug-in methods attempt to estimate the unknown factors in (34) for approximating 
�opt,c . Estimating ∫ ∞

0
x2c−3∕2f (x) dx = �(X2c−3∕2) is straightforward, but estimating 

the denominator involving f ′′ is less obvious. Usually this step requires estimating 
higher derivatives of f, which in turn requires selecting pilot smoothing parameters 
and/or resorting to a ‘reference distribution’ (Sheather and Jones 1991). Here, com-
bining (8) and (33) yields, for c − 1 ∈ Sf ,

M(f ;z − 1) can be naturally estimated by M(ℙn;z − 1) = n−1
∑n

k=1
Xz−2
k

 . Now, if 
z = c + i� , |z(z − 1)|2 = (c(c − 1) − �2)2 + (2c − 1)2�2 , and

This suggests to approximate (35) by

(34)�opt,c =

�
(2
√
�)−1 ∫ ∞

0
x2c−3∕2f (x) dx

∫ ∞

0
x2c+1f ��2(x) dx

�1∕5

n−1∕5.

(35)∫
∞

0

x2c+1f ��2(x) dx =
1

2� ∫
ℜ(z)=c

|z(z − 1)M(f ;z − 1)|2 dz.

|||||

n∑
k=1

Xz−2
k

|||||

2

=

n∑
k=1

Xz−2
k

×

n∑
k�=1

Xz∗−2
k�

(⋅∗ denotes complex conjugation)

=
∑
k

∑
k�

(XkXk� )
c−2

(
Xk

Xk�

)i�

=
∑
k

∑
k�

(XkXk� )
c−2 cos

(
� log

Xk

Xk�

)
.
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for some value T. Note that 
(
(c(c − 1) − �2)2 + (2c − 1)2�2

)
cos

(
� log

Xk

Xk�

)
 has 

closed-form antiderivative, which makes evaluating the integral very easy. However, 
(36) actually diverges for T → ∞ , as it would essentially reflect the integrated 
squared ‘second derivative’ of ℙn = n−1

∑
k �Xk

 . It is, therefore, paramount to select 
an appropriate value of T.

Note from (6) that, for a fixed ℜ(z) = c , |M(f ;z)| is symmetric around 
ℑ(z) = 0 , i.e., the real axis, and always reaches its maximum at ℑ(z) = 0 . In addi-
tion, |M(f ;z)| typically tends to 0 quickly as one moves away from the real axis. 
In particular, |� (z)| is known to be O(e−

1

2
�|z|) as ℑ(z) → ∞ (Paris and Kaminski 

2001, Lemma 3.2), implying a similar exponential behaviour for the modulus of 
(12). It turns out that M(ℙn;z) is remarkably accurate at reconstructing M(f ;z) 
over a substantial set of values of ℑ(z) around the real axis, that is, where it mat-
ters. The approximation badly deteriorates as ℑ(z) grows, but there we know that 
|M(f ;z)| ≃ 0 anyway. This is illustrated in Fig. 3 for the case of the log-normal 
distribution.

Therefore, it is sensible to truncate the integral in (36) at some T for which 
|M(ℙn;z)| is already ‘small’ but before the empirical oscillations start. A reason-
able choice is T0 , the location of the first local minimum in |M(ℙn;z)| away from 
ℑ(z) = 0 ; see Fig. 3. This suggests to take, finally,

(36)

Îc(T) ≐ 1

2�n2

∑
k

∑
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(XkXk� )
c−2

�
T

−T

(
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for some c in (31) (which guarantees that all involved quantities are finite). The the-
ory establishes that the exact value of c inside (31) has little importance. This is 
confirmed by simulation in the next section.

7 � Simulation study

Inspired by Bouezmarni and Scaillet (2005), we consider the following 10 test 
densities, as shown in Fig.  4: [1] standard log-normal; [2] chi-squared with k = 1 
degree of freedom; [3] Nakagami with m = 1 and � = 2 ; [4] gamma with � = 2 and 
� = 1∕2 ; [5] gamma with � = 0.7 and � = 1∕2 ; [6] standard exponential; [7] gener-
alised Pareto with � = 2∕3 and � = 2∕3 ; [8] inverse Weibull with � = 1 and � = 2 ; 
[9] mixture of gammas: 2∕3 × � (0.7, 1∕2) + 1∕3 × � (20, 5) ; [10] mixture of log-
normals: 2∕3 × log-N(0, 1) + 1∕3 × log-N(1.5, 0.1).

These 10 densities exhibit various behaviours at 0 (light head: [1], [8], [10]; fat 
head ( �(X−3∕2) < ∞ ): [3], [4]; very fat head ( �(X−3∕2) = ∞ ): [6], [7] (bounded), 
[2], [5], [9] (unbounded)) and in the tail (light tail: [1]–[6], [9], [10]; fat tail: [7], 
[8]). From each of these distributions, independent samples of size n = 100 and 
n = 500 were generated, with M = 1, 000 Monte-Carlo replications for each sample 
size. On each of them, the density was estimated by the estimator (23), where the 
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basic parameters (�, �) of the Meijer kernel were set to (1,�∕4) , (1/2, 0) and (2,�∕2) 
(‘MM-1’, ‘MM-2’ and ‘MM-3’ in Table 1). For each case, the smoothing parameter 
� was selected according to (37), where three values c were used: c = 1∕2 , c = 1 
and c = 3∕2 . For comparison, the ‘modified’ gamma kernel estimator (‘Gamma’ in 
Table 1), with bandwidth chosen as in Hirukawa and Sakudo (2014), was included 
in the study as well.7

The densities were estimated on a fine grid of N = 1, 000 points between 
q0.9999∕1000 and q0.9999 , where q0.9999 is the quantile of level 0.9999 of the relevant 
density. The MISE of a given estimator f̂  was then approximated by 
�MISE

�
f̂
�
=

1

M

∑M

q=1

1

N

∑N

i=1

�
f̂[q]

�
i×q0.9999

N

�
− f

�
i×q0.9999

N

��2

 , where M = 1, 000 is the 
number of Monte-Carlo replications and f̂[q] is the estimate obtained from the qth 
replicated sample. The results are reported in Table 1 for n = 100 . The results for 
n = 500 show a very similar pattern and are omitted. For ease of reading, all the val-
ues in Table  1 are relative to the MISE of the gamma kernel estimator, which is 
taken as benchmark owing to its reference role among the asymmetric kernel density 
estimators. Its effective MISE ( ×104 ) is reported in italics in the second row of the 
table.

Table  1 confirms the potential of Mellin–Meijer kernel estimation. There is a 
Mellin–Meijer kernel estimator which outperforms (Dens. [2], [3], [4], [8], [10]), 
sometimes by a large extent (half MISE for [2] and [8]), or is on par with (Dens. [1], 
[5], [7], [9]) the modified gamma kernel estimator. An exception is the exponen-
tial [6], for which the modified gamma kernel estimator does better. The modified 
gamma kernel estimator is actually so designed for staying bounded at x = 0 in finite 
samples (Chen 2000, p. 473).8 So it is especially good at estimating densities f such 
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Fig. 5   ‘Suicide’ data set: Mellin–Meijer kernel density estimator with � = 0 , � = 1∕2 and � = 4.74 (left 
panel); modified gamma kernel estimator and ‘boundary-corrected’ conventional kernel estimator (right 
panel)

7  This estimator was computed using the dbckden function in the R package evmix.
8  That estimator remains consistent for unbounded densities, though; see Bouezmarni and Scaillet 
(2005).
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that 0 < f (0) < ∞ , such as the exponential. This may sometimes be counter-pro-
ductive, though, see next Section. Nota that the Mellin–Meijer estimates are always 
bona fide densities, which is not the case for the modified gamma estimates.

The values of � and � have little influence on the MISE of the estimator, as 
expected from the theory. The results evidence as well that the selector (37) is good 
at picking a right value of � . Of course, we get huge MISE’s for Densities [2], [5], 
[6], [7] and [9] if (37) is computed with c = 1∕2 , in agreement with the theory: those 
are the densities such that �(X−3∕2) = ∞ , hence c = 1∕2 does not belong to (31). For 
those densities, the selector is doing very good with c = 3∕2 . For the other densities, 
the value of c is less important. In practice, the choice of � and � may be driven by 
a basic visual analysis of the sample, in particular a qualitative appreciation of the 
likely head and tail behaviour of the density f. As an example, if ‘many’ observa-
tions fall close to the boundary, suggesting a fat-headed density f, then it may be 
meaningful to take � = 0 and � = 1∕2 (kernel with the fattest head, see Fig. 2). If no 
clear indication of that type may be drawn, then it seems reasonable to take � = �∕4 
and � = 1 (‘balanced’ kernel) as default choice. Likewise, for bandwidth selection, 
it seems wise to take c = 3∕2 , as it always belongs to (31) under the mild moment 
conditions � ≥ 1∕2 and � ≥ 3∕2 (and � ≥ 1∕2 ), so we avoid the above problem and 
the returned bandwidth is always meaningful.

8 � Real data analyses

In this section, the Mellin–Meijer kernel estimator (23) is applied on two real data 
sets. The first is the ‘suicide’ data set, which gives the lengths (in days) of n = 86 
spells of psychiatric treatment undergone by patients in a study of suicide risks. 

Fig. 6   ‘World Distribution of Income’ data set: Mellin–Meijer kernel density estimator with � = �∕4 , 
� = 1 and � = 28.54(plain line), maximum likelihood log-normal parametric fit (dashed thin line), modi-
fied gamma kernel estimator (dashed thick line)



974	 G. Geenens 

1 3

Among others, it was studied in Silverman (1986) and Chen (2000) in relation to 
boundary issues. Visual inspection (raw data at the bottom of the graph, histogram) 
reveals that the density should be positive, if not unbounded, at x = 0 . Hence, we 
take � = 0 and � = 1∕2 for the Meijer kernels. The smoothing parameter returned by 
(37) with c = 3∕2 is � = 4.74 . Figure 5 (left panel) shows the estimated density. The 
estimate shows a spike at the 0 boundary: there are 3 observations exactly equal to 
1 in the data set, and at this scale, this is pretty much ‘on the boundary’. Hence, the 
estimator attempts to put a positive probability mass atom there, producing a mean-
ingful spike. Away from the boundary, the estimate decays readily and smoothly.

For comparison, the modified gamma kernel estimator, with bandwidth chosen 
by reference rule (Hirukawa and Sakudo 2014), as well as the ‘boundary-corrected’ 
conventional estimator (Jones and Foster 1996) with ‘SJ-bandwidth’ (Sheather and 
Jones 1991), are shown in the right panel. While the modified gamma kernel esti-
mator behaves very similarly to the Mellin–Meijer kernel estimator in the tail, its 
behaviour at the boundary is not satisfactory as it seems to underestimate f there, 
compared to the other estimates and the histogram. This is typical of the modified 
gamma kernel estimator, as discussed in Zhang (2010) and Malec and Schienle 
(2014). The boundary-corrected kernel estimate may do better at x = 0 , but exhibits 
numerous ‘spurious bumps’ in the right tail.

In the second example, we estimate the World Distribution of Income from data 
giving the GDP per capita (in constant 2000 international dollars) of n = 182 coun-
tries in 2003 obtained from the World Bank Database. This is important as various 
measures of poverty rates, income inequality or welfare at the scale of the world are 
based on this distribution (a). Raw data are shown in Fig. 6 with an histogram and 
the estimated density by the Mellin–Meijer kernel estimator. We set � = �∕4 and 
� = 1 , and the value returned by (37) with c = 3∕2 was � = 28.54.

A log-normal parametric density, fitted by Maximum Likelihood ( 𝜇̂ = 8.58 , 
𝜎̂ = 1.20 ), is also shown in Fig. 6. (a) strongly advocated in favour of the log-nor-
mal model for these data. However, the (mostly) unconstrained Mellin–Meijer esti-
mate reveals that the peak close to 0 is actually narrower than the ‘log-normal peak’, 
whereas there are much more countries with GDP in the range 15,000 - 40,000 than 
what the log-normal distribution prescribes. In other words, analysis through the 
log-normal model is likely to underestimate poverty and income inequality at the 
world level. Chen (2000)’s modified gamma kernel estimator is also shown. Here 
that estimator largely overestimates f at x = 0 : it is so designed to take a finite, non-
zero value at x = 0 , whereas here it seems clear from the raw data that f (0) = 0 . The 
peak at around x = 1000 is also largely oversmoothed.

9 � Concluding remarks

Within his seminal works on compositional data (data on the simplex), Aitchison 
(2001, Section 4.1) noted: “For every sample space there are basic group opera-
tions which, when recognised, dominate clear thinking about data analysis.” He 
continued: “In ℝd,the two operations, translation and scalar multiplication are so 
familiar that their fundamental role is often overlooked”, implying that, when not in 
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ℝ
d , there is no reason to blindly stick to those operations. The methodology devel-

oped in this paper perfectly aligns with this stance. It has apparently been largely 
overlooked in earlier literature that the ‘boundary issues’ of the conventional kernel 
density estimator find their very origin in that ℝ+ equipped with the addition + is not 
a group. Noting that the natural group operation on ℝ+ is the multiplication × , we 
have investigated a new kind of kernel estimation for ℝ+-supported probability den-
sities which achieves smoothing through ‘multiplicative dilution’. The construction 
gives rise to an asymmetric kernel density estimator, although of different nature to 
the other estimators known under that name, such as the gamma kernel estimator 
(Chen 2000). Unlike those, our estimator is based on a valid smoothing operation on 
ℝ

+ , the Mellin convolution, which avoids any inconsistency in the definition and the 
behaviour of the estimator. We have defined a huge class of distributions supported 
on ℝ+ which, defined in terms of Meijer G-functions, perfectly fit within the ‘Mel-
lin’ framework. Using those ‘Meijer densities’ as kernels produces an integrated the-
ory with general features no more specific to a particular choice of kernel.

Interestingly, Aitchison (2001, Section 6.3) already introduced the Mellin trans-
form as the suitable analytical tool for simplicial distributions. More generally, the 
Mellin transform of a density f ought to be a fundamental function in statistics and 
probability, as it explicitly returns all the moments (real, complex, integral and frac-
tional) of f. It is, therefore, rather surprising that it has stayed this inconspicuous in 
the statistical literature so far. Historically, one can find statistical applications of the 
Mellin transform only intermittently over decades (Dolan 1964; Epstein 1948; Kabe 
1958; Lomnicki 1967; Subrahmaniam 1970). Only recently has the Mellin transform 
made a (discreet) resurgence in the statistical literature, e.g., in Balakrishnan and 
Stepanov (2014); Belomestny and Schoenmakers (2016). Those papers testify of the 
appropriateness of the Mellin transform and Mellin convolution in any multiplica-
tive framework, such as problems of multiplicative censoring.

Acknowledgements  The author would like to thank the Editor, the Associate Editor and three anony-
mous referees for their helpful suggestions which greatly helped to improve the quality of the paper.

References

Aitchison, J. (2001). Simplicial Inference. In M. A. G. Viana & D. S. P. Richards (Eds.), Algebraic Meth-
ods in Statistics and Probability, Contemporary Mathematics Series 287, American Mathematical 
Society, Providence, Rhodes Island, pp. 1–22.

Balakrishnan, N., Stepanov, A. (2014). On the use of bivariate Mellin transform in bivariate random scal-
ing and some applications. Methodology and Computing in Applied Probability, 16, 235–244.

Beals, R., Szmigielski, J. (2013). Meijer G-functions: A gentle introduction. Notices of the American 
Mathematical Society, 60, 866–872.

Belomestny, D., Schoenmakers, J. (2016). Statistical inference for time-changed Lévy processes via Mel-
lin transform approach. Stochastic Processes and their Applications, 126, 2092–2122.

Bouezmarni, T., Scaillet, O. (2005). Consistency of asymmetric kernel density estimators and smoothed 
histograms with application to income data. Econometric Theory, 21, 390–412.

Chen, S. X. (2000). Probability density function estimation using gamma kernels. Annals of the Institute 
of Statistical Mathematics, 52, 471–480.

Cheng, M. Y., Fan, J., Marron, J. S. (1997). On automatic boundary corrections. Annals of Statistics, 25, 
1691–1708.



976	 G. Geenens 

1 3

Comte, F., Genon-Catalot, V. (2012). Convolution power kernels for density estimation. Journal of Statis-
tical Planning and Inference, 142, 1698–1715.

Cox, C. (2008). The generalized F distribution: An umbrella for parametric survival analysis. Statistics in 
Medicine, 27, 4301–4312.

Dai, J., Sperlich, S. (2010). Simple and effective boundary correction for kernel densities and regression 
with an application to the world income and Engel curve estimation. Computational Statistics and 
Data Analysis, 54, 2487–2497.

Dolan, B. A. (1964). The Mellin transform for moment-generation and for the probability density of 
products and quotients of random variables. Proceedings of the IEEE, 52, 1745–1746.

Epstein, B. (1948). Some applications of the Mellin transform in statistics. Annals of Mathematical Sta-
tistics, 19, 370–379.

Geenens, G. (2020). Supplementary Material to ‘Mellin-Meijer kernel density estimation on ℝ+ ’. Annals 
of the Institute of Statistical Mathematics.

Geenens, G., Wang, C. (2018). Local-likelihood transformation kernel density estimation for positive ran-
dom variables. Journal of Computational and Graphical Statistics, 27, 822–835.

Hall, P., Hu, T., Marron, J. S. (1995). Improved variable window kernel estimates of probability densities. 
Annals of Statistics, 23, 1–10.

Härdle, W., Müller, M., Sperlich, S., Werwatz, A. (2004). Nonparametric and Semiparametric Models: 
An Introduction. Berlin: Springer.

Hirukawa, M., Sakudo, M. (2014). Nonnegative bias reduction methods for density estimation using 
asymmetric kernels. Computational Statistics and Data Analysis, 75, 112–123.

Hirukawa, M., Sakudo, M. (2015). Family of generalised gamma kernels: A generator of asymmetric 
kernels for nonnegative data. Journal of Nonparametric Statistics, 27, 41–63.

Igarashi, G. (2016). Weighted log-normal kernel density estimation. Communications in Statistics - The-
ory and Methods, 45, 6670–6687.

Igarashi, G., Kakizawa, Y. (2014). Re-formulation of inverse Gaussian, reciprocal inverse Gaussian, and 
Birnbaum-Sauders kernel estimators. Statistics & Probability Letters, 84, 235–246.

Igarashi, G., Kakizawa, Y. (2018). Generalised gamma kernel density estimation for nonnegative data and 
its bias reduction. Journal of Nonparametric Statistics, 30, 598–639.

Jeon, Y., & Kim, J. H. T. (2013). A gamma kernel density estimation for insurance loss data. Insurance: 
Mathematics and Economics, 53, 569–579.

Jin, X., Kawczak, J. (2003). Birnbaum-Saunders and lognormal kernel estimators for modelling durations 
in high frequency financial data. Annals of Economics and Finance, 4, 103–124.

Jones, M. C. (1993). Simple boundary correction for kernel density estimation. Statistics and Computing, 
3, 135–146.

Jones, M. C., Foster, P. J. (1996). A simple nonnegative boundary correction method for kernel density 
estimation. Statistica Sinica, 6, 1005–1013.

Jones, M. C., Henderson, D. A. (2007). Kernel-type density estimation on the unit interval. Biometrika, 
94, 977–984.

Kabe, D. G. (1958). Some applications of Meijer-G Functions to distribution problems in statistics. Biom-
etrika, 45, 578–580.

Kakizawa, Y. (2018). Nonparametric density estimation for nonnegative data, using symmetrical-based 
inverse and reciprocal inverse Gaussian kernels through dual transformation. Journal of Statistical 
Planning and Inference, 193, 117–135.

Karunamuni, R. J., Alberts, T. (2005). A generalized reflection method of boundary correction in kernel 
density estimation. Canadian Journal of Statististics, 33, 497–509.

Lomnicki, Z. A. (1967). On the distribution of products of random variables. Journal of the Royal Statis-
tical Society: Series B (Statistical Methodology), 29, 513–524.

Malec, P., Schienle, M. (2014). Nonparametric kernel density estimation near the boundary. Computa-
tional Statistics and Data Analysis, 72, 57–76.

Marchant, C., Bertin, K., Leiva, V., Saulo, H. (2013). Generalized Birnbaum-Saunders kernel density 
estimators and an analysis of financial data. Computational Statistics and Data Analysis, 63, 1–15.

Meijer, C. S. (1936). Uber Whittakersche bzw. Besselsche Funktionen und deren Produkte, Nieuw Archief 
voor Wiskunde, 18, 10–39.

Mnatsakanov, R., Ruymgaart, F. H. (2012). Moment density estimation for positive random variables. 
Statistics, 46, 215–230.

Mnatsakanov, R., Sarkisian, K. (2012). Varying kernel density estimation on ℝ
+
 . Statistics & Probability 

Letters, 82, 1337–1345.



977

1 3

Mellin–Meijer kernel density estimation on ℝ+﻿	

Müller, H.-G. (1991). Smooth optimum kernel estimators near endpoints. Biometrika, 78, 521–530.
Paris, R. B., Kaminski, D. (2001). Asymptotics and Mellin-Barnes Integrals. Cambridge: Cambridge Uni-

versity Press.
Pinkovskiy, M. and Sala-i-Martin, X. (2009), Parametric estimations of the world distribution of income, 

Working Paper 15433, National Bureau of Economic Research, Cambridge.
Prudnikov, A.P., Marichev, O.I. & Brychkov, Yu. A. (1990). Integrals and Series, Vol. 3: More Special 

Functions, Gordon and Breach, Newark.
Scaillet, O. (2004). Density estimation using inverse Gaussian and reciprocal inverse Gaussian kernels. 

Journal of Nonparametric Statistics, 16, 217–226.
Schuster, E. (1985). Incorporating support constraints into nonparametric estimators of densities. Com-

munications in Statistics - Theory and Methods, 14, 1123–1136.
Sheather, S. J., Jones, M. C. (1991). A reliable data-based bandwidth selection method for kernel density 

estimation. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 53, 683–690.
Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis. New York: Chapman and 

Hall/CRC.
Subrahmaniam, K. (1970). On some applications of Mellin transform to statistics: dependent random 

variables. SIAM Journal on Applied Mathematics, 19, 658–662.
Terrell, G. R., Scott, D. W. (1992). Variable kernel density estimation. Annals of Statistics, 20, 

1236–1265.
Wand, M. P., Jones, M. C. (1995). Kernel Smoothing. New York: Chapman and Hall/CRC.
Zhang, S. (2010). A note on the performance of the gamma kernel estimators at the boundary. Statistics 

& Probability Letters, 80, 548–557.
Zhang, S., Karunamuni, R. J., Jones, M. C. (1999). An improved estimator of the density function at the 

boundary. Journal of the American Statistical Association, 94, 1231–1241.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.


	Mellin–Meijer kernel density estimation on 
	Abstract
	1 Introduction
	2 Mellin transform
	3 Meijer densities
	4 Mellin–Meijer kernel density estimation
	5 Asymptotic properties
	6 Smoothing parameter selection
	7 Simulation study
	8 Real data analyses
	9 Concluding remarks
	Acknowledgements 
	References




