
Vol.:(0123456789)

https://doi.org/10.1007/s10463-020-00771-2

1 3

Identifying shifts between two regression curves

Holger Dette1 · Subhra Sankar Dhar2 · Weichi Wu3

Received: 16 January 2020 / Revised: 18 September 2020 

© The Institute of Statistical Mathematics, Tokyo 2021

Abstract
This article studies the problem whether two convex (concave) regression functions 
modelling the relation between a response and covariate in two samples differ by a 
shift in the horizontal and/or vertical axis. We consider a nonparametric situation 
assuming only smoothness of the regression functions. A graphical tool based on 
the derivatives of the regression functions and their inverses is proposed to answer 
this question and studied in several examples. We also formalize this question in a 
corresponding hypothesis and develop a statistical test. The asymptotic properties of 
the corresponding test statistic are investigated under the null hypothesis and local 
alternatives. In contrast to most of the literature on comparing shape invariant mod-
els, which requires independent data the procedure is applicable for dependent and 
non-stationary data. We also illustrate the finite sample properties of the new test by 
means of a small simulation study and two real data examples.
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1 Introduction

A common problem in statistical analysis is the comparison of two regression 
models that relate a common response variable to the same covariates for two dif-
ferent groups. If the two regression functions coincide such statistical inference 
can be performed on the basis of the pooled sample, and therefore, it is of interest 
to test hypotheses of this type. More formally, let

denote two regression models with real valued responses and predictors t
�,k and ran-

dom errors ei,1 and ej,2 . Statistical methodology addressing the question, if the two 
regression functions m1 and m2 coincide, has been investigated by many authors, 
and there exists an enormous amount of literature addressing this important testing 
problem (see, for example,  Hall and Hart 1990;  Dette and Munk 1998;  Dette and 
Neumeyer 2001;  Neumeyer and Dette 2003 for some early and  Vilar-Fernández 
et al. 2007;  Neumeyer and Pardo-Fernández 2009;  Maity 2012;  Degras et al. 2012;  
Durot et al. 2013;  Park et al. 2014 for some more recent references among many 
others).

Another interesting question in this context is the comparison of the regression 
curves up to a certain parametric transformation. Such parametric relationship 
between two regression curves often can be fitted into various real life examples; 
for instance, as it is mentioned in  Härdle and Marron (1990), the growth curves 
of children may have a simple parametric relationship between them. It may hap-
pen that these curves are realizations of one curve but differ in the time and the 
vertical axes, and consequently, the difference among these regression curves can 
be measured by two unknown quantities, namely the horizontal shift (i.e. along 
the covariate axis) and the vertical scale (i.e. along the response axis).

Many authors have worked on this problem. Exemplary we mention the early 
work by  Härdle and Marron (1990), Carroll and Hall (1993), Rønn (2001) and 
the more recent references (Gamboa et  al. 2007;  Vimond 2010;  Collier and 
Dalalyan 2015) among others. Several authors proposed tests for the hypotheses 
that the regression curves coincide up to a certain parametric relationship. The 
proposed methodology is based on the estimation of the parametric form from the 
given data. In this article, we contribute to this literature and propose a simple 
method to test the hypothesis

where m1 and m2 are convex (or concave) functions. The assumption of a convex or 
concave regression function is well justified in several applications. For example, 
production functions are often assumed to be concave (see  Varian 1984), economic 
theory implies that utility functions are concave (see  Matzkin 1991) or in finance 
theory restricts call option prices to be convex (see  Ait-Sahalia and Duarte 2003).

(1)Yi,1 = m1(ti,1) + ei,1, i = 1,… , n1

(2)Yj,2 = m2(tj,2) + ej,2, j = 1,… , n2

(3)H0 ∶ m1(x) = m2(x + c) + d for some constants c, d,
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We will show in Sect. 2 that under the null hypothesis (3), the functions ((m�
1
)−1)� 

and ((m�
2
)−1)� coincide (here and throughout this paper f ′ denotes the derivative of the 

function f and f −1 its inverse). This fact is utilized to develop a graphical device to 
check (3) by estimating the difference ((m�

1
)−1)� − ((m�

2
)−1)� . For this purpose, we use 

ideas of Dette et al. (2006) who proposed a very simple estimator of the inverse regres-
sion function say f based on a kernel density estimation of the random variable f(U), 
where U is a uniformly distributed random variable on the interval (0, 1), and f is either 
m′

1
 or m′

2
.

The second contribution of this paper is a formal test for the hypothesis (3) in the 
context of dependent and non-stationary data, which is based on a suitable distance 
between estimates of the functions ((m�

1
)−1)� and ((m�

2
)−1(t))� . More precisely, we 

investigate an L2-norm of a smooth estimator of the difference ((m�
1
)−1)� − ((m�

2
)−1)� 

and derive the asymptotic distribution of the corresponding test statistic under the null 
hypotheses and local alternatives. The challenges in deriving these results are twofold. 
First—in contrast to most of the literature—we allow for a very complex dependence 
structure of the errors in models (1) and (2). In particular, they can be time dependent 
and non-stationary (see, for example,  Dahlhaus 1997;  Mallat et al. 1998;  Ombao et al. 
2005;  Nason et al. 2000;  Zhou and Wu 2009;  Vogt 2012 for various definitions of 
non-stationary time series). A particular difficulty consists in the proof of the asymp-
totic distribution of the estimated integrated squared difference, which is (after appro-
priate standardization) normal, but involves higher order derivatives of the regression 
functions. As these quantities are very difficult to estimate, we develop a bootstrap test, 
which has very good finite sample properties and is based on a Gaussian approximation 
used in the proof of the weak convergence of the test statistic.

The rest of the article is organized as follows. Section 2 describes the basic meth-
odology adopted in this article. A new graphical device is proposed for comparing 
two nonparametric regression functions up to a shift in the covariate and response in 
Sect.  2.1. The formal testing problem is considered in Sect. 2.2, while we give some 
theoretical justification for these tools in Sect. 3. A small simulation study is carried 
out in Sect.  4, illustrating the finite sample properties of the proposed method and 
two applications are discussed in Sect. 4.3. Finally, all proofs except of the proof of 
Lemma 1, which justifies our approach, are given in an appendix in Sect. 5.

2  Methodology

Throughout this paper, we consider two data sets {Yi,1}i=1,..,n1 and {Yi,2}i=1,..,n2 that can 
be modelled as

the error random variables {ei,1}i=1,…,n1
 and {ei,2}i=1,…,n2

 are locally stationary pro-
cess satisfying some technical conditions that will be described later in Sect.  3.1, 
and m1 and m2 , are unknown sufficiently smooth regression functions. We assume 

(4)Yi,s = ms

(
i

ns

)
+ ei,s, i = 1,… , ns, s = 1, 2,
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that m1 and m2 are convex (the case of concave regression functions can be treated in 
a similar manner) and are interested in a hypothesis

Notice that we assume that information about the sign of a potential vertical shift 
can be obtained by visible inspection of the data. A corresponding hypothesis with 
a horizontal shift by a negative constant c can be formulated and treated in a similar 
way, but the details are omitted for the sake of brevity. A key observation is that 
under the null hypothesis (5) we have

and this fact motivates us to propose a test statistic and a graphical device based on 
the estimate of ((m�

1
)−1(t))� − ((m�

2
)−1(t))�.

Lemma 1 Assume that the regression functions m1 and m2 in (4) have a strictly 
increasing first-order derivative on the interval [0, 1], then the following statements 
are equivalent.

(1) There exists a constant c ∈ (0, 1) such that m1(t) = m2(t + c) + d for all 
t ∈ (0, 1 − c).

(2) Equation (6) holds for all u ∈ (m�
1
(0),m�

1
(1 − c)).

Proof If condition (1) holds, then

for all t ∈ (0, 1 − c) . Now consider the equation m�
1
(x) = m�

2
(x + c) = u for some 

fixed u ∈ (m�(0),m�(1 − c)) and note that both derivatives are strictly increasing. 
Consequently, we obtain for a solution in the interval for (0, 1 − c)

In particular, this yields (subtracting both equations)

for any u ∈ (m�
1
(0),m�

1
(1 − c)) . Taking derivatives on both sides of (7) gives (6) and 

shows that (1) implies (2).
On the other hand, if condition (2) holds, it follows

any s ∈ (m�
1
(0),m�

1
(1 − c)) , which yields

(5)H0 ∶

{
there exists constants c ∈ (0, 1) and d ∈ ℝ such that

m1(t) = m2(t + c) + d, for all t ∈ (0, 1 − c).

(6)((m�
1
)−1(t))� − ((m�

2
)−1(t))� = 0,

m�
1
(t) = m�

2
(t + c)

x = (m�
1
)−1(u) ; x + c = (m�

2
)−1(u) .

(7)c = (m�
2
)−1(u) − (m�

1
)−1(u)

∫
s

m�
1
(0)

((m�
1
)−1)�(u)du = ∫

s

m�
1
(0)

((m�
2
)−1)�(u)du,
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for s ∈ (m�
1
(0),m�

1
(1 − c)) , where

Applying the function m′
2
 on both sides finally gives

for s ∈ (m�
1
(0),m�

1
(1 − c)) . Using the notation (m�

1
)−1(s) = t and integrating with 

respect to t shows that this is equivalent to (1), which completes the proof of 
Lemma 1.   ◻

2.1  Graphical device

According to Lemma 1, under null hypothesis, the points

lie on the horizontal axis. In order to construct a graphical device, let f̂1 and f̂2 
denote suitably chosen uniformly consistent estimates of the functions f1 = ((m�

1
)−1)� 

and f2 = ((m�
2
)−1)� , respectively, let m̂′

1
 denote an estimate of the derivative m′

1
 , and 

let ĉ be an estimate of the horizontal shift c. We now consider a collection of points

where â = m̂�
1
(0) and b̂ = m̂�

1
(1 − ĉ) are estimates of m�

1
(0) and m�

1
(1 − c) , respec-

tively, � is a small positive constant and L is a positive integer. Under the null 
hypothesis, the points of Cn1,n2 should cluster around the horizontal axis.

Here, the necessary estimates can be constructed in various ways. For example, 
f̂1 and f̂2 can be obtained using a smooth nonparametric estimate of the derivative 
of the regression function and calculating the derivative of its inverse. The inver-
sion of the nonparametric estimates of the derivatives m1 and m2 might be dif-
ficult as these functions are usually not monotone. Possible solutions are to con-
struct isotone (smooth) nonparametric estimates of the derivatives as proposed in 
Mammen (1991) and Hall and Huang (2001) among others and then calculate the 
inverse. Here, we use a more direct approach related to the work of Dette et al. 
(2006) who proposed methodology for nonparametric estimation of a monotone 
regression function based on monotone rearrangements.

To be precise, let K denote a kernel function, bn,1 , bn,2 two bandwidths and 
define for s = 1, 2 the estimate of the regression function ms and its derivative m′

s
 

for t ∈ [bn,s, 1 − bn,s] by

(m�
2
)−1(s) = (m�

1
)−1(s) + c

c = (m�
2
)−1(m�

1
(0)).

m�
2
((m�

1
)−1(s) + c)) = s = m�

1
((m�

1
)−1(s))

{(t, f1(t) − f2(t)) | t ∈ (m�
1
(0),m�

1
(1 − c))}

(8)Cn1,n2 = {(t
�
, f̂1(t�) − f̂2(t�)) ∶ t

�
∈ (â + 𝜂, b̂ − 𝜂); � = 1,… , L},
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and m̂�
s
(t) = m̂�

s
(bn,s) for 0 ≤ t ≤ bn,s , while m̂�

s
(t) = m̂�

s
(1 − bn,s) for 1 − bn,s ≤ t ≤ 1. 

Let Kd be a kernel function, hd a sufficiently small bandwidth and N a large positive 
integer (note that this is not the sample size). We define the estimates

for f1(t) = ((m�
1
)−1)�(t) and f2(t) = ((m�

2
)−1)�(t) , respectively. For the motivation of 

this definition note that, if the estimates m̂′
s
 are consistent for m′

s
 ( s = 1, 2 ), then 

we can replace, for a sufficiently large sample size, the estimates by the unknown 
regression functions, and obtain by a Riemann approximation (if N → ∞ , hd → 0)

where �(A) denotes the indicator functions of the set A and we have used the fact that 
m′

�
 is non-decreasing (see  Dette et al. 2006 for more details). Finally, the estimate of 

(m�
2
)−1 can be obtained by integration, that is

and using (7) we obtain an estimate

of the vertical shift c. Here, m̂′
1
 is the estimate of the derivative of m1 defined in (9) 

and

is a preliminary consistent estimator of c. The resulting estimates for a = m�
1
(0) and 

b = m1(1 − c) are then given by

(9)(m̂s(t), bn,sm̂
�
s
(t))⊤ = argmin

𝛽0,𝛽1

ns∑
i=1

(
Yi,s − 𝛽0 − 𝛽1

(
i

ns
− t

))2

K
( i∕ns − t

bn,s

)
,

(10)f̂1(t) =
1

Nhd,1

N∑
i=1

Kd

( m̂�
1
(
i

N
) − t

hd,1

)
,

(11)f̂2(t) =
1

Nhd,2

N∑
i=1

Kd

( m̂�
2
(
i

N
) − t

hd,2

)

f̂s(t) ≈
1

Nhd

N∑
i=1

Kd

(m�
s
(
i

N
) − t

hd

)
≈

1

hd ∫
1

0

Kd

(m�
s
(x) − t

hd

)
dx

= ∫
(m�

s
(1)−t))∕hd

(m�
s
(0)−t))∕hd

Kd(u)((m
�
s
)−1)�(t + uhd)du

≈ ((m�
s
)−1)�(t)�{m�

s
(0) < t < m�

s
(1)},

ĝ2(x) = ∫
x

m�
2
(0)

f̂2(t)dt

(12)ĉ =
1

1 − c̃ ∫
(1−c̃)

0

(ĝ2(m̂
�
1
(u)) − u)du

c̃ = ĝ2(m̂
�
1
(0))
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(note that we assume that c > 0 ). We will prove in Theorem 4 below that under the 
null hypothesis (5) the points of the set Cn1,n2 will concentrate around the horizontal 
axis when the sample sizes are sufficiently large. Therefore, we propose a graphical 
device that plots the points of the set Cn1,n2.

Example 2 We consider the regression models (4) with independent standard nor-
mal distributed errors and different regression functions   where the sample sizes 
are n1 = n2 = 100 . In this numerical study, N = 100 , hd,N = N−1∕3 , and bandwidths 
bn1,1 and bn2,2 are chosen as described in Sect. 4. The set Cn1,n2 consists of L = 1000 
equally spaced points from the interval (â + 𝜂, b̂ − 𝜂) , where � = 0.01 . To compute 
the local linear estimators, we use the R package named “locpol”. The following 
models are considered in this example:

Note that examples (14) and (16) correspond to the null hypothesis, while (15) and 
(17) represent alternatives. The corresponding plots of the set Cn1,n2 are shown in 
Fig.  1, where the left panels clearly support the null hypothesis of a vertical and 
horizontal shift between the regression functions (the points are clustered around the 
x-axis). On the other hand, the panels on the right give clear evidence that the null 
hypothesis (5) is not true.

2.2  Investigating shifts in the regression functions by testing

The graphical device discussed in the previous section provides a simple tool of visual 
examination of the null hypothesis (5), but does not give any information about the 
statistical uncertainty of a decision. In this section we will add to this tool a statistic 
which can be used to rigorously test the null hypothesis (5) at a controlled type I error. 
Recalling the definition of the estimates (10) and (11) of ((m�

1
)−1)�(t) and ((m�

2
)−1)�(t) , 

we propose to reject the null hypothesis (5) for large values of the statistic

where the weight function is defined by

(13)â = m̂�
1
(0), b̂ = m̂�

1
(1 − ĉ)

(14)m1(x) = (x − 0.4)2 andm2(x) = (x − 0.3)2 − 0.2,

(15)m1(x) = (x − 0.4)2 andm2(x) = x3,

(16)m1(x) = sin(−�x) andm2(x) = sin(−�(x + 0.1)) +
1

4
,

(17)m1(x) = sin(−�x) andm2(x) = − cos(�x).

(18)Tn1,n2 = ∫
(
f̂1(t) − f̂2(t)

)2
ŵ(t)dt,
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� is a small positive constant and â and b̂ are defined in (13). In fact, ŵ(t) is a consist-
ent estimator of the deterministic weight function

where a = m�
1
(0), b = m�

1
(1 − c).

Remark 3 For the construction of the test statistic, other distances between the func-
tions ((m̂�

1
)−1)�(t) and ((m̂�

2
)−1)�(t) could be considered as well. For the L2 distance, 

the derivation of the asymptotic distribution of the statistic Tn1,n2 is already very 
complicated (see Sect. 5 for details), but we can make use of a central limit theorem 
for random quadratic forms (see de Jong 1987). Other distances such as the supre-
mum or L1 distance could be considered as well with additional technical arguments.

(19)ŵ(t) = �(â + 𝜂 ≤ t ≤ b̂ − 𝜂),

(20)w(t) = �(a + � ≤ t ≤ b − �),

-0.5 0.0 0.5 1.0

-4
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0
2
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t
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Fig. 1  Plots of the set C
n1,n2

 for different examples. The panels on the left correspond to the models (14) 
and (16) (null hypothesis) and the panels on the right correspond to the models (15) and (17) (alterna-
tive)
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3  Asymptotic properties

Before stating the asymptotic distribution of Tn1,n2 , a few concepts and assumptions 
are stated for model (4). For the dependence structure, we use a common concept 
non-stationarity, which will be described first.

3.1  Locally stationary processes and basic assumptions

Recall the definition of model (4). Note that {ei,1}i∈ℕ and {ei,2}i∈ℕ define two trian-
gular arrays although this is not reflected in our notation. In particular, we assume 
{ei,s}i∈ℕ , s = 1, 2 are locally stationary processes in the sense of Zhou and Wu 
(2009) such that they have the form

In (21) G1 and G2 are the marginal filters and Fi = (...., �i−1,1, �i,1) , 
Gi = (..., �i−1,2, �i,2) . Moreover, for any p-dimensional vector � = (v1, ..., vp)

⊤ , we 
define ��� =

�∑p

i=1
v2
i
 , ‖�‖4 = (�(���4))1∕4 and make the following basic 

assumptions.

Assumption 1 

(a) 

(b) 
(c) Let {�∗

i,1
}i∈ℕ denote an independent copy of {�i,1}i∈ℕ and define the filtration 

F∗
i
= (�−∞,1, ..., �−1,1, �

∗
0,1
, ..., �i,1) . Similarly, let {�∗

i,2
}i∈ℕ denote an independ-

ent copy of {�i,2}i∈ℕ and define the filtration G∗
i
= (�−∞,2, ..., �−1,2, �∗0,2, ..., �i,2) . 

There exists a constant � ∈ (0, 1) such that for any k ≥ 0 , �4(k) = O(�k) , where 
�4(k) = max(�4,1(k), �4,2(k)) and 

(d) There exists a constant 𝜈0 > 0 such that the 2 × 2 matrix �2(t) − �0I2 is strictly 
positive definite for any t ∈ [0, 1] , where I2 is the 2 × 2 identity matrix, and �2(t) 
is defined as 

(21)ei,1 = G1(i∕n1,Fi), 1 ≤ i ≤ n1, ei,2 = G2(i∕n2,Gi), 1 ≤ i ≤ n2.

�(G1(t,F0)) =0 for t ∈ [0, 1], and sup
t∈[0,1]

‖G1(t,F0)‖4 < ∞.

�(G2(t,G0)) =0 for t ∈ [0, 1], and sup
t∈[0,1]

‖G2(t,G0)‖4 < ∞.

sup
0≤t1<t2≤1

{‖G1(t1,F0) − G1(t2,F0)‖2∕�t1 − t2�} < ∞,

sup
0≤t1<t2≤1

{‖G2(t1,G0) − G2(t2,G0)‖2∕�t1 − t2�} < ∞.

�4,1(k) ∶= sup
t∈[0,1]

‖G1(t,Fk) − G1(t,F
∗
k
)‖4,

�4,2(k) ∶= sup
t∈[0,1]

‖G2(t,Gk) − G2(t,G
∗
k
)‖4 .
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(e) �2(t) is a diagonal matrix with entities �2
1
(t) and �2

2
(t) (the long-run variance of 

the process (G1(⋅,Fi),G2(⋅,Gi))
⊤).

Note that it follows from the definition of �4(k) that �4(k) = 0 for k ≤ 0 . Assump-
tions (d) and (e) ensure that �2

1
(t) and �2

2
(t) are non-degenerate such that 

inf
t∈[0,1]

𝜎2
s
(t) > 0 ( s = 1, 2 ). Recalling the definition of the local linear estimator for the 

derivatives m′
1
 and m′

2
 in (9), we make the following assumptions.

Assumption 2 

(a) The kernel K is a symmetric and twice differentiable function with compact 
support, say [−1, 1] . Furthermore, ∫ 1

−1
K(x)dx = 1.

(b) The kernel Kd is an even density with compact support, say [−1, 1].

Assumption 3 

(a) m1,m2 ∈ C2,1[0, 1] , where C2,1[0, 1] represents the set of twice continuously dif-
ferentiable functions, whose second-order derivative is Lipschitz continuous on 
the interval [0, 1].

Assumption 4 For s = 1, 2 , let

and assume that �n,s = o(hd,n) ( s = 1, 2 ). Further, assume that

where

𝛴2(t) =

∞∑
s=0

�
(
(G1(t,F0),G2(t,G0))(G1(t,F0),G2(t,G0))

⊤
)
.

�n,s =
log n√
nbn,sbn,s

+
n1∕4 log2 n

nb2
n,s

+ b2
n,s
, ��

n,s
=

n1∕4 log2 n

nb2
n,s

+ b2
n,s

nbn,s → ∞, nb4
n,s

log n
(𝜋�

n,s

bn,s
+

𝜋3
n,s

h3
d

+ hd +
1

Nhd

)2

= o(1),

�̄�nb
−1∕2
n,s

log2 n = o(1),

(22)�̄�n,s =
log n√
nbn,sbn,s

+
n1∕4 log2 n

nb2
n,s

+ bn,s, s = 1, 2.
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3.2  Asymptotic properties of C
n1,n2

The following theorem describes the asymptotic properties of the set Cn1,n2 defined 
in (8) if it is used with the local linear estimates (9) for the derivatives m′

1
 and m′

2
 . It 

basically gives a theoretical justification for the use of the graphical device proposed 
in Sect. 2.1. The proof can be found in Sect. 5.2.

Theorem 4 Define for 𝜖 > 0 the set

where g = ((m�
1
)−1)� − ((m�

2
)−1)� . If Assumptions 1–4 are satisfied, then we have

Under the null hypothesis, we have g ≡ 0 and

Theorem 4 shows, that for large sample size the points in the set Cn1,n2 cluster around 
the horizontal axis if and only if the null hypothesis (5) holds.

3.3  Weak convergence of the test statistic

In this section, we derive the asymptotic distribution of the statistic Tn1,n2 . For this 
purpose, we define

and obtain the following result. The proof is complicated and can be found in 
Sect. 5.3.

Theorem  5 Suppose that Assumption  1–4 hold, n2∕n1 → c2 for some constant 
c2 ∈ (0,∞) and assume additionally that

Consider local alternatives of the form

where g ∈ C[a, b] , �n = (n1b
9∕2

n,1
)−1∕2 and the order o(�n) of the remainder holds uni-

formly with respect to t. Then as n1, n2 → ∞,

L(�, g) = {(x, y) ∶ x ∈ [m�
1
(0) + �,m�

1
(1 − c) − �], |y − g(x)| ≤ �},

lim
n1,n2→∞

ℙ[Cn1,n2 ⊂ L(𝜖, g)] = 1.

L(�) ∶= L(�, 0) = {(x, y) ∶ x ∈ [m�
1
(0) + �,m�

1
(1 − c) − �], |y| ≤ �}.

(23)K◦(x) =
K(x)x

∫ 1

−1
K(x)x2dx

,

bn,1

bn,2
→ r2 ∈ (0,∞).

((m�
1
)−1)�(t) − ((m�

2
)−1)�(t) = �ng(t) + o(�n),
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where the asymptotic bias and variance are given by

where c1 = 1 , r1 = 1 respectively, and (K◦)� ∗ (K◦)� denotes the convolution of the 
functions (K◦)� and (K◦)�.

Remark 6 Under the null hypothesis, we have g ≡ 0 and Theorem 5 can be used to 
construct a consistent asymptotic level � test for the hypotheses in (5). More pre-
cisely, the null hypothesis is rejected whenever

where z1−� is the corresponding (1 − �)th quantile of N(0, 1), and B̂n(0) and V̂T are 
appropriate estimates of the asymptotic bias (for g(t) ≡ 0 ) and variance, respec-
tively. Moreover, Theorem 5 also shows that this test is able to detect alternatives 
converging to the null hypothesis at a rate �n = (n1b

9∕2

n,1
)1∕2 . In this case, the asymp-

totic power of the test is approximately given by

where � is the cumulative distribution function of the standard normal distribution.

In the case where the sample sizes n1 and n2 are equal Theorem 5 directly leads to 
the following corollary.

Corollary 7 If the assumptions of Theorem  5 are satisfied, the sample sizes and 
bandwidths are equal (i.e. n1 = n2 bn,1 = bn,2 = bn ), the weak convergence in (24) 
holds with

(24)n1b
9∕2

n,1
Tn1,n2 − Bn(g) ⇒ N(0,VT ),

Bn(g) =
(∫ 1

−1
vK�

d
(v)dv)2

√
bn,1

((K◦)� ∗ (K◦)�(0))

×

2�
s=1

csr
5
s �

ℝ

�2
s
(u)w(m�

s
(u))(m��

s
(u))−3du + �

1

0

g2(t)w(t)dt,

VT =2
�
�

1

−1

vK�
d
(v)dv

�4

×

2�
s=1

c2
s
r9
s �

ℝ

((K◦)� ∗ (K◦)�(z))2dz�
ℝ

(�2
s
(u)w(m�

s
(u))(m��

s
(u))−3)2du

Tn1,n2 >
B̂n(0) + z1−𝛼V̂

1

2

T

n1b
9

2

n,1

,

�

( ∫ g2(t)w(t)dt

V
1∕2

T

− z1−�

)
,
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Remark 8 (a) (Kneip and Engel 1995) studied the estimation of nonlinear regres-
sion functions under shape invariance. They considered N regression models 
Yij = fi(tij) + �ij , j = 1,… , ni , i = 1,… ,N and a shape invariance property of the 
form fi(�i2t + �i3) = �i1�(t) + �i4 for Ñ of these models. Utilizing this property, 
(Kneip and Engel 1995) proposed an estimator of � which is more efficient than 
the usual nonparametric estimator. The situation considered in the present paper is 
a special case of the model investigated by these authors, but has its focus on test-
ing. In contrast, (Kneip and Engel 1995) considered the estimation of the function 
� , for which they derived an improvement by a factor of Ñ−

2k

2k+1 where k relates to the 
smoothness of the regression function. However, they did not study related testing 
problems. Note that in our setting Ñ ≡ 2 , and therefore, the improvement is limited. 
It is practically useful to consider also testing for a scaling in addition to a shift, 
which was also not addressed in Kneip and Engel (1995). We shall leave this prob-
lem for future research.

(b) If the two series {ei,1}i∈ℤ and {ei,2}i∈ℤ are sequences of independent random 
variables, then Corollary 7 can be simplified replacing long-run variances �2

1
(t) and 

�2
2
(t) by the (local) variances �̃�2

1
(t) = �(G2

1
(t,F0)) and �̃�2

2
(t) = �(G2

2
(t,G0)) , respec-

tively. Since Assumption 4 is postulated under short range dependence and refers to 
the magnitude of the order of bandwidths, it remains unchanged in this case.

4  Implementation and simulation study

We begin with some details regarding the implementation of the test. The calcula-
tion of the test statistic requires the specification of the bandwidths and we use the 
general cross-validation (GCV) method proposed in Zhou and Wu (2010). Specifi-
cally, let m̂s(⋅, b) denote the estimate of the regression function ms with bandwidth b, 
then we consider

Bn(g) =
(∫ vK�

d
(v)dv)2

√
bn

((K◦)� ∗ (K◦)�)(0)

×

2�
s=1

�
ℝ

�2
s
(u)w(m�

s
(u))(m��

s
(u))−3du − �

1

0

g2(t)w(t)dt

VT =2
�
�

1

−1

vK�
d
(v)dv

�4

×

2�
s=1

�
ℝ

((K◦)� ∗ (K◦)�(z))2dz�
ℝ

(�2
s
(u)w(m�

s
(u))(m��

s
(u))−3)2du.

b̂n,s = argminb
n−1
s

∑ns
i=1

(Yi,s − m̂s(i∕ns, b))
2

(1 − K(0)(nsb)
−1)2

.
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As pointed out by Dette et al. (2006), the choice of hd,s has a negligible impact on 
the estimators (10) and (11) (and the corresponding test) as long as it is chosen suf-
ficiently small. As a rule of thumb, we choose hd,s as n−1∕3s .

For the estimation of the long-variance, we define for s = 1, 2 the partial sum 
Sk,r,s =

∑r

i=k
Yi,s , for some m ≥ 2

and for t ∈ [m∕ns, 1 − m∕ns]

where for some bandwidth �n,s ∈ (0, 1),

Here H is a symmetric kernel function with compact support [−1, 1] and 
∫ H(x)dx = 1 . For t ∈ [0,m∕ns) and t ∈ (1 − m∕ns, 1] we define �̂�2

s
(t) = �̂�2

s
(m∕ns) 

and �̂�2(t) = �̂�2(1 − m∕ns) , respectively. The consistency of these estimators has been 
shown in Theorem 4.4 of Dette and Wu (2019).

4.1  Bootstrap

Although Theorem 5 is interesting from a theoretical point of view, it cannot be 
easily implemented for testing the hypothesis (5). The asymptotic bias and vari-
ance depend on the long-run variances �2

1
 , �2

2
 and the first and second derivative 

of the regression functions m1(⋅) and m2(⋅) . In general, these quantities are dif-
ficult to estimate. Furthermore, it is well known, that—even in the case of inde-
pendence—the convergence rate of statistics as considered in Theorem 5 is slow 
(note that the bias in Theorem 5 is of order 1∕

√
bn,1 ). As an alternative, we there-

fore propose a bootstrap test which does not require the estimation of the deriva-
tives and addresses the problem of slow convergence rate.

The bootstrap procedure is motivated by technical arguments used in the proof 
of Theorem 5 in Sect. 5. There we show (see equations (44) and (45)) that under 
the null hypothesis, the statistic Tn1,n2 can be approximated by the statistic

where

�j,s =
Sj−m+1,j,s − Sj+1,j+m,s

m
,

(25)�̂�2
s
(t) =

n∑
j=1

m𝛥2
j,s

2
𝜔(t, j), s = 1, 2,

�(t, i) = H
( i∕ns − t

�n,s

)
∕

n∑
i=1

H
( i∕ns − t

�n,s

)
.

∫
ℝ

U2
n
(t)w(t)dt,
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and {Vj,1, j ∈ ℤ}, {Vj,2, j ∈ ℤ} , are sequences of independent standard normal ran-
dom variables.

Algorithm 1 (a) Estimate m′
1
 and m′

2
 by (9) and estimate the long-run variances �2

1
 

and �2
2
 by (25).

(b) Generate B copies of standard normally distributed random variables 
{V

(B)

j,1
}
n1
j=1

 , {V (B)

j,2
}
n2
j=1

 and calculate the statistic

where

(c) Let W(1) ≤ W(2) ≤ … ≤ W(B) be the ordered statistics of {Ws, 1 ≤ s ≤ B} . We 
reject the null hypothesis (5) at level � , whenever

The p value of this test is given by 1 − B∗∕B , where B∗ = max{r ∶ W(r) ≤ Tn1,n2}.

Remark 9 Algorithm 1 can be extended to comparison of more than two regression 
curves. For the sake of a simple notation, we consider the case of three samples and 

Un(t) =
1

nNb2
n,1
h2
d,1

n1∑
j=1

N∑
i=1

K◦

( j∕n1 − i∕N

bn,1

)
K�
d

(m�
1
(i∕N) − t

hd,1

)
�1

( j

n1

)
Vj,1

−
1

nNb2
n,2
h2
d,2

n2∑
j=1

N∑
i=1

K◦

( j∕n2 − i∕N

bn,2

)
K�
d

(m�
2
(i∕N) − t

hd,2

)
�2

( j

n2

)
Vj,2

WB = ∫
ℝ

(
1

nNb2
n,1
h2
d,1

𝛯
(B)

1
(t) −

1

nNb2
n,2
h2
d,2

𝛯
(B)

2
(t)
)2

ŵ(t)dt,

𝛯
(B)

1
(t) =

n1∑
j=1

N∑
i=1

K◦

( j∕n1 − i∕N

bn,1

)
K�
d

( m̂�
1
(i∕N) − t

hd,1

)
�̂�1

( j

n1

)
V
(B)

j,1
,

𝛯
(B)

2
(t) =

n2∑
j=1

N∑
i=1

K◦

( j∕n2 − i∕N

bn,2

)
K�
d

( m̂�
2
(i∕N) − t

hd,2

)
�̂�2

( j

n2

)
V
(B)

j,2
.

(26)Tn1,n2 > W(⌊B(1−𝛼)⌋).

Table 1  The estimated size 
of the test (26) and the CD 
test for different sample sizes 
n1 = n2 = n over 1000 runs and 
B = 1000 Bootstrap replications

The level of significance is 5% (upper part) and 10% (lower part). 
Inside each cell, from the left, the first value corresponds to the test 
(26), and the second value within parentheses corresponds to the CD 
test

Model/n 50 100 200 500

(29) 0.054 (0.055) 0.053 (0.053) 0.053 (0.052) 0.050 (0.051)

(30) 0.055 (0.056) 0.054 (0.053) 0.052 (0.053) 0.051 (0.051)

(29) 0.108 (0.110) 0.105 (0.107) 0.104 (0.105) 0.100 (0.101)

(30) 0.111 (0.113) 0.107 (0.108) 0.105 (0.104) 0.102 (0.102)
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assume that we additionally observe Yi,3 = m3(
i

n3
) + ei,3 , 1 ≤ i ≤ n3 where (ei,3)1≤i≤n3 

is a locally stationary process with non-degenerate long-run variance �3(⋅) such that 
(ei,1)1≤i≤n1 , (ei,2)1≤i≤n2 and (ei,3)1≤i≤n3 are independent. Consider the hypothesis that

Recall the definition of Tn1,n2 in (18). Define Tn2,n3 by replacing f̂1(t) there with f̂3(t) , 
where f̂3(t) is defined via the local linear estimate of m�

3
(t) in a way similar to f̂1(t) . 

We define the test statistic by

and propose the following bootstrap test for the null hypothesis (27):

Algorithm 2 (a) Generate B copies of standard normally distributed random varia-
bles {V (B)

j,1
}
n1
j=1

 , {V (B)

j,2
}
n2
j=1

 , {V (B)

j,3
}
n3
j=1

 and calculate the statistic

where

and WB and � (B)

2
(t) are defined in Algorithm 1, ŵ2,3(t) is defined in analogue to (19) 

with indices 1, 2 in the formula replaced by 2, 3, and

(27)H0 ∶

⎧⎪⎨⎪⎩

there exists constants c1, c2 ∈ (0, 1) and d1, d2 ∈ ℝ such that

m1(t) = m2(t + c1) + d1, for all t ∈ (0, 1 − c1)

m3(t) = m2(t + c2) + d2, for all t ∈ (0, 1 − c2).

Tn1,n2,n3 = max(Tn1,n2 , Tn2,n3 )

W̃B = max(WB,W
�
B
),

W �
B
= ∫

ℝ

(
1

nNb2
n,3
h2
d,3

𝛯
(B)

3
(t) −

1

nNb2
n,2
h2
d,2

𝛯
(B)

2
(t)
)2

ŵ2,3(t)dt,

𝛯
(B)

3
(t) =

n3∑
j=1

N∑
i=1

K◦

( j∕n3 − i∕N

bn,3

)
K�
d

( m̂�
3
(i∕N) − t

hd,3

)
�̂�3

( j

n3

)
V
(B)

j,3
.

Table 2  The estimated size of 
the test (26) and the CD test for 
unequal sample sizes over 1000 
runs and B = 1000 Bootstrap 
replications

The level of significance is 5% (upper part) and 10% (lower part). 
Inside each cell, from the left, the first value corresponds to the test 
(26), and the second value within parentheses corresponds to the CD 
test

Model/(n1, n2) (50, 75) (100, 150) (200, 300) (500, 750)

(29) 0.053 (0.054) 0.052 (0.053) 0.053 (0.052) 0.051 (0.051)

(30) 0.054 (0.053) 0.052 (0.052) 0.052 (0.051) 0.050 (0.051)

(29) 0.109 (0.110)  
0.104 (0.106)

0.103 (0.105) 0.101 (0.102)

(30) 0.110 (0.111)  
0.105 (0.104)

0.104 (0.103) 0.101 (0.101)
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The parameters bn,3 and hd,3 are used for the nonparametric estimate f̂3(t) and can be 
selected in a similar way to bn,v and hd,v , v = 1, 2.

(b) Let W̃(1) ≤ W̃(2) ≤ … ≤ W̃(B) be the ordered statistics of W̃1,… , W̃B , then the 
null hypothesis (27) is rejected (at level � ), whenever

The p value of this test is given by 1 − B∗∕B where B∗ = max{r ∶ W̃(r) ≤ Tn1,n2,n3}.

4.2  Simulated level and power

In this section, we illustrate the finite sample properties of the test (26) by means of 
a small simulation study. All presented results are based on 1000 runs and B = 1000 
bootstrap replications. We consider both scenarios of equal and unequal sample sizes 
n1 = n2∕a , a = 1, 1.5 with n1 = 50 , 100, 200 and 500. Throughout this article, the 
Epanechnikov kernel is considered for all kernels appearing in the test procedure, and 
we use N = n in (10) and (11). Besides, hd,N = n−1∕3 , and bn1 and bn2 are chosen as 
described at the beginning of Sect. 4.

For s = 1 and 2, we consider model (4) with the error process

where Fi,s = (..., �i−1,s, �i,s) . We assume that �i,1 are i.i.d standard normal random 
variables, and �i,2 are i.i.d. copies of the random variable t5∕

√
5∕3 , where t5 denotes 

the t-distribution with 5 degrees of freedom. A similar dependence structure has 
been considered in Dette and Wu (2019), and other locally stationary processes 
yield similar results. In order to investigate the size of the test (26) and that of the 
existing tests, we consider the models

In Tables 1 and 2, we display the rejection probabilities of the test (26) and the test 
studied in Collier and Dalalyan (2015) with projection weight (denoted as CD test), 
where the level of significance is 5% and 10% . The results show a good approxima-
tion of the nominal level in all cases under consideration.

In order to study the power of the test (26) and that of the existing tests, we consider 
the same error processes as in (28) and use the regression functions

Tn1,n2,n3 > W̃(⌊B(1−𝛼)⌋).

(28)Gs(t,Fi) = 0.6(t − 0.3)2Gs(t,Fi−1,s) + �i,s,

(29)m1(x) = (x − 0.4)2 andm2(x) = (x − 0.3)2 − 0.2,

(30)m1(x) = sin(−�x) andm2(x) = sin(−�(x + 0.1)) +
1

4
.

(31)m1(x) = (x − 0.4)2 andm2(x) = x3,

(32)m1(x) = sin(−�x) andm2(x) = − cos(�x).
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As mentioned in Sect. 1, there are many articles on similar problems, but most of 
them studied the estimation problem of the transformation. To the best of our knowl-
edge, only (Härdle and Marron 1990) and (Collier and Dalalyan 2015) investigated 
a similar testing problem as considered in this paper. As the code for the test consid-
ered in Collier and Dalalyan (2015) denoted as the CD test is publicly available (see 
https ://code.googl e.com/p/shift ed-curve -testi ng/), we have compared the estimated 
size and the estimated power of the test proposed in this paper with that of the CD 
test. The values reported in Tables 1 and 2 indicate that the test (26) and the CD test 
approximate the nominal level reasonably well. The results in Tables 3 and 4 show 
the rejection probabilities under the alternative and demonstrate that in the examples 
under consideration the test (26) is more powerful than the CD test.

It is also of interest to study the impact of various choices of the bandwidths bn,1 
and bn,2 on the estimated power and size if we do not follow the procedure of choos-
ing bn,1 and bn,2 as described at the beginning of this section. For this purpose, we 
investigate the following choices: 

 (i) bn,1 = n
−1∕3

1
 and bn,2 = n

−1∕3

2
,

 (ii) bn,1 = n
−1∕5

1
 and bn,2 = n

−1∕5

2

 (iii) bn,1 = n
−1∕7

1
 and bn,2 = n

−1∕7

2
.

Exemplary we display in Table  5, the simulated power for these bandwidths in 
the scenario considered in Table 3 for a 5% level of significance. We observe that 
the estimated size (these results are not displayed for the sake of brevity) and the 

Table 3  The estimated power of the test (26) and the CD test for different sample sizes n1 = n2 = n over 
1000 runs and B = 1000 Bootstrap replications

The level of significance is 5% (upper part) and 10% (lower part). Inside each cell, from the left, the first 
value corresponds to the test (26), and the second value within parentheses corresponds to the CD test

Model/n 50 100 200 500

(31) 0.611 (0.476)  0.689 (0.541) 0.801 (0.622) 0.888 (0.679)

(32) 0.663 (0.552)  0.712 (0.583) 0.820 (0.657) 0.901 (0.737)

(31) 0.752 (0.593)  0.801 (0.632) 0.896 (0.707) 0.952 (0.754)

(32) 0.790 (0.698)  0.834 (0.736) 0.922 (0.813) 0.994 (0.880)

Table 4  The estimated power of the test (26) and the CD test for unequal sample sizes over 1000 runs 
and B = 1000 Bootstrap replications

The level of significance is 5% (upper part) and 10% (lower part). Inside each cell, from the left, the first 
value corresponds to the test (26), and the second value within parentheses corresponds to the CD test

Model/(n1, n2) (50, 75) (100, 150) (200, 300) (500, 750)

(31) 0.628 (0.503)  0.703 (0.565) 0.822 (0.663) 0.901 (0.730)

(32) 0.679 (0.567)  0.736 (0.598) 0.842 (0.681) 0.928 (0.759)

(31) 0.783 (0.602)  0.832 (0.657) 0.926 (0.729) 0.977 (0.772)

(32) 0.809 (0.705)  0.850 (0.747) 0.957 (0.838) 0.998 (0.801)
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estimated power is not varying more than 3% . In all other examples, we observed a 
similar behaviour indicating some robustness of the test with respect to the choice of 
the bandwidths.

4.3  Real data analysis

Growth Data of Male and Female Infants We use the test (26) and the graphi-
cal device to investigate the validity of assertion (5) for growth data of male and 
female infants. This data set is available from https ://www.cdc.gov/growt hchar ts/
html_chart s/lenag einf.htm#males  and consists of the monthly growth of length 
of male and female infants in the first 3 years (here n1 = n2 = 37 ). The data are 
depicted in Fig. 2 and indicate that the unknown regression functions associated 
with male and female may be differ by a shift in the horizontal and/or vertical 
axis. Therefore, we model the negative values of this data by two regression mod-
els of the form (4) with convex regression functions, where group 1 represents the 
male and group 2 the female infants. For this data, we obtain ĉ = 0.046 as esti-
mate for the horizontal shift using the statistic (12) and d̂ = m̂1(0) − m̂2(ĉ) = 0.087 
as estimate of the vertical shift d.

Table 5  The estimated power of 
the test (26) for different sample 
sizes n1 = n2 = n over 1000 
runs and B = 1000 Bootstrap 
replications

The level of significance is 5% . The upper part of the table shows 
the estimated power for model (31), and the lower part of the table 
shows the estimated power for model (32)

Model b
n

n = 50 n = 100 n = 200 n = 500

(31) n
−1∕3 0.622 0.677 0.814 0.878

(31) n
−1∕5 0.634 0.685 0.826 0.899

(31) n
−1∕7 0.627 0.681 0.801 0.891

(32) n
−1∕3 0.685 0.733 0.826 0.895

(32) n
−1∕5 0.692 0.755 0.840 0.919

(32) n
−1∕7 0.676 0.739 0.818 0.902
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Fig. 2  Plots of the length of the male (middle part) and female (left part) infants and plot of the set C
n1,n2

 
(right part)
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In the right part of Fig.  2, we plot the points of the set Cn1,n2 defined in (8) 
using L = 1000 equally spaced points in the interval (â + 𝜂, b̂ − 𝜂) , where 
â = m̂

�

1
(0) = 0.112 , b̂ = m̂

�

1
(1 − ĉ) = 1.362 , and � = 0.001 is chosen (the smooth-

ing parameters are chosen as described in Sect.  4). The figure clearly indicates 
the existence of a vertical and horizontal shift between the regression functions as 
formulated in the null hypothesis (5).

Finally, we also investigate the performance of the test (26) for this data set, 
where all parameters required for the bootstrap test are chosen as described in 
Sect. 4. For B = 1000 bootstrap replications, we obtain the p value 0.799, which 
gives no indication to reject the null hypothesis and is consistent with the conclu-
sion made by graphical inspection.

Survival to Age 65, Female We here use the test (26) and the graphical device to 
investigate the validity of assertion (5) for the data related to survival of female to 
age sixty-five in three countries, namely Cuba, Canada and Belarus. This data set 
is available from https ://data.world bank.org/indic ator/SP.DYN.TO65.FE.ZS?locat 
ions=CU-CA-BY and consists of the survival of female to age sixty-five in Cuba, 
Canada and Belarus from 1960 to 2018, i.e. we have n1 = n2 = 59 to test (5) for any 
two countries. The data for each country are displayed in Fig. 3, and the diagrams 
indicate that the regression functions associated with data of Cuba and Canada may 
differ by a shift in the horizontal and/or vertical axis, but such relation may not hold 
with the regression function associated with the data of Belarus. In this study, we 
implement the test (26) for three cases, namely the comparison between Cuba and 
Canada, the comparison between Cuba and Belarus, and the comparison between 
Canada and Belarus. For the data of Cuba and Canada, we obtain ĉ = 0.243 as esti-
mate for the horizontal shift using the statistic (12) and d̂ = m̂1(0) − m̂2(ĉ) = 2.226 
as estimate of the vertical shift. In order to validate (5) for the data of Cuba and Can-
ada, we display in the first diagram from the left in Fig. 4 the points of the set Cn1,n2 
defined in (8) using L = 1000 equally spaced points in the interval (â + 𝜂, b̂ − 𝜂) , 
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Fig. 3  Survival percentage of female to age 65 in Cuba, Canada and Belarus
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where â = m̂
�

1
(0) = 0.298 , b̂ = m̂

�

1
(1 − ĉ) = 1.657 , and � = 0.001 (the smoothing 

parameters are chosen as described in Sect. 4). The figure clearly indicates the exist-
ence of a vertical and horizontal shift between the regression functions as formu-
lated in the null hypothesis (5). Next, we also investigate the performance of the test 
(26) for this Cuba and Canada data set, where all parameters required for the boot-
strap test are chosen as described in Sect. 4. For B = 1000 bootstrap replications, we 
obtain the p value 0.683, which favours the assertion stated in the null hypothesis and 
is consistent with the conclusion made by graphical inspection. For the data of Cuba 
and Belarus, we obtain ĉ = 0.462 as estimate for the horizontal shift using the statis-
tic (12) and d̂ = m̂1(0) − m̂2(ĉ) = 1.176 as estimate of the vertical shift. The results 
for the graphical device described in Sect.  2.1 are displayed in the middle panel 
of Fig. 4, where we plot the points of the set Cn1,n2 using L = 1000 equally spaced 
points in the interval (â + 𝜂, b̂ − 𝜂) with â = m̂

�

1
(0) = 0.298 , b̂ = m̂

�

1
(1 − ĉ) = 1.114 , 

and � = 0.001 (the smoothing parameters are chosen as described in Sect. 4). The 
plot clearly indicates that there does not exist a vertical or horizontal shift between 
the regression functions as formulated in the null hypothesis (5). The test (26) for 
this data set yields the p value 0.061 and a rejection of the null hypothesis at the 
level 10% (all parameters required for the bootstrap test are chosen as described in 
Sect. 4 and B = 1000 bootstrap replications are used).

For the data of Canada and Belarus, we obtain ĉ = 0.379 and 
d̂ = m̂1(0) − m̂2(ĉ) = 1.115 as estimate for the horizontal and vertical shift, respec-
tively. The points of the set Cn1,n2 using L = 1000 equally spaced points in the inter-
val (â + 𝜂, b̂ − 𝜂) are displayed in the right panel of Fig. 4, where â = m̂

�

1
(0) = 0.314 , 

b̂ = m̂
�

1
(1 − ĉ) = 1.245 , and � = 0.001 (the smoothing parameters are chosen as 

described in Sect. 4). Again the result clearly indicates that there is no vertical or 
horizontal shift between the regression functions. The test (26) for the Canada and 
Belarus data set yields the p value 0.053 and a rejection of the null hypothesis at the 
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Fig. 4  Plots of C
n1,n2

 for the data related to Survival to Age 65, Female described in Sect. 4.3.
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level 10% (all parameters required for the bootstrap test are chosen as described in 
Sect. 4 and B = 1000 bootstrap replications are used).

We conclude this section with the implementation of the multiple test for the 
hypothesis (27) described in Remark 9, i.e. the data for Cuba, Canada and Belarus 
together. For B = 1000 bootstrap replications, we obtain the p value 0.034 yielding a 
rejection of the hypothesis in (27) at level 5%.
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Appendix: Proofs

Preliminaries

In this section, we state a few auxiliary results, which will be used later in the 
proof. We begin with Gaussian approximation. A proof of this result can be found 
in Wu and Zhou (2011).

Proposition 10 Let

and assume that the Assumption 1 is satisfied. Then on a possibly richer probability 
space, there exists a process {�†

i
}i∈ℤ such that

(equality in distribution), and a sequence of independent 2-dimensional standard 
normal distributed random variables {�i}i∈ℤ , such that

where �(t) is the square root of the long-run variance matrix �2(t) defined in 
Assumption 1.

Proposition 11 Let Assumption 1 and 2 be satisfied.

 (i) For s = 1, 2 we have

Si =

i∑
s=1

�i,

{S†
i
}n
i=0

D
={Si}

n
i=0

max
1≤j≤n

|||
j∑

i=1

�
†

i
−

j∑
i=1

�(i∕n)�i
||| = op(n

1∕4 log2 n),
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where the kernel K◦ is defined in (23).
 (ii) For s = 1, 2

where {Vi,s, i = 1,… , ns, s = 1, 2} denotes a sequence of independent stand-
ard normal distributed random variables.

 (iii) For s = 1, 2 we have

 (iv) For s = 1, 2 we have

Proof (i): Define for s = 1, 2 and l = 0, 1, 2

Straightforward calculations show that (m̂s(t), bn,sm̂
�
s
(t))⊤ = S−1

n,s
(t)Rn,s(t) (s = 1, 2) , 

where

Note that Assumption 2 gives

(33)
sup

t∈[bn,s,1−bn,s]

|||m̂
�
s
(t) − m�

s
(t) −

1

nsb
2
n,s

ns∑
i=1

K◦

( i∕ns − t

bn,s

)
ei,s

|||
= OP

(
1

nsb
2
n,s

+ b2
n,s

)

(34)

sup
t∈[bn,s,1−bn,s]

|||
1

nsb
2
ns

ns∑
i=1

K◦

( i∕ns − t

bn,s

)(
ei,s − �s(i∕n)Vi,s

)|||

= op

( log2 ns

n
3∕4
s b2

n,s

)
,

(35)sup
t∈[bn,s,1−bn,s]

�m̂�
s
(t) − m�

s
(t)� = Op

� log ns√
nsbn,sbn,s

+
log2 ns

n
3∕4
s b2

n,s

+ b2
n,s

�
.

(36)sup
t∈[0,bn,s]∪[1−bn,s,1]

�m̂�
s
(t) − m�

s
(t)� = Op

� log ns√
nbn,sbn,s

+
log2 ns

n
3∕4
s b2

n,s

+ bn,s

�
.

Rn,s,l(t) =
1

nsbn,s

ns∑
i=1

Yi,sK
( i∕n − t

bn,s

)( i∕ns − t

bn,s

)l

,

Sn,s,l(t) =
1

nsbn,s

ns∑
i=1

K
( i∕ns − t

bn,s

)( i∕ns − t

bn,s

)l

.

Rn,s(t) =

(
Rn,s,0(t)

Rn,s,1(t)

)
, Sn,s(t) =

(
Sn,s,0 Sn,s,1
Sn,s,1 Sn,s,2

)
.
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uniformly with respect to t ∈ [bn,s, 1 − bn,s] . The first part of the proposition now fol-
lows by a Taylor expansion of Rn,s,l(t).

(ii): The fact asserted in (34) follows from (33), Proposition 10, the summation by 
parts formula and similar arguments to derive equation (44) in Zhou (2010).

(iii) + (iv): Following Lemma C.3 of supplement of Dette and Wu (2019), we 
have

Finally, (35) follows from (33) (34) and (37) and (36) is obtained by similar argu-
ments using Lemma C.3 in the supplement of Dette and Wu (2019). This completes 
the proof of Proposition 11.   ◻

Proof of Theorem 4

We only prove the result in the case g ≡ 0 . The general case follows by the same 
arguments. Under Assumptions 1 and 2, it follows from the proof of Theorem 4.1 in 
Dette and Wu (2019) that

in probability, where f̂1(t) and f̂2(t) are defined in (10) and (11), respectively. 
Next, since under the null hypothesis (5), ((m�

1
)−1(t))� − ((m�

2
)−1)�(t) = 0 for all 

t ∈ (a + �, b − �) , (See Lemma 1) we have under the null hypothesis,

in probability. In other words, under H0 , for any 𝜖 > 0 , we have

Sn,s,0(t) = 1 + O
(

1

nsbs

)
, Sn,s,1(t) = O

(
1

nsbn,s

)
,

Sn,s,2(t) = ∫
1

−1

K(x)x2dx + O
(

1

nsbn,s

)

(37)sup
t∈[bn,s,1−bn,s]

���
1

nsbn,s

ns�
i=1

K◦

� i∕ns − t

nsbn,s

��
�s(

i

ns
)Vi,s

���� = Op

� log ns√
nsbn,s

�
.

sup
t∈(a+𝜂,b−𝜂)

[(
f̂1(t) − f̂2(t)

)
−
(
((m�

1
)−1(t))� − ((m�

2
)−1)�(t)

)]
→ 0

sup
t∈(a+𝜂,b−𝜂)

[
f̂1(t) − f̂2(t)

]
→ 0

lim
n→∞

ℙ

[
sup

t∈(a+𝜂,b−𝜂)

||f̂1(t) − f̂2(t)
|| < 𝜖

]
= 1,
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and hence, under the null hypothesis g ≡ 0 , we have ℙ[Cn1,n2 ⊂ L(𝜖)] = 1 .   ◻

Proof of Theorem 5

To simplify the notation, we prove Theorem 5 in the case of equal sample sizes and 
equal bandwidths. The general case follows by the same arguments with an addi-
tional amount of notation. In this case c2 = r2 = 1 and we omit the subscript in band-
widths if no confusion arises, for example, we write n1 = n2 = n , bn,1 = bn,2 = bn 
and use a similar notation for other symbols depending on the sample size. In par-
ticular, we write Tn for Tn1,n2 if n = n1 = n2.

Define the statistic

which is obtained from Tn by replacing the weight function ŵ in (18) by its determin-
istic analogue (20). We shall show Theorem 5 in two steps proving the assertions

For (39), the difference T̃n − Tn is contributed by ŵ(t) − w(t) . The arguments of 
proving (38) are useful for the proof of (39) and are mathematically involved. We 
shall discuss the proof of (38) in detail in the next subsection.

Proof of (38)

By simple algebra, we obtain the decomposition

where for s = 1, 2

T̃n = ∫
(
f̂1(t) − f̂2(t)

)2

w(t)dt

(38)nb9∕2
n

T̃n − Bn(g) ⇒ N(0,VT )

(39)nb9∕2
n

(Tn − T̃n) = op(1).

T̃n = ∫ (I1(t) − I2(t) + II(t))2w(t)dt,

(40)Is(t) =
1

Nhd

N∑
i=1

(
Kd

( m̂�
s
(i∕N) − t

hd

)
− Kd

(m�
s
(i∕N) − t

hd

))
,
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We shall study Is(t) , s = 1, 2 and II(t) via borrowing the idea of proof of Theo-
rem 4.1 of Dette and Wu (2019). In fact, the functions m′

s
 and m̂′

s
 for s = 1, 2 here 

play a similar role as the functions � and �̃�bn
 in Dette and Wu (2019). Observing the 

estimate on page 471 of Dette et al. (2006) it follows

(s = 1, 2 ) which yields the estimate

uniformly with respect to t ∈ [a + �, b − �] . For the two other terms, we use a Taylor 
expansion and obtain the decomposition

where

for some �s ∈ [−1, 1] ( s = 1, 2 ). In the following, we shall prove (38) in the follow-
ing steps. 

(a) Using arguments of Dette and Wu (2019) we show that the leading term of Is(t) 
is Is,1(t) , s = 1, 2.

(b) Using Proposition 11, we approximate the leading term of I1,1(t) − I2,1(t) via a 
Gaussian process. Therefore, Tn has the form 

 where Un(t) is a Gaussian process and R†
n
(t) is a negligible remaining term.

(c) Under the considered alternative hypothesis, the asymptotic distribution is deter-
mined by ∫ Un(t)

2w(t)dt and ∫ (((m�
1
)−1(t))� − ((m�

2
)−1(t))�)2w(t)dt . The latter 

(41)II(t) =
1

Nhd

N∑
i=1

(
Kd

(m�
1
(i∕N) − t

hd

)
− Kd

(m�
2
(i∕N) − t

hd

))
.

1

Nhd

N∑
i=1

Kd

(m�
s
(i∕N) − t

hd

)
=
(
((m�

s
)−1(t))� + O

(
hd +

1

Nhd

))
,

(42)II(t) = ((m�
1
)−1(t))� − ((m�

2
)−1(t))� + O

(
hd +

1

Nhd

)

Is(t) = Is,1(t) + Is,2(t) (s = 1, 2),

Is,1(t) =
1

Nh2
d

N∑
i=1

K�
d

(m�
s
(
i

N
) − t

hd

)
(m̂�

s
(
i

N
) − m�

s
(
i

N
)),

Is,2(t) =
1

2Nh3
d

N∑
i=1

K��
d

(m�
s
(
i

N
) − t + 𝜃s(m̂

�
s
(
i

N
) − ms(

i

N
))

hd

)
(m̂�

s
(
i

N
) − m�

s
(
i

N
))2

Tn = ∫
(
Un(t) + ((m�

1
)−1(t))� − ((m�

2
)−1(t))� + R†

n
(t)
)2
w(t)dt,
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accounts for a part of the bias. The former produces another part of the bias and 
determines the asymptotic stochastic behaviour. All terms in the expansion of 
Tn that involves R†

n
(t) are negligible.

(c1 ) Further calculations show Un(t) = Un,1(t) − Un,2(t) , where 

 where G(m�
s
(⋅), j, t) depends on the kernels, curves, long-run variances and 

bandwidths. Using a Riemann sum approximation, we can further simplify the 
leading term of G(m�

s
(⋅), j, t) , and hence, the leading term of ∫ (Un(t))

2(t)w(t)dt 
is a quadratic Gaussian.
(c2 ) The asymptotic normality is then guaranteed by Theorem 2.1 of de Jong 
(1987). The mean and variance are obtained via straightforward but tedious 
calculations and certain arguments from Zhou (2010).

(d) Final ly,  we show that  ∫ Un(t)(((m
�
1
)−1(t))� − ((m�

2
)−1(t))�)w(t)dt  and 

∫ Un(t)R
†
n
(t)w(t)dt are negligible.

Step (a): By part (iii) and (iv) of Proposition  11 and the same arguments that 
were used in the online supplement of Dette and Wu (2019), to obtain the bound 
for the term �2,N in the proof of their Theorem 4.1 it follows that

uniformly with respect to t ∈ [a + �, b − �] . Here, we used the fact that the number 
of nonzero summands in Is,2(t) is of order O(hd + �n).

Step (b): Next, for the investigation of the difference I1,1(t) − I2,1(t) , we define 
�� = (m1,m2) and consider the vector

By part (i) and (ii) of Proposition 11, it follows that there exists independent 
2-dimensional standard normally distributed random vectors �i such that

uniformly with respect to t ∈ [a + �, b − �] . Combining this estimate with equations 
(42) and (43), it follows

Un,s(t) =

n∑
j=1

G(m�
s
(⋅), j, t)Vj,s (s = 1, 2),

(43)Is,2(t) = Op

(�2
n

h3
d

(hd + �n)
)
= Op

(�3
n

h3
d

)
(s = 1, 2),

K�
d

(
��(i∕N) − t

hd

)
=
(
K�
d

(m�
1
(i∕N) − t

hd

)
,−K�

d

(m�
2
(i∕N) − t

hd

))⊤

.

I1,1(t) − I2,1(t) =
1

nNb2
n
h2
d

n∑
j=1

N∑
i=1

K◦

( j∕n − i∕N

bn

)

× (K�
d
)T
(
��(i∕N) − t

hd

)
�(j∕n)�j + Op(�

�
n
h−1
d
),
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where

and the remainder R†
n
(t) can be estimated as follows

Step (c): We now study the asymptotic properties of to the quantities

which determine the asymptotic distribution of Tn since the bandwidth conditions 
yield under local alternatives in the case (m−1

1
(t))� − (m−1

2
(t))� = �ng(t),

and the other parts of the expansion are negligible, i.e.

Step ( c1 ): Asymptotic properties of (47): To address the expressions related to Un(t) 
in (47)–(49) note that

where

(44)Tn = ∫
(
Un(t) + ((m�

1
)−1(t))� − ((m�

2
)−1(t))� + R†

n
(t)
)2
w(t)dt,

(45)Un(t) =
1

nNb2
n
h2
d

n∑
j=1

N∑
i=1

K◦

( j

n
−

i

N

bn

)
(K�

d
)⊤
(��(

i

N
) − t

hd

)
𝛴(

j

n
)�j,

(46)sup
t∈[a+�,b−�]

|R†
n
(t)| = Op

(��
n

hd
+

�3
n

h3
d

+ hd +
1

Nhd

)
.

(47)nb9∕2
n ∫ (Un(t))

2w(t)dt,

(48)nb9∕2
n ∫ Un(t)((m

−1
1
(t))� − (m−1

2
(t))�)w(t)dt,

(49)nb9∕2
n ∫ Un(t)R

†
n
(t)w(t)dt,

(50)nb9∕2
n ∫ �2

n
(t)g2(t)w(t) = ∫ g2(t)w(t)dt,

(51)nb9∕2
n ∫ (R†

n
(t))2w(t)dt = o(1),

(52)nb9∕2
n ∫ �ng(t)R

†
n
(t)w(t)dt = o(1).

Un(t) = Un,1(t) − Un,2(t),
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for s = 1, 2 , and {Vj,s} are independent standard normal distributed random varia-
bles. In order to simplify the notation, we define the quantities

where

A straightforward calculation (using the change of variable v = (m�
s
(u) − t)∕hd ) 

shows that

where As(t)As(t) =
(m�

s
(0)−t

hd
,
m�

s
(1)−t

hd

)
, the remainder is given by

and �(A) denote the indicator function of the set A. As the kernel K�
d
(⋅) has a compact 

support and is symmetric, it follows by a Taylor expansion for any t with w(t) ≠ 0

With the notation

(s = 1, 2 ) we thus obtain the approximation

Un,s(t) =
1

nNb2
n
h2
d

n∑
j=1

N∑
i=1

K◦

( j∕n − i∕N

bn

)
K�
d

(
m�

s
(i∕N) − thd

)
�s(j∕n)Vj,s

Un,s(t) =

n∑
j=1

G(m�
s
(⋅), j, t)Vj,s (s = 1, 2),

G(m�
s
(⋅), j, t) =

1

nNb2
n
h2
d

N∑
i=1

K◦

( j∕n − i∕N

bn

)
K�
d

(m�
s
(i∕N) − t

hd

)
�s(j∕n).

G(m�
s
(⋅), j, t) =

1

nb2
n
h2
d
∫

1

0

K◦

(
j∕n − u

bn

)
K�
d

(
m�

s
(u) − t

hd

)
�s(j∕n)du + O

(
�n
)

=
1

nb2
n
hd

�s(j∕n)∫As(t)

K�
d
(v)((m�

s
)−1(t + hdv))

�

× K◦

(
j∕n − (m�

s
)−1(t + hdv)

bn

)
dv + O

(
�n
)
,

�n = O
((

1

nb2
n
h2
d
N

)
�

(|||
j∕n − (m�

s
)−1(t)

bn +Mhd

||| ≤ 1
))

,

∫As(t)

K�
d
(v)((m�

s
)−1(t + hdv))

�K◦

( j

n
− (m�

s
)−1(t + hdv)

bn

)
dv

= −
hd

bn
(((m�

s
)−1(t))�)2(K◦)�

( j

n
− (m�

s
)−1(t)

bn

)
∫ K�

d
(v)vdv

(
1 + O

(
bn +

h2
d

b2
n

))
.

G̃(m�
s
(⋅), j, t) =

−1

nb3
n

(K◦)�
( j

n
− (m�

s
)−1(t)

bn

)
𝜎s(

j

n
)(((m�

s
)−1)�(t))2 ∫ vK�

d
(v)dv
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where the remainder satisfy

Let us now consider the statistics Ũn,s(t) =
∑n

j=1
G̃(m�

s
(⋅), j, t)Vj,s ( s = 1, 2 ), and

then, by the previous calculations, it follows that

and therefore, we investigate the weak convergence of nb9∕2n ∫ Ũ2
n
(t)w(t)dt in the fol-

lowing. For this purpose, we use a similar decomposition as in (53) and obtain

(53)

� U2
n
(t)w(t) =

2∑
s=1

n∑
j=1

V2
j,s � G2(m�

s
(⋅), j, t)2w(t)dt

+

2∑
s=1

∑
1≤i≠j≤n

Vi,sVj,s � G(m�
s
(⋅), i, t)G(m�

s
(⋅), j, t)w(t)dt

− 2
∑
1≤i≤n

Vi,1Vi,2 � G(m�
1
(⋅), i, t)G(m�

2
(⋅), i, t)w(t)dt

=

2∑
s=1

n∑
j=1

V2
j,s

(
� G̃2(m�

s
(⋅), j, t)2w(t)dt(1 + ri,s)

)

+

2∑
s=1

∑
1≤i≠j≤n

Vi,sVj,s

(
� G̃(m�

s
(⋅), i, t)G̃(m�

s
(⋅), j, t)w(t)dt(1 + ri,j,s)

)

− 2
∑
1≤i≤n

Vi,1Vi,2

(
� G̃(m�

1
(⋅), i, t)G̃(m�

2
(⋅), i, t)w(t)dt(1 + r�

i,s
)

)
,

max

(
max
i,j,s=1,2

(|ri,j,s|), max
i,s=1,2

(|ri,s|), max
i,s=1,2

(|r�
i,s
|)
)

= o(1).

(54)Ũn(t) = Ũn,1(t) − Ũn,2(t),

(55)nb9∕2
n

(
∫ U2

n
(t)w(t)dt − ∫ Ũ2

n
(t)w(t)dt

)
= oP(1),
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where the last equation defines D1,D2 and D3 in an obvious manner.
Step (c2) : Elementary calculations (using a Taylor expansion and the fact that the 

kernels have compact support) show that

where �K = ∫ vK�
d
(v)dv . Using the estimate

(uniformly with respect to t ∈ [a + �, b − �] ) and (57) gives

which implies

where Bn(g) is defined in Theorem  5 (and we use the notation with the function 
g ≡ 0 ). Here, we used the change of variable (m�

s
)−1(t) = u , and afterwards, 

((m�
s
)−1)�(t) =

1

m��
s
((m�

s
)−1(t))

 . Similar arguments establish that

(56)

� Ũ2
n
(t)w(t)dt =

2∑
s=1

� (Ũn,s(t))
2w(t)dt − 2� (Ũn,1(t)Ũn,2(t))w(t)dt

=

2∑
s=1

n∑
j=1

V2
j,s � G̃2(m�

s
(⋅), j, t)2w(t)dt

+

2∑
s=1

∑
1≤i≠j≤n

Vi,sVj,s � G̃(m�
s
(⋅), i, t)G̃(m�

s
(⋅), j, t)w(t)dt

− 2
∑
1≤i≤n

Vi,1Vi,2 � G̃(m�
1
(⋅), i, t)G̃(m�

2
(⋅), i, t)w(t)dt

∶= D1 + D2 + D3,

(57)

�(D1) =

2∑
s=1

n∑
j=1

∫
( �s(

j

n
)

nb3
n

(K◦)�
( j

n
− (m�

s
)−1(t)

bn

)
(((m�

s
)−1)�(t))2�K

)2

w(t)dt

=

2∑
s=1

n∑
j=1

∫
(

�s((m
�
s
)−1(t))

nb3
n

(K◦)�
( j

n
− (m�

s
)−1(t)

bn

)
(((m�

s
)−1)�(t))2�K

)2

× w(t)dt(1 + O(bn)),

1

nbn

n∑
j=1

(
(K◦)�

( j∕n − (m�
s
)−1(t)

bn

))2

= ∫ ((K◦)�(x))2dx
(
1 + O

(
1

nbn

))
,

�(D1) =
1

nb5
n

2∑
s=1

∫ ((K◦)�(x))2dx∫
(
�s((m

�
s
)−1(t))(((m�

s
)−1(t))�)2�K

)2
w(t)dt

×
(
1 + O

(
bn +

1

nbn

))
,

(58)�(nb9∕2
n

D1) = Bn(0) + O
�√

bn +
1

nb
3∕2
n

�
,
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where the first estimate is obtained from the fact that 
∫ G2(m�

s
(⋅), j, t)w(t)dt = O(bn∕(nb

3
n
)) . This leads to the estimate

For the term D3 in the decomposition (56), it follows that

Hence,

Finally, we investigate the term D2 using a central limit theorem for quadratic forms 
(see  de Jong 1987). For this purpose define the term (note that (K◦)�(⋅) is symmetric 
and has bounded support)

then limn→∞ Vs,n∕(n
2b3

n
) exists (s = 1, 2 ) and

Var (D1) = O
( 2∑

s=1

n∑
j=1

(∫ G̃2(m�
s
(⋅), j, t)2w(t)dt)2

)
= O

( nb2
n

n4b12
n

)
= O

(
1

n3b10
n

)
,

(59)Var(nb9∕2
n

D1) = O
(

1

nbn

)
.

�(D2
3
) = 4

∑
1≤i≤n

(
� G̃(m�

1
(⋅), i, t)G̃(m�

2
(⋅), i, t)w(t)dt

)2

=
4𝜅4

K

n4b12

∑
i

(
� (((m�

1
)−1)�)2(t)(((m�

2
)−1)�(t)(K◦)�

( i∕n − (m�
1
)−1(t)

bn

)

(K◦)�
( i∕n − (m�

2
)−1(t)

bn

)
w(t)dt

)2

𝜎2
1
(i∕n)𝜎2

2
(i∕n) = O((n3b10

n
)−1).

(60)nb9∕2
n

D3 = Op

((
1

nbn

)1∕2)
.

Vs,n =
∑

1≤i≠j≤n

(
(K◦)�

( i∕n − (m�
s
)−1(t)

bn

)
(K◦)�

( j∕n − (m�
s
)−1(t)

bn

)

× �s(
i

n
)�s(

j

n
)(((m�

s
)−1)�(t))4w(t)dt

)2

= n2 �
1

0 �
1

0

(
�
ℝ

(K◦)�
(u − (m�

s
)−1(t)

bn

)
(K◦)�

(v − (m�
s
)−1(t)

bn

)

× �s(u)�s(v)(((m
�
s
)−1)�(t))4w(t)dt

)2

dudv(1 + o(1))

= n2b2
n �

1

0 �
1

0

(
�
ℝ

(K◦)�(y)(K◦)�(
v − u

bn
+ y)

× �2
s
(u)w(m�

s
(u))(m��

s
(u))−3dy

)2

dudv(1 + o(1))

= n2b3
n � ((K◦)� ∗ (K◦)�(z))2dz� (�2

s
(u)w(m�

s
(u))(m��

s
(u))−3)2du(1 + o(1)),
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where the asymptotic variance VT is defined in Theorem 5. Now similar arguments 
as in the proof of Lemma 4 in Zhou (2010) show that nb9∕2n D2 ⇒ N(0,VT ), Combin-
ing this statement with (55), (56), (58), (59), and (60) finally gives

Step (d):
Asymptotic properties of (48): Define d(t) = ((m−1

1
)� − (m−1

2
)�) and note that

where

Observing that ∫ G(m�
s
(⋅), j, t)�ng(t)w(t)dt = O(�nbn∕(nb

3
n
)), the bandwidth condi-

tions and the definition of �n give for s = 1, 2,

Asymptotic properties of (49): Note that it follows for the term (49)

Observing that 
∑
j

G2(m�
s
(⋅), j, t) = O(nbn∕(nb

3
n
)2) we have

and the conditions on the bandwidths and (46) yield

lim
n→∞

2(∫ vK�
d
(v)dv)4n2b9

n

(nb3
n
)4

(V1,n + V2,n) = VT ,

(61)nb9∕2
n ∫ U2

n
(t)w(t)dt − Bn(0) ⇒ N(0,VT ).

∫ Un(t)d(t)w(t)dt = ∫ (Un,1(t) − Un,2(t))d(t)w(t)dt,

∫ Un,s(t)d(t)w(t)dt =

n∑
j=1

Vj,s ∫ G(m�
s
(⋅), j, t)(�ng(t) + o(�n))w(t)dt

= Op

((nb2
n
�2
n

n2b6
n

)1∕2)
= Op

( �n

(nb4
n
)1∕2

)
.

(62)nb9∕2
n ∫ (Un,s(t)((m

−1
1
)� − (m−1

2
)�)w(t)dt = Op(b

1∕4
n

).

|||� Un,s(t)R
†
n
(t)w(t)dt

||| ≤ sup
t

|R†
n
(t)|� sup

t

|||
n∑
j=1

Vj,sG(m
�
s
(⋅), j, t)

|||w(t)dt.

sup
t

|||
n∑
j=1

Vj,sG(m
�
s
(⋅), j, t)

||| = Op

( log1∕2 n

n1∕2b
5∕2
n

)
,

(63)

nb9∕2
n

|||∫ (Un,s(t)(R
†
n
(t))w(t)dt

|||
= Op

( log1∕2 n

n1∕2b
5∕2
n

(��
n

hd
+

�3
n

h2
d

+ hd +
1

Nhd

)
nb9∕2

n

)
= op(1).
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The proof of assertion (38) is now completed using the decomposition (44) and the 
results (50), (51), (52), (61), (62) and (63).   ◻

Proof of (39)

From the proof of (38), we have the decomposition

where quantities Is , II, Un(t) and R†
n
(t) are defined in (40), (41), and (45). By the 

proof of (38), it then suffices to show that

Using the same arguments as given in the proof of (38), this assertion follows from 
nb

9∕2
n ∫ (Ũn(t))

2(ŵ(t) − w(t))dt = op(1), where Ũn(t) is defined in (54). Recalling the 
definition of a, b in (20) it then follows (using similar arguments as given for the 
derivation of (37)) that supt∈[a,b] �Ũn(t)� = Op

�
log n√
nbnb

2
n

�
. Furthermore, together with 

part (iii) of Proposition 11 it follows that

where �̄�n is defined in (22). Thus by our choices of bandwidth nb9∕2n
�̄�n log

2 n

nb5
n

= o(1) , 
from which result (ii) follows. Finally, the assertion of Theorem  5 follows from (38) 
and (39).   ◻
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2(ŵ(t) − w(t))dt ≤ sup

t∈[a,b]
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