Supplementary material to “Asymptotic theory of dependent
Bayesian multiple testing procedures under possible model
misspecification”

Noirrit Kiran Chandra* Sourabh Bhattacharya'

S-1 Assumptions of Shalizi (2009)
(S1) Consider the following likelihood ratio:

fe(Xn)
p(Xn)

Assume that R,,(§) is 0(X,,) x T-measurable for all n > 0.

R, (§) = (S-1

(S2) Foreach & € E, the generalized or relative asymptotic equipartition property holds, and so, almost
surely,

lim llog R, (&) = —h(§),

n—oo N

where h(&) is given in (S3) below.

(S3) For every £ € E, the KL-divergence rate

1 p(Xn)
h(€) = nh—>Holo ﬁE <log fg(Xn)> . (S-2)

exists (possibly being infinite) and is 7 -measurable.
(S4) Let I = {& : h(§) = oo}. The prior 7 satisfies () < 1.
(S5) There exists a sequence of sets G, — = as n — oo such that:

(D
7 (Gn) > 1 — aexp(—sn), forsome a > 0, ¢ > 2h(E); (S-3)
(2) The convergence in (S3) is uniform in 6 over G, \ 1.
3) h(Gn) = h(E),asn — oo.
For each measurable A C =, for every § > 0, there exists a random natural number 7(A, ) such

that
1log/ R, ( £)d€ <6+ limsupn— 1log/ R, ( £)dg, (S-4)

n—oo
for all n > 7(A,0), provided hm sup n~tlognm (IaR,) < co. Regarding this, the following

assumption has been made by Shallzl
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(S6) The sets G,, of (S5) can be chosen such that for every § > 0, the inequality n > 7(G,,, d) holds
almost surely for all sufficiently large n.

(S7) The sets G,, of (S5) and (S6) can be chosen such that for any set A with w(A) > 0,

h(Gn,NA)— h(A) asn — o0 (S-5)

S-2 Comparisons of versions of FNR

With respect to the new notions of errors in (2) and (3), FNR x, can be modified as

modified FNRx, = E¢ x,

S &R, <d|Xn>]

deb (1 =dj)Vv1
=y Zis (= diwin(d)

We denote modi fied FNRx,, as mFNRx, . Now, from Theorem 1, d! = 0 implies

exp [—n (J (Edtﬂ;) + 6)} < win(d') < exp [—n (J (Edtﬂ') — e)} .
Similar to Theorem 4, using the above bounds, we can obtain the asymptotic convergence rate of
mEFNRx,, formalized in the following theorem:
Theorem S-2.1 Assume conditions (Al) and (A2). Let Jyin = mtin J(Eq4t ;). Then for the non-
i:d;=0 ’
marginal multiple testing procedure

1 ~
lim —logmFNRx, = —Jmin. (S-6)

n—oo n

Proof. Following the proof of Lemma S-4.1, we have

S (1 — e (Siar)
Sr(—d)

S (= de ! (Siar)
2imy(1—dp)
from which the proof follows. m
IfJ (Edt7i) = J (Hy) fori =1,...,m, it would follow that w;, (d") and v;, have the same lower

< mFNRx, < exp(ne) x

exp(—ne) X

and upper bounds. Lemma S-2.2 shows that indeed .J (Edt7z~> = J(Hy;) fori =1,...,m,under a very

mild assumption given by the following.

(A3) For any decision configuration d, define S(d) = {i : d; = d;}. Then for two decision configura-
tions d and d, if S(d) C S(d), then J(E(d)) > J(E(d)).

Notably in (A3), S(d) is the set of correct decisions. Note that S(d) C S(d) implies that number of
correct decisions is more in d compared to d. Hence, the model directed by d should procure greater
divergence. This assumption is easily seen to hold in independent cases, and also in dependent models
such as multivariate normal.

Lemma S-2.2 Under (A3), J (Edt,i) — J (Hy;), for all i such that d = 0.

Proof. For all i such that ! = 0, define d*), where dg-i) = d} for all j # i, and d§i) = 1 and
Sz‘ = {d : di = 1}. Then

Pex, (Hii) = Y Peix, (Huin {NjziHa, 5}) (S-7)
des;



so that dividing both sides of (S-7) by Pex, (Edtﬂ.) yields

3 Peix, (Huin{Njzifa, ;})

— (S-8)
Pex, (:‘dt,i> deS\{d®} Peix,, (‘z‘dt,i)

P§|Xn (Hlim{mj;éiH(ij g })
) P§|Xn(5dt,7,)
for all d € S;\{d”}. Applying this to the right hand side of (S-8) yields

Pex,, (Hii)

Theorem 1 and (A3) together ensures that as n — oo, — 0 exponentially fast,

-1 (S-9)

exponentially fast. Now, applying Shalizi’s result to P x, (Hy;) and Peix, (Edt’i> it follows that if
J (Edt,i> # J (H1;), then (S-9) is contradicted. Hence, .J <Edf,i> =J(Hy),fori=1,...,m. m

From Lemma S-2.2, we see that Jyin = Hin. Thus, we get the following result:

Theorem S-2.3 Assume (Al)—(A3). Then, for the non-marginal multiple testing procedure,

1 mFNRx, \
A - log (FNRX) =0 (5-10)

and
. log (mFNRx,)
lim

A= Sl A S-11
n—oo log (FNRx,) -1

Proof. Note that,

1 <mFNRXn

1 1
=—1 FN — —log (FN .
1o (gt ) = o (FNRx, ) log (FNRx,)

Now % log (mFNRx,) — — Jomin and %bg (FNRx, ) — — Hppin a8 1 — 00. Again by Lemma S-2.2,
jmin = I:Imin. This proves (S-10). The proof of (S-11) follows from (S-6) and (15), using jmin = ~min.
]

Theorem S-2.3 remains true for any G = {G1,...,G,,}. In other words, given that (A3) holds,
(S-10) shows that none of mFNR x, or FNR x, is asymptotically preferable over the other, while (S-
11) shows that log (mFNR x,, ) and log (FNR x ) are asymptotically equivalent, irrespective of how the
G;’s are formed.

S-3 Proofs of results in Section 2

Proof of Theorem 2. Let Z'° be the complement set of Z(d"). Then by virtue of Theorem 1 we have

tc) .

This implies that for any € > 0, there exists a ng(€) such that for all n > ng(e)

[

lim L log Pex, (B) =—J(

n—oo n

exp [—n (J (B") + )] < Py x,, (B") < exp [—n (J (B) —¢ ]
=1—exp [-n (J (E") —¢)] < Pex,, (B') <1—exp[-n(J(E"

)—i—e)].

For notational convenience, we shall henceforth denote J (Etc) by J.



Observe that if d € DY, at least one decision is wrong corresponding to some hypothesis in G;. As
Pex, (Etc) is the posterior probability of at least one wrong decision in the parameter space, we have

win(d) < P x, (B") <exp[-n(J—¢)]. (S-12)
Similarly for d € D; and for false Hy;
win(d) > Pg|x, ( ) >1—exp[-n(J—¢). (S-13)
From conditions (12) and (13), it follows that there exists n; such that for all n > n;

ﬁn >§_57
Bn < 1 — 46, such that

B—6>0and1— > ¢, for some § > 0. It follows using this, (S-12) and (S-13), that

i dbwin (d') — i diwin (d) > (1—6*"@’*6)) > di—e79 3" d;, and

i:deDf i:deDf i:deDf i:deDf
m m m m
t t
Bu|l Do di— Y di| <(1=08) Y di—(8-0) ) di
i:deDf i:deDf i:deDf i:deDf

Now n; can be appropriately chosen such that e (/=€) < min{d, 3 — 0}. Note that neither ng nor n;
depends on m. Hence, for any value of m and for all n > max{ng,n;},

m m m
Z dﬁwm(dt Z diwin (d) > B Z dﬁ - Z d; | , foralld # d, almost surely

:deDy 1:deDf :deDf i:deDy

= lim Sy aq(d'|X,) = 1, almost surely.
n—oo

S-4 Additional results to Section 3 and proofs

Lemma S-4.1 Assume conditions (Al) and (A2). Then for the non-marginal multiple testing procedure
and any € > 0, there exists ng(€) > 1 such that for n > ng(€), the following holds almost surely:

m dt nJ(E Zt,b) m dt J(E gtl)
exp (—ne) x iz lzzlnﬂlf <mFDRx, < exp(ne) x Z’_lzzznldf .
Proof. Observe that,
mFDRx
Yo di(1— win(d))
=3 = e s aix,)
d#o ’L 1
modi(1 Win d " d — Win(d
_EL A onld)) s xS Zzl D) sy (dX,). (514
ZZ ldl d;ﬁdt d \/1

From the proof of Theorem 2, we see that under (A1), daa(d| X ,,) = 0 for all d # d'. Also under



(A2), d* # 0. For any € > 0 and n > ng(e), it follows from (8) and (9) that a lower bound for (S-14) is

m —n(J(BS, )+e) m g —nJES )
> iy die dhi t > vy die 4
L, == Inm(d'| X)) = exp (—ne) x ===

>ty df >ty df

Similarly, an upper bound is given by

m gt (@ )=o) m gt (@)
Zz:l 26 5N./\/l (dt|Xn) = exp (ne) % Zz:l ze

Un = m m
Zi:l di Zi:l df

|
Similar asymptotic bounds can also be obtained for FDR x, under the same conditions. We state it
formally in the following corollary.

Corollary S-4.2 Assume conditions (Al) and (A2). Then for the non-marginal multiple testing proce-
dure and any € > 0 and large enough n the following holds almost surely:

= < FDRx, < exp(ne) x ===
21 d; 2t d;
Lemma S-4.3 Assume conditions (Al) and (A2). Then for the non-marginal multiple testing procedure
and any € > 0, there exists a natural number n (€) such that for all n > ny (€) the following hold almost
surely

exp(—ne) X

S (1 = dije ™ (Bato)

1

> (1= dj)

Zz‘nil(l — dg)efn‘](adt,i)
>t (1—df)

Proof. Note that by Theorem 1, d} = 0 implies

<mFNRx, < exp(ne) x

exp(—ne) x

exp [—n (J (H1i) + €)] < vin < exp [—n (J (Hy;) — €)] .

From the above bound, similar to the proof of Lemma S-4.1, we obtain asymptotic bounds of FNRx .
]

Note that, (A2) is required for both Lemma S-4.1 and S-4.3 to hold. Without the condition the
denominators of the bounds would become zero. For proper bounds of the errors and hence for the
limits, (A2) is necessary.

Proof of Theorem 3. From Lemma S-4.1 we obtain the following for n > ng(e),

—nJ(E%, ) m g —nJ(EG )
S e G S dhe ™ G
= <mFDRx, <exp(ne) x ===
i d; Yt d;

1 TN —nd(Ee, 1 - 1
— ey ﬁlog (Zl dﬁe nJ( dt,1)> _ Elog (Zl df) < ﬁlongDRxn
1= 1=

1 m (=, ) 1 m .
< —1 E dt ate/ | — ] g d: |.
<e+ - og < i€ ) - og ( i

i=1 =1

exp (—ne) x

Applying L’Hopital’s rule we observe that

1 TN Cnd(EC, )
nh—>ngoﬁ log (z; dze " =at i = —Jmin-
1=



As € is an arbitrarily small positive quantity, we have
1
lim —logmFDRx, = —Jnin.
n—oon,
Proceeding in the exact same way, using Corollary S-4.2, we obtain
lim — log FDRXn = Hmin'

n—oon,

Proof of Corollary 2. Note that

mpBFDR
—FEx, ZZZ”le(m de(d))aﬁ(d|X Nowm(d =0/X, )_0]
LdeD
—FEx, ZZTle Z wild)) (X )6NM<d=0|Xn>=0]
LdeD i=1
_ S di(l—wi(d) . [~ 1
—Ex, d%) 12’" 7 ](Ed»@) Snvm(dIXn) P o d = 01X, =0
] e - wiay |
*EXn de]DZ\{O} Zm d; 5NM(d‘Xn) PXn[(;NM(d:an):O].

From Theorem 3, we have %log mFDR x, — —Jmin, thatis, mFDRx, — 0, as n — oo. Also we
have

0< Z iz m 4 ())5NM(d|X ) <mFDRy, < 1.
deD\{0} ZZ 1

Therefore by the dominated convergence theorem, Ex [Z deD\ {0} W(g va(d X)) =
1

0, as n — oo. From (A2) we have d' # 0 and from Theorem 2 we have Ex [y (d'[ X )] —
Thus Px, [0pm(d =0|X,,) = 0] — 1, as n — oo. This proves the result.
Similarly it can be shown that pPBFDR — O asn — co. m

Proof of Theorem 4. The proof is similar to that of Theorem 3. m

Proof of Corollary 3. Exploiting Theorem 4 and (A2), the theorem can be proved similarly as the
proof of Corollary 2. m

S-5 Proofs of results in Section 4

Proof of Theorem 5. Theorem 3.4 of Chandra and Bhattacharya (2019) shows that mpBFDR is non-
increasing in . Hence, the maximum error that can be incurred is at 8 = 0 where we actually maximize
Z;ll dzwm(d) Let

m
d= argmaxz djw;n(d) = argmax Z dywin (d) + Z dywin (d)
deb ;5 deD i=ma+1



Since the groups in {G1, Ga, - - - , G, } have no overlap with those in { Gy, 41, -+ , G}, Doy diwin (d)
and Ef;ml +1 diwin (d) can be maximized separately.
Let us define the following notations:

Q:inl :Qdm{1727 ml} lec_ {1727 ’ml}\QZH’

Now,
> diwin(d) = diwin (d)
i=1 1=1
=| Y diwin(d) = Y diwin(d)| + | D diwin(d)— Y diwin(d)

i€Qyt i€eQlyt i€eQy e i€Q ¢
= > dwin(d)— D diwin(d),
ZEleC ZGleC

since for any d, EiEQgﬂ d;win(d) = Zzele dtw;p, (d') by definition of QT
Note that ZZ'GQZHC dtw;p (d') can not be zero as it contradicts (B1) that “G1,Ga, - - - , Gy, have at
least one false null hypothesis.” From (8) and (9), we have

> diwin(d) > Oforalld #d,and Y diwin(d) » > di > 0.
ZEleC ’LGleC ZEleC

Hence, for large enough n, for d # d,

i dzwm(d) — i dfwm(dt) <0
=1 =1

In other words, d' (or d such that d; = diforalli =1,---,m;) maximizes Y ;" d;w;,(d) when n is
large enough.
Let us now consider the term »_:* | dyw;n(d). Note that Y7 | diwip (d") = 0 by (B1). For

any finite n, Zf’;ml 41 diwin (d) is maximized for some decision configuration d where d; = 1 for at

leastone ¢ € {m1 + 1,--- ,m}. In that case, d = (di,... ,dml,dml+1, Ay 42, - - -, d), so that
m A. —_ . -
lim ding di(l Eﬂm(d)) > 1 =
oo 2111 dz Zz 1 dz
almost surely, for all data sequences. Boundedness of i 125,} Z)”‘( D for all d and X n, €nsures uni-

form integrability, which, in conjunction with the simple observation that for 5 = 0, P (dpam(d = 0| X,,) = 0) =

1 for all n > 1, guarantees that under (B1) it is possible to incur mpBFDR > 5 asymptotically.

1
iy di41
Now, if Gy 41, ,Gp’s are all disjoint, each consisting of only one true 1null hypothesis, then
Z;’imﬁ_l diwin (d) will be maximized by d where d; = 1 foralli € {m; +1,--- m} Since d};

i =1,...,m) maximizes » ;- d;w;,(d) for large n, it follows that d=(d,... dt ., 1) s

) mi b
the maximizer of ) ;" | d; wm(d) for large n. In this case, almost surely for all data sequences,

™ di(1 — win(d
2z di(l — win(d)) _ m ' (S-15)
n—0o0 Z;Zl i Zz ld'L +m—m



In this case, the maximum mpBFDR that can be incurred is at 8 = 0, and is given by

. . m—m
nh~>ngo mpBFDR’BZO B Zzil le +m—mq '
This is also the maximum mpBFDR that can be incurred among all possible configurations of Gy, 41, - - , G-

Hence, for any arbitrary configuration of groups, the maximum mpBFDR that can be incurred lies in
the interval <

1 m—mji
Sl i Y dim—m

i=1"

- ) asymptotically. m

Proof of Theorem 6. Let e < E — «. Then from (16), there exists n(e) such that for all n > n(e),
mpBFDRg_y > E—¢ > «. Chandra and Bhattacharya (2019) have shown that mpBFDR is continuous
and decreasing in 8. Hence, for all n > n(e), there exists 3, € (0, 1) such that mpBFDR = a.

Now, if possible let lim inf,,_,~, 5, > 0. Then from Theorem S-4.1 we see that mpBFDR decays to
0 exponentially fast, which contradicts the current situation that mpBFDR = « for n > n(e). Hence,

Proof of Theorem 7. Theorems 3.1 and 3.4 of Chandra and Bhattacharya (2019) together state
that mpBFDR is continuous and non-increasing in . It is to be noted that there is no assumption or
restriction on the configurations of G;’s. Hence it is easily seen that pBFDR is also continuous and
non-increasing in 3.

Let d be the optimal decision configuration with respect to the additive loss function. Note that for
8=0, a?l = 1 for all ¢. In that case,

S di(1—vin) Mg

lim = = —.
— .
oo > iey di m

Therefore, it is possible to incur error arbitrarily close to mg/m for large enough sample size. Hence,
the remaining part of the proof follows in the same lines as the arguments in the proof of Theorem 6. m

Proof of Theorem 8. Take ¢ < 7> — a. Since for any multiple testing method, mpBFDR >

m

PBFDRg, and since lim pBFDRg_, = /¢ by the proof of Theorem 7, it follows that there exists
n—oo
no(€) such that for all n > ng(e),

mpBFDRg_ > % —€>a.

Since mpBFDR is continuous and non-increasing in (3, for for n > ng(e), there exists a sequence
Brn € [0, 1] such that
mpBFDRg = a. (S-16)

If possible, let liminf,, ,., 8, > 0. This, however, contradicts Theorem S-4.1 which asserts that
mpBFDR decays to 0 exponentially fast. Hence, lim,, o, 5, = 0. ®

Proof of Theorem 9. From Theorem 6 we have that for any feasible choice of «, there exists
a sequence {f3,} such that lim, ,,. mpBFDRj = «a. Now, for the sequence {/3,}, let d,, be the

optimal decision configuration for sample size n, that is, da g <cfn]X n) = 1 for sufficiently large n.

Following the proof of Theorem 5 and 6 we see that din = difori=1,---,m and ngl 41 din > 0.
Now recall from (10) that for any arbitrary € > 0, there exists n(€) such that for all n. > n(e), vy, <



exp [—n (J (Hy;) — €)] if dt = 0. Therefore,

Doimg (1= din)vin < >y (1 = dh)vin < " % Dimg (1= dt)e—nJ(Hi)
= < . = e — =
Z?;(l - din) Zi:l(l - din) 22‘:1(1 - din)

Sy (1= df)emn/tH)
Z;il(l - din)

1 1 - t o—nJ(Hy) | 1 5
= log (FNRx,) < e+ Elog [Z(l —d;)e u) | — - log ;(1 —din) | -

= FNRx, < €" x
=1

Note that

1 - 5
lim — log [Z(l — dm)] = 0 as m is finite, and

n—oo n —
1=
1 m
3 _ _ t 7TLJ(H 1) — r7 . ’ AL ’
nlggo - log [g 1 (1 —dj)e ! ] = — Hypin from L'Hopital’s rule.
1=

As € is any arbitrary positive quantity we have

1 .
limsup — log (FNRx, ) < —Hpin.

n—oo TN

S-6 Additional results to Section 5 and proofs

Proof of Theorem 10. The proof of this theorem is complete if (S1)-(S7) are verified for the model
(18). We do this through the following lemmas and theorems stated and proved in this section. m

Lemma S-6.1 Under the model assumption (C1)-(C2), the KL-divergence rate h(&) defined in (6) exists

and is given by

o 1 1 ol 803,08
=1 e - 0 0<zM0
h(8) = log <oo> - <202 20’3) (1—p3 * 1— p} >

2 2 2 /
14 Po 90 ﬁozz/@o 1, 1
L BS.B — BE.
+< )( " + 5P EB— Sy

202 23)\1-p3  1-p}

2 BB B _ B\
_(p po)<po<fo L o 0)—((72—(7%’) .6, (5-17)

o2 o3)\1-p3 1-p3

Proof. It is easy to see that under the true model P,

t
E(z) =Y ph " 21.80; (S-18)
k=1
0.2 h
E(.’L’tJrh.CUt) ~ 1 3p§2 + E($t+h)E($t); h >0,
0

where for any two sequences {a;};2; and {b;}7°,, a; ~ by stands for a;/b; — 1 as t — co. Hence,
2 t 2
o _
E(z?) ~ R 0p2 + (Z oh kz;ﬁ()) . (S-19)
P k=1

9



Now let .
—k
= ZPB 21,80
k=1
and for t > t,

t
t—k_/
Z Po " ZkBo;

k=t—tg
where, for any € > 0, {( is so large that
Cpt0+l
T = 520
It follows, using (C2) and (S-20), that for ¢ > %,
t—tg—1 to-+1 {—to+1
C
o—al < S p e < Sl ) o (S-21)
pt 1 —po
Hence, for t > ¢,
oo—e<o<ote. (5-22)
Now,
Zn: Ot Zn: zZt Zn: Zt Z”: Z¢ '
tnl — pgo tnl BO + pto 1 t=2 /30 + pto 2 tn3 160 4.
>t P z\'
"+Po< =t ,30+ S t;;“ Bo
— 0, as m — oo, by virtue of (C1).
Similarly, it is easily seen, using (C1), that
n =9 _ . 2(2t0+1)
1
Ztnl CONEN ( 1p 5 ) B0X.0, asn — oo.
— Po
Since (S-21) implies that for ¢ > tq, 97 + &2 — 2e0; < 07 < 07 + 2 + 20y, it follows that
n 2 _ . 2(2t0+1)
_ 1
lim =190 Zt LA (” >B62Z60+52,
n— o0 n n—)oo 1— 0
and since € > 0 is arbitrary, it follows that
n 2 / 2
lim 2=t=12 _ B0 Bo. (S-23)
n—0o0 n 1—p5
Hence, it also follows from (S-18), (S-19), (C1) and (S-23), that
> Ba) N b S+ BE zﬁ()’ >ty B y) N o3 . BoX:B a8 71 — 60,
n 1—p5 l—po n 1—pf l—pO
Now note that
TTe1 = poTi_y + ZBoTe1 + €Ti_1. (S-24)

10



Using (20), (S-22) and arbitrariness of ¢ > 0 it is again easy to see that

>ty ZiBoE(xi-1)

n

— 0, as n — oo.

Also, since fort = 1,2,..., E(exi—1) = E(e)E(x—1) by independence, and since E(e;) = 0 for
t=1,2,...,1itholds that

n
E (esz
i B ew) 0, forallm = 1,2, ... (8-25)
n

Combining (S-6)-(S-25) we obtain

>t B (ziwi) _ pooy n poBoXB
n 1-p§  1-p§
Also (C1) along with (S-22) and arbitrariness of € > 0 yields

2 2B (@) N IMERACEY — 0asn — oo.
n n

221807

Using assumptions (C1) and (C2) and the above results, it follows that

h(€) = lim L B[ log Ra(€)] = log <”) + (1 _ 1) ( i - ﬂ62zgo>

n—co n o0 202 208 1- ,00 1—pg

2 2 2 /
Vi o BoX:By
+<202 208><1—p%+1—,03 ﬁ S el

e o e
o2 ot ) \1-p} 1—pd o2 2 S

In other words, (S2) holds, with h(&) given by equation (S-17). m

Theorem S-6.2 For each & € E, the generalized or relative asymptotic equipartition property holds,
and so

o1
lim = log R (€) = —h(€).
n—oo N
The convergence is uniform over any compact subset of =.

Proof. Note that . ,
DRSS S
k=1 k=1

where €; = 2}1:1 pg_kek is an asymptotically stationary Gaussian process with mean zero and covari-
ance

2 h
cov(€prp, ) ~ 0P0 5, where h > 0.
-0
Then " ) n o 0 .
_ _ G 2 1€
Et—l Ty — Zt—l Ot + Zt—l €4 + thl €0t . (S_26)
n n n n

By (S-23), the first term of the right hand side of (S-26) converges to B f;? 0 as n — 00, and since

€;t = 1,2,...1s also an irreducible and aperiodic Markov chain, by the ergodic theorem it follows
that the second term of (S-26) converges to o3/(1 — pZ) almost surely, as n — oo. Also observe
that o;; t = 1,2, ..., is also a sample path of an irreducible and aperiodic stationary Markov chain, with

11



_ /
univariate stationary distribution having mean 0 and variance 3( X3, x tlim 22:1 pg(t k) — %127;2%.
—00 —Fo
Since for each ¢, €& and p; are independent, €;0;; t = 1,2,..., is also an irreducible and aperiodic
7580%=B0
. . =)
ergodic theorem, the third term of (S-26) converges to zero, almost surely, as n — oo. It follows that

Z?:l xl% Ul% 662,260

Markov chain having a stationary distribution with mean 0 and variance Hence, by the

— + , (S8-27)
n L—p;  1-pf
and similarly,
nﬁ x? 2 / 2
n 1—p§ 1—p5
Now, since x; = g; + €, it follows using (C1) and (S-22) that
fm 2= 20y D A g D BE (5-29)
n—oo n n—oo n 0 n—oo n )

By (C1), the first term on the right hand side of (S-29) is 3, 3,. For the second term, note that it follows
from (C1) that z4€;; t = 1,2,..., is sample path of an irreducible and aperiodic Markov chain with a
stationary distribution having zero mean. Hence, by the ergodic theorem, it follows that the second term
of (S-29) is 0, almost surely. In other words, almost surely,

n
Liz 2%, 3.08,, asn — oo, (S-30)
n

and similar arguments show that, almost surely,

n
Dot tTt—1
n

— 0, asn — oo. (S-31)

We now calculate the limit of ;' | z;2—1/n, as n — oco. By (S-24),

n n 2
. —1 TtTg—1 . Po —1 T .
h Zt_l — h Zt 1+%t—1 + h

/ n n
B —1 *tlt—1 . _ 1 €1
DIRETTREN SRy
n—oo n n—oo n n—o0 n n

n—o0

(S-32)

2 /
By (S-28), the first term on the right hand side of (S-32) is given, almost surely, by 2274 4 2 080 2:5 0. and

l—p% l—pg
the second term is almost surely zero due to (S-31). For the third term, note that €;x;—1 = €;0¢—1+€€¢—1.
Bothe;0,—1;t =1,2,...and €615t = 1,2, ..., are sample paths of irreducible and aperiodic Markov

chains having stationary distributions with mean zero. Hence, by the ergodic theorem, the third term of
(S-32) is zero, almost surely. That is,

lim E?:l TtTt—1 _ POU(% pOIB{)ZzBO'
n—00 n 1-— P(Q) 1-— p%

(S-33)

The limits (S-27), (S-28), (S-30), (S-31), (S-33) applied to log R,, (&) given by Theorem S-6.2, shows
that W converges to —h(#) almost surely as n — oo. In other words, (S3) holds.

Now 2 log R,,(£) has continuous partial derivatives implying that a% [L1log R, (€)] is bounded in
any compact set. Hence % log R, (&) is Lipschitz continuous and hence stochastic equicontinuous in &.
Thus by applying the stochastic Ascoli theorem we have that the convergence is uniform over £ in that
compact set (for details about stochastic equicontinuity, see, for example, Billingsley 2013). m

The meaning of Theorem S-6.2 is that, relative to the true distribution, the likelihood of each £ goes
to zero exponentially, the rate being the Kullback-Leibler divergence rate. Roughly speaking, an integral
of exponentially-shrinking quantities will tend to be dominated by the integrand with the slowest rate of
decay. Lemma S-6.1 and Theorem S-6.2 imply that (S1)-(S3) hold. For any & € E, h(€) is finite, which

12



implies that (S4) also holds. As regards (S5), we can always make (S-3) to hold by considering G,s as
credible regions of the prior distribution and these can be chosen increasing compact sets without loss
of generality. Since h(-) is continuous in & the second and third parts of (55) will also hold.

Note that the maximizer of R, (&) is the maximum likelihood estimator (mle) of £. Let én =

sup R, (&). Then
£€bn

~log / Ra(€)(€)dE < log [R(€,)7(G1)]. (S-34)

n

If we can show that én is a consistent estimator of &, then this will validate (S6). Importantly, the
conditions for mle consistency generally require iid observations (Lehmann and Casella, 1998). In this
model the data sequence {x; }7°, have dependence structure and regular asymptotic theory will not hold.
Hence, we provide a direct proof of consistency; below we provide the main results leading to the desired
consistency result. The equipartition property plays a crucial role in the proceeding.

Theorem S-6.3 The function % log R, (&) is asymptotically concave in €.

Proof. Note that

1 1 1 — ol 1
Zlog R, (€) = “log R, (&) = —inf log |~ — i — B — .
sup log Ry (§) = supsup - log Ry (§) = —inf log [ntzl(xt pri_1 — B'z) ] 5

gez pB o2 T

Since log is a monotonic function, minimizing log [% oy (:nt —pri_1— 3 zt) } is equivalent to

minimizing L Y3, (2 — pry—1 — ﬁ’zt)z = gn(p, B), say. Now the Jacobian matrix J of g, (p, 3) is

given by
J = [1’11 X %12 xt_l‘,zé] .
n Z Ti—12t n Z ZtZ

(8-27), (S-31) together with the model assumptions (C1)-(C2) clearly shows that for large enough n, J
is positive-definite. Hence g, (p, 3) is convex implying that % log R, (&) is a concave function for large
n. m

The above theorem ensures that for large enough n, the likelihood equation have unique mle. Rest
we need to ensure the strong consistency of the mle for this dependent setup.

Theorem S-6.4 Given any n > 0, the log-likelihood ratio %log R, (&) has its unique root in the n-
neighbourhood of §, almost surely for large n.

Proof. (C3) ensures that £ is an interior point in =, implying that there exists a compact set G C &
such that & is an interior point of GG also. From Theorem S-6.2, for each £ € =, we have

lim ~ log Ru(€) = —h(£), (5-35)

n—oo n

and the convergence in (S-35) is uniform over £ in G. Thus,

lim sup %log R,(&§)+h(§)| =0. (S-36)

n—oo EEG

For any n > 0, we define

Nn(&o) = {& + 180 — &Il < m}; Ny(€o) ={&: 160 — &ll = n}s N(&o) = {& : 1€0 — &l < m}-

Note that for sufficiently small n, N, (§;) C G. Let H = ¢ ]ivnfg : h(€). By the properties of KL-
ENJ (&

divergence h(§) is minimum at £ = £ and therefore, H > 0. Let us fix an € such that 0 < ¢ < H.

13



Then by (S-36), for large enough n all § € Ny (&), Llog R, (&) < —h(&) + & < 0. Now by definition
Llog R,,(&y) = 0 and thus for all £ € Ny (&)

1 1
- log R, (§) < - log R, (&) (S-37)

for large enough n. Now, N, (&) is a compact set with N{Y(EO) being its boundary. Since % log R,,(€)

is continuous in &, it is bounded in N, (€;). From (S-37) we see that the maximum is attained at some
interior point of Wn(éo) and not on the boundary. Since the supremum is attained at an interior point
of N,(&), the supremum is also a local maximum. Now, Theorem S-6.3 ensures that for large n the
maximizer of % log R, (&) is unique. This proves the result. m

Theorem S-6.4 essentially entails the strong consistency of the mle. This also leads to the verification
of (S6) required for posterior consistency. We formally state it in the following lemma.

Lemma S-6.5 For any proper prior distribution 7(-) over the parameter space =, we have

limsupllog/ R, (&)m(&)dE < 0.

n—oo T "

Proof. From Theorems S-6.2 and S-6.4 we have

1 .
lim —log R,,(&,,) =0,

n—oo n

and hence

lim sup = log [ Rn(§)m(€£)d€ < 7}3@1@% [log R,(&,) +1logm(Gn)| <O0.

n—oo N Gn

[
Lemma S-6.5 signifies that (S6) holds. About (S7), it trivially holds since h(-) is a continuous
function.

S-7 Supplementary to real data analysis

Table S-1: Causal SNPs for different populations

Popu-

. Causal SNP
lation
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ml, m12, m13, m114, m135, m146, m147, m236, m249, m274, m275, m276, m407, m422,
m449, m537, m620, m665, m674, m680, m709, m765, m887, m894, m895, m899, m934,
m951, m955, m1076, m1161, m1234, m1249, m1291, m1328, m1412, m1436, m1437,
m1445, m1456, m1575, m1646, m1733, m1761, m1762, m1763, m1764, m1765, m1766,
ml767, m1768, m1946, m2043, m2093, m2169, m2174, m2175, m2205, m2287, m2348,
m2349, m2374, m2403, m2451, m2452, m2467, m2468, m2508, m2610, m2677, m2678,
m2679, m2680, m2681, m2682, m2687, m2688, m2689, m2692, m2817, m2906, m2907,
m2943, m2951, m2952, m2953, m2954, m2955, m2956, m2962, m2996, m2997, m3106,
m3279, m3280, m3281, m3282, m3283, m3358, m3418, m3457, m3489, m3490, m3491,
m3545, m3571, m3644, m3735, m3738, m3795, m3931, m3951, m3952, m4015, m4038,
m4144, m4188, m4281, m4297, m4372, m4373, m4374, m4375, m4499, m4500, m4504,
m4506, m4538, m4674, m4766, m4767, m4768, m4919, m4924, m4925, m4973, m4974,
m5041, m5149, m5199, m5228, m5318, m5352, m5353, m5411, m5437, m5505, m5515,
m5516, m5517, m5646, m5688, m5728, m5766, m5926, m5927, m6025, m6066, m6116,
m6117, m6158, m6159, m6160, m6161, m6296, m6359, m6365, m6394, m6395, m6396,
m6397, m6398, m6399, m6400, m6401, m6402, m6434, m6466, m6473, m6505, m6507,
mo6573, m6574, m6599, m6617, m6723, m6757, m6765, m6766, m6816, m6817, m6818,
m6851, m6852, m6853, m6858, m6859, m6860, M6872, m6903, m6995, m7085, m7089,
m7156, m7202, m7253, m7325, m7338, m7348

ml, m147, m432, m440, m458, m589, m597, m598, m599, m600, m741, m1010, m1011,
m1039, m1046, m1047, m1048, m1049, m1050, m1051, m1052, m1053, m1120, m1350,
m1362, m1620, m1670, m1812, m2014, m2027, m2028, m2143, m2144, m2200, m2201,
m2203, m2213, m2295, m2421, m2439, m2521, m2569, m2573, m2586, m2795, m2797,
m3216, m3412, m3560, m3615, m3727, m3728, m3729, m3730, m3956, m4141, m4273,
m4328, m4421, m4453, m4454, m4510, m4742, m4776, m4777, m4809, m4826, m4827,
m4828, m4988, m5229, m5375, m5542, m5544, m5590, m5674, m5803, m5804, m5805,
m5885, m5886, m5887, m5936, m5997, m6004, m6016, m6017, m6018, m6019, m6312,
m6320, m6342, m6343, m6457, m6485, m6486, m6492, m6493, m6652, m7178, m7189,
m7220, m7269, m7270

ml, m113, m162, m172, m176, m196, m198, m443, m446, m538, m678, m777, m796,
m896, m917, m945, m946, m947, m1042, m1238, m1318, m1324, m1325, m1468, m1740,
m1905, m1906, m2039, m2062, m2148, m2162, m2163, m2197, m2202, m2265, m2409,
m2435, m2502, m2627, m2628, m2629, m2691, m2881, m2988, m3414, m3415, m3438,
m3439, m3440, m3441, m3442, m3443, m3446, m3447, m3448, m3484, m3543, m3544,
m3811, m3848, m3849, m3850, m3851, m4297, m4318, m4425, m4493, m4578, m5030,
m5031, m5094, m5223, m5379, m5380, m5448, m5685, m5706, m5799, m5808, m5911,
m5931, m6095, m6096, m6395, m6396, m6397, m6401, m6434, m6473, m6481, m6527,
m6729, m7059, m7066
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4 ml, m61, m71, m72, m143, ml44, m181, m182, m183, m225, m294, m295, m555,
m707, m799, m805, m816, m937, m1020, m1156, m1262, m1312, m1316, m1318, m1323,
m1335, m1377, m1408, m1448, m1483, m1484, m1485, m1486, m1487, m1488, m1586,
m1714, m1715, m1716, m1717, m1776, m1822, m1840, m1909, m1946, m1947, m1948,
m1949, m2013, m2120, m2121, m2129, m2130, m2131, m2139, m2179, m2191, m2227,
m2228, m2263, m2286, m2413, m2433, m2434, m2481, m2507, m2621, m2785, m2816,
m2832, m2895, m2902, m2922, m2923, m2937, m2964, m2965, m3168, m3170, m3211,
m3290, m3312, m3378, m3412, m3493, m3495, m3496, m3604, m3614, m3680, m3819,
m3820, m3837, m3838, m3839, m3840, m3978, m4069, m4150, m4165, m4166, m4216,
m4217, m4218, m4219, m4220, m4221, m4222, m4234, m4235, m4351, m4374, m4375,
m4377, m4378, m4504, m4580, m4581, m4582, m4583, m4584, m4585, m4586, m4587,
m4588, m4612, m4637, m4648, m4692, m4712, m4713, m4714, m4715, m4776, m4818,
m4833, m4918, m5016, m5079, m5152, m5153, m5154, m5233, m5234, m5237, m5326,
m5379, m5453, m5454, m5455, m5456, m5457, m5747, m5789, m5794, m5825, m5854,
m5859, m5893, m5894, m5904, m5923, m5948, m6084, m6152, m6153, m6154, m6155,
mo6431, m6432, m6438, m6445, m6502, m6503, m6509, m6560, m6756, m6853, m6869,
m6870, m6897, m6898, m6899, m6900, m6967, m7071, m7072, m7257, m7267, m7268,
m7272

5 ml, m96, m329, m363, m431, m904, m951, m1406, m1893, m2150, m2357, m2359,
m2360, m2463, m2547, m2551, m2570, m2621, m2622, m2623, m3287, m3983, m3984,
m3985, m4822, m5168, m5186, m5222, m5223, m5404, m5405, m5416, m5425, m5699,
m5706, m5880, m5881, m5914, m5925, m5926, m5927, m5928, m5929, m5930, m5931,
m6408, m6440, m6494, m6533, m6538, m6562, m7067, m7076, m7078, m7080, m7081,
m7082, m7083, m7091, m7092, m7093, m7188, m7223, m7224, m7227, m7248, m7249
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Figure S-1: Fitted values versus observed values.
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