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Bayesian multiple testing procedures under possible model
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S-1 Assumptions of Shalizi (2009)

(S1) Consider the following likelihood ratio:

Rn(ξ) =
fξ(Xn)

p(Xn)
. (S-1)

Assume that Rn(ξ) is σ(Xn)× T -measurable for all n > 0.

(S2) For each ξ ∈ Ξ, the generalized or relative asymptotic equipartition property holds, and so, almost
surely,

lim
n→∞

1

n
logRn(ξ) = −h(ξ),

where h(ξ) is given in (S3) below.

(S3) For every ξ ∈ Ξ, the KL-divergence rate

h(ξ) = lim
n→∞

1

n
E

(
log

p(Xn)

fξ(Xn)

)
. (S-2)

exists (possibly being infinite) and is T -measurable.

(S4) Let I = {ξ : h(ξ) =∞}. The prior π satisfies π(I) < 1.

(S5) There exists a sequence of sets Gn → Ξ as n→∞ such that:

(1)
π (Gn) ≥ 1− α exp (−ςn) , for some α > 0, ς > 2h(Ξ); (S-3)

(2) The convergence in (S3) is uniform in θ over Gn \ I .

(3) h (Gn)→ h (Ξ), as n→∞.

For each measurable A ⊆ Ξ, for every δ > 0, there exists a random natural number τ(A, δ) such
that

n−1 log

∫
A
Rn(ξ)π(ξ)dξ ≤ δ + lim sup

n→∞
n−1 log

∫
A
Rn(ξ)π(ξ)dξ, (S-4)

for all n > τ(A, δ), provided lim sup
n→∞

n−1 log π (IARn) < ∞. Regarding this, the following

assumption has been made by Shalizi:
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(S6) The sets Gn of (S5) can be chosen such that for every δ > 0, the inequality n > τ(Gn, δ) holds
almost surely for all sufficiently large n.

(S7) The sets Gn of (S5) and (S6) can be chosen such that for any set A with π(A) > 0,

h (Gn ∩A)→ h (A) as n→∞ (S-5)

S-2 Comparisons of versions of FNR

With respect to the new notions of errors in (2) and (3), FNRXn can be modified as

modified FNRXn = Eξ|Xn

[∑
d∈D

∑m
i=1(1− di)rizi∑m
i=1(1− di) ∨ 1

δM (d|Xn)

]

=
∑
d∈D

∑m
i=1(1− di)win(d)∑m
i=1(1− di) ∨ 1

δM(d|Xn).

We denote modified FNRXn as mFNRXn . Now, from Theorem 1, dti = 0 implies

exp
[
−n
(
J
(
Ξdt,i

)
+ ε
)]

< win(dt) < exp
[
−n
(
J
(
Ξdt,i

)
− ε
)]
.

Similar to Theorem 4, using the above bounds, we can obtain the asymptotic convergence rate of
mFNRXn , formalized in the following theorem:

Theorem S-2.1 Assume conditions (A1) and (A2). Let J̃min = min
i:dti=0

J(Ξdt,i). Then for the non-

marginal multiple testing procedure

lim
n→∞

1

n
log mFNRXn = −J̃min. (S-6)

Proof. Following the proof of Lemma S-4.1, we have

exp(−nε)×
∑m

i=1(1− dti)e
−nJ(Ξidt)∑m

i=1(1− dti)
≤ mFNRXn ≤ exp(nε)×

∑m
i=1(1− dti)e

−nJ(Ξidt)∑m
i=1(1− dti)

,

from which the proof follows.
If J

(
Ξdt,i

)
= J (H1i) for i = 1, . . . ,m, it would follow that win(dt) and vin have the same lower

and upper bounds. Lemma S-2.2 shows that indeed J
(
Ξdt,i

)
= J (H1i) for i = 1, . . . ,m, under a very

mild assumption given by the following.

(A3) For any decision configuration d, define S(d) = {i : di = dti}. Then for two decision configura-
tions d and d̃, if S(d) ⊂ S(d̃), then J(Ξ(d)) > J(Ξ(d̃)).

Notably in (A3), S(d) is the set of correct decisions. Note that S(d) ⊂ S(d̃) implies that number of
correct decisions is more in d̃ compared to d. Hence, the model directed by d should procure greater
divergence. This assumption is easily seen to hold in independent cases, and also in dependent models
such as multivariate normal.

Lemma S-2.2 Under (A3), J
(
Ξdt,i

)
= J (H1i), for all i such that dti = 0.

Proof. For all i such that dti = 0, define d(i), where d(i)j = dtj for all j 6= i, and d
(i)
j = 1 and

Si = {d : di = 1}. Then

Pξ|Xn
(H1i) =

∑
d∈Si

Pξ|Xn

(
H1i ∩

{
∩j 6=iHdj ,j

})
, (S-7)
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so that dividing both sides of (S-7) by Pξ|Xn

(
Ξdt,i

)
yields

Pξ|Xn
(H1i)

Pξ|Xn

(
Ξdt,i

) = 1 +
∑

d∈Si\{d(i)}

Pξ|Xn

(
H1i ∩

{
∩j 6=iHdj ,j

})
Pξ|Xn

(
Ξdt,i

) (S-8)

Theorem 1 and (A3) together ensures that as n → ∞,
Pξ|Xn

(
H1i∩

{
∩j 6=iHdj,j

})
Pξ|Xn(Ξdt,i)

→ 0 exponentially fast,

for all d ∈ Si\{d(i)}. Applying this to the right hand side of (S-8) yields

Pξ|Xn
(H1i)

Pξ|Xn

(
Ξdt,i

) → 1 (S-9)

exponentially fast. Now, applying Shalizi’s result to Pξ|Xn
(H1i) and Pξ|Xn

(
Ξdt,i

)
it follows that if

J
(
Ξdt,i

)
6= J (H1i), then (S-9) is contradicted. Hence, J

(
Ξdt,i

)
= J (H1i), for i = 1, . . . ,m.

From Lemma S-2.2, we see that J̃min = H̃min. Thus, we get the following result:

Theorem S-2.3 Assume (A1)–(A3). Then, for the non-marginal multiple testing procedure,

lim
n→∞

1

n
log

(
mFNRXn

FNRXn

)
= 0 (S-10)

and

lim
n→∞

log (mFNRXn)

log (FNRXn)
= 1. (S-11)

Proof. Note that,

1

n
log

(
mFNRXn

FNRXn

)
=

1

n
log (mFNRXn)− 1

n
log (FNRXn) .

Now 1
n log (mFNRXn)→ −J̃min and 1

n log (FNRXn)→ −H̃min as n→∞. Again by Lemma S-2.2,
J̃min = H̃min. This proves (S-10). The proof of (S-11) follows from (S-6) and (15), using J̃min = H̃min.

Theorem S-2.3 remains true for any G = {G1, . . . , Gm}. In other words, given that (A3) holds,
(S-10) shows that none of mFNRXn or FNRXn is asymptotically preferable over the other, while (S-
11) shows that log (mFNRXn) and log (FNRXn) are asymptotically equivalent, irrespective of how the
Gi’s are formed.

S-3 Proofs of results in Section 2

Proof of Theorem 2. Let Ξtc be the complement set of Ξ(dt). Then by virtue of Theorem 1 we have

lim
n→∞

1

n
logPξ|Xn

(
Ξtc
)

= −J
(
Ξtc
)
.

This implies that for any ε > 0, there exists a n0(ε) such that for all n > n0(ε)

exp
[
−n
(
J
(
Ξtc
)

+ ε
)]
< Pξ|Xn

(
Ξtc
)
< exp

[
−n
(
J
(
Ξtc
)
− ε
)]

⇒1− exp
[
−n
(
J
(
Ξtc
)
− ε
)]
< Pξ|Xn

(
Ξt
)
< 1− exp

[
−n
(
J
(
Ξtc
)

+ ε
)]
.

For notational convenience, we shall henceforth denote J
(
Ξtc
)

by J .
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Observe that if d ∈ Dci , at least one decision is wrong corresponding to some hypothesis in Gi. As
Pξ|Xn

(
Ξtc
)

is the posterior probability of at least one wrong decision in the parameter space, we have

win(d) < Pξ|Xn

(
Ξtc
)
< exp [−n (J − ε)] . (S-12)

Similarly for d ∈ Di and for false H0i

win(d) > Pξ|Xn

(
Ξt
)
> 1− exp [−n (J − ε)] . (S-13)

From conditions (12) and (13), it follows that there exists n1 such that for all n > n1

βn > β − δ,
βn < 1− δ, such that

β − δ > 0 and 1− β̄ > δ, for some δ > 0. It follows using this, (S-12) and (S-13), that

m∑
i:d∈Dci

dtiwin(dt)−
m∑

i:d∈Dci

diwin(d) >
(

1− e−n(J−ε)
) ∑
i:d∈Dci

dti − e−n(J−ε)
∑
i:d∈Dci

di, and

βn

 m∑
i:d∈Dci

dti −
m∑

i:d∈Dci

di

 < (1− δ)
m∑

i:d∈Dci

dti − (β − δ)
m∑

i:d∈Dci

di.

Now n1 can be appropriately chosen such that e−n(J−ε) < min{δ, β − δ}. Note that neither n0 nor n1
depends on m. Hence, for any value of m and for all n > max{n0, n1},

m∑
i:d∈Dci

dtiwin(dt)−
m∑

i:d∈Dci

diwin(d) > βn

 m∑
i:d∈Dci

dti −
m∑

i:d∈Dci

di

 , for all d 6= dt, almost surely

⇒ lim
n→∞

δNM(dt|Xn) = 1, almost surely.

S-4 Additional results to Section 3 and proofs

Lemma S-4.1 Assume conditions (A1) and (A2). Then for the non-marginal multiple testing procedure
and any ε > 0, there exists n0(ε) ≥ 1 such that for n ≥ n0(ε), the following holds almost surely:

exp (−nε)×
∑m

i=1 d
t
ie
−nJ(Ξc

dt,i
)∑m

i=1 d
t
i

≤ mFDRXn ≤ exp (nε)×
∑m

i=1 d
t
ie
−nJ(Ξc

dt,i
)∑m

i=1 d
t
i

.

Proof. Observe that,

mFDRXn

=
∑
d6=0

∑m
i=1 di(1− win(d))∑m

i=1 di ∨ 1
δNM (d|Xn)

=

∑m
i=1 d

t
i(1− win(dt))∑m
i=1 d

t
i

δNM
(
dt|Xn

)
+
∑
d6=dt

∑m
i=1 di(1− win(d))∑m

i=1 di ∨ 1
δNM (d|Xn) . (S-14)

From the proof of Theorem 2, we see that under (A1), δNM(d|Xn) = 0 for all d 6= dt. Also under
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(A2), dt 6= 0. For any ε > 0 and n ≥ n0(ε), it follows from (8) and (9) that a lower bound for (S-14) is

Ln =

∑m
i=1 d

t
ie
−n(J(Ξc

dt,i
)+ε)∑m

i=1 d
t
i

δNM(dt|Xn) = exp (−nε)×
∑m

i=1 d
t
ie
−nJ(Ξc

dt,i
)∑m

i=1 d
t
i

.

Similarly, an upper bound is given by

Un =

∑m
i=1 d

t
ie
−n(J(Ξc

dt,i
)−ε)∑m

i=1 d
t
i

δNM
(
dt|Xn

)
= exp (nε)×

∑m
i=1 d

t
ie
−nJ(Ξc

dt,i
)∑m

i=1 d
t
i

.

Similar asymptotic bounds can also be obtained for FDRXn under the same conditions. We state it
formally in the following corollary.

Corollary S-4.2 Assume conditions (A1) and (A2). Then for the non-marginal multiple testing proce-
dure and any ε > 0 and large enough n the following holds almost surely:

exp(−nε)×
∑m

i=1 d
t
ie
−nJ(H0i)∑m

i=1 d
t
i

≤ FDRXn ≤ exp(nε)×
∑m

i=1 d
t
ie
−nJ(H0i)∑m

i=1 d
t
i

.

Lemma S-4.3 Assume conditions (A1) and (A2). Then for the non-marginal multiple testing procedure
and any ε > 0, there exists a natural number n1(ε) such that for all n > n1(ε) the following hold almost
surely

exp(−nε)×
∑m

i=1(1− dti)e
−nJ(Ξdt,i)∑m

i=1(1− dti)
≤ mFNRXn ≤ exp(nε)×

∑m
i=1(1− dti)e

−nJ(Ξdt,i)∑m
i=1(1− dti)

.

Proof. Note that by Theorem 1, dti = 0 implies

exp [−n (J (H1i) + ε)] < vin < exp [−n (J (H1i)− ε)] .

From the above bound, similar to the proof of Lemma S-4.1, we obtain asymptotic bounds of FNRXn .

Note that, (A2) is required for both Lemma S-4.1 and S-4.3 to hold. Without the condition the
denominators of the bounds would become zero. For proper bounds of the errors and hence for the
limits, (A2) is necessary.

Proof of Theorem 3. From Lemma S-4.1 we obtain the following for n ≥ n0(ε),

exp (−nε)×
∑m

i=1 d
t
ie
−nJ(Ξc

dt,i
)∑m

i=1 d
t
i

≤ mFDRXn ≤ exp (nε)×
∑m

i=1 d
t
ie
−nJ(Ξc

dt,i
)∑m

i=1 d
t
i

⇐⇒− ε+
1

n
log

(
m∑
i=1

dtie
−nJ(Ξc

dt,i
)

)
− 1

n
log

(
m∑
i=1

dti

)
≤ 1

n
log mFDRXn

≤ ε+
1

n
log

(
m∑
i=1

dtie
−nJ(Ξc

dt,i
)

)
− 1

n
log

(
m∑
i=1

dti

)
.

Applying L’Hôpital’s rule we observe that

lim
n→∞

1

n
log

(
m∑
i=1

dtie
−nJ(Ξc

dt,i
)

)
= −Jmin.
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As ε is an arbitrarily small positive quantity, we have

lim
n→∞

1

n
log mFDRXn = −Jmin.

Proceeding in the exact same way, using Corollary S-4.2, we obtain

lim
n→∞

1

n
log FDRXn = −Hmin.

Proof of Corollary 2. Note that

mpBFDR

=EXn

[∑
d∈D

∑m
i=1 di(1− wi(d))∑m

i=1 di
δβ(d|Xn)

∣∣∣∣δNM(d = 0|Xn) = 0

]

=EXn

[∑
d∈D

∑m
i=1 di(1− wi(d))∑m

i=1 di
δNM(d|Xn)

∣∣∣∣δNM(d = 0|Xn) = 0

]

=EXn

[∑
d∈D

∑m
i=1 di(1− wi(d))∑m

i=1 di
I

(
m∑
i=1

di > 0

)
δNM(d|Xn)

]
1

PXn [δNM(d = 0|Xn) = 0]

=EXn

 ∑
d∈D\{0}

∑m
i=1 di(1− wi(d))∑m

i=1 di
δNM(d|Xn)

 1

PXn [δNM(d = 0|Xn) = 0]
.

From Theorem 3, we have 1
n log mFDRXn → −Jmin, that is, mFDRXn → 0, as n → ∞. Also we

have

0 ≤
∑

d∈D\{0}

∑m
i=1 di(1− wi(d))∑m

i=1 di
δNM(d|Xn) ≤ mFDRXn ≤ 1.

Therefore by the dominated convergence theorem, EXn

[∑
d∈D\{0}

∑m
i=1 di(1−wi(d))∑m

i=1 di
δNM(d|Xn)

]
→

0, as n → ∞. From (A2) we have dt 6= 0 and from Theorem 2 we have EXn [δNM(dt|Xn)] → 1.
Thus PXn [δNM(d = 0|Xn) = 0]→ 1, as n→∞. This proves the result.

Similarly it can be shown that pBFDR→ 0 as n→∞.

Proof of Theorem 4. The proof is similar to that of Theorem 3.

Proof of Corollary 3. Exploiting Theorem 4 and (A2), the theorem can be proved similarly as the
proof of Corollary 2.

S-5 Proofs of results in Section 4

Proof of Theorem 5. Theorem 3.4 of Chandra and Bhattacharya (2019) shows that mpBFDR is non-
increasing in β. Hence, the maximum error that can be incurred is at β = 0 where we actually maximize∑m

i=1 diwin(d). Let

d̂ = argmax
d∈D

m∑
i=1

diwin(d) = argmax
d∈D

[
m1∑
i=1

diwin(d) +

m∑
i=m1+1

diwin(d)

]
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Since the groups in {G1, G2, · · · , Gm1} have no overlap with those in {Gm1+1, · · · , Gm},
∑m1

i=1 diwin(d)
and

∑m
i=m1+1 diwin(d) can be maximized separately.

Let us define the following notations:

Qm1
d = Qd ∩ {1, 2, · · · ,m1}, Qm1c

d = {1, 2, · · · ,m1} \Qm1
d .

Now,

m1∑
i=1

diwin(d)−
m1∑
i=1

dtiwin(dt)

=

 ∑
i∈Qm1

d

diwin(d)−
∑
i∈Qm1

d

dtiwin(dt)

+

 ∑
i∈Qm1c

d

diwin(d)−
∑

i∈Qm1c
d

dtiwin(dt)


=

∑
i∈Qm1c

d

diwin(d)−
∑

i∈Qm1c
d

dtiwin(dt),

since for any d,
∑

i∈Qm1
d
diwin(d) =

∑
i∈Qm1

d
dtiwin(dt) by definition of Qm1

d .

Note that
∑

i∈Qm1c
d

dtiwin(dt) can not be zero as it contradicts (B1) that “G1, G2, · · · , Gm1 have at
least one false null hypothesis.” From (8) and (9), we have∑

i∈Qm1c
d

diwin(d)→ 0 for all d 6= dt, and
∑

i∈Qm1c
d

dtiwin(dt)→
∑

i∈Qm1c
d

dti > 0.

Hence, for large enough n, for d 6= dt,

m∑
i=1

diwin(d)−
m∑
i=1

dtiwin(dt) < 0.

In other words, dt (or d such that di = dti for all i = 1, · · · ,m1) maximizes
∑m1

i=1 diwin(d) when n is
large enough.

Let us now consider the term
∑m

i=m1+1 diwin(d). Note that
∑m

i=m1+1 d
t
iwin(dt) = 0 by (B1). For

any finite n,
∑m

i=m1+1 diwin(d) is maximized for some decision configuration d̃ where d̃i = 1 for at

least one i ∈ {m1 + 1, · · · ,m}. In that case, d̂
t

= (dt1, . . . , d
t
m1
, d̃m1+1, d̃m1+2, . . . , d̃m), so that

lim
n→∞

∑m
i=1 d̂i(1− win(d̂))∑m

i=1 d̂i
≥ 1∑m

i=1 d
t
i + 1

,

almost surely, for all data sequences. Boundedness of
∑m
i=1 di(1−win(d))∑m

i=1 di
for all d and Xn ensures uni-

form integrability, which, in conjunction with the simple observation that for β = 0, P (δNM(d = 0|Xn) = 0) =
1 for all n ≥ 1, guarantees that under (B1) it is possible to incur mpBFDR ≥ 1∑m

i=1 d
t
i+1

asymptotically.
Now, if Gm1+1, · · · , Gm’s are all disjoint, each consisting of only one true null hypothesis, then∑m
i=m1+1 diwin(d) will be maximized by d̃ where d̃i = 1 for all i ∈ {m1 + 1, · · · ,m}. Since dti;

i = 1, . . . ,m1 maximizes
∑m1

i=1 diwin(d) for large n, it follows that d̂ = (dt1, . . . , d
t
m1
, 1, 1, . . . , 1) is

the maximizer of
∑m

i=1 diwin(d) for large n. In this case, almost surely for all data sequences,

lim
n→∞

∑m
i=1 d̂i(1− win(d̂))∑m

i=1 d̂i
=

m−m1∑m
i=1 d

t
i +m−m1

. (S-15)
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In this case, the maximum mpBFDR that can be incurred is at β = 0, and is given by

lim
n→∞

mpBFDRβ=0 =
m−m1∑m

i=1 d
t
i +m−m1

.

This is also the maximum mpBFDR that can be incurred among all possible configurations ofGm1+1, · · · , Gm.
Hence, for any arbitrary configuration of groups, the maximum mpBFDR that can be incurred lies in
the interval

(
1∑m

i=1 d
t
i+1

, m−m1∑m
i=1 d

t
i+m−m1

)
asymptotically.

Proof of Theorem 6. Let ε < E − α. Then from (16), there exists n(ε) such that for all n > n(ε),
mpBFDRβ=0 > E−ε > α. Chandra and Bhattacharya (2019) have shown that mpBFDR is continuous
and decreasing in β. Hence, for all n > n(ε), there exists βn ∈ (0, 1) such that mpBFDR = α.

Now, if possible let lim infn→∞ βn > 0. Then from Theorem S-4.1 we see that mpBFDR decays to
0 exponentially fast, which contradicts the current situation that mpBFDR = α for n > n(ε). Hence,
limn→∞ βn = 0.

Proof of Theorem 7. Theorems 3.1 and 3.4 of Chandra and Bhattacharya (2019) together state
that mpBFDR is continuous and non-increasing in β. It is to be noted that there is no assumption or
restriction on the configurations of Gi’s. Hence it is easily seen that pBFDR is also continuous and
non-increasing in β.

Let d̂ be the optimal decision configuration with respect to the additive loss function. Note that for
β = 0, d̂i = 1 for all i. In that case,

lim
n→∞

∑m
i=1 d̂i(1− vin)∑m

i=1 d̂i
=
m0

m
.

Therefore, it is possible to incur error arbitrarily close to m0/m for large enough sample size. Hence,
the remaining part of the proof follows in the same lines as the arguments in the proof of Theorem 6.

Proof of Theorem 8. Take ε < m0
m − α. Since for any multiple testing method, mpBFDRβ >

pBFDRβ , and since lim
n→∞

pBFDRβ=0 = m0
m by the proof of Theorem 7, it follows that there exists

n0(ε) such that for all n > n0(ε),

mpBFDRβ=0 >
m0

m
− ε > α.

Since mpBFDR is continuous and non-increasing in β, for for n > n0(ε), there exists a sequence
βn ∈ [0, 1] such that

mpBFDRβn = α. (S-16)

If possible, let lim infn→∞ βn > 0. This, however, contradicts Theorem S-4.1 which asserts that
mpBFDR decays to 0 exponentially fast. Hence, limn→∞ βn = 0.

Proof of Theorem 9. From Theorem 6 we have that for any feasible choice of α, there exists
a sequence {βn} such that limn→∞mpBFDRβn = α. Now, for the sequence {βn}, let d̂n be the

optimal decision configuration for sample size n, that is, δNM
(
d̂n|Xn

)
= 1 for sufficiently large n.

Following the proof of Theorem 5 and 6 we see that d̂in = dti for i = 1, · · · ,m1 and
∑m

i=m1+1 d̂in > 0.
Now recall from (10) that for any arbitrary ε > 0, there exists n(ε) such that for all n > n(ε), vin <
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exp [−n (J (H1i)− ε)] if dti = 0. Therefore,∑m
i=1(1− d̂in)vin∑m
i=1(1− d̂in)

≤
∑m

i=1(1− dti)vin∑m
i=1(1− d̂in)

< enε ×
∑m

i=1(1− dti)e−nJ(H1i)∑m
i=1(1− d̂in)

⇒ FNRXn < enε ×
∑m

i=1(1− dti)e−nJ(H1i)∑m
i=1(1− d̂in)

⇒ 1

n
log (FNRXn) < ε+

1

n
log

[
m∑
i=1

(1− dti)e−nJ(H1i)

]
− 1

n
log

[
m∑
i=1

(1− d̂in)

]
.

Note that

lim
n→∞

1

n
log

[
m∑
i=1

(1− d̂in)

]
= 0 as m is finite, and

lim
n→∞

1

n
log

[
m∑
i=1

(1− dti)e−nJ(H1i)

]
= −H̃min from L’Hôpital’s rule.

As ε is any arbitrary positive quantity we have

lim sup
n→∞

1

n
log (FNRXn) ≤ −H̃min.

S-6 Additional results to Section 5 and proofs

Proof of Theorem 10. The proof of this theorem is complete if (S1)-(S7) are verified for the model
(18). We do this through the following lemmas and theorems stated and proved in this section.

Lemma S-6.1 Under the model assumption (C1)-(C2), the KL-divergence rate h(ξ) defined in (6) exists
and is given by

h(θ) = log

(
σ

σ0

)
+

(
1

2σ2
− 1

2σ20

)(
σ20

1− ρ20
+
β′0Σzβ0

1− ρ20

)
+

(
ρ2

2σ2
− ρ20

2σ20

)(
σ20

1− ρ20
+
β′0Σzβ0

1− ρ20

)
+

1

2σ2
β′Σzβ −

1

2σ20
β′0Σzβ0

−
(
ρ

σ2
− ρ0
σ20

)(
ρ0σ

2
0

1− ρ20
+
ρ0β

′
0Σzβ0

1− ρ20

)
−
(
β

σ2
− β0

σ20

)′
Σzβ0. (S-17)

Proof. It is easy to see that under the true model P ,

E(xt) =

t∑
k=1

ρt−k0 z′kβ0; (S-18)

E(xt+hxt) ∼
σ20ρ

h
0

1− ρ20
+ E(xt+h)E(xt); h ≥ 0,

where for any two sequences {at}∞t=1 and {bt}∞t=1, at ∼ bt stands for at/bt → 1 as t→∞. Hence,

E(x2t ) ∼
σ20

1− ρ20
+

(
t∑

k=1

ρt−k0 z′kβ0

)2

. (S-19)
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Now let

%t =

t∑
k=1

ρt−k0 z′kβ0

and for t > t0,

%̃t =

t∑
k=t−t0

ρt−k0 z′kβ0,

where, for any ε > 0, t0 is so large that
Cρt0+1

0

(1− ρt0)
≤ ε. (S-20)

It follows, using (C2) and (S-20), that for t > t0,

|%t − %̃t| ≤
t−t0−1∑
k=1

ρt−k0

∣∣z′kβ0

∣∣ ≤ Cρt0+1
0 (1− ρt−t0+1

0 )

1− ρ0
≤ ε. (S-21)

Hence, for t > t0,
%̃t − ε ≤ %t ≤ %̃t + ε. (S-22)

Now, ∑n
t=1 %̃t
n

= ρt00

(∑n
t=1 zt
n

)′
β0 + ρt0−10

(∑n
t=2 zt
n

)′
β0 + ρt0−20

(∑n
t=3 zt
n

)′
β0 + · · ·

· · ·+ ρ0

(∑n
t=t0

zt

n

)′
β0 +

(∑n
t=t0+1 zt

n

)′
β0

→ 0, as n→∞, by virtue of (C1).

Similarly, it is easily seen, using (C1), that∑n
t=1 %̃

2
t

n
→

(
1− ρ2(2t0+1)

1− ρ20

)
β′0Σzβ0, as n→∞.

Since (S-21) implies that for t > t0, %̃2t + ε2 − 2ε%̃t ≤ %2t ≤ %̃2t + ε2 + 2ε%̃t, it follows that

lim
n→∞

∑n
t=1 %

2
t

n
= lim

n→∞

∑n
t=1 %̃

2
t

n
+ ε2 =

(
1− ρ2(2t0+1)

1− ρ20

)
β′0Σzβ0 + ε2,

and since ε > 0 is arbitrary, it follows that

lim
n→∞

∑n
t=1 %

2
t

n
=
β′0Σzβ0

1− ρ20
. (S-23)

Hence, it also follows from (S-18), (S-19), (C1) and (S-23), that

∑n
t=1E(x2t )

n
→ σ20

1− ρ20
+
β′0Σzβ0

1− ρ20
;

∑n
t=1E(x2t−1)

n
→ σ20

1− ρ20
+
β′0Σzβ0

1− ρ20
as n→∞.

Now note that
xtxt−1 = ρ0x

2
t−1 + z′tβ0xt−1 + εtxt−1. (S-24)
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Using (20), (S-22) and arbitrariness of ε > 0 it is again easy to see that∑n
t=1 z

′
tβ0E(xt−1)

n
→ 0, as n→∞.

Also, since for t = 1, 2, . . . , E(εtxt−1) = E(εt)E(xt−1) by independence, and since E(εt) = 0 for
t = 1, 2, . . ., it holds that ∑n

t=1E (εtxt−1)

n
= 0, for all n = 1, 2, . . . . (S-25)

Combining (S-6)-(S-25) we obtain∑n
t=1E (xtxt−1)

n
→ ρ0σ

2
0

1− ρ20
+
ρ0β

′
0Σzβ0

1− ρ20
.

Also (C1) along with (S-22) and arbitrariness of ε > 0 yields∑n
t=1 ztE(xt)

n
→ Σzβ0,

∑n
t=1 ztE(xt−1)

n
→ 0 as n→∞.

Using assumptions (C1) and (C2) and the above results, it follows that

h(ξ) = lim
n→∞

1

n
E [− logRn(ξ)] = log

(
σ

σ0

)
+

(
1

2σ2
− 1

2σ20

)(
σ20

1− ρ20
+
β′0Σzβ0

1− ρ20

)
+

(
ρ2

2σ2
− ρ20

2σ20

)(
σ20

1− ρ20
+
β′0Σzβ0

1− ρ20

)
+

1

2σ2
β′Σzβ −

1

2σ20
β′0Σzβ0

−
(
ρ

σ2
− ρ0
σ20

)(
ρ0σ

2
0

1− ρ20
+
ρ0β

′
0Σzβ0

1− ρ20

)
−
(
β

σ2
− β0

σ20

)′
Σzβ0.

In other words, (S2) holds, with h(ξ) given by equation (S-17).

Theorem S-6.2 For each ξ ∈ Ξ, the generalized or relative asymptotic equipartition property holds,
and so

lim
n→∞

1

n
logRn(ξ) = −h(ξ).

The convergence is uniform over any compact subset of Ξ.

Proof. Note that

xt =
t∑

k=1

ρt−k0 z′kβ0 +
t∑

k=1

ρt−k0 εk,

where ε̃t =
∑t

k=1 ρ
t−k
0 εk is an asymptotically stationary Gaussian process with mean zero and covari-

ance

cov(ε̃t+h, ε̃t) ∼
σ20ρ

h
0

1− ρ20
, where h ≥ 0.

Then ∑n
t=1 x

2
t

n
=

∑n
t=1 %

2
t

n
+

∑n
t=1 ε̃

2
t

n
+

2
∑n

t=1 ε̃t%t
n

. (S-26)

By (S-23), the first term of the right hand side of (S-26) converges to β′0Σzβ0

1−ρ20
, as n → ∞, and since

ε̃t; t = 1, 2, . . . is also an irreducible and aperiodic Markov chain, by the ergodic theorem it follows
that the second term of (S-26) converges to σ20/(1 − ρ20) almost surely, as n → ∞. Also observe
that %t; t = 1, 2, . . ., is also a sample path of an irreducible and aperiodic stationary Markov chain, with
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univariate stationary distribution having mean 0 and variance β′0Σzβ0× lim
t→∞

∑t
k=1 ρ

2(t−k)
0 =

β′0Σzβ0

1−ρ20
.

Since for each t, ε̃t and %t are independent, ε̃t%t; t = 1, 2, . . ., is also an irreducible and aperiodic
Markov chain having a stationary distribution with mean 0 and variance σ2

0β
′
0Σzβ0

(1−ρ20)2
. Hence, by the

ergodic theorem, the third term of (S-26) converges to zero, almost surely, as n→∞. It follows that∑n
t=1 x

2
t

n
→ σ20

1− ρ20
+
β′0Σzβ0

1− ρ20
, (S-27)

and similarly, ∑n
t=1 x

2
t−1

n
→ σ20

1− ρ20
+
β′0Σzβ0

1− ρ20
. (S-28)

Now, since xt = %t + ε̃t, it follows using (C1) and (S-22) that

lim
n→∞

∑n
t=1 ztxt
n

=

(
lim
n→∞

∑n
t=1 ztz

′
t

n

)
β0 + lim

n→∞

∑n
t=1 ztε̃t
n

. (S-29)

By (C1), the first term on the right hand side of (S-29) is Σzβ0. For the second term, note that it follows
from (C1) that ztε̃t; t = 1, 2, . . ., is sample path of an irreducible and aperiodic Markov chain with a
stationary distribution having zero mean. Hence, by the ergodic theorem, it follows that the second term
of (S-29) is 0, almost surely. In other words, almost surely,∑n

t=1 ztxt
n

→ Σzβ0, as n→∞, (S-30)

and similar arguments show that, almost surely,∑n
t=1 ztxt−1

n
→ 0, as n→∞. (S-31)

We now calculate the limit of
∑n

t=1 xtxt−1/n, as n→∞. By (S-24),

lim
n→∞

∑n
t=1 xtxt−1

n
= lim

n→∞

ρ0
∑n

t=1 x
2
t−1

n
+ lim
n→∞

β′0
∑n

t=1 ztxt−1
n

+ lim
n→∞

∑n
t=1 εtxt−1
n

. (S-32)

By (S-28), the first term on the right hand side of (S-32) is given, almost surely, by ρ0σ2
0

1−ρ20
+
ρ0β
′
0Σzβ0

1−ρ20
, and

the second term is almost surely zero due to (S-31). For the third term, note that εtxt−1 = εt%t−1+εtε̃t−1.
Both εt%t−1; t = 1, 2, . . . and εtε̃t−1; t = 1, 2, . . ., are sample paths of irreducible and aperiodic Markov
chains having stationary distributions with mean zero. Hence, by the ergodic theorem, the third term of
(S-32) is zero, almost surely. That is,

lim
n→∞

∑n
t=1 xtxt−1

n
=

ρ0σ
2
0

1− ρ20
+
ρ0β

′
0Σzβ0

1− ρ20
. (S-33)

The limits (S-27), (S-28), (S-30), (S-31), (S-33) applied to logRn(ξ) given by Theorem S-6.2, shows
that logRn(θ)

n converges to −h(θ) almost surely as n→∞. In other words, (S3) holds.
Now 1

n logRn(ξ) has continuous partial derivatives implying that ∂
∂ξ

[
1
n logRn(ξ)

]
is bounded in

any compact set. Hence 1
n logRn(ξ) is Lipschitz continuous and hence stochastic equicontinuous in ξ.

Thus by applying the stochastic Ascoli theorem we have that the convergence is uniform over ξ in that
compact set (for details about stochastic equicontinuity, see, for example, Billingsley 2013).

The meaning of Theorem S-6.2 is that, relative to the true distribution, the likelihood of each ξ goes
to zero exponentially, the rate being the Kullback-Leibler divergence rate. Roughly speaking, an integral
of exponentially-shrinking quantities will tend to be dominated by the integrand with the slowest rate of
decay. Lemma S-6.1 and Theorem S-6.2 imply that (S1)-(S3) hold. For any ξ ∈ Ξ, h(ξ) is finite, which

12



implies that (S4) also holds. As regards (S5), we can always make (S-3) to hold by considering Gns as
credible regions of the prior distribution and these can be chosen increasing compact sets without loss
of generality. Since h(·) is continuous in ξ the second and third parts of (S5) will also hold.

Note that the maximizer of Rn(ξ) is the maximum likelihood estimator (mle) of ξ. Let ξ̂n =
sup
ξ∈Gn

Rn(ξ). Then

1

n
log

∫
Gn
Rn(ξ)π(ξ)dξ ≤ 1

n
log
[
Rn(ξ̂n)π(Gn)

]
. (S-34)

If we can show that ξ̂n is a consistent estimator of ξ0, then this will validate (S6). Importantly, the
conditions for mle consistency generally require iid observations (Lehmann and Casella, 1998). In this
model the data sequence {xt}∞t=1 have dependence structure and regular asymptotic theory will not hold.
Hence, we provide a direct proof of consistency; below we provide the main results leading to the desired
consistency result. The equipartition property plays a crucial role in the proceeding.

Theorem S-6.3 The function 1
n logRn(ξ) is asymptotically concave in ξ.

Proof. Note that

sup
ξ∈Ξ

1

n
logRn(ξ) = sup

ρ,β
sup
σ2

1

n
logRn(ξ) = − inf

ρ,β
log

[
1

n

n∑
t=1

(
xt − ρxt−1 − β′zt

)2]− 1

2
.

Since log is a monotonic function, minimizing log
[
1
n

∑n
t=1

(
xt − ρxt−1 − β′zt

)2] is equivalent to

minimizing 1
n

∑n
t=1

(
xt − ρxt−1 − β′zt

)2
= gn(ρ,β), say. Now the Jacobian matrix J of gn(ρ,β) is

given by

J =

[
1
n

∑
x2t−1

1
n

∑
xt−1z

′
t

1
n

∑
xt−1zt

1
n

∑
ztz
′
t

]
.

(S-27), (S-31) together with the model assumptions (C1)-(C2) clearly shows that for large enough n, J
is positive-definite. Hence gn(ρ,β) is convex implying that 1

n logRn(ξ) is a concave function for large
n.

The above theorem ensures that for large enough n, the likelihood equation have unique mle. Rest
we need to ensure the strong consistency of the mle for this dependent setup.

Theorem S-6.4 Given any η > 0, the log-likelihood ratio 1
n logRn(ξ) has its unique root in the η-

neighbourhood of ξ0 almost surely for large n.

Proof. (C3) ensures that ξ0 is an interior point in Ξ, implying that there exists a compact set G ⊂ Ξ
such that ξ0 is an interior point of G also. From Theorem S-6.2, for each ξ ∈ Ξ, we have

lim
n→∞

1

n
logRn(ξ) = −h(ξ), (S-35)

and the convergence in (S-35) is uniform over ξ in G. Thus,

lim
n→∞

sup
ξ∈G

∣∣∣∣ 1n logRn(ξ) + h(ξ)

∣∣∣∣ = 0. (S-36)

For any η > 0, we define

Nη(ξ0) = {ξ : ‖ξ0 − ξ‖ < η}; N ′η(ξ0) = {ξ : ‖ξ0 − ξ‖ = η}; Nη(ξ0) = {ξ : ‖ξ0 − ξ‖ ≤ η}.

Note that for sufficiently small η, Nη(ξ0) ⊂ G. Let H = inf
ξ∈N ′η(ξ0)

h(ξ). By the properties of KL-

divergence h(ξ) is minimum at ξ = ξ0 and therefore, H > 0. Let us fix an ε such that 0 < ε < H .
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Then by (S-36), for large enough n all ξ ∈ N ′η(ξ0), 1
n logRn(ξ) < −h(ξ) + ε < 0. Now by definition

1
n logRn(ξ0) = 0 and thus for all ξ ∈ N ′η(ξ0)

1

n
logRn(ξ) <

1

n
logRn(ξ0) (S-37)

for large enough n. Now, Nη(ξ0) is a compact set with N ′η(ξ0) being its boundary. Since 1
n logRn(ξ)

is continuous in ξ, it is bounded in Nη(ξ0). From (S-37) we see that the maximum is attained at some
interior point of Nη(ξ0) and not on the boundary. Since the supremum is attained at an interior point
of Nη(ξ0), the supremum is also a local maximum. Now, Theorem S-6.3 ensures that for large n the
maximizer of 1

n logRn(ξ) is unique. This proves the result.
Theorem S-6.4 essentially entails the strong consistency of the mle. This also leads to the verification

of (S6) required for posterior consistency. We formally state it in the following lemma.

Lemma S-6.5 For any proper prior distribution π(·) over the parameter space Ξ, we have

lim sup
n→∞

1

n
log

∫
Gn
Rn(ξ)π(ξ)dξ ≤ 0.

Proof. From Theorems S-6.2 and S-6.4 we have

lim
n→∞

1

n
logRn(ξ̂n) = 0,

and hence

lim sup
n→∞

1

n
log

∫
Gn
Rn(ξ)π(ξ)dξ ≤ lim

n→∞

1

n

[
logRn(ξ̂n) + log π(Gn)

]
≤ 0.

Lemma S-6.5 signifies that (S6) holds. About (S7), it trivially holds since h(·) is a continuous
function.

S-7 Supplementary to real data analysis

Table S-1: Causal SNPs for different populations

Popu-
lation

Causal SNP
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1 m1, m12, m13, m114, m135, m146, m147, m236, m249, m274, m275, m276, m407, m422,
m449, m537, m620, m665, m674, m680, m709, m765, m887, m894, m895, m899, m934,
m951, m955, m1076, m1161, m1234, m1249, m1291, m1328, m1412, m1436, m1437,
m1445, m1456, m1575, m1646, m1733, m1761, m1762, m1763, m1764, m1765, m1766,
m1767, m1768, m1946, m2043, m2093, m2169, m2174, m2175, m2205, m2287, m2348,
m2349, m2374, m2403, m2451, m2452, m2467, m2468, m2508, m2610, m2677, m2678,
m2679, m2680, m2681, m2682, m2687, m2688, m2689, m2692, m2817, m2906, m2907,
m2943, m2951, m2952, m2953, m2954, m2955, m2956, m2962, m2996, m2997, m3106,
m3279, m3280, m3281, m3282, m3283, m3358, m3418, m3457, m3489, m3490, m3491,
m3545, m3571, m3644, m3735, m3738, m3795, m3931, m3951, m3952, m4015, m4038,
m4144, m4188, m4281, m4297, m4372, m4373, m4374, m4375, m4499, m4500, m4504,
m4506, m4538, m4674, m4766, m4767, m4768, m4919, m4924, m4925, m4973, m4974,
m5041, m5149, m5199, m5228, m5318, m5352, m5353, m5411, m5437, m5505, m5515,
m5516, m5517, m5646, m5688, m5728, m5766, m5926, m5927, m6025, m6066, m6116,
m6117, m6158, m6159, m6160, m6161, m6296, m6359, m6365, m6394, m6395, m6396,
m6397, m6398, m6399, m6400, m6401, m6402, m6434, m6466, m6473, m6505, m6507,
m6573, m6574, m6599, m6617, m6723, m6757, m6765, m6766, m6816, m6817, m6818,
m6851, m6852, m6853, m6858, m6859, m6860, m6872, m6903, m6995, m7085, m7089,
m7156, m7202, m7253, m7325, m7338, m7348

2 m1, m147, m432, m440, m458, m589, m597, m598, m599, m600, m741, m1010, m1011,
m1039, m1046, m1047, m1048, m1049, m1050, m1051, m1052, m1053, m1120, m1350,
m1362, m1620, m1670, m1812, m2014, m2027, m2028, m2143, m2144, m2200, m2201,
m2203, m2213, m2295, m2421, m2439, m2521, m2569, m2573, m2586, m2795, m2797,
m3216, m3412, m3560, m3615, m3727, m3728, m3729, m3730, m3956, m4141, m4273,
m4328, m4421, m4453, m4454, m4510, m4742, m4776, m4777, m4809, m4826, m4827,
m4828, m4988, m5229, m5375, m5542, m5544, m5590, m5674, m5803, m5804, m5805,
m5885, m5886, m5887, m5936, m5997, m6004, m6016, m6017, m6018, m6019, m6312,
m6320, m6342, m6343, m6457, m6485, m6486, m6492, m6493, m6652, m7178, m7189,
m7220, m7269, m7270

3 m1, m113, m162, m172, m176, m196, m198, m443, m446, m538, m678, m777, m796,
m896, m917, m945, m946, m947, m1042, m1238, m1318, m1324, m1325, m1468, m1740,
m1905, m1906, m2039, m2062, m2148, m2162, m2163, m2197, m2202, m2265, m2409,
m2435, m2502, m2627, m2628, m2629, m2691, m2881, m2988, m3414, m3415, m3438,
m3439, m3440, m3441, m3442, m3443, m3446, m3447, m3448, m3484, m3543, m3544,
m3811, m3848, m3849, m3850, m3851, m4297, m4318, m4425, m4493, m4578, m5030,
m5031, m5094, m5223, m5379, m5380, m5448, m5685, m5706, m5799, m5808, m5911,
m5931, m6095, m6096, m6395, m6396, m6397, m6401, m6434, m6473, m6481, m6527,
m6729, m7059, m7066
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4 m1, m61, m71, m72, m143, m144, m181, m182, m183, m225, m294, m295, m555,
m707, m799, m805, m816, m937, m1020, m1156, m1262, m1312, m1316, m1318, m1323,
m1335, m1377, m1408, m1448, m1483, m1484, m1485, m1486, m1487, m1488, m1586,
m1714, m1715, m1716, m1717, m1776, m1822, m1840, m1909, m1946, m1947, m1948,
m1949, m2013, m2120, m2121, m2129, m2130, m2131, m2139, m2179, m2191, m2227,
m2228, m2263, m2286, m2413, m2433, m2434, m2481, m2507, m2621, m2785, m2816,
m2832, m2895, m2902, m2922, m2923, m2937, m2964, m2965, m3168, m3170, m3211,
m3290, m3312, m3378, m3412, m3493, m3495, m3496, m3604, m3614, m3680, m3819,
m3820, m3837, m3838, m3839, m3840, m3978, m4069, m4150, m4165, m4166, m4216,
m4217, m4218, m4219, m4220, m4221, m4222, m4234, m4235, m4351, m4374, m4375,
m4377, m4378, m4504, m4580, m4581, m4582, m4583, m4584, m4585, m4586, m4587,
m4588, m4612, m4637, m4648, m4692, m4712, m4713, m4714, m4715, m4776, m4818,
m4833, m4918, m5016, m5079, m5152, m5153, m5154, m5233, m5234, m5237, m5326,
m5379, m5453, m5454, m5455, m5456, m5457, m5747, m5789, m5794, m5825, m5854,
m5859, m5893, m5894, m5904, m5923, m5948, m6084, m6152, m6153, m6154, m6155,
m6431, m6432, m6438, m6445, m6502, m6503, m6509, m6560, m6756, m6853, m6869,
m6870, m6897, m6898, m6899, m6900, m6967, m7071, m7072, m7257, m7267, m7268,
m7272

5 m1, m96, m329, m363, m431, m904, m951, m1406, m1893, m2150, m2357, m2359,
m2360, m2463, m2547, m2551, m2570, m2621, m2622, m2623, m3287, m3983, m3984,
m3985, m4822, m5168, m5186, m5222, m5223, m5404, m5405, m5416, m5425, m5699,
m5706, m5880, m5881, m5914, m5925, m5926, m5927, m5928, m5929, m5930, m5931,
m6408, m6440, m6494, m6533, m6538, m6562, m7067, m7076, m7078, m7080, m7081,
m7082, m7083, m7091, m7092, m7093, m7188, m7223, m7224, m7227, m7248, m7249
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Figure S-1: Fitted values versus observed values.
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