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Abstract
We study asymptotic properties of Bayesian multiple testing procedures and provide 
sufficient conditions for strong consistency under general dependence structure. We 
also consider a novel Bayesian multiple testing procedure and associated error meas-
ures that coherently accounts for the dependence structure present in the model. We 
advocate posterior versions of FDR and FNR as appropriate error rates and show 
that their asymptotic convergence rates are directly associated with the Kullback–
Leibler divergence from the true model. The theories hold regardless of the class of 
postulated models being misspecified. We illustrate our results in a variable selec-
tion problem with autoregressive response variables and compare our procedure 
with some existing methods through simulation studies. Superior performance of 
the new procedure compared to the others indicates that proper exploitation of the 
dependence structure by multiple testing methods is indeed important. Moreover, 
we obtain encouraging results in a maize dataset, where we select influential marker 
variables.
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1 Introduction

In recent times, there has been a tremendous growth in the area of multiple 
hypothesis testing as simultaneous inference on several parameters is often neces-
sary. Benjamini and Hochberg (1995) introduced a powerful approach to handle 
this problem in their landmark paper. However, in most real-life situations the 
test statistics are generally dependent. Benjamini and Yekutieli (2001) showed 
that the Benjamini–Hochberg procedure is valid under positive dependence. 
Berry and Hochberg (1999) have given a Bayesian perspective on multiple test-
ing where the tests are related through a dependent prior. Scott and Berger (2010) 
discussed how empirical Bayes and fully Bayes methods adjust multiplicity.

There are many works in the statistical literature on optimality and asymptotic 
behaviour of multiple testing methods in dependent cases. Sun and Cai (2007) 
have proposed an optimal adaptive procedure where the data are generated from a 
two-component mixture model. Finner and Roters (2002), Efron (2007) discussed 
the effects of dependence of error rates, among others. Finner et al. (2009) pro-
posed new step-up and step-down procedures which asymptotically maximize 
power while controlling the false discovery rate (FDR) . Xie et  al. (2011) have 
proposed an asymptotic optimal decision rule for short-range dependent data with 
dependent test statistics.

In this article, we study asymptotic properties of loss function-based Bayesian 
multiple testing procedures under general dependence setup. We show that under 
mild conditions such procedures are consistent in the sense that the decision rules 
converge to the truth with increasing sample size, even under dependence. We 
also show that the derived results hold even when the class of postulated models 
do not contain the true data-generating process, that is, when the class of pro-
posed models is misspecified.

Finner et  al. (2007) discussed the effect of dependent test statistics on the 
FDR . Schwartzman and Lin (2011) and Fan et al. (2012) discussed estimation of 
FDR under correlation. In the frequentist multiple testing domain, the common 
practice is to control FDR or the false non-discovery rate (FNR) . Therefore, in 
that domain, asymptotic study of FDR or FNR in dependent cases has been done 
under different setups. However, in the Bayesian literature, asymptotic study of 
the aforementioned error rates is not regular, although in practice, it is necessary 
to control those error rates. In this article, we conduct asymptotic analyses on 
these error rates under general dependent setup. We show that these error rates 
are directly associated with the Kullback–Leibler (KL) divergence from the true 
model in terms of their asymptotic convergence rates.

In the frequentist multiple testing setup, the decision rule for a hypothesis gen-
erally depends only on the corresponding test statistics. Bayesian loss function-
based multiple testing methods are generally based on marginal posterior prob-
abilities of a null hypothesis being true or false. Most of the existing methods 
are marginal in the sense that the decision rule for a hypothesis does not depend 
on decisions of other hypotheses. Indeed, an important issue that seems to have 
received relatively less attention is that by proper utilization of the dependence 
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structure among different hypotheses, the efficiency of multiple testing proce-
dures can be significantly improved. Sun and Cai (2009) have showed that incor-
porating the dependence structure of the parameters in the testing procedure 
increases efficiency.

The aforementioned discussion points toward taking decisions regarding the 
hypotheses jointly. In this regard, Chandra and Bhattacharya (2019) developed 
a novel Bayesian multiple testing method which coherently takes the dependence 
structure among the hypotheses into consideration. In their method, the decisions are 
obtained jointly, as functions of appropriate joint posterior probabilities, and hence, 
the method is referred to as a non-marginal Bayesian procedure. The procedure is 
based on new notions of error and non-error terms associated with breaking up the 
total number of hypotheses. They have shown that by virtue of the joint decision-
making principle, the non-marginal procedure has the desirable compound decision 
theoretic properties and for large samples minimizes the KL divergence from the 
true data-generating process, under general dependence models. Further, with exten-
sive simulation studies they demonstrate significant gain in power over the existing 
marginal multiple testing methods, both classical and Bayesian. Application of this 
method to a deregulated micro-RNA discovery problem yielded insightful results 
which could not be obtained otherwise (Chandra et al. 2019). In the following sec-
tion, we briefly describe the multiple testing procedure.

1.1  A new non‑marginal Bayesian multiple testing procedure

Let Xn = {X1,… ,Xn} denote the available data set. Suppose the data are modelled 
by the family of distributions PXn|� (which may also be nonparametric). For M > 1 , 
let us denote by � = Θ1 ×⋯ × ΘM the relevant parameter space associated with 
� = (�1,… , �M) , where we allow M to be infinity as well. Let P�|Xn

(⋅) and E�|Xn
(⋅) 

denote the posterior distribution and expectation, respectively, of � given Xn , and 
let PXn

(⋅) and EXn
(⋅) denote the marginal distribution and expectation of Xn , respec-

tively. Let us consider the problem of testing m hypotheses simultaneously corre-
sponding to the actual parameters of interest, where 1 < m ≤ M . In this work, how-
ever, we assume m to be finite.

Without loss of generality, let us consider testing the parameters associated with 
Θi ; i = 1,… ,m , formalized as:

where Θ0i

⋂
Θ1i = � and Θ0i

⋃
Θ1i = Θi , for i = 1,⋯ ,m.

Let

H0i ∶ �i ∈ Θ0i versus H1i ∶ �i ∈ Θ1i,

di =

{
1 if the i-th hypothesis is rejected;

0 otherwise;

ri =

{
1 if H1i is true;

0 if H0i is true.
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In many real-life situations, dependent prior structure is envisaged on the param-
eter space based on available domain knowledge. For example in spatial statis-
tics, Gaussian process prior is often considered. In fMRI data, Gaussian Markov 
random field prior is a common prior. In such cases, the additional information on 
the parameters is incorporated in the model through the prior distribution. Various 
applications in recent times in fields as diverse as spatial statistics and environment 
(Risser et  al. 2019), time series (Scott 2009), neurosciences (Brown et  al. 2014), 
biological sciences (Jensen et al. 2009), to name only a few, consider Bayesian mod-
els with dependent prior structures. The basic idea behind the new multiple testing 
methodology is to incorporate such information, when available, in the testing pro-
cedure to obtain improved decision rule. This principle is in accordance with the 
traditional Bayesian philosophy that when prior information is available, inference 
can be enhanced.

Let Gi be the set of hypotheses (including hypothesis i) where the parameters are 
dependent on �i . In the new procedure, the decision of each hypothesis is penalized 
by incorrect decisions regarding other dependent parameters resulting in a compound 
criterion where all the decisions in Gi deterministically depend upon each other. Define 
the following quantity

If for any i ∈ {1,… ,m} , Gi = {i} , a singleton, then we define zi = 1 . The notion of 
true positives (TP) is modified as follows

The posterior expectation of TP is maximized subject to controlling the posterior 
expectation of the error term

It follows that the decision configuration can be obtained by minimizing the function

with respect to all possible decision configurations of the form d = {d1,… , dm} , 
where 𝜆n > 0 and

(1)zi =

{
1 if Hdjj

is true for all j ∈ Gi ⧵ {i};

0 otherwise.

(2)TP =

m∑
i=1

dirizi.

(3)E =

m∑
i=1

di(1 − rizi).

�(d) = −

m∑
i=1

diE�|Xn
(rizi) + �n

m∑
i=1

diE�|Xn
(1 − rizi)

= − (1 + �n)

m∑
i=1

di

(
win(d) −

�n
1 + �n

)
,

win(d) = E�|Xn
(rizi) = P�|Xn

(
H1i ∩

{
∩j≠i,j∈Gi

Hdjj

})
,
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is the posterior probability of the decision configuration {d1,… , di−1, 1, di+1,… , dm} 
being correct. Letting �n = �n∕(1 + �n) , one can equivalently maximize

with respect to d and obtain the optimal decision configuration.

Definition 1 Let � be the set of all m-dimensional binary vectors denoting all pos-
sible decision configurations. Define

where 0 < 𝛽 < 1 . Then, d̂ is the optimal decision configuration obtained as the solu-
tion of the non-marginal multiple testing method.

Note that in the definitions of both TP and E, we penalize di by incorrect deci-
sions in the same group. Thus, we design a compound criterion where decisions 
regarding dependent parameters deterministically depend upon each other adjudging 
other dependent parameters.

It is to be noted that there exist several cluster-based methods in the literature of 
multiple hypotheses testing. The works of Benjamini and Heller (2007), Sun et al. 
(2015) are important to mention in this respect, among others. However, the Gi s in 
(1) are not to be confused with the notion of clusters in the aforementioned works. 
In their approaches, a particular cluster of parameters is regarded as a signal or not. 
Essentially, the decisions regarding the parameters in their clusters are same. How-
ever, that is not the case for our non-marginal method. The motivation behind our 
grouping is to borrow strength through the dependence structure across dependent 
parameters. This is a common practice in various applications (Zhang et al. 2011; 
Liu et al. 2016).

1.2  Choice of G1,… ,G
m

Note that the non-marginal method depends on the choice of Gi s. However, in 
implementation of the method, forming groups based on all dependent parameters 
might be disadvantageous in high-dimensional cases. Keeping very weakly depend-
ent parameters in Gi would increase the complexity of the method without providing 
much extra information about the dependence structure. It would incur over-penal-
ization levying high posterior probability of zi = 0 . This might turn the method to 
be overly conservative. Therefore, we recommend to restrict the group sizes propor-
tional to the correlation among the parameters. Chandra and Bhattacharya (2019) 
have prescribed the following strategy of group formation.

Let Λ be the prior correlation matrix of � . Let the (i, j)-th element of Λ be �ij . We 
first consider the correlations between the i-th and j-th parameters, with i < j , and 
obtain a desired percentile � of these quantities. Then, in Gi we include only those 

(4)f�n(d) =

m∑
i=1

di
(
win(d) − �n

)

d̂ = argmax
d∈�

f�(d)
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indices j (≠ i) such that �ij ≥ � . Thus, the i-th group contains indices of the param-
eters that are highly correlated with the i-th parameter. If there exists no index j such 
that �ij ≥ � , then Gi = {i} . In our applications, we have considered � to be the 95-th 
percentile, which is seen to have yielded good results.

Once the prior associated with the model is decided and well chosen, the Gi s 
as defined above will also be fixed and would lead to reliable results. In case the 
prior information on the correlation structure of the parameters is weak, Λ can be 
considered as the posterior correlation matrix of the parameters. Groups formed on 
the basis of the true correlation give the best result as expected. However, groups 
formed on the basis of posterior correlation significantly improve the performance 
(Chandra and Bhattacharya 2019). In Sect. 6, the groups are formed on the basis of 
posterior correlation and the strategy has outperformed some popular existing multi-
ple testing methods in a variable selection context.

Notably for large samples, Bayesian methods are usually robust with respect 
to prior choice and there is a huge literature formalizing this aspect. For example 
Schwartz (1965), Ghosal et al. (2000) discussed that Bayesian models are asymp-
totically consistent given that the priors satisfy certain regularity conditions. In the 
same vein, we study the asymptotic properties of the Bayesian non-marginal method 
in this article and show that the procedure is asymptotically robust with respect to 
the choice of group structure later in Sect. 2.4. In the same section, we provide suf-
ficient conditions for the asymptotic consistency of the non-marginal method. For 
illustrative purposes, we show that the conditions hold under a very general class of 
prior distributions in a time-varying covariate selection problem where the response 
variables possess inherent autocorrelation structure for any proper prior distribution 
over the parameter space.

1.3  Existing and new error measures in multiple testing

Storey (2003) advocated positive False Discovery Rate (pFDR) as a measure of 
type-I error in multiple testing. Let �M(d|Xn) be the probability of choosing d as the 
optimal decision configuration given data Xn when a multiple testing method M is 
employed. Then, pFDR is defined as:

Analogous to type-II error, the positive False Non-discovery Rate (pFNR) is defined 
as

pFDR = EXn

⎡
⎢⎢⎢⎢⎣

�
d∈�

m∑
i=1

di(1 − ri)

m∑
i=1

di

�M(d�Xn)��M(d = 0�Xn) = 0

⎤
⎥⎥⎥⎥⎦
.

pFNR = EXn

��
d∈�

∑m

i=1
(1 − di)ri∑m

i=1
(1 − di)

�M
�
d�Xn

������M
�
d = 1�Xn

�
= 0

�
.
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Under prior �(⋅) , Sarkar et al. (2008) defined posterior FDR and FNR . The measures 
are given as follows:

where vin = P�|Xn
(�1i) . Also under any non-randomized decision rule M , �M(d|Xn) 

is either 1 or 0 depending on data Xn . Given Xn , we denote these posterior error 
measures by FDRXn

 and FNRXn
 , respectively. With respect to the new notions of 

errors in (2) and (3), FDRXn
 is modified as

We denote modified FDRXn
 by mFDRXn

 . Notably, the expectations of FDRXn
 and 

FNRXn
 with respect to Xn , conditioned on the event that their respective denomi-

nators are positive, yield the positive Bayesian FDR (pBFDR) and FNR (pBFNR) , 
respectively. The same expectation over mFDRXn

 yields modified positive 
BFDR (mpBFDR).

We advocate the posterior error measures mFDRXn
, FDRXn

 and FNRXn
 as 

multiple testing error controlling measures in Bayesian multiple testing. These 
measures give the performance of the employed multiple testing procedure given 
the data and hence most appropriate from the Bayesian perspective. In particu-
lar, wisdom gained from the traditional debate between the classical and Bayes-
ian paradigms suggests that avoiding expectation with respect to the data in the 
error measures can help avoid possible paradoxes analogous to examples such 
as the Welch’s paradox (Welch 1939). Not only that the posterior error measures 
are readily estimable in practical situations, however, complicated the dependent 
structure may be, without any assumption. In Sect. 2, we show that the asymp-
totic convergence rates of these measures are associated with the KL divergence 
between the true data-generating process and the selected model. As regards 
mFDRXn

 , it takes into account the joint dependence structure between parame-
ters through the zi terms. As will be shown subsequently, this joint dependence 
structure manifests itself through the convergence rate of mFDRXn

 . Chandra and 
Bhattacharya (2019) also showed that mFDRXn

 can be interpreted as the poste-
rior probability of an incorrect decisions within each group. Extensive simulation 
studies indicated that controlling the mFDRXn

 gives better protection against the 
type-II error in dependent cases.

Müller et al. (2004) considered the following additive loss function

posterior FDR =E��Xn

��
d∈�

∑m

i=1
di(1 − ri)∑m

i=1
di ∨ 1

�M
�
d�Xn

��
=
�
d∈�

∑m

i=1
di(1 − vin)∑m

i=1
di ∨ 1

�M(d�Xn);

posterior FNR =E��Xn

��
d∈�

∑m

i=1
(1 − di)ri∑m

i=1
(1 − di) ∨ 1

�M
�
d�Xn

��
=
�
d∈�

∑m

i=1
(1 − di)vin∑m

i=1
(1 − di) ∨ 1

�M(d�Xn),

modified FDRXn
= E��Xn

��
d∈�

∑m

i=1
di(1 − rizi)∑m

i=1
di ∨ 1

�M
�
d�Xn

��

=
�
d∈�

∑m

i=1
di(1 − win(d))∑m

i=1
di ∨ 1

�M(d�Xn).
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where c is a positive constant. The decision rule that minimizes the posterior risk of 
the above loss is di = I

(
vi >

c

1+c

)
 for all i = 1,⋯ ,m , where I(⋅) is the indication 

function.
This loss function has been widely used in the Bayesian multiple testing setups and 

also in frequentist decision theoretic approaches (Sun and Cai 2009; Xie et al. 2011). 
Notably, the non-marginal method boils down to this additive loss function-based 
approach when Gi = {i} , that is, when the information regarding dependence between 
hypotheses is not available or overlooked. Hence, the convergence properties of the 
additive loss function-based methods can be easily derived from our theories. We dis-
cuss this subsequently later in this article.

It is to be seen that multiple testing problems can be regarded as model selection 
problems where the task is to choose the correct specification for the parameters under 
consideration. Even if one decision is taken incorrectly, the model gets misspecified. 
Shalizi (2009) considered asymptotic behaviour of misspecified models under very 
general conditions. We adopt his basic assumptions and some of his convergence 
results to build a general asymptotic theory for our multiple testing method.

In Sect. 2, we provide the setup, assumptions and the main result which we adopt 
for our purpose. In the same section, we investigate consistency of the non-marginal 
multiple testing procedure. In Sect. 3, we study the rates of convergence of different 
versions of FDR s and FNR s and asymptotic comparison between them. We then inves-
tigate, in Sect. 4, the asymptotic properties of FNR s when the multiple testing meth-
ods are adjusted so that mpBFDR and pBFDR controlled at some level � , for some 
� ∈ (0, a) , where a ≤ 1 . Indeed, as we show, any value of � ∈ (0, 1) is not permissible 
asymptotically. We further show that FNR s tend to zero at a faster rate compared to 
the situations where �-control is not exercised. In Sect. 5, we illustrate the asymptotic 
properties of the non-marginal method in a time-varying covariate selection problem 
where the response variables possess inherent autocorrelation structure. In Sect. 6, we 
compare the performance of this method with some popular existing Bayesian multiple 
testing methods. In Sect. 7, we apply our non-marginal method to a variable selection 
problem in a real, maize data with 7389 covariates representing SNP (single-nucleotide 
polymorphism) markers, concerning linear regression of “days to anthesis male flower-
ing time” on the covariates. Excellent fit is the outcome, once the significant variables 
have been selected by our Bayesian multiple testing method. Finally, in Sect. 8 we sum-
marize our contributions and provide concluding remarks.

(5)L(d, �) = c

m∑
i=1

di(1 − ri) +

m∑
i=1

(1 − di)ri,
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2  Consistency of the non‑marginal procedure and other procedures 
based on additive loss

2.1  Preliminaries for ensuring posterior convergence under general setup

We consider a probability space (Ω,F,P) and a sequence of random variables 
X1,X2,… , taking values in some measurable space (Ξ,X) , whose infinite-dimen-
sional distribution is P. The natural filtration of this process is �(Xn) . We denote 
the distributions of processes adapted to �(Xn) by PXn|� , where � is associated with 
a measurable space (�, T) and is generally infinite-dimensional. For the sake of 
convenience, we assume, as defined by Shalizi (2009), that P and all the PXn|� are 
dominated by a common reference measure, with respective densities p and f� . The 
usual assumptions that P ∈ � or even P lies in the support of the prior on � are not 
required for Shalizi’s result, rendering it very general indeed. We put the prior distri-
bution �(⋅) on the parameter space � . Following Shalizi, we first define some nota-
tions: Consider the following likelihood ratio:

For every � ∈ Θ , the KL divergence rate h(�) is defined as

given that the above limit exists. For A ⊆ � , let

We have stated the assumptions (S1)-(S7) considered by Shalizi in Section S-1. 
Under those assumptions, the following theorem can be seen to hold:

Theorem 1 (Shalizi 2009) Consider assumptions (S1)–(S7) and any set A ∈ � with 
𝜋(A) > 0 . If 𝜍 > 2h(A), where � is given in (S-3) under assumption (S5), then

We shall frequently make use of this theorem for our purpose. Also throughout 
this article, we show consistency results for general models satisfying (S1)–(S7). 
For all our results, we assume these conditions.

2.2  Some requisite notations for the non‑marginal method

It is very interesting that we need not assume that the true data-generating process P 
is in the class of postulated model F� ; � ∈ � . However, asymptotic consistency of 

Rn(�) =
f�(Xn)

p(Xn)
.

(6)h(�) = lim
n→∞

1

n
E

(
log

p(Xn)

f�(Xn)

)
,

(7)h(A) = ess inf
�∈A

h(�); J(�) = h(�) − h(�); J(A) = ess inf
�∈A

J(�).

lim
n→∞

1

n
logP�|Xn

(A|Xn) = −J(A).
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the non-marginal procedure can still be achieved in the sense that with increasing 
sample size the model with minimal misspecification is selected. Note that depend-
ing on dj = 0 or 1, Θdjj

 is the specification corresponding to �j directed by dj . Now 
for all possible decision configurations the parameter space � can have the following 
partition

Note that J(�) is the minimal KL divergence between the true data-generating pro-
cess P and the class of all postulated models. Among all possible decision configu-
rations d ∈ � , let dt be such that J(�(dt)) = J(�) . Note that dt minimizes the KL 
divergence between the true data-generating model P among all possible decision 
configurations. We regard dt as the true decision configuration. We will show that 
with increasing sample size the non-marginal procedure will choose dt as the opti-
mal decision rule almost surely (a.s.). We now define some notations required for 
further advancements. Let

Then, �d,i is the joint parameter space for the parameters in Gi directed by d . Nota-
bly, �d,i is not the same as Θdii

 ; it concerns (possibly) multiple parameters in Gi , 
whereas the latter is only concerned with the ith parameter and the correspond-
ing decision. For any decision configuration d and group G, let dG = {dj ∶ j ∈ G} . 
Define

Here �i is the set of all decision configurations where the decisions corresponding 
to the hypotheses in Gi are at least correct. Clearly, �i contains dt for all i. Hence, 
�

c
i
=
{
d ∶ at least one decision in dGi

is incorrect
}
 . By Theorem  1, for any 𝜖 > 0 , 

there exists n0(�) such that for each i = 1,… ,m , for n ≥ n0(�),

Also, for i = 1,… ,m , and for n ≥ n0(�),

where J(�d,i) = ess inf
�∈�id

J(�); J(Hki) = ess inf
�∈�ki

J(�),

�(d) =

m∏
i=1

Θdii
×

M∏
i=m+1

Θi.

�d,i =
{
�i ∈ Θ1i, �j ∈ Θdjj

∀ j ≠ i & j ∈ Gi

}
.

�i =
{
d ∶ all decisions in dGi

are correct
}
.

(8)exp
[
−n

(
J
(
�d,i

)
+ 𝜖

)]
< win(d) < exp

[
−n

(
J
(
�d,i

)
− 𝜖

)]
if d ∈ �

c
i
,

(9)exp
[
−n(J(�c

d
t ,i
) + 𝜖)

]
< 1 − win(d) < exp

[
−n(J(�c

d
t ,i
) − 𝜖)

]
if d ∈ �i.

(10)exp
[
−n

(
J
(
H1i

)
+ 𝜖

)]
< vin < exp

[
−n

(
J
(
H1i

)
− 𝜖

)]
, if dt

i
= 0,

(11)1 − exp
[
−n

(
J
(
H0i

)
− 𝜖

)]
< vin < 1 − exp

[
−n

(
J
(
H0i

)
+ 𝜖

)]
if dt

i
= 1
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Note that in �id , �k lies in its whole parameter space for all k ∈ Gc
i
 , irrespective of 

the fact that dk might be incorrect. Hence, it corresponds to a model where only {
�k ∶ k ∈ Gi

}
 may be misspecified. J(�d,i) gives the KL divergence rate (defined in 

(7)) between the true model and this model. Also J
(
Θid

)
> 0 if d ∈ �

c
i
 , J

(
H1i

)
> 0 

if dt
i
= 0 and J

(
H0i

)
> 0 if dt

i
= 1.

It is important to observe that, in Eqs. (8)–(11), we have referred to the same � 
and the same n0(�) for every i = 1,… ,m . Due to the finiteness of m, taking the same 
n0(�) is possible here.

2.3  The basic consistency theory for multiple testing with application 
to the non‑marginal and additive loss‑based procedures

With the above notations, in this section we show that the non-marginal procedure is 
asymptotically consistent under any general dependent model satisfying the condi-
tions in Section S-1. As a simple corollary, we show that other existing multiple test-
ing procedures based on additive loss are also consistent. Let us first formally define 
what we mean by asymptotic consistency of a multiple testing procedure.

Definition 2 Let dt be the true decision configuration among all possible decision 
configurations as defined in Sect. 2.2. Then a multiple testing method M is said to 
be asymptotically consistent if almost surely

We now state the requisite conditions for NMD to be asymptotically consistent. 

 (A1) We assume that the sequence �n is neither too small nor too large, that is, 

 (A2) We assume that neither all the null hypotheses are true and nor all of them 
are false, that is, dt ≠ 0 and dt ≠ 1 , where 0 and 1 are vectors of 0’s and 1’s, 
respectively.

Recall the constant �n in (4), which is the penalizing constant between the error 
E and true positives TP and (A1) ensures a fine balance between these two. It is 
necessary for the asymptotic consistency of both the non-marginal method and 
additive loss function-based method. Notably, (A2) is not required for the con-
sistency results. Its role is to ensure that the denominator terms in the multiple 
testing error measures (defined in Sect. 1.3) do not become 0 by ruling out two 

�id = {�i ∈ Θ1i, �j ∈ Θdjj
∀ j ≠ i & j ∈ Gi, �k ∈ Θk ∀ k ∈ Gc

i
} and

�ki = {�i ∈ Θki, �j ∈ Θj ∀ j ≠ i}, k = 0, 1.

lim
n→∞

�M(dt|Xn) = 1.

(12)𝛽 = lim inf
n≥1

𝛽n > 0;

(13)𝛽 = lim sup
n≥1

𝛽n < 1.
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very extreme situations where none/all of the null hypotheses are false. It is also 
important in the asymptotic studies of different versions of FDR and FNR that we 
consider. With these conditions, we propose and prove the following results.

Theorem  2 Let �NM(⋅|Xn) denote the non-marginal decision rule given data Xn. 
Assume condition (A1) on �n . Then, the non-marginal decision procedure is asymp-
totically consistent.

Remark 1 It is important to note that in the proof of Theorem 2, we do not require 
any assumption on how the groups should be formed. The theorem is valid even if 
the groups are implicitly dependent on the observed data. This shows that, in case 
the prior information on the correlation structure of the parameters is weak, the non-
marginal method is also valid when the groups are formed on the basis of posterior 
correlation or by other data adaptive methods.

We have already mentioned that the optimal decision rules corresponding 
to the loss function in (5) is a special case of the non-marginal method when 
dependence among the hypotheses is ignored. As we have not considered any par-
ticular structure of Gi ’s in Theorem 2, consistency of the additive loss function-
based method can also be obtained from the previous theorem.

Corollary 1 Assuming condition (A1), the optimal decision rule corresponding to 
the additive loss function (5) is asymptotically consistent.

2.4  Asymptotic robustness with respect to group choice

Note that in Theorem  2 no specification on group formation is required. Gen-
erally for large samples, Bayesian methods are robust with respect to the prior 
choice given that the prior distribution follows some regularity conditions. Theo-
rem  2 entails that the non-marginal method is consistent for any group choice 
given that the model and prior distributions satisfy the conditions of Section S-1. 
Hence, we see that the non-marginal method is asymptotically robust with respect 
to the choice of groups.

3  Asymptotic analyses of multiple testing error rates

3.1  Asymptotic properties of versions of FDR

First, we study the convergence properties of mFDRXn
 and FDRXn

 in this section. 
We show that the convergence rates of the posterior error measures are directly 
associated with the KL divergence from the true model.
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Theorem  3 Assume conditions (A1), (A2). Let Jmin = min
i∶dt

i
=1
J(�c

d
t ,i
) and 

Hmin = min
i∶dt

i
=1
J(H0i) . Then, for the non-marginal multiple testing procedure the fol-

lowing hold almost surely:

Notably, both Jmin and Hmin are positive, and hence, the posterior FDR along with 
its modified version converges to 0 at an exponential rate with increasing sample 
size. Interestingly, the convergence rate is in terms of the KL divergence between 
the true data-generating process P and the class of postulated models F� . We see 
that the posterior error measures have this very interesting property where they truly 
indicate the divergence from the true data-generating process.

Remark 2 Even though NMD is asymptotically consistent for data-dependent group 
formations, asymptotic convergence rate of mFDRXn

 may not hold in such case. For 
increasing sample size, the group structures may change, resulting in ambiguity in 
the definition of mFDRXn

 . Therefore, in Theorem 3 we assume that the group struc-
tures are known a priori.

So far we have investigated the asymptotic properties of mFDRXn
 and FDRXn

 , 
which is a valid exercise from the Bayesian perspective, as the data are conditioned 
upon in these error measures. We now study the asymptotic properties of mpBFDR 
and pBFDR . mpBFDR is defined as

where 0 is the decision configuration that no null hypothesis is rejected. pBFDR is 
where the expectation in (14) is of FDRXn

 . Indeed, expectations of the error meas-
ures are traditionally more popular in multiple testing. The following theorem pro-
vides the asymptotic results of mpBFDR and pBFDR.

Corollary 2 Under conditions (A1), (A2), for the non-marginal procedure, we have

It is important to remark that although the aforementioned expected error meas-
ures converge to zero as shown by Corollary 2, it does not seem to be possible to 
obtain the rates of convergence to zero in general, as in Theorem 3 associated with 
the corresponding posterior versions.

As discussed in Sect. 2.4, the non-marginal method is robust in the sense that it 
is consistent for any group structure. However, the convergence rate of the mFDRXn

 
shows that it takes into account the dependence among hypotheses through the 
group structures. Hence, it may lose its effectiveness over FDRXn

 in case the group 
choice is injudicious. In practical situations, where sample size is fixed, thoughtful 
choice of groups is very important.

lim
n→∞

1

n
logmFDRXn

= −Jmin; lim
n→∞

1

n
log FDRXn

= −Hmin.

(14)mpBFDR = EXn

[
mFDRXn

|�M(0|Xn) = 0
]
,

lim
n→∞

mpBFDR = 0; lim
n→∞

pBFDR = 0.
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3.2  Asymptotic properties of versions of FNR

As in the case of FDR , similar results can also be derived for different versions of 
FNR . We state the result in the following theorem.

Theorem  4 Assume conditions (A1) and (A2). Let H̃min = min
i∶dt

i
=0
J(H1i) . Then, for 

the non-marginal multiple testing procedure

Thus we see that for the non-marginal method, FNRXn
 do diminish to zero expo-

nentially fast with the convergence rate being directly proportional to the KL diver-
gence from the true data-generating model. pBFNR is defined as follows:

where 1 is the decision configuration that no null hypothesis is accepted. The follow-
ing asymptotic result holds for pBFNR as well.

Corollary 3 Under conditions (A1), (A2), for the non-marginal procedure we have

Although Corollary 3 asserts convergence of the relevant versions of BFNR to 
zero, it does not seem to be possible to provide their rates of convergence, as in 
FNRXn

 . This issue is in keeping with the corresponding versions of BFDR.

Remark 3 It is proper to envisage possible modification of FNR with respect to 
the new notions of errors. In Section S-2, we show that, under a mild assumption, 
the asymptotic convergence rates of FNRXn

 and its modified counterpart are equal. 
Therefore, in this main article, we continue the relevant discussions with respect to 
the existing versions of FNR only.

4  Convergence of FNRX
n
 and BFNR when versions of BFDR are ̨

‑controlled

We now enforce asymptotic control over mpBFDR and pBFDR in the sense that 
they converge to � ∈ (0, a) , instead of zero, for some 0 < a ≤ 1 and study the asymp-
totic behaviour of pBFNR . Here it is important to point out that Chandra and Bhat-
tacharya (2019) proved that for both NMD and additive loss function-based meth-
ods, mpBFDR and pBFDR are continuous and non-increasing in � , and therefore, 
� can be tuned to set the type-I errors at any desired size � . However, as we show 
in the asymptotic case, it is not possible to incur too high type-I error, that is, a 
cannot be arbitrarily close to 1. This is not unexpected, since consistent methods 
cannot commit arbitrarily large errors asymptotically. Naturally the question arises 

(15)lim
n→∞

1

n
log FNRXn

= −H̃min.

pBFNR = EXn

[
FNRXn

|�M(1|Xn) = 0
]
,

lim
n→∞

pBFNR = 0.
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whether �-control of versions of BFDR is at all necessary. The answer is that since 
it is a standard practice in multiple testing to exercise �-control on versions of FDR 
in order to incur lesser type-II error, it is important to investigate what would be the 
feasible range of values of � to attain in large or even moderately large samples and 
for such � ’s how the type-II error would behave. We attempt to address these ques-
tions with respect to the non-marginal procedure and additive loss function-based 
method.

4.1  Convergence of mpBFDR and pBFDR to ̨  for NMD

We begin with the following theorem that provides the bound for the maximum 
mpBFDR that can be incurred asymptotically.

Theorem 5 In addition to (A1), (A2), assume the following:

(B1)  Let each group of a particular set of m1 (< m) groups out of the total m 
groups be associated with at least one false null hypothesis and that all the 
null hypotheses associated with the remaining m − m1 groups be true. Let us 
further assume that the latter m − m1 groups do not have any overlap with the 
remaining m1 groups. Without loss of generality, assume that G1,… ,Gm1

 are 
the groups each consisting of at least one false null and Gm1+1

,Gm1+2
,⋯ ,Gm 

are the groups where all the null hypotheses are true.

 Then, the maximum mpBFDR that can be incurred asymptotically lies in �
1∑m

i=1
dt
i
+1
,

m−m1∑m

i=1
dt
i
+m−m1

�
.

Remark 4 The proof of Theorem 5 crucially uses the result that mpBFDR is non-
increasing with � . It can be easily seen that this monotonicity with respect to � holds 
for mFDRXn

 as well. Hence, Theorem 5 is also valid for mFDRXn
.

Remark 5 Theorem 5 holds when Gi ⊂ {1,… ,m} for at least one i ∈ {1,… ,m} . But 
if Gi = {1,… ,m} for i = 1,… ,m , then mpBFDR → 0 as n → ∞ , for any sequence 
�n ∈ [0, 1] . This is because in this case there does not exist any d ≠ d

t such that

as n → ∞.

Theorem 5 also clarifies that for any arbitrary configuration of groups, it is not 
possible to commit arbitrarily large error when the sample size is large enough. 
The joint structure provides a safeguard against incurring large errors. However, 
in practical situations dealing with real-life data, it is common practice to con-
trol type-I error at some pre-specified level 𝛼 (> 0) both in single and multiple 

P

(
m∑
i=1

diwin(d) −

m∑
i=1

dt
i
win(d

t) > 𝛽n

(
m∑
i=1

di −

m∑
i=1

dt
i

))
> 0,
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hypothesis testing problems, which renders the very important task of investigat-
ing the feasible range of �.

In this regard, (B1) is the condition under which possible values of type-I error 
to be controlled are available, at least for large n. Note that to incur type-I error it 
is required to reject some true null hypotheses. As the grouping structures prevent 
from committing arbitrary error by the non-marginal procedure, (B1) is required. 
By virtue of this condition, there are some true null hypotheses in isolation which 
can be rejected. In the following theorem, we provide an asymptotic bound on the 
maximum type-I error that can be incurred.

Theorem  6 Assume condition (B1), and let mpBFDR� denote the procured 
mpBFDR in the non-marginal procedure where the penalizing constant is � . 
Suppose

Then, for any 𝛼 < E and � ∈
�

1∑m

i=1
dt
i
+1
,

m−m1∑m

i=1
dt
i
+m−m1

�
, there exists a sequence �n → 0 

such that mpBFDR�n
→ � as n → ∞.

Since mpBFDR is decreasing in � , � can be interpreted as a balance provider 
between type-I and type-II errors. Corollary 2 shows that mpBFDR decays to 0 
when lim infn→∞ 𝛽n > 0 and Theorem  6 shows that for �-control, we must have 
limn→∞ �n = 0 . Since mpBFDR is decreasing in � , it intuitively indicates that in 
the case of �-control of mpBFDR the sequence {�n} has to be dominated by any 
{�n} sequence for which Corollary 2 holds. Theorem 6 formalizes this intuition 
and shows that a smaller sequence of �n has to be taken for �-control.

From the proofs of Theorem 5 and 6, it can be seen that replacing win(d̂) by vin 
does not affect the results. Hence, we state the following corollary.

Corollary 4 Assume condition (B1) and let pBFDR� denote the procured pBFDR in 
the non-marginal procedure where the penalizing constant is � . Suppose

Then, for any 𝛼 < E′ and � ∈
�

1∑m

i=1
dt
i
+1
,

m−m1∑m

i=1
dt
i
+m−m1

�
, there exists a sequence 

�n → 0 such that pBFDR�n
→ � as n → ∞.

We now investigate, as special cases of the above results, the situations where 
Gi = {i} for all i. Recall that in this case the additive loss function-based meth-
ods are special cases of the non-marginal procedure. In such cases, mpBFDR also 
boils down to pBFDR . The following theorem gives the result for asymptotic �
-control of pBFDR in this situation.

(16)lim
n→∞

mpBFDR�=0 = E.

lim
n→∞

pBFDR�=0 = E�.
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Theorem  7 Let m0 (< m) be the number of true null hypotheses. Then, for any 
0 < 𝛼 <

m0

m
, there exists a sequence �n → 0 as n → ∞ such that for the additive loss 

function-based methods

In the above, we have noted that mpBFDR reduces to pBFDR when Gi = {i} for 
all i. However, for any additive loss function-based multiple testing method, we may 
still envisage the measure mpBFDR where the definition of mpBFDR considers the 
adequate dependent structure by means of non-singleton Gi’s. This has the advantage 
of yielding non-marginal decisions even though the actual criterion to be optimized 
is a sum of loss functions associated with individual parameters and decisions. In 
the following theorem, we show that the same asymptotic result as Theorem 7 also 
holds for mpBFDR in the case of additive loss functions, without assumption (B1).

Theorem 8 Let � be the desired level of significance where 0 < 𝛼 <
m0

m
 , m0 (< m) 

being the number of true null hypotheses. Then, there exists a sequence �n → 0 as 
n → ∞ such that for the additive loss function-based method

It is interesting that for the additive loss function-based method, Theorem  8 
holds without condition (B1). This condition is an added imposition to study the 
theoretical properties of the non-marginal procedure when mpBFDR is con-
trolled at level � . (B1) ensures that there are some isolated groups of hypotheses. 
Although there is no notion of grouping in the additive loss function, as we pointed 
out above, mpBFDR does correspond to groups that are not singletons. However, 
mpBFDR(M) ≥ pBFDR(M) for any multiple testing method M , for arbitrary 
sample size, and this crucially ensures that the result asserted by Theorem 8 goes 
through even without (B1).

Remark 6 Note that Theorems 6–8 and Corollary 4 use continuity of the expected 
versions of FDR with respect to � , in addition to their non-increasing nature with 
respect to � . The continuity property need not be satisfied by the corresponding 
Bayesian versions given the data, and hence, we cannot assert that the aforemen-
tioned results continue to hold for the corresponding Bayesian versions of FDR 
(conditional on the data).

Remark 7 We have already discussed in the context of Theorems 5 and 6 that con-
dition (B1) is crucial for �-control for the non-marginal method, and without the 
assumption, mpBFDR would diminish to zero asymptotically. This signifies that 
it is difficult to commit errors by the non-marginal method, thanks to its depend-
ence structure, so that extra assumption is needed for positive �-control. On the 
other hand, Theorems 7 and 8 show that for other multiple testing methods based 
on additive loss, �-control is possible without (B1), not only with respect to pBFDR 
but also with respect to mpBFDR , which includes the dependence structure in its 

lim
n→∞

pBFDR�n
= �.

lim
n→∞

mpBFDR�n
= �.
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definition. It certifies that if the underlying multiple testing procedure does not con-
sider dependence, then, however, sensible the underlying model is, the errors can be 
larger compared to the non-marginal procedure.

4.2  Asymptotic properties of type‑II errors when mpBFDR and pBFDR are 
asymptotically controlled at ̨

Theorem 9 Assume condition (B1). Then, for asymptotic �-control of mpBFDR in 
the non-marginal procedure the following holds almost surely:

Corollary 5 Assume condition (B1). Then, for asymptotic �-control of mpBFDR in 
the non-marginal procedure, the following holds:

Thus, we see that pBFNR also goes to 0 with increasing sample size when type-I 
error is asymptotically controlled at � . In fact, the posterior type-II error, that is, 
FNRXn

 , converges to zero at a rate faster than or equal to that compared to the case 
when � control is not imposed. In other words, allowing asymptotically non-negligi-
ble type-I error may result in lower type-II error.

5  Illustration of consistency of NMD in time‑varying covariate 
selection in autoregressive process

Let the true model P stand for the following AR(1) model consisting of time-varying 
covariates:

where x0 ≡ 0 , |𝜌0| < 1 and �t
iid
∼N(0, �2

0
) , for t = 1, 2,… . We further assume that for 

i = 1,… ,m , the time-varying covariates 
{
zit ∶ t = 1, 2,…

}
 are realizations of some 

asymptotically stationary stochastic process. We set z0t ≡ 1 for all t.
Now let the data be modelled by the same model as P but with �0 , �i0 and �2

0
 be 

replaced with the unknown quantities � , �i and �2 , respectively, that is,

where we set x0 ≡ 0 , �t
iid
∼N(0, �2) , for t = 1, 2,… . As in P, we assume that 

for i = 1,… ,m , the time-varying covariates are realizations of some asymp-
totically stationary stochastic process. For notational convenience, we define 
zt = (z0t, z1t,… , zmt)

� , �0 = (�00, �10,… , �m0)
� and � = (�0, �1,… , �m)

�.

lim sup
n→∞

FNRXn
≤ −H̃min.

lim
n→∞

pBFNR = 0.

(17)xt = �0xt−1 +

m∑
i=0

�i0zit + �t, t = 1, 2,… ,

(18)xt = �xt−1 +

m∑
i=0

�izit + �t, t = 1, 2,… ,
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For our asymptotic theories regarding the multiple testing methods that we con-
sider in our main manuscript, we must verify the assumptions of Shalizi for the 
modelling setups (17) and (18), with � = (�, �0, �1,… , �m, �) . As regards the param-
eter space, let � ∈ ℝ , where ℝ is the real line, � ∈ ℝ

m and � ∈ ℝ
+ , where ℝ+ is 

the positive part of the real line. Thus, � = ℝ
m+1 ×ℝ

+ , is the parameter space. We 
denote the true data-generating value of � by �0 . We consider any prior on � that is 
dominated by the Lebesgue measure, with mild condition on the moments.

With respect to the above setup, we consider the following multiple-testing 
framework:

where N0 is some neighbourhood of zero and Nc
0
 is the complement of the neigh-

bourhood in the corresponding parameter space.
Verification of consistency of our non-marginal procedure amounts to verifica-

tion of assumptions (S1)–(S7) for the above setup. In this regard, we make the fol-
lowing assumptions regarding the true model and prior distribution: 

 (C1) As n → ∞ the following hold 

 (C2) sup
t≥1

|z′
t
�0| < C , for some C > 0.

 (C3) �0 is an interior point of �.

With these model assumptions, we have to verify the seven assumptions in Sec-
tion S-1 in order to show consistency. Theorem 1 essentially tells that under certain 
model and prior assumptions, the posterior distribution asymptotically concentrates 
around the true data-generating process. In this problem, we need to show that the 
posterior distribution concentrates around �0.

An important concept related to the posterior convergence theory is the asymp-
totic equipartition property, which needs to hold for this model. This is ensured by 
conditions (S1)–(S3). (S4) fortifies that the class of postulated models are not com-
pletely orthogonal to the true data-generating process. The sequence of sets {Gn}

∞
n=1

 
in condition (S5) is analogous to the method of sieves (Geman and Hwang 1982) 
which ensures that the behaviour of the posterior distribution on the full parameter 
space is dominated by its behaviour on the sieves. (S6), together with (S5), makes 
sure that the prior probability mass outside the sieve is exponentially small with the 

(19)
H01 ∶ |𝜌| < 1 versus H11 ∶ |𝜌| ≥ 1 and

H0i ∶ 𝛽i ∈ N0 versus H1i ∶ 𝛽i ∈ Nc
0
, for i = 2,… ,m + 1,

(20)

1

n

n∑
t=1

zt → 0;

1

n

n∑
t=1

zt+kz
�
t
→ 0 (null matrix), for any k ≥ 1;

1

n

n∑
t=1

ztz
�
t
→ �z.



910 N. K. Chandra, S. Bhattacharya 

1 3

decay rate large enough so that the posterior probability mass outside it also goes 
to zero. Using the analogy to the sieve again, the interpretation of the assumption is 
that the convergence of the log-likelihood ratio is sufficiently fast and eventually the 
convergence is uniform, almost surely.

To show that Bayesian multiple testing methods are consistent for model (17), we 
need to verify the conditions in Section S-1. These are shown in Section S-6 which 
leads to the following theorem.

Theorem 10 Under model assumptions (C1)–(C3), the non-marginal multiple test-
ing procedure for the hypothesis testing problem in (19) is consistent.

Needless to mention, all the results regarding the asymptotic convergence rate of 
different multiple testing error measures will also continue to hold for this setup.

As an aside, from the above results, we also get a method for variable selection 
problem from the multiple testing approach. We do not require any restriction on the 
choice of prior distribution, except that it has to be a proper probability distribution. 
We have proved the results for dependent data making it quite general.

6  Simulation study

In this section, we compare the performance of the non-marginal procedure (NMD) 
with the widely used Bayesian multiple testing methods of Müller et  al. (2004) 
( MPR ) and Sarkar et al. (2008) ( SZG ). With increasing sample sizes, we study the 
convergence rates of these methods. We elaborate the simulation design in the fol-
lowing section.

6.1  True data‑generating mechanism

In the simulation study, we take �0 = −0.5 , �2
0
= 1 and m = 150 . As regards the 

m-dimensional true regression vector �0 , we take 10 randomly chosen components 
to be nonzero and the rest to be zero. We generate the covariates as the following

where MN(0,�) denotes a multivariate distribution with mean vector 0 and dis-
persion matrix � . In this study, � is a known positive definite matrix. With these 
covariates and true set of parameters �0 = (�0, �0, �0) , we generate the observation 
x1,… , xt following the model in (17).

6.2  The postulated Bayesian model

Since most of the true �0i s are zero, we consider the following global local shrinkage 
prior similar to Ishwaran and Rao (2005) over the �is:

(21)z1,… , zt
iid
∼ MN(0,�),
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where C+(0, 1) is the Cauchy distribution restricted on the positive real line and 
IG(⋅, ⋅) denotes a Inverse-gamma distribution. Similar prior has previously been con-
sidered in variable selection problem from a multiple testing perspective by Ghosh 
et al. (2006). Here �i s are the allocation variables signifying whether the i-th vari-
able is included in the model or not. It is a common practice to work with the alloca-
tion variables in Bayesian variable selection problems (Narisetty and He 2014), and 
therefore, we reframe the hypothesis testing problem in (19) as follows:

�i s are positive numbers taking into account the uncertainty of �i s being nonzero 
when �i = 1 . v is a very small quantity allocating very high probability around 0 
when �i = 0 . We have adjusted a1 and b1 such that the mode of the prior Beta dis-
tribution of p is 0.1. As regards � and � , we consider the following distributions as 
prior for these parameters:

s Here a2 and b2 are adjusted such that the mode of the prior distribution is 1 and 
variance 100. For all the three methods, the same prior distribution is considered.

For implementation of the NMD method in this simulation study, groups are 
formed according to the strategy in Sect. 1.2 where Λ is taken to be the posterior 
correlation matrix of � computed the MCMC samples. With these groups, we imple-
ment the non-marginal method.

6.3  Criteria for comparing different multiple testing methods in this study

Different multiple testing methods are expected to yield different decision configu-
rations for the same given dataset. We adopt three different criteria for comparing 
the performances of the competing multiple testing procedures, which we briefly 
discuss below.

Let dM be the decision configuration obtained by a multiple testing method M . 
We compute the Jaccard similarity coefficient (Jaccard 1901, 1908) between the true 
decision configuration d0 and dM for each of three multiple testing methods and 
compare their performances.

Let �M and �̂� be the mode of the posterior distributions of � and � , respec-
tively, given the data. We also compute the Euclidean distance between (�0, �0) 
and (�M, �̂�) . In this context, note once the multiple testing procedure identifies the 

�i|�i iid∼ �iN(0, �
2
i
) + (1 − �i)N(0, v�

2
i
),

�i
iid
∼ IG(a0, b0),

v ∼ C+(0, 1),

�i|p iid
∼ Bernoulli(p),

p ∼ Beta(a1, b1),

H0i ∶ �i = 0 versus H1i ∶ �i = 1, for i = 2,… ,m + 1.

�2 ∼ IG(a2, b2), � ∼ N(0, 1).
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Fig. 1  Performance comparison via boxplots for increasing sample sizes; the X-axis plots the sample 
sizes: panel a shows the Jaccard similarity coefficient; panel b shows the Euclidean distance between 
the estimated model parameters and the true parameters; panel c shows the Kolmogorov–Smirnov dis-
tance between the true data generative distribution and posterior predictive distribution for the compet-
ing methods across different sample sizes. Consistent to the asymptotic theories, all the panels exhibit 
improvement in performance with increasing sample size
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significant covariates, we no longer consider the shrinkage prior for �i for computing 
the posterior distributions of � and � , but set �i

iid
∼ N(0, �2).

With the significant covariates and a future covariate zt+1 , we compute the poste-
rior predictive distribution of xt+1 and compute the Kolmogorov–Smirnov (KS) dis-
tance from the true predictive distribution of xt+1 . Again, we consider �i

iid
∼ N(0, �2).

In other words, we compare the performance and accuracy of the three competing 
Bayesian multiple testing methods by means of the Jaccard similarity coefficient, 
Euclidean distance and KS distance. For five different sample sizes, we replicate our 
simulation experiments 750 times and compare the boxplots. For all the three com-
peting Bayesian multiple testing methods, FDRXn

 is controlled at level 0.05.

6.4  Comparison of the results

From Fig.  1a, we see that the Jaccard Similarity Coefficients have stabilized near 
1 sample size 75 onward indicating that the asymptotic theory indeed takes prec-
edence for all the methods, when the sample size gets sufficiently large. Interest-
ingly, the NMD method has the fastest convergence rate with respect to sample size 
in terms of accurately detecting the truly significant covariates and also exhibits 
the best performance when the sample sizes are small. Similar behaviour can be 
observed with respect to the Euclidean distance from the true parameter values (see 
Fig. 1b). As regards the KS distances depicted in Fig. 1c, we can see that the results 
of the NMD are the most stable for every sample size, and with moderately large 
sample size this method gives the best performance. In this study, greater accuracy 
of the NMD method, particularly for small sample size, indicates that in practical 
multiple hypothesis testing applications where the sample size is generally much 
smaller as compared to the number of parameters, incorporating the dependence 
structure in the multiple testing method indeed boosts accuracy.

Observe that variability is much higher in the Euclidean and KS distances com-
pared to Jaccard similarity coefficients. Figure 1a indicates that as we are observing 
more and more samples the right regressors are getting selected with increasing pre-
cision. Nonetheless, incorrect decision regarding some regressors, even with moder-
ately high regression coefficient, would contribute significantly to the Euclidean and 
KS distances. This is reflected in Figs. 1b and c.

6.5  Empirical studies on model misspecification

In this section, we study the effect of model misspecification on multiple testing 
methods. We generate data from the AR(1) model in (17) for varying values of �0 . 
To allow model misspecification, we ignore the autoregressive part while fitting the 
data and perform variable selection according to the global local shrinkage prior 
in Sect. 6.2. The true values of the parameters are same as we have considered in 
Sect. 6.1 with a sample size of n = 100 . Different values of �0 are provided in the 
x-axis of different panels in Fig. 2. We compute the Jaccard similarity coefficient, 
Euclidean norm and KS distance in the same way as described in Sect. 6.3.
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Fig. 2  Effect of model misspecification on multiple testing methods for varying autoregressive param-
eter with sample size of n = 100 ; the X-axis plots the true �

0
 in the generative model: panel (a) shows 

the Jaccard similarity coefficient; panel (b) shows the Euclidean distance between the estimated model 
parameters and the true parameters; panel (c) shows the Kolmogorov–Smirnov distance between the true 
generative distribution and posterior predictive distribution for the competing methods across different 
values of �

0
 . All the panels show increased degree of misspecifications as �

0
 deviates from fitted � = 0
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Note that for �0 = 0 all the methods perform quite accurately. In this case, there is 
no autoregressive component in the true data-generating model. Also Fig. 1 shows 
that asymptotics is taking precedence from sample size 75 onward. As the perfor-
mance of all the three competing methods depends upon appropriate posterior prob-
abilities, accurate results are quite expected for �0 = 0 . Variability in the Euclidean 
norms and KS distances is much lesser here compared to Figs. 1b and c for n = 100 . 
The added precision is not surprising as we do not have the autoregressive compo-
nent to model here.

However, the performance of all the methods deteriorates with the increase in 
model misspecification. The posterior probabilities of events may not properly show-
case the uncertainty in case the class of postulated models have a high KL diver-
gence from the true data-generating process. As �0 deviates from zero the extent of 
misspecification increases (see Lemma S-6.1). Apparently from Fig. 2, the Bayesian 
multiple testing methods under consideration, being based on posterior probabili-
ties fail to perform adequately. This study highlights that with misspecified models 
inadequate for explaining the variability in the data, it is indeed difficult to extract 
meaningful inference.

7  Real data analysis

We now consider variable selection using our Bayesian non-marginal multiple test-
ing method in a real data context. The data, available at https ://www4.stat.ncsu.
edu/~boos/var.selec t/maize .html, obtained from Buckler et al. (2009), are regarding 
25 crosses (also called families or populations) of maize flowers, each with about 
200 observations on recombinant inbred lines (RILs). There are 7389 independent 
variables (covariates) representing the SNP markers, and the response variable is 
“days to anthesis male flowering time” (dtoa). In all, there are 4981 observations for 
the 25 crosses (excluding the missing values). Our aim to apply the Bayesian non-
marginal multiple testing procedure to select the influential marker variables from 
the total of 7389, in a linear regression context, for each of the 25 crosses, each hav-
ing about 200 observed values.

We consider the same Bayesian model as in Sect. 6.2 for this variable selection 
problem and subsequently employ our multiple testing procedure to select the rel-
evant SNP markers. With the selected markers, we compute the corresponding 
fitted values for each of different populations. Figure 3, displaying the observed 
versus fitted dtoa values for each of different populations, indicates that the data 
variability is adequately explained by our model and methodologies. Due to space 
constraints, we show the plots of 12 populations in the main article and the rest in 
Section S-7. In the same latter section, we also report the causal SNPs for some 
of the populations.

https://www4.stat.ncsu.edu/%7eboos/var.select/maize.html
https://www4.stat.ncsu.edu/%7eboos/var.select/maize.html
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8  Summary and conclusion

In this article, we have investigated asymptotic properties of Bayesian multiple test-
ing procedures. We have shown strong consistency of the non-marginal Bayesian 
procedure under general dependence structure. As a corollary, we have shown that 
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Fig. 3  Observed versus fitted days to anthesis male flowering time for the significant markers corre-
sponding to the first 12 populations
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additive loss function-based approaches are also consistent.
We have also studied asymptotic properties of multiple testing error rates. We 

have shown that the posterior versions of the error rates, namely FDRXn
 and FNRXn

 , 
are directly associated with the entropy rate of the true data-generating model. 
Hence, from the Bayesian perspective, we advocate the posterior versions of error 
rates conditioned on the data. In the light of the dependence structure associated 
with the hypotheses, we introduce mFDRXn

 - a modified version of FDRXn
 , the mod-

ification being with respect to the dependence among the parameters. The modi-
fied version is seen to be associated with a smaller entropy compared to its existing 
counterpart.

For �-control of type-I errors in the non-marginal procedure, a mild, but still an 
extra assumption of existence of disjoint groups of hypothesis where the nulls are 
true, is required. However, as we elucidated, this condition indeed indicates that 
grouping dependent hypotheses pools information across them and provides an extra 
safeguard against committing error. Importantly, as we have shown, for large sample 
sizes, � cannot take any value in (0, 1); in particular, we have provided lower bounds 
to the maximum possible values of mpBFDR and pBFDR and have shown that these 
lower bounds are significantly bounded away from 1, so that setting large values of 
� is not possible for large samples. Hence, for large samples, the practitioner must 
choose � carefully. As regards type-II error, we have shown that, with �-control of 
type-I error rates, pBFNR is likely to converge to zero at a faster rate than that with-
out �-control of the type-I errors. Thus, the usual expectation of statisticians that 
controlling type-I error yields smaller type-II error in single hypothesis testing is 
expected to hold in our multiple testing framework.

We draw attention to the fact that most of our asymptotic results crucially hinge 
on the assumptions considered in Section S-1. In this regard, we have illustrated 
these assumptions in a variable selection problem with autoregressive response vari-
ables from a multiple testing perspective, along with the test for stationarity. In this 
problem, we show that the assumptions hold for any choice of proper prior over 
the general, non-compact parameter space, entailing strong consistency of Bayesian 
multiple testing methods. We have also discussed how verification of these assump-
tions is implicitly related to showing consistency of the maximum likelihood estima-
tor. Indeed, proving strong consistency of Bayesian posterior distributions or maxi-
mum likelihood estimators is certainly quite challenging for non-compact parameter 
spaces and dependent setups, and our approach is probably of independent interest 
in this respect.

We have backed up our theoretical investigations with extensive simulation stud-
ies, comparing the performance of our NMD method with two other Bayesian multi-
ple testing procedures for sample sizes ranging from small to moderately large. The 
results indicate clear superiority of the NMD method, particularly for small sample 
sizes. This is quite encouraging, since in practice, sample sizes are expected to be 
small compared to the number of available covariates. The message underlying the 
superior performance of NMD is that it exploits the dependence structure in a more 
wholesome way compared to the existing methods.

The empirical studies on misspecified models are particularly important. These 
studies show that multiple testing methods relying on inadequate models would 
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suffer. The results by Shalizi (2009) show that asymptotically the model with the 
minimum KL divergence from the true data-generating process would be preferred, 
however, that preferred model can be quite bad. Methods reckoning on the uncer-
tainty delivered by the posterior probabilities suffer in such cases.

Application of our multiple testing procedure to a real maize data concern-
ing selection of influential marker variables from a total of 7389 variables, yielded 
quite encouraging results. Since variable selection from among many variables is an 
important real problem, our results seem to indicate the importance of our multiple 
testing procedure.

In this article, we have assumed m, the number of hypotheses, to be fixed. But 
it is also important to investigate the asymptotic theory when m also grows with 
the sample size n, particularly because of its relevance in practical problems. As 
Shalizi’s framework is valid for infinite-dimensional models, it is not too difficult to 
extend our consistency results in the high-dimensional setup. It is also worth study-
ing the asymptotic behaviour of the error rates in such scenario. Chandra and Bhat-
tacharya (2020) made some progress in these directions.
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