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Abstract
The aim of this paper is to introduce an adaptive penalized estimator for identify-
ing the true reduced parametric model under the sparsity assumption. In particu-
lar, we deal with the framework where the unpenalized estimator of the structural 
parameters needs simultaneously multiple rates of convergence (i.e., the so-called 
mixed-rates asymptotic behavior). We introduce a bridge-type estimator by taking 
into account penalty functions involving �q norms (0 < q ≤ 1). We prove that the 
proposed regularized estimator satisfies the oracle properties. Our approach is use-
ful for the estimation of stochastic differential equations in the parametric sparse 
setting. More precisely, under the high-frequency observation scheme, we apply our 
methodology to an ergodic diffusion and introduce a procedure for the selection of 
the tuning parameters. Furthermore, the paper contains a simulation study as well 
as a real data prediction in order to assess about the performance of the proposed 
bridge estimator.

Keywords  High-frequency scheme · Oracle properties · Multidimensional diffusion 
processes · Prediction accuracy · Penalized estimation · Quasi-likelihood function

1  Introduction

Statistical learning ensures high prediction accuracy and discovers relevant pre-
dictive variables. Furthermore, variable selection is particularly important when 
the true underlying model has a sparse representation. Identifying significant var-
iables will enhance the prediction performance of the fitted model. A possible 
way to address this issue is represented by the stepwise and subset selection pro-
cedures. Nevertheless, the main drawbacks of this approach are the computational 
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complexity and the variability. In the last twenty years, the penalized statistical 
methods became very popular in the variable selection framework (see, e.g., 
Hastie et al. 2015, Hastie et al. 2009).

Let us consider the classical linear regression model y = �� + �, where y is 
the response vector and � is the n × p predictor matrix of standardized variables, 
� ∶= (�1,… , �p)

� ∈ ℝ
p is the parametric vector and � is a Gaussian vector with 

independent components with mean zero. The least absolute shrinkage and selec-
tion operator (LASSO), introduced in Tibshirani (1996), is a useful and well 
studied approach to the problem of model selection. Its major advantage is the 
simultaneous execution of both parameter estimation and variable selection. The 
LASSO estimator is obtained by solving the �1 penalized least squares problem

where � ≥ 0 (tuning parameter), | ⋅ | is the euclidean distance and �����1 = ∑p

j=1
��j� , 

or, equivalently, by dealing with an unpenalized optimization problem with a 
constraint

with t ≥ 0. Let us notice that the �1 penalty admits some singularities. For this rea-
son, some coefficients are shrunken to zero.

The bridge estimation generalized the LASSO approach by using �q norm (see, 
e.g., Frank et al. 1993; Knight and Fu 2000) as follows

where ��𝜃��q = ∑p

j=1
�𝜃j�q, q > 0. The estimator (3) becomes LASSO for q = 1, and 

Ridge for q = 2. Notice that, AIC or BIC criterion can be viewed as limiting cases of 
bridge estimation as q → 0; , i.e.,

There are other possible approaches: for instance, in Fan and Li  (2001), the authors 
proposed a shrinkage procedure based on the smoothly clipped deviation (SCAD) 
penalty term.

The regularization methods could allow the dimensionality of the parameter 
space to change with the sample size, this is the main advantage of the LASSO 
approach over the classical information criterions (AIC, BIC, etc.) which use a 
fixed penalty on the size of a model.

As argued in Fan and Li (2001), Fan and Peng (2004) and Fan and Li (2006), 
a good selection procedure should have (asymptotically) the so-called oracle 
properties: 

(1)𝜃̂(LASSO) = argmin
𝜃
{|y − �𝜃|2 + 𝜆||𝜃||1}

(2)𝜃̂(LASSO) = argmin
𝜃
{|y − �𝜃|2}, subject to ||𝜃||1 ≤ t,

(3)𝜃̂(bridge) = argmin
𝜃

{|y − �𝜃|2 + 𝜆||𝜃||q
}
,

lim
q→0

p∑
j=1

|�j|q =
p∑
j=1

1�j≠0.
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	 (i)	 consistently estimates null parameters as zero; i.e., the selection procedure 
identifies the right subset model;

	 (ii)	 has the optimal estimation rate and converges to a Gaussian random variable 
N(0,Σ0) where Σ0 is the covariance matrix of the true subset model.

As shown in Zou (2006), since LASSO procedure assigns the same amount of 
penalization to each parameter, it does not represent an oracle procedure. For this 
reason, the author introduced the following adaptive LASSO estimator

where 𝜆n > 0 and (ŵj)
p

j=1
 are suitable data-driven weights. Usually, 

ŵj = 1∕|𝜃j(ols)|𝛾 , 𝛾 > 0. As the sample size grows, the weights for zero-coefficient 
regressors increase to infinity, whereas the weights for nonzero-coefficient predic-
tors tend to a finite constant. Thus, we are able to estimate consistently null parame-
ters and 𝜃̂n(AdaLASSO) is oracle.

Originally, the LASSO procedure was introduced for linear regression problems, 
but, in the recent years, this approach has been applied to different fields of stochas-
tic processes. In Wang et al. (2007), the problem of shrinkage estimation of regres-
sive and autoregressive coefficients has been dealt with, while in Nardi and Rinaldo 
(2011) penalized order selection AR(p) models are studied. Furthermore, in Caner 
and Knight (2013) is shown that the bridge estimator can be used to differentiate 
stationarity from unit root type of non-stationarity and to select the optimal lag in 
AR series as well. For other issues on penalized estimation problems for time series 
analysis, the reader can also consult Basu and Michailidis (2015).

Very recently, regularized estimators have been applied to multidimensional dif-
fusion processes and point processes and represent a new research topic in the field 
of statistics for stochastic processes. For instance, in the high-frequency framework, 
the reader can consult (De Gregorio and Iacus 2012; Masuda and Shimizu 2017; 
Suzuki and Yoshida 2019; Kinoshita and Yoshida 2019) where the authors used 
penalized selection procedure for discovering the underlying true model. In De Gre-
gorio and Iacus (2018) and Gaïffas and Matulewicz (2019), LASSO and bridge esti-
mators have been applied to continuously observed stochastic differential equations.

In this paper, we address the estimation problem for a sparse parametric model 
where different rates of convergence must be considered simultaneously for the 
asymptotic identification of the vector of structural parameters (i.e., mixed-rates 
asymptotics). In particular, we introduce a bridge-type estimator by means of the 
least squares approximation approach developed in Wang and Leng (2007). The 
main idea is represented by an objective function with multiple adaptive penalty 
functions involving �q norms (0 < q ≤ 1). We will show that the estimator obtained 
by minimizing the above objective function satisfies the oracle properties.

Our motivating example is represented by a multidimensional ergodic diffusion 
process solution to a stochastic differential equation; i.e.,

𝜃̂n(AdaLASSO) = argmin
𝜃

{
|y − �𝜃|2 + 𝜆n

p∑
j=1

ŵj|𝜃j|
}

,
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Under the high-frequency observation scheme, � ∈ ℝ
p1 and � ∈ ℝ

p2 admit optimal 
estimators 𝛼̂n and 𝛽n having two different asymptotic rates (i.e., infill asymptotic). 
We will assume the sparsity condition for the above diffusion process; i.e., some 
coefficients of the true values of � and � are exactly equal to zero. We will apply our 
methodology to this framework. Actually, it would be possible to deal with other 
types of random models described by stochastic differential equations: for instance, 
small diffusions (see, e.g., Sørensen and Uchida 2003; Gloter and Sørensen 2009), 
and diffusions with jumps (see, e.g., Shimizu and Yoshida 2006; Clément and Gloter 
2019; Masuda 2019). Such as random processes define parametric models with two 
groups of parameters having two different asymptotic rates.

Furthermore, there are several econometric models where the exact evaluation of the 
structural parameters requires estimators with mixed-rates asymptotics. For instance, 
in Antoine and Renault (2012) the asymptotic theory of GMM inference is extended; 
the main goal of this work is to allow sample counterparts of the estimating equations 
to converge at (multiple) rates, different from the usual square-root of the sample size. 
Moreover, in Antoine and Renault (2012) are provided some econometric examples 
where the mixed-rates behavior arises. In Lee (2004), the theoretical properties of the 
maximum likelihood estimator and the quasi-maximum likelihood estimator for the 
spatial autoregressive model are investigated. The rates of convergence of those estima-
tors may depend on some general features of the spatial weights matrix of the model. 
When each unit can be influenced by many neighbors, irregularity of the information 
matrix may occur and various components of the estimators may have different rates of 
convergence.

The paper is organized as follows. In Sect. 2, we introduce the estimation paramet-
ric problem. The setup is that of a parametric model with unpenalized estimators that 
asymptotically behave well under multiple rates of convergence. In this setting, we 
introduce a regularized estimator by means of the least squares approximation approach 
developed in Wang and Leng (2007). Section 3 contains the discussion of the oracle 
properties of the introduced estimator. Section 4 is devoted to the application of our 
methodology to diffusion processes related to stochastic differential equations. Further-
more, a selection procedure for tuning parameters, based on the standardized residuals 
of the discretized sample path, is proposed. In order to evaluate the performance of 
our estimator, in Sect. 5 a simulation study on a linear diffusion process is carry on to 
select the true underlying model. In the same section, we test the prediction accuracy 
of our methodology for four financial time series of daily closing stock prices of major 
tech companies: Google, Amazon, Apple and Microsoft. Besides, in the framework of 
ergodic diffusions, we compare the bridge estimator introduced in this paper and the 
disjoint method developed in Suzuki and Yoshida (2019). All the proofs of the oracle 
properties are collected in the last section.

dXt = b(Xt, �)dt + �(Xt, �)dWt, X0 = x0.
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2 � Adaptive bridge‑type estimation with multiple penalties

Let us introduce the shrinking estimator in a general setup. We deal with a param-
eter of interest � ∶= (�1,… , �m)�, where �i ∶= (�i

1
,… , �i

pi
), pi ∈ ℕ, i = 1,… ,m. 

Furthermore, 𝜃 ∈ Θ ∶= Θ1 ×⋯ × Θm ⊂ ℝ
�, � ∶=

∑m

i=1
pi, where Θi is a bounded 

convex subset of ℝ
pi . We denote by �0 ∶= (�1

0
,… , �m

0
)�, where 

�i
0
∶= (�i

0,1
,… , �i

0,pi
), i = 1,… ,m, the true value of �.

Assume that there exists a loss function � ↦ �n(�) and

Usually, �n(�) is a (negative) log-likelihood function or the sum of squared residuals. 
Furthermore, suppose that 𝜃n admits a mixed-rates asymptotic behavior in the sense 
of Radchenko (2008); that is for the asymptotic estimation of �i

0
, i = 1,… ,m, is nec-

essary to consider simultaneously different rates of convergence for 𝜃i
n
, i = 1,… ,m.

We assume that �0 is sparse (i.e., some components of �0 are exactly zero). Let 
p0
i
∶= |{j ∶ �i

0,j
≠ 0}|, i = 1,… ,m, and �0 ∶=

∑m

i=1
p0
i
. Therefore, our target is the 

identification of the true model �0 by exploiting a multidimensional random sam-
ple (Xn)n on the probability space (Ω,F,P).

In order to carry out simultaneously estimation and variable selection, we use a 
penalized approach involving suitable shrinking terms. Since we have to take into 
account the multiple asymptotic behavior of the non-regularized estimator 𝜃n , we 
suggest to penalize different sets of parameters with different norms. Therefore, 
the adaptive objective function with weighted �qi penalties should be given by

where (�i
n,j
)n≥1, j = 1,… , pi, i = 1,… ,m, are sequences of real positive random vari-

able representing an adaptive amount of the shrinkage for each element of �i. The 
bridge-type estimator is the minimizer of the objective function (4), which reduce to 
the LASSO-type estimator if qi = 1 for any i. This is a nonlinear optimization prob-
lem which might be numerically challenging to solve. By resorting the least squares 
approximation approach developed in Wang and Leng (2007) and Suzuki and 
Yoshida (2019), we can replace (4) with a more tractable objective function. Indeed, 
if �n is twice differentiable with respect to �, we have

where �̈n represents the Hessian matrix. Therefore, we may minimize instead of (4) 
the following objective function with multiple penalty terms

𝜃n = (𝜃1
n
,… , 𝜃m

n
)� ∈ argmin

𝜃
�n(𝜃).

(4)�n(�) +

[
p1∑
j=1

�1
n,j
|�1

j
|q1 +…+

pm∑
j=1

�m
n,j
|�m

j
|qm

]
, qi ∈ (0, 1], i = 1,… ,m,

�n(𝜃) ≃ �n(𝜃n) + (𝜃 − 𝜃n)
�∇𝜃�n(𝜃n) +

1

2
(𝜃 − 𝜃n)

��̈n(𝜃n)(𝜃 − 𝜃n)

= �n(𝜃n) +
1

2
(𝜃 − 𝜃n)

��̈n(𝜃n)(𝜃 − 𝜃n),
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The gain of (5) is twofold: it reduces the computational complexity of (4); further-
more, the least squares term allows to unify many different types of penalized objec-
tive functions.

Now, inspired by (5), we are able to define the adaptive penalized estimator studied 
in this paper.

Definition 1  Let Ĝn be a � × � almost surely positive definite symmetric ran-
dom matrix depending on n. We define the adaptive bridge-type estimator 
𝜃̂n ∶ ℝ

(n+1)×d
→ Θ as follows

where

with qi ∈ (0, 1], i = 1,… ,m.

Clearly, (7) reduces to (5) if Ĝn ∶= �̈n(𝜃n).
The estimator (6) coincides with the estimator introduced in Suzuki and Yoshida 

(2019) for m = 1 (actually, they are slightly different because we will require different 
asymptotic conditions on the matrix Ĝn ). Our scope is to generalize the approach devel-
oped in Suzuki and Yoshida (2019), in order to extend the bridge-type methodology 
to statistical parametric models with multiple rates of convergence. Thus, for this rea-
son, the objective function (7) involves different norms, one for each set of parameters. 
For instance, in the case of ergodic diffusions the shrinking estimator (6) is theoreti-
cal equivalent (see Theorem 4 below) to its counterpart studied in Suzuki and Yoshida 
(2019), Sect. 7.1. Furthermore, when we apply the bridge-type estimation procedure, 
it is necessary to work in the finite sample size setting. Therefore, our methodology, 
based on the joint estimation, is able to take into account the cross-correlations between 
the variables of the model, by means of the random matrix Ĝn. This last issue is a cru-
cial point in the statistical learning, where the correct identification of the dependent 
variables improves the performance of the fitted model. These features could be lost if 
we split the penalized estimation of the parameters.

(5)(𝜃 − 𝜃n)
��̈n(𝜃n)(𝜃 − 𝜃n) +

[
p1∑
j=1

𝜆1
n,j
|𝜃1

j
|q1 +⋯ +

pm∑
j=1

𝜆m
n,j
|𝜃m

j
|qm

]
.

(6)𝜃̂n = (𝜃̂1
n
,… , 𝜃̂m

n
)� ∈ argmin

𝜃∈Θ
Fn(𝜃)

(7)Fn(𝜃) ∶= (𝜃 − 𝜃n)
�Ĝn(𝜃 − 𝜃n) +

[
p1∑
j=1

𝜆1
n,j
|𝜃1

j
|q1 +⋯ +

pm∑
j=1

𝜆m
n,j
|𝜃m

j
|qm

]
,
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3 � Oracle properties

For the sake of simplicity, hereafter, we assume �i
0,j

≠ 0, j = 1,… , p0
i
, for any 

i = 1,… ,m. We deal with ri
n
, i = 1,… ,m, representing sequences of positive num-

bers tending to 0 as n → ∞. �m stands for the identity matrix of size m. Further-
more, we introduce the following matrices

We main assumptions in the paper are the following ones. 

	A1.	 Let �̂n ∶= AnĜnAn . There exists a � × � positive definite symmetric random 
matrix G such that 

	A2.	 The estimator 𝜃n is consistent; i.e., 

	A3.	 The estimator 𝜃n is asymptotically normal; i.e., 

 where ℑ ∶= Γ−1 and Γ is a � × � positive definite symmetric matrix.
The conditions A2 and A3 reveal the mixed-rates asymptotic behavior of the 
estimator 𝜃n. Actually, A3 could be replaced with a stronger condition involving 
the stable convergence to a mixed normal random variable (see, e.g., Suzuki and 
Yoshida 2019).

Let us denote by ai
n
∶= max{�i

n,j
, j ≤ p0

i
}, bi

n
∶= min{𝜆i

n,j
, j > p0

i
} ; we introduce 

the following conditions. 

	B1.	 ri
n
ai
n
= Op(1) for any i = 1,… ,m.

	B2.	 ri
n
ai
n
= op(1) for any i = 1,… ,m.

	B3.	 (ri
n
)2−qibi

n

p
⟶∞, for any i = 1,… ,m.

The main goal of this section is to argue on the theoretical features of the regular-
ized statistical procedure arising from Definition 1; i.e., we are able to prove that 
the estimator 𝜃̂n is asymptotically oracle.

Theorem 1  (Consistency). Assume A1, A2 and B1, then

An ∶= diag(r1
n
�p1

,… , rm
n
�pm

).

�̂n

p
⟶G.

A−1
n
(𝜃n − 𝜃0) =

(
1

r1
n

(𝜃1
n
− 𝜃1

0
),… ,

1

rm
n

(𝜃m
n
− 𝜃m

0
)

)�

= Op(1).

A−1
n
(𝜃n − 𝜃0) =

(
1

r1
n

(𝜃1
n
− 𝜃1

0
),… ,

1

rm
n

(𝜃m
n
− 𝜃m

0
)

)�
d

⟶N𝔭(0,ℑ),

A−1
n
(𝜃̂n − 𝜃0) = Op(1).
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For the vectors xi = (x1,… , xpi )
� , we deal with the following notation: 

xi⋆ ∶= (x1,… , xp0
i
)�, xi

∙
∶= (xp0

i
+1,… , xpi )

�.

Theorem 2  (Selection consistency). If the assumptions A1, A2, B1 and B3 are satis-
fied, we have that

as n ⟶ ∞.

Theorem 2 allows to claim that with probability tending to 1, all of the zero 
parameters must be estimated as 0. Theorem 1 leads to the consistency of the esti-
mators of the nonzero coefficients. Both theorems imply that the bridge estimator 
(6) identifies the true model consistently.

In what follows, we adopt the following notation: let M be a partitioned pi × pj 
matrix, 1 ≤ i, j ≤ m,

where the blocks are given by:

•	 M⋆⋆ = (mij)1≤i≤p0
i
,1≤j≤p0

j
 is a p0

i
× p0

j
 matrix;

•	 M⋆∙ = (mij)1≤i≤p0
i
,p0

j
<j≤pj , is a p0

i
× (pj − p0

j
) matrix;

•	 M∙⋆ = (mij)p0
i
<i≤pi,1≤j≤p0j  is a (pi − p0

i
) × p0

j
 matrix;

•	 M∙∙ = (mij)p0
i
<i≤pi,p0j <j≤pj is a (pi − p0

i
) × (pj − p0

j
) matrix.

Moreover, we take into account the following assumption representing a special 
case of the condition A1. 

	C1.	 There exist pi × pi positive definite symmetric random matrices 
Gii, i = 1, 2,… ,m, such that 

Let us assume C1 and introduce the following �0 × � matrix

where �i ∶= (�p0
i
(Gii

⋆⋆)
−1Gii

⋆∙), i = 1, 2,… ,m. Now, we are able to prove the 
asymptotic normality of the bridge-type estimator and its efficiency with respect to 
the true subset model.

P(𝜃̂i
n∙
= 0) ⟶ 1, i = 1,… ,m,

M =

(
M⋆⋆ M⋆∙

M∙⋆ M∙∙

)
,

�̂n

p
⟶G ∶= diag(G11,G22,… ,Gmm).

� ∶=

⎛⎜⎜⎜⎝

�1 0 0 ⋯ 0

0 �2 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 ⋯ �m

⎞⎟⎟⎟⎠
,
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Theorem 3  (Asymptotic normality). Under the assumptions C1, A2, B2 and B3, we 
have that

as n ⟶ ∞. Furthermore, adding A3, we obtain

as n ⟶ ∞, and if G = Γ, one has that

Remark 3.1  A possible reasonable choice of the sequences of adaptive amounts is 
the following one (see Zou 2006)

where (�i
n
)n≥1 represents a sequence of positive real numbers satisfying the following 

conditions

with 𝛿i > 1 − qi. Under the conditions (11), the assumptions B1-B3 fulfill.

Remark 3.2  It is worth to mention that the estimator 𝜃̂n is oracle when the dimension 
� and the sparsity dimension �0 are finite and fixed. We are not considering the high-
dimensional setting; i.e., � → ∞ (and simultaneously �0 → ∞ ) as n → ∞. Penalized 
statistics when number of parameters diverges has been studied, for instance, in Fan 
and Peng (2004). The study of the bridge-type estimator (6) in the high-dimensional 
case represents a future research topic.

4 � Application to stochastic differential equations

4.1 � Ergodic diffusions

Let (Ω,F,� = (Ft)t≥0,P) be a filtered complete probability space.
Let us consider a d-dimensional solution process X ∶= (Xt)t≥0 to the following 

stochastic differential equation (SDE)

where x0 is a deterministic initial point, b ∶ ℝ
d × Θ� → ℝ

d and 
𝜎 ∶ ℝ

d × Θ𝛽 → ℝ
d ⊗ℝ

r are Borel known functions (up to � and � ) and 

(8)
(

1

r1
n

(𝜃̂1
n
− 𝜃1

0
)⋆,… ,

1

rm
n

(𝜃̂m
n
− 𝜃m

0
)⋆

)�

−�
{
A−1
n
(𝜃n − 𝜃0)

} p
⟶0,

(9)
(

1

r1
n

(𝜃̂1
n
− 𝜃1

0
)⋆,… ,

1

rm
n

(𝜃̂m
n
− 𝜃m

0
)⋆

)�
d

⟶N𝔭0

(
0,𝔊ℑ𝔊�

)
,

𝔊ℑ𝔊� ∶= diag
(
(Γ11

⋆⋆)
−1, (Γ22

⋆⋆)
−1,… , (Γmm

⋆⋆)
−1
)
.

(10)𝜆i
n,j

=
𝛼i
n

|𝜃i
n,j
|𝛿i , i = 1, 2,… ,m,

(11)ri
n
�i
n
⟶ 0, (ri

n
)2−qi−�i�i

n
⟶ ∞,

(12)dXt = b(Xt, �)dt + �(Xt, �)dWt, X0 = x0,
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(Wt)t≥0 is a r-dimensional standard Ft-Brownian motion. Furthermore, 
𝛼 ∈ Θ𝛼 ⊂ ℝ

p1 , 𝛽 ∈ Θ𝛽 ⊂ ℝ
p2 , p1, p2 ∈ ℕ, are unknown parameters where Θ� ,Θ� are 

compact convex sets. Let � ∶= (�, �)� ∈ Θ ∶= Θ� × Θ� and denote by �0 ∶= (�0, �0)
� 

the true value of � . Let us assume that �0 ∈ Int(Θ) and 0 ∈ ℝ
p1+p2 belongs to Θ. The 

stochastic differential equation X represents a sparse parametric model; that is �0 has 
a sparse representation.

The sample path of X is observed only at n + 1 equidistant discrete times tn
i
 , such that 

tn
i
− tn

i−1
= Δn < ∞ for i = 1,… , n, (with tn

0
= 0 ). Therefore, the data are the discrete 

observations of the sample path of X,  that we represent by �n ∶= (Xtn
i
)0≤i≤n. Let p an 

integer with p ≥ 2, the asymptotic scheme adopted in this paper is the following: 
nΔn ⟶ ∞ , Δn ⟶ 0 and nΔp

n ⟶ 0 as n → ∞ and there exists � ∈ (0, (p − 1)∕p) 
such that n� ≤ nΔn for large n.

X satisfies some mild regularity conditions (see, e.g., Kessler 1997; Yoshida 
2011). For instance, the functions b and � are smooth, Σ(x, �) ∶= ���(x, �) is sup-
posed invertible and X is an ergodic diffusion; i.e., there exists a unique invari-
ant probability measure � = ��0

 such that for any bounded measurable function 
g ∶ ℝ

d
→ ℝ , the  1

T
∫ T

0
g(Xt)dt

p
⟶ ∫

ℝd g(x)�(dx).
We are interested to the estimation of � as well as the correct identifica-

tion of the zero coefficients by using the data �n. For this reason, we apply the 
bridge-type estimator (6) in this setting. We assume that an initial estimator 
𝜃n ∶= (𝛼̃n, 𝛽n)

� ∶ ℝ
(n+1)×d

⟶ Θ of � satisfies the following asymptotic properties: 

	 (i)	 𝛼̃n  i s  
√
nΔn - cons i s t en t  wh i l e  𝛽n  i s  

√
n - cons i s t en t ;  i . e . , 

(
√
nΔn(𝛼̃n − 𝛼0),

√
n(𝛽n − 𝛽0))

� = Op(1);

	 (ii)	 𝜃n is asymptotically normal; i.e 

 where 

 where �� ∶= (
�

��1
,… ,

�

��p1

)�, �� ∶= (
�

��1
,… ,

�

��p2

)�. We assume the integrabil-

ity and the non-degeneracy of Γ11 and Γ22.

Therefore, from (i) and (ii) emerge that the estimator 𝜃n works in a mixed-
rates asymptotic regime with two different rates, 

√
nΔn and 

√
n, for the two 

groups of parameters � and �. The assumptions A2 and A3 hold by setting 
An = diag(1∕(

√
nΔn)�p1 , 1∕

√
n�p2 ).

Let q1, q2 ∈ (0, 1], the objective function (7) becomes

(
√
nΔn(𝛼̃n − 𝛼0),

√
n(𝛽n − 𝛽0))

�
d

⟶Np1+p2
(0, diag((Γ11)−1, (Γ22)−1)),

Γ11 ∶= ∫
ℝd

(
��b(�0, x)

)�
Σ−1(�0, x)��b(�0, x)�(dx) ,

Γ22 ∶=
1

2 ∫
ℝd

tr
[
(��Σ)Σ

−1(��Σ)Σ
−1(�0, x)

]
�(dx),

(13)Fn(𝜃) ∶= (𝜃 − 𝜃n)
�Ĝn(𝜃 − 𝜃n) +

p1∑
j=1

𝜆n,j|𝛼j|q1 +
p2∑
k=1

𝛾n,k|𝛽k|q2 ,
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where Ĝn is a (p1 + p2) × (p1 + p2) matrix assumed to be symmetric and positive 
definite and such that AnĜnAn

p
⟶diag(Γ11,Γ22) (condition C1 fulfills). In this frame-

work, we consider sequences �n,j and �n,k as in (10); i.e., they turn out as follows

where the exponents �1 and �2 are such that 𝛿i > 1 − qi, 1, 2. We assume that �n,0 and 
�n,0 are deterministic sequences satisfying the conditions (11); that is

and

as n → ∞. Finally, the bridge-type estimator for the stochastic differential equation 
(12) becomes

In the literature appeared different estimators for ergodic diffusions satisfying the 
asymptotic properties (i) and (ii). For instance, the quasi-maximum-likelihood esti-
mator, the quasi-Bayesian estimator (see, Yoshida 1992; Kessler 1997; Yu and Phil-
lips 2001; Yoshida 2011; Uchida and Yoshida 2012, Uchida and Yoshida 2014) and 
the hybrid multistep estimator (see Kamatani and Uchida 2015).

For p = 2, a suitable loss function could be the negative quasi-log-likelihood 
function

Therefore, a possible choice of Ĝn is the Hessian matrix �̈n(�n, 𝜃) and

represents the quasi-maximum likelihood estimator (QMLE). For more details on 
the quasi-likelihood analysis for stochastic differential equations, the reader can con-
sult, for instance, Kessler (1997) and Yoshida (2011).

Now, we are able to present the oracle properties for the bridge-type estimator 
introduced in the framework of sparse ergodic diffusions. We also argue about the 
boundedness of the estimator which is useful for the moment convergence. Under 

𝜆n,j =
𝜆n,0

|𝛼̃n,j|𝛿1
, 𝛾n,k =

𝛾n,0

|𝛽n,k|𝛿2
j = 1, ,… , p1, k = 1,… , p2,

�n,0√
nΔn

⟶ 0, (nΔn)
�1−2+q1

2 �n,0 ⟶ ∞,

�n,0√
n
⟶ 0, n

�2−2+q2
2 �n,0 ⟶ ∞,

(14)𝜃̂n ∶= (𝛼̂n, 𝛽n)
� ∈ argmin

𝜃∈Θ
Fn(𝜃).

(15)

�n(�n, �) ∶=
1

2

n∑
i=1

{
log det(Σ(Xtn

i
, �))

+
1

Δn

(Xtn
i
− Xtn

i−1
− Δnb(Xtn

i
, �))�Σ−1(Xtn

i
, �)(Xtn

i
− Xtn

i−1
− Δnb(Xtn

i
, �))

}
.

𝜃QL
n

∈ argmin
Θ

�n(�n, 𝜃)
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the assumptions of Sect. 3, the next theorem concerns these issues in the case of 
initial estimator equals to 𝜃QL

n
. Clearly, the statement of the theorem holds true 

also if 𝜃n is the quasi-Bayesian estimator or the hybrid multistep estimator.

Theorem 4  If 𝜃n = 𝜃QL
n
, the bridge-type estimator (14) has the following properties:

•	 (Consistency) (
√
nΔn(𝛼̂n − 𝛼0),

√
n(𝛽n − 𝛽0)) = Op(1);

•	 (Selection consistency) P(𝛼̂n∙ = 0) ⟶ 1 and P(𝛽n∙ = 0) ⟶ 1;
•	 (Asymptotic normality)

•	 (Uniform Lq-boundedness) if supn �[||�̂n||q] < ∞ and supn �[||�̂−1
n
||q] < ∞ for 

all q ≥ 1, we have that

Theorem 4 represents a generalization of the results previously obtained in De 
Gregorio and Iacus (2012).

For the identification of the true model, it is also possible to use AIC criterion 
as discussed in Uchida (2011). Nevertheless, as pointed out in Iacus and Yoshida 
(2018), it is necessary to specify some parametric models.

4.2 � Tuning parameter selection

Consider a diffusion process as in (12). In the linear regression problem, the regu-
larized estimates are obtained by choosing the tuning parameters by means of a 
cross-validation procedure. Nevertheless, For this reason this technique doesn’t 
apply because the dependency structure of the data. In our framework, we pro-
pose a data-driven technique for choosing the tuning parameters for the penalized 
estimation problem (14).

Consider the Euler discretization of the solution of (12)

where ti and Δn are specified as above. The “standardized residuals” are then defined 
as

The residuals rtn
i
 are Nd(0d, �d) and conditionally independent. The idea is to find the 

tuning parameters in such a way that the residuals fit best to a white noise scheme.

(
√
nΔn(𝛼̃n − 𝛼0)⋆,

√
n(𝛽n − 𝛽0)⋆)

d
⟶Np0

1
+p0

2
(0, diag((Γ11

⋆⋆)
−1, (Γ22

⋆⋆)
−1));

sup
n

�[|A−1
n
(𝜃̂n − 𝜃0)|q] < ∞.

(16)Xtn
i+1

= Xtn
i
+ b(Xtn

i
, �)Δn + �(Xtn

i
, �)(Wtn

i+1
−Wtn

i
)

(17)rtn
i
= Δ−1∕2

n
Σ−1∕2(Xtn

i
, �)(Xtn

i+1
− Xtn

i
− Δnb(Xtn

i
, �)) i = 1,… , n.
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Given a series of observations �n and some estimates of the parameters 𝛼̂ and 
𝛽  the residuals can be estimated as

Let � ∶= (q1, q2, �n, �n, �1, �2) be the vector of tuning parameters varying in some 
suitable parameter space Ψ ⊂ ℝ

6 . Besides, the penalized estimates will depend on � 
and consequently also the residuals will. We set r̂tn

i
= r̂tn

i
(𝜓) to stress this fact. We 

can choose a desirable value for � by optimizing some score function which penal-
izes tuning parameters producing residuals which deviate most from the hypothesis 
of being uncorrelated. More formally let S ∶ ℝ

nd
↦ ℝ

+ be such a score function 
which takes in input the d-dimensional residuals and returns a low score if the resid-
uals appear to be incorrelated and a high value otherwise (low score is better). We 
choose the optimal value of the tuning parameter vector �∗ as

The penalty function can be the test statistic in a white noise hypothesis testing. In 
the numerical simulations, we consider the Ljung–Box test statistic defined as

where rn = (rtn
i
)n
i=0

 is a vector of residuals, � is the number of lags to be tested, 𝜌̂j 
denotes the sample auto-correlations of the residuals at lag j

where r̄n = n−1
∑n

i=1
rtn

i
 and n is the number of observations. Under the hypothesis 

that the residuals are not correlated up to lag � , Q
�
 is asymptotically distributed as a 

�2
�
.
A similar approach can be adapted if one wants to tune the tuning parameter 

in order to optimize the fit of the residuals to the Gaussian distribution. This idea 
was introduced in Bandi et  al. (2009) in the context of bandwidth selection for 
nonparametric estimates of the drift and diffusion coefficients. One can consider a 
penalty measuring the distance of the empirical distribution of the residuals from 
the Gaussian distribution function (such as the Kolmogorov–Smirnov test statis-
tic). More formally, equip the space of distribution functions with some norm 
‖ ⋅ ‖ . The parameter �∗ can then be chosen as

where F̂n denotes the empirical distribution function of the residuals and Pd denotes 
the distribution function of the d−dimensional standard Gaussian distribution. In 

(18)r̂tn
i
= Δ−1∕2

n
Σ−1∕2(Xtn

i
, 𝛽)(Xtn

i+1
− Xtn

i
− Δnb(Xtn

i
, 𝛼̂)) i = 1,… , n.

(19)�∗ = argmin
�∈Ψ

S(rtn
1
(�),… , rtn

n
(�)).

(20)Q
�
(rn) = n(n + 2)

�∑
j=1

𝜌̂2
j
(rn)

n − j

(21)𝜌̂2
j
(rn) =

1

n−j

∑n−j

i=1
(rtn

i
− r̄n)(rtn

i+j
− r̄n)

1

n

∑n

i=1
(rtn

i
− r̄n)

2,

(22)𝜓∗ = argmin
𝜓∈Ψ

‖F̂n(rtn
1
(𝜓),… , rtn

n
(𝜓)) − Pd‖,
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the case where the sup norm is chosen one recovers the Kolmogorov–Smirnov test 
statistic.

Two or more criteria can be combined in order in such a way to minimize simul-
taneously over multiple score functions. In the following, we consider together the 
criteria based on (20) and (22) in order to seek residuals which are uncorrelated and 
Gaussian, in the sense that they minimize both two scores. The tuning parameters 
are then computed as the solution of the following optimization problem

4.3 � Algorithmic implementation

The following algorithm implements criterion (23).

•	 Step 0. Suppose a set of data points �n is given. Initialize the tuning parameter 
vector � with some value �0 . Fix a threshold 𝜖 > 0.

•	 Until convergence is reached:

–	 Step 1 Compute the current bridge estimates with the current value � (k) of the 
tuning parameters 𝛼̂(k) = 𝛼̂(𝜓 (k)) , 𝛽(k) = 𝛽(𝜓 (k)).

–	 Step 2 Compute the residuals (r̂(k)
tn
i

)n
i=0

∶= (r̂tn
i
(𝜓 (k)))n

i=0
 as in formula (18), with 

the current estimates of the parameters 𝛼̂(k) and 𝛽(k).
–	 Step 3 Evaluate the score of the current residuals s(k) = S(r̂

(k)

tn
1

,… , r̂
(k)
tn
n

).

–	 Step 4 If |s(k) − s(k−1)| < 𝜖 stop: convergence is reached. Set �∗ = � (k) and 
return the optimal bridge estimates of the parameters �∗ = �(k) and �∗ = �(k) . 
Otherwise move to some new point � (k+1) (chosen according to some optimi-
zation algorithm) and repeat Steps 1 to 4.

5 � Numerical results

5.1 � Simulation study

Consider a multivariate diffusion process X = (Xt)t≥0 driven by the SDE

 which can be written in compact matrix notation as

(23)𝜓∗ = argmin
𝜓∈Ψ

[Q
�
(rn(𝜓)) + ‖F̂n(rn(𝜓)) − Pd‖].

(24)

⎧⎪⎨⎪⎩

dX
(1)
t = (�10 + �11X

(1)
t + �12X

(2)
t + �13X

(3)
t )dt + (�10 + �11X

(1)
t + �12X

(2)
t + �13X

(3)
t )dW

(1)
t

dX
(2)
t = (�20 + �21X

(1)
t + �22X

(2)
t + �23X

(3)
t )dt + (�20 + �21X

(1)
t + �22X

(2)
t + �23X

(3)
t )dW

(2)
t

dX
(3)
t = (�30 + �31X

(1)
t + �32X

(2)
t + �33X

(3)
t )dt + (�30 + �31X

(1)
t + �32X

(2)
t + �33X

(3)
t )dW

(3)
t

(25)dXt = (�0 + AXt)dt + diag(�0 + BXt) dWt
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where Xt = (X
(1)
t ,X

(2)
t ,X

(3)
t )� , Wt = (W

(1)
t ,W

(2)
t ,W

(3)
t )�, with W (i)

t , i = 1, 2, 3, inde-
pendent Brownian motions, �0 = (�10, �20, �30)

� , �0 = (�10, �20, �30)
� , A = (�ij)1≤i,j≤3 , 

B = (�ij)1≤i,j≤3 . A sample path of the solution to (25) is represented in Fig. 1.
In our simulation, we set several parameters to zero:

The true values for the nonzero parameters are displayed in Table 1. In particular, 
this choice of the parameters implies that model (25) can be interpreted in terms of 
Granger causality. The idea is that the three components of Xt are correlated, but the 
value of X(2)

t  effects X(1)
t  , and X(3)

t  influences both X(1)
t  and X(2)

t  and not vice versa. 
Formally, in the continuous time setting we have the following definition of non-
causality (see McCrorie and Chambers 2006). Suppose Zt = (Y

(1)
t ,Y

(2)
t ,Wt)

� is an 
n–dimensional process, where Y (1)

t ,Y
(2)
t  and W have dimension n1, n2 and n3 , respec-

tively, with n1 + n2 + n3 = n . We say that Y (1)
t  does not Granger cause Y (2)

t  if

where It = �(Zs, s ≤ t) and It − Y
1
t
= �((Y (2)

s
,Ws), s ≤ t) . Clearly, in the model (24), 

(X
(1)
t ,X

(2)
t ) does not Granger cause X(3)

t  , by setting Y (1)
t = (X

(1)
t ,X

(2)
t ) and Y (2)

t = X
(3)
t  

in definition (26), but the contrary is not true. Analogously, X(1)
t  does not Granger 

cause X(2)
t .

�21 = �31 = �32 = �33 = �11 = �21 = �31 = �22 = �32 = 0.

(26)∀t, h ≥ 0, �(Y
(2)

t+h
|It) = �(Y

(2)

t+h
|It − Y

1
t
),
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Fig. 1   A sample path of the solution to (25)
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Table 1   Summary of the results of the simulation study

Par. Bridge LASSO QMLE True value

Avg. (St. Err) M̂SE Avg. (St. Err) M̂SE Avg. (St. Err) M̂SE

(A) n = 500

�
10

− 1.4576 (1.2738) 1.6234 − 1.6417 (1.386) 1.9397 − 1.6737 (1.3784) 1.9289 − 1.5
�
11

− 0.9376 (0.8198) 0.9879 − 2.0592 (0.9213) 1.161 − 2.0692 (0.9044) 1.1414 − 1.5
�
12

0.2629 (0.5437) 0.5327 1.0277 (0.8829) 0.8561 1.0459 (0.8748) 0.8523 0.75
�
13

0.776 (0.6678) 0.4463 1.0245 (0.7355) 0.616 1.0431 (0.7283) 0.616 0.75
�
20

− 0.3547 (0.6353) 1.7152 − 1.7171 (1.3249) 1.8013 − 1.7309 (1.3206) 1.796 − 1.5
�
21

0.1177 (0.3624) 0.1451 0.0286 (0.6292) 0.3964 0.0229 (0.6321) 0.3998 0
�
22

− 1.8366 (0.7923) 0.7406 − 2.1356 (0.8421) 1.1127 − 2.1412 (0.8399) 1.1161 − 1.5
�
23

0.6343 (0.4934) 0.2566 0.9938 (0.6388) 0.4672 1.01 (0.64) 0.4769 0.75
�
30

1.1661 (0.6206) 0.4964 2.5298 (1.1192) 2.3122 2.5465 (1.1169) 2.3417 1.5
�
31

0.0007 (0.4084) 0.1667 − 0.0315 (0.6012) 0.3621 − 0.0333 (0.6062) 0.3684 0
�
32

− 0.0064 (0.4386) 0.1923 − 0.0286 (0.6702) 0.4497 − 0.0269 (0.674) 0.4546 0
�
33

− 0.0689 (0.3356) 0.1173 − 0.2664 (0.5313) 0.3531 − 0.2732 (0.5281) 0.3534 0
�
10

1.3649 (0.6112) 0.3915 1.4397 (0.5957) 0.3583 1.4935 (0.5859) 0.3431 1.5
�
11

0.0521 (0.3491) 0.1245 0.0398 (0.339) 0.1164 0.0561 (0.3749) 0.1436 0
�
12

0.6217 (0.6415) 0.4604 0.6536 (0.7094) 0.5672 0.7554 (0.6808) 0.5894 0.4
�
13

0.6152 (0.5373) 0.3348 0.6254 (0.5772) 0.3837 0.6761 (0.5781) 0.4102 0.4
�
20

1.3751 (0.4769) 0.2429 1.457 (0.4639) 0.2169 1.5149 (0.4549) 0.2071 1.5
�
21

− 0.003 (0.2767) 0.0765 − 0.0136 (0.272) 0.0741 − 0.0062 (0.3039) 0.0923 0
�
22

0.0118 (0.2698) 0.0729 0.0039 (0.2566) 0.0658 0.0143 (0.2927) 0.0858 0
�
23

0.5612 (0.4646) 0.2417 0.5251 (0.5008) 0.2663 0.5854 (0.5123) 0.2966 0.4
�
30

1.4165 (0.5219) 0.2791 1.4205 (0.5028) 0.259 1.4754 (0.4937) 0.2442 1.5
�
31

0.0554 (0.3063) 0.0968 0.0467 (0.2939) 0.0885 0.058 (0.3226) 0.1074 0
�
32

0.0155 (0.3137) 0.0986 0.0146 (0.2896) 0.084 0.018 (0.3241) 0.1053 0
�
33

0.5599 (0.4971) 0.2725 0.5322 (0.5108) 0.2783 0.5907 (0.5191) 0.3056 0.4
(B) n = 1000

�
10

− 1.5139 (1.2947) 1.676 − 1.6591 (1.3822) 1.9353 − 1.6783 (1.372) 1.9137 − 1.5
�
11

− 0.9119 (0.7743) 0.9453 − 2.0197 (0.9178) 1.1122 − 2.0419 (0.8857) 1.0778 − 1.5
�
12

0.2774 (0.5604) 0.5373 1.0386 (0.8749) 0.8485 1.0519 (0.8651) 0.8393 0.75
�
13

0.7671 (0.6585) 0.4338 0.9992 (0.7405) 0.6104 1.0133 (0.7236) 0.5927 0.75
�
20

− 0.3403 (0.6324) 1.7447 − 1.6824 (1.3291) 1.7991 − 1.6921 (1.3239) 1.789 − 1.5
�
21

0.1122 (0.3708) 0.15 0.0288 (0.6019) 0.3631 0.0296 (0.5981) 0.3585 0
�
22

− 1.8588 (0.7865) 0.7471 − 2.0806 (0.8562) 1.07 − 2.0909 (0.8389) 1.0526 − 1.5
�
23

0.6528 (0.4718) 0.232 0.9831 (0.6509) 0.4779 0.9988 (0.6416) 0.4734 0.75
�
30

1.1897 (0.585) 0.4384 2.5817 (1.0944) 2.3672 2.6016 (1.0786) 2.3765 1.5
�
31

0.007 (0.3917) 0.1534 − 0.0177 (0.5583) 0.312 − 0.0189 (0.5562) 0.3096 0
�
32

0.0022 (0.4454) 0.1984 − 0.0169 (0.6417) 0.412 − 0.0135 (0.642) 0.4122 0
�
33

− 0.0749 (0.3483) 0.1269 − 0.2345 (0.5209) 0.3262 − 0.2435 (0.512) 0.3213 0
�
10

1.3518 (0.674) 0.4761 1.4854 (0.6191) 0.3834 1.525 (0.6155) 0.3793 1.5
�
11

0.0389 (0.3635) 0.1336 0.0282 (0.3483) 0.122 0.0395 (0.3771) 0.1437 0
�
12

0.5937 (0.6152) 0.4159 0.7112 (0.6889) 0.5712 0.7741 (0.6874) 0.6123 0.4
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Remark 5.1  It is worth observing that the model (25) may not satisfy some assump-
tion such a, for instance, the ergodicity (see Remark 1 in Uchida and Yoshida 2012, 
for a sufficient condition). Nevertheless, it would be possible to modify slightly the 

Table 1   (continued)

Par. Bridge LASSO QMLE True value

Avg. (St. Err) M̂SE Avg. (St. Err) M̂SE Avg. (St. Err) M̂SE

�
13

0.5835 (0.5317) 0.3163 0.6615 (0.5822) 0.4072 0.702 (0.593) 0.4427 0.4
�
20

1.3247 (0.5453) 0.328 1.4639 (0.5058) 0.2571 1.5015 (0.5093) 0.2593 1.5
�
21

0.0117 (0.311) 0.0968 − 0.0022 (0.2984) 0.089 0.0021 (0.3255) 0.1059 0
�
22

0.0137 (0.3313) 0.1099 0.0119 (0.2975) 0.0886 0.0253 (0.3294) 0.1091 0
�
23

0.5722 (0.5054) 0.285 0.5925 (0.5377) 0.3261 0.635 (0.5541) 0.3622 0.4
�
30

1.3948 (0.5406) 0.3032 1.4599 (0.4897) 0.2414 1.5036 (0.4846) 0.2348 1.5
�
31

0.0178 (0.2985) 0.0894 0.0153 (0.2981) 0.0891 0.0174 (0.3235) 0.105 0
�
32

0.004 (0.3178) 0.101 0.0035 (0.2968) 0.0881 0.0053 (0.3252) 0.1057 0
�
33

0.5406 (0.4914) 0.2611 0.5723 (0.5241) 0.3043 0.6183 (0.5464) 0.3461 0.4
(C) n = 10000

�
10

− 1.5743(0.3311) 0.1096 − 1.4107(0.2665) 0.0723 − 1.4919(0.2817) 0.0799 − 1.5
�
11

− 0.6301(0.6105) 1.1287 − 1.7535(0.4647) 0.2797 − 1.7576(0.4825) 0.2989 − 1.5
�
12

0.0909(0.2492) 0.4964 0.605(0.3613) 0.1513 0.6291(0.3919) 0.168 0.75
�
13

1.0865(0.5839) 0.4535 1.2614(0.4958) 0.5069 1.2625(0.5173) 0.5299 0.75
�
20

− 0.5559(0.2808) 0.1064 − 2.1026(0.3989) 0.1631 − 2.1682(0.4172) 0.1795 − 1.5
�
21

0.1623(0.3033) 0.1181 0.0336(0.4542) 0.207 0.0476(0.459) 0.2127 0
�
22

− 1.6534(0.5847) 0.3648 − 1.7702(0.4627) 0.2867 − 1.7595(0.4739) 0.2917 − 1.5
�
23

0.8658(0.4269) 0.1953 1.7437(0.5375) 1.2757 1.744(0.5296) 1.2682 0.75
�
30

1.5828(0.3598) 0.1294 1.7036(0.2788) 0.0776 1.7197(0.2945) 0.0867 1.5
�
31

0.0221(0.2168) 0.0474 0.0157(0.2268) 0.0516 0.0067(0.2444) 0.0597 0
�
32

0.0033(0.2153) 0.0463 0.004(0.213) 0.0453 0.0085(0.2293) 0.0526 0
�
33

− 0.1163(0.2848) 0.0945 − 0.1964(0.3236) 0.1431 − 0.1817(0.3486) 0.1544 0
�
10

1.441(0.268) 0.0728 1.4335(0.2691) 0.0735 1.4754(0.2701) 0.0737 1.5
�
11

0.0116(0.0966) 0.0094 0.0071(0.0944) 0.009 0.007(0.1052) 0.0111 0
�
12

0.253(0.1999) 0.0615 0.3061(0.171) 0.038 0.3123(0.1709) 0.0369 0.4
�
13

0.6054(0.1768) 0.0734 0.6014(0.1801) 0.0729 0.6131(0.2053) 0.0875 0.4
�
20

1.8843(0.2431) 0.06 1.8948(0.2583) 0.0678 1.9126(0.2682) 0.0732 1.5
�
21

− 0.007(0.0702) 0.005 − 0.0055(0.073) 0.0053 − 0.0057(0.0768) 0.0059 0
�
22

− 0.0011(0.0509) 0.0026 − 0.0023(0.0694) 0.0048 − 0.0031(0.069) 0.0048 0
�
23

0.8396(0.1905) 0.2295 0.8414(0.1907) 0.2312 0.8432(0.1987) 0.2358 0.4
�
30

0.9928(0.2341) 0.0649 0.9846(0.2369) 0.0665 1.0082(0.256) 0.0752 1.5
�
31

− 0.0054(0.0512) 0.0026 − 0.0065(0.0651) 0.0043 − 0.0062(0.0647) 0.0042 0
�
32

− 0.0014(0.062) 0.0038 0.0002(0.0574) 0.0033 − 0.0023(0.0721) 0.0052 0
�
33

0.4085(0.1261) 0.0159 0.4105(0.1361) 0.0186 0.4168(0.1677) 0.0284 0.4

937937



	 A. De Gregorio, F. Iafrate 

1 3

SDE (25), in order to guarantee that the assumptions fulfill. For instance, each diffu-
sion term in the equations (24) could be replaced with the following function

where M > 0 is a positive constant sufficiently large. Therefore,

turns out to be bounded, which is a required condition for the ergodicity.

The aim of this simulation is the ability to recover the true model from the full 
model which contains a number of unnecessary relations between the variables. 
Moreover, we want to verify that the multiple-penalties bridge estimation technique, 
together with the tuning parameter calibration procedure described above, is able to 
identify the relevant relations among many. As a benchmark comparison, we juxta-
pose the results of the bridge estimation with those of the LASSO method and, with 
the un-penalized QMLE. In order to compute the bridge estimates, we will use as 
initial estimator 𝜃QL

n
 (with p = 2 ) and Ĝn = �̈(�n, 𝜃).

We simulated N = 103 trajectories from model (25) over a long time interval and 
a fine grid, according to a high-frequency sampling scheme by setting Δn = n−1∕3 . 
We tested our model with increasing sample sizes equal to n = 500, n = 1000 and 
n = 10000 , in order to approach the asymptotic regime. The simulation was carried 
out in the context of the YUIMA framework (see Iacus and Yoshida 2018), which 
provides the tools for simulating sample paths of SDEs, performing quasi-maximum 
likelihood and adaptive LASSO estimation.

Let 𝛼̂(k)

n,ij
 and 𝛽(k)

n,ij
 denote the estimate obtained at replication k for the drift parame-

ter �ij and for the diffusion parameter �ij , whose true values are denoted by �0,ij and 
�0,ij , respectively. The performance of each estimation technique is evaluated by 
computing the empirical mean square errors

and by means of the empirical selection frequencies, i.e., number of times that a null 
parameter was estimated as zero. The quantity (27) and the selection frequencies are 
computed for each of the estimation methods we want to compare. The numerical 
results are summarized in Tables 1 and 2, respectively.

With respect to the experiment we conducted, we can draw the following conclu-
sions. In particular we focus on model selection and thus identification of “true” 
causal relations in the context of Granger causality. 

𝜎i(x, 𝛽) =

�
𝛽i0 +

∑3

j=1
𝛽ijxj, �𝛽i0 +∑3

j=1
𝛽ijxj� < M,

M, otherwise,
i = 1, 2, 3,

Σ(x, �) = diag(�2
1
(x, �), �2

2
(x, �), �2

3
(x, �))

(27)

�MSE1ij =
1

N

N∑
k=1

(𝛼̂(k)

n,ij
− 𝛼0,ij)

2 1 ≤ i ≤ 3, 0 ≤ j ≤ 3

�MSE2ij =
1

N

N∑
k=1

(𝛽(k)
n,ij

− 𝛽0,ij)
2 1 ≤ i ≤ 3, 0 ≤ j ≤ 3

938938
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(1)	 The bridge procedure can boost uniformity in model identification. By looking at 
the selection frequencies (Table 2), we immediately note the different behavior 
of the estimators for the drift and diffusion parameters: each technique performs 
worse on the �ij’s. The selection of the diffusion parameters is generally more 
accurate, almost reaching consistency for n = 10000 . This agrees with the results 
of Theorem 4: from a theoretical point of view, we expect a much slower conver-
gence rate for the drift parameters. We see that the selection probability of the 
un-penalized estimator is generally lower than that of penalized techniques, as 
expected. The LASSO and the bridge both show high selection probabilities for 
the diffusion parameters, with the LASSO slightly better. But the main difference 
lies in the behavior of the drift parameters estimators: the bridge has a selec-
tion probability several times higher than the LASSO, especially for moderate 
sample sizes. That is the bridge estimator has a generally higher accuracy in the 
selection of the whole model, losing a bit of accuracy on the diffusion parameters 
group but gaining a much greater improvement for the drift parameters group. To 
illustrate this point, we chose one representative of the drift parameters and one 
of the diffusion parameters. In Fig. 2, we show the empirical distributions of the 
three types of estimators of the chosen representatives (i.e., the estimators of �21 
and �21 ), for each sample size. The results of the empirical mean squared errors 
and selection probabilities allow us to conclude that the adaptive bridge penali-
zation has a good performance uniformly with respect to the several parameter 
groups.

(2)	 The bridge estimator is less sensible to a poor initial guess. In the cases where 
the LASSO estimator gives its better results the quasi-maximum likelihood esti-
mator is more concentrated around zero too. This means that the initial estimates 
for the adaptive procedure were usually quite good and produced higher weights 
for the null components of the vector parameters. The bridge estimator on the 
other hand is able to identify the zero parameters with a higher frequency also 
when the distribution of the QMLE is more spread apart. This suggests that the 

Table 2   Empirical selection frequencies for the zero parameters

Par. n = 500 n = 1000 n = 10000

Bridge LASSO QMLE Bridge LASSO QMLE Bridge LASSO QMLE

�
21

0.382 0.058 0.023 0.398 0.080 0.041 0.566 0.195 0.159
�
31

0.401 0.065 0.031 0.391 0.093 0.044 0.613 0.368 0.326
�
32

0.357 0.056 0.025 0.368 0.086 0.038 0.647 0.410 0.355
�
33

0.404 0.053 0.030 0.402 0.076 0.045 0.487 0.229 0.205
�
11

0.501 0.676 0.169 0.605 0.691 0.324 0.948 0.967 0.962
�
21

0.646 0.803 0.232 0.720 0.793 0.442 0.963 0.981 0.973
�
22

0.588 0.772 0.172 0.685 0.778 0.359 0.981 0.985 0.976
�
31

0.629 0.780 0.217 0.760 0.805 0.470 0.985 0.987 0.983
�
32

0.610 0.771 0.178 0.713 0.791 0.392 0.983 0.987 0.983
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performance of the bridge estimator is, at least in this example, less subordinate 
to a good performance of the initial estimate with respect to the LASSO proce-
dure.

(3)	 The automatic tuning parameter selection criterion is conserva-
tive.  The initial values for the tuning parameters were set to 

Bridge LASSO QMLE

α
21

β
21
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Fig. 2   Comparison of the distributions of the estimators of two of the null parameters, �
21

 and �
21

 : Bridge 
(column 1), LASSO (column 2) and QMLE (column 3). Note that the plots on the last line are on a dif-
ferent scale
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�n,0 = �n,0 = 2, �1 = �2 = 1, q1 = q2 = .9 . It is worth noticing that the automatic 
tuning parameter choice procedure does only a fine adjustments around the initial 
value supplied. This means that the user can choose the magnitude of penaliza-
tion he desires and the algorithm will tweak it to better fit the data. The results 
of the tuning parameter selection procedure obtained in our simulation study, 
for n = 1000 , are summarized in Table 3.

5.2 � Real data prediction

One of the main purposes of the regularized procedures is to improve the predic-
tive capability of the model. In fact, usually when we apply of statistical learning 
techniques we are not interested on the estimates of the parameters as much as we 
are in the ability of the model to provide accurate predictions for future outcomes. 
Bearing this in mind, we tested our model on real data in a predictive study. We 
fitted a model of the form (25) with four components on a financial time series of 
daily closing stock prices of four major tech companies, Google, Amazon, Apple 
and Microsoft, which will be denoted by X1,X2,X3,X4 , respectively. The time series 
consists of n = 3283 observations starting Jan. 3, 2007. The goal is to predict the 
evolution of the price over a year long period. The training data consist of 3031 
observations, until 16-01-2019. The test data are made of the last year of observa-
tions, from 17-01-2019 to 16-01-2020. The data have been downloaded by using the 
service Yahoo Finance and imported into R by using the library quantmod.

The scheme of the experiment is as follows. We first fitted the model (25) on our 
training set by using the adaptive bridge and LASSO methods by using the QMLE 
as initial estimator. Then, we performed parametric bootstrap to obtain simulations 
of the series for the time period corresponding to the test data. In order to assess the 
performance of the estimators, we computed predictive mean square errors and pre-
dictive confidence bands. Let nte be the number of observation in the test set (xti )

nte
i=1

 
and N the number of simulations performed. The corresponding predicted value is 
denoted by (x̂(k)ti

)
nte
i=1

, k = 1,… ,N . The predictive mean square error is computed as

The error bands are computed as the quantiles of the predicted values at each time 
instant. In this case, we show 80% and 95% confidence bands.

The results are summarized in Table 4. It compares the results obtained with the 
bridge and LASSO technique over N = 104 simulations for each of the stocks con-
sidered. The table also reports the result obtained with the unpenalized QMLE as 
a benchmark. The tuning parameters have been set to �0 = �0 = 10, �1 = �2 = 2.5 
for both the LASSO and the bridge estimator and qi, i = 1, 2, , was chosen to be 
0.9. We did not use any tuning parameter selection technique in this predictive 
study. We adopted the rule to set to zero all the parameters for which the absolute 

(28)�MSEp =
1

nte ⋅ N

nte∑
i=1

N∑
k=1

(xti − x̂
(k)
ti
)2.
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value of the estimate was below a certain threshold � , thus obtaining a reduced 
model. We then ran the parametric bootstrap simulations with the reduced model 
for each technique. Initially, the full model had 40 parameters, 11 of which 
were estimated as zero by the bridge estimator and 9 by the LASSO, having set 
� = 10−3 . 

(1)	 Bridge estimator can achieve better predictive capability. Results of Table 4 
show that the predictive MSE of the bridge estimator is smaller on all the three 
data series. The bridge estimator was able to produce improvements on the 
predictive error of 57%, 54%, 55% and 31% for the three series with respect 
to the unpenalized estimator. The LASSO improved the predictive capability 
of the model as well, but in this case the reduction was modest, 12%, 2% and 
11%, 2%, respectively, for the three series. We arrive to the same conclusion by 
comparing the confidence bands depicted in Fig. 3. The bands obtained with the 
bridge estimator, on the first line, are narrower, leading to less uncertainty in the 
prediction.

(2)	 Bridge estimator resulted reliable over longer time periods. By looking at Fig. 4, 
we see how the predictive mean square error changes over time. At first, the 
two errors are similar, but at later times the LASSO error grows at a higher rate 
than the error of the bridge estimator, reaching values sometimes even double 
in the last part of the trajectory. This means that in the case under scrutiny the 
bridge estimator allows to obtain predictions for longer time periods, thanks to 
the slower growth of its error rate.

Table 3   Summary of the 
tuning parameters obtained by 
implementing the adjustment 
procedure (23) for n = 1000

Min. 1st Qu. Median Mean 3rd Qu. Max. St. Dev.

q
1

0.001 0.89 0.94 0.94 0.98 1 0.05
q
2

0.76 0.9 0.93 0.94 0.98 1 0.05
�
0

0.1 1.69 1.99 2.06 2.27 7.37 0.93
�
0

0.1 1.56 1.98 1.96 2.04 10 0.87
�
1

0.1 0.92 1 1.07 1.27 2 0.32
�
2

0.1 0.71 0.99 0.92 1 2 0.34

Table 4   Comparison of 
predictive mean square errors 
over N = 104 simulations

Series M̂SE
p

Bridge LASSO QMLE

X
1

4.64 9.47 10.78
X
2

2.75 5.96 6.09
X
3

4.68 9.34 10.52
X
4

8.12 11.4 11.72
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5.3 � Comparison with disjoint estimation

In Suzuki and Yoshida (2019), the authors introduced the penalized estimator for 
ergodic diffusions (12) defined as follows by

where

(29)𝛼̂(q1)
n

∈ arg min
𝜃∈Θ̄1

Q
(q1)

1,n
(𝛼), 𝛽(q2)

n
∈ arg min

𝜃∈Θ̄2

Q
(q2)

2,n
(𝛽),
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Fig. 3   Predictive MSE obtained with the bridge (row 1), LASSO (row 2) and QML estimators (row 3) 
for each of the four data series. The darker band depicts the 80% quantiles, the lighter band the 95% 
quantiles
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and Ĝj,n are pj × pj random matrices satisfying suitable regularity conditions, 
(𝛼̃n, 𝛽n)

� is an initial unpenalized estimator and � j

i,n
, j = 1, 2 represents suitable 

adaptive weights (see Suzuki and Yoshida 2019, for details). The main difference 
between this estimator and (14) is that the former estimates each parameter group 
separately: in the following, we refer to (29) as disjoint estimator, while we call joint 
estimator (14).

In this section, we compare the performances of the joint and disjoint estima-
tors on a simple model. Consider the following SDE

0 ≤ t ≤ T = 10 , (X1,0,X2,0)
� = (1, 1)� , where (�11, �12, �21, �22)

� ∈ [0, 10]4 
and (�11, �22)� ∈ [0, 10]2 . This model is closely related to the one considered 
(Uchida and Yoshida 2012). We simulated N = 103 sample paths from this 
model, each with n = 103 equally spaced data points, with true parameter value 
(�∗

11
, �∗

12
, �∗

21
, �∗

22
)� = (1, 0, 0, 1)�, (�∗

11
, �∗

22
)� = (0, 0)�.

We compared the performances of the joint and disjoint estimation techniques 
for the bridge estimator with q1 = q2 = 0.9 , with tuning parameters �1 = �2 = 10 , 
�1 = �2 = 2.5 , and QMLE as initial estimator.

Table  5 shows the empirical selection probabilities for the zero parameters, 
while Table 6 shows the empirical mean squared errors (up to the third decimal 
digit).

We see that whereas the selection probabilities are practically equivalent up 
to some Monte Carlo sample error, the mean square errors can be significantly 
higher for the disjoint method. Therefore, the joint estimator turns out to have a 
better performance with respect to the disjoint one, at least for the SDE (30).

Q
(q1)

1,n
(𝛼) = (𝛼 − 𝛼̃n)

�Ĝ1,n(𝛼 − 𝛼̃n) +
p1∑
i=1

𝜅1
i,n
|𝛼i|q1 ,

Q
(q2)

2,n
(𝛽) = (𝛽 − 𝛽n)

�Ĝ2,n(𝛽 − 𝛽n) +
p2∑
i=1

𝜅2
i,n
|𝛽i|q2 ,

(30)
(
dX1,t

dX2,t

)
=

(
−�11X

3
1,t

+ �12(sinX2,t + 2)

+�21(cosX1,t + 2) − �22X2,t

)
dt +

(
�11 1

1 �22

)(
dW1,t

dW2,t

)
,

Table 5   Selection probabilities 
for the parameters with true 
value equal to zero

Sel. Prob. �
12

�
21

�
11

�
22

Joint 0.987 0.998 0.093 0.199
Disjoint 0.997 1.000 0.095 0.218

Table 6   Mean square error for 
each parameter

MSE �
11

�
12

�
21

�
22

�
11

�
22

Joint 0.913 0.004 0.000 0.664 7.824 1.901
Disjoint 0.967 0.001 0.000 0.752 42.700 1.081
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6 � Proofs

Proof of Theorem 1  For the proof of this theorem, we were inspired from the proof of 
Theorem 1 in Suzuki and Yoshida (2019). Let us start by observing that

Let Ki ∶= max1≤j≤p0
i
|�0,j|qi−1, i = 1,… ,m. By exploiting the same arguments 

adopted in the proof of Theorem  1 in Suzuki and Yoshida (2019), we can write 
down

Let || ⋅ || be a matrix norm. We get

Let �min(M) and �max(M) be the minimum and maximum eigenvalue, respectively, of 
a matrix M. We have

where the last step follows from ||�̂−1
n
|| ≥ 𝜌max(�̂

−1
n
) = 1∕𝜌min(�̂n). Furthermore,

0 ≥ Fn(𝜃̂n) − Fn(𝜃0)

= (𝜃̂n − 𝜃n)
�Ĝn(𝜃̂n − 𝜃n) +

m∑
i=1

pi∑
j=1

𝜆i
n,j
|𝜃̂i

n,j
|qi

−

(
(𝜃0 − 𝜃n)

�Ĝn(𝜃0 − 𝜃n) +
m∑
i=1

pi∑
j=1

𝜆i
n,j
|𝜃i

0,j
|qi
)

= (𝜃̂n − 𝜃0)
�Ĝn(𝜃̂n − 𝜃0) + 2(𝜃̂n − 𝜃0)

�Ĝn(𝜃0 − 𝜃n) +
m∑
i=1

pi∑
j=1

𝜆i
n,j

(
|𝜃̂i

n,j
|qi − |𝜃i

0,j
|qi
)
.

pi∑
j=1

𝜆i
n,j

(
|𝜃̂i

n,j
|qi − |𝜃i

0,j
|qi
) ≥ −p0

i
Kia

i
n
|𝜃̂i

n
− 𝜃i

0
|, i = 1,… ,m.

0 ≥ (𝜃̂n − 𝜃0)
�Ĝn(𝜃̂n − 𝜃0) + 2(𝜃̂n − 𝜃0)

�Ĝn(𝜃0 − 𝜃n)

−

m∑
i=1

p0
i
Kir

i
n
ai
n
|(ri

n
)−1(𝜃̂i

n
− 𝜃i

0
)|

≥ (𝜃̂n − 𝜃0)
�Ĝn(𝜃̂n − 𝜃0) + 2(𝜃̂n − 𝜃0)

�Ĝn(𝜃0 − 𝜃n)

−

(
m∑
i=1

p0
i
Kir

i
n
ai
n

)
|A−1

n
(𝜃̂n − 𝜃0)|

≥ [A−1
n
(𝜃̂n − 𝜃0)]

��̂n[A
−1
n
(𝜃̂n − 𝜃0)] + 2[A−1

n
(𝜃̂n − 𝜃0)]

��̂n[A
−1
n
(𝜃0 − 𝜃n)]

−

(
m∑
i=1

p0
i
Kir

i
n
ai
n

)
|A−1

n
(𝜃̂n − 𝜃0)|.

[A−1
n
(𝜃̂n − 𝜃0)]

��̂n[A
−1
n
(𝜃̂n − 𝜃0)] ≥ 𝜌min(�̂n)|A−1

n
(𝜃̂n − 𝜃0)|2

≥ ||�̂−1
n
||−1|A−1

n
(𝜃̂n − 𝜃0)|2,
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Hence, we have proved that

Therefore, from the assumptions

which concludes the proof. 	�  ◻

Proof of Theorem  2  By taking into account the standard approach based on the 
Karush–Kuhn–Tucker (KKT) conditions, we are able to prove the selection consist-
ency property of the bridge-type estimator (6). Let us assume that 𝜃̂i

n,j
≠ 0 for some 

j = p0
i
+ 1,… , pi. Let us note that

where Ĝi
n
 is a pi × � random matrix, for i = 1, 2,… ,m . Furthermore,

for j = p0
i
+ 1,… , pi and i = 1,… ,m.

By Ĝi
n
(j) , we denote the j-th row of Ĝi

n
 . From (32), one has

By Theorem 1 and the assumptions, we have that

while qi(rin)
2−qibi

n

p
⟶∞ . Therefore, for any for j = p0

i
+ 1,… , pi, it turns out that

[A−1
n
(𝜃̂n − 𝜃0)]

��̂n[A
−1
n
(𝜃0 − 𝜃n)] ≥ −|[A−1

n
(𝜃̂n − 𝜃0)]

��̂n[A
−1
n
(𝜃0 − 𝜃n)]|

≥ −|A−1
n
(𝜃̂n − 𝜃0)| |�̂n[A

−1
n
(𝜃0 − 𝜃n)]|

≥ −|A−1
n
(𝜃̂n − 𝜃0)| ||�̂n|| |A−1

n
(𝜃n − 𝜃0)|.

0 ≥ ||�̂−1
n
||−1|A−1

n
(𝜃̂n − 𝜃0)|2 − 2||�̂n||(|A−1

n
(𝜃̂n − 𝜃0)| |A−1

n
(𝜃n − 𝜃0)|)

−

(
m∑
i=1

p0
i
Kir

i
n
ai
n

)
|A−1

n
(𝜃̂n − 𝜃0)|.

(31)

|A−1
n
(𝜃̂n − 𝜃0)| ≤ ||�̂−1

n
||
[
2||�̂n|| |A−1

n
(𝜃n − 𝜃0)| +

m∑
i=1

p0
i
Kir

i
n
ai
n

]
= Op(1),

Ĝn =

⎛
⎜⎜⎜⎝

Ĝ1
n

Ĝ2
n

⋮

Ĝm
n

⎞⎟⎟⎟⎠

(32)

ri
n

𝜕

𝜕𝜃i
j

Fn(𝜃)
|||||𝜃=𝜃̂n

= 2ri
n
Ĝi

n
(j)AnA

−1
n
(𝜃̂n − 𝜃n) + ri

n
qi𝜆

i
n,j
|𝜃̂i

n,j
|qi−1sgn(𝜃̂i

n,j
) = 0,

|2ri
n
Ĝi

n
(j)AnA

−1
n
(𝜃̂n − 𝜃n)| |rin𝜃̂in,j|1−qi = qi(r

i
n
)2−qi𝜆i

n,j
≥ qi(r

i
n
)2−qibi

n
.

|2ri
n
Ĝi

n
(j)AnA

−1
n
(𝜃̂n − 𝜃n)|

���������������������������������
Op(1)

|ri
n
𝜃̂i
n,j
|1−qi

�������
op(1)

= op(1),
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as n ⟶ ∞. 	�  ◻

Proof of Theorem 3  In order to simplify the reading of the proof, we drop the depend-
ence from n; then we set 𝜃̂ ∶= 𝜃̂n, 𝜃 ∶= 𝜃n and Ĝ ∶= Ĝn. We will use an approach 
similar to that developed in the proof of Theorem 3 in Suzuki and Yoshida (2019). 
Let us rewrite Ĝ as a partitioned matrix

where the blocks are given by

We observe that

By setting 𝜃̌ ∶= (𝜃1⋆, 0, 𝜃
2
⋆, 0,… , 𝜃m⋆ , 0)

� ∈ ℝ
�, we have

P
(
𝜃̂i
n,j

≠ 0
) ≤ P

(
|2ri

n
Ĝi

n
(j)AnA

−1
n
(𝜃̂n − 𝜃n)| |rin𝜃̂in,j|1−qi ≥ qi(r

i
n
)2−qibi

n

)
⟶ 0,

Ĝ =

⎛
⎜⎜⎜⎝

Ĝ11 Ĝ12
⋯ Ĝ1m

Ĝ21 Ĝ22
⋯ Ĝ2m

⋮ ⋮ ⋱ ⋮

Ĝm1 Ĝm2
⋯ Ĝmm

⎞
⎟⎟⎟⎠

Ĝij =

(
Ĝ

ij

⋆⋆ Ĝ
ij

⋆∙

Ĝ
ij

∙⋆ Ĝij
∙∙

)
, 1 ≤ i, j ≤ m.

Fn(𝜃) = (𝜃 − 𝜃)�Ĝ(𝜃 − 𝜃) +
m∑
i=1

pi∑
j=1

𝜆i
n,j
|𝜃i

j
|qi

=

m∑
i=1

(𝜃i − 𝜃i)�⋆Ĝ
ii
⋆⋆(𝜃

i − 𝜃i)⋆ +

m∑
i=1

(𝜃i − 𝜃i)�
∙
Ĝii

∙∙
(𝜃i − 𝜃i)∙

+ 2

m∑
i=1

(𝜃i − 𝜃i)�⋆Ĝ
ii
⋆∙(𝜃

i − 𝜃i)∙ + 2

m∑
i=1

∑
j>i

[
(𝜃i − 𝜃i)�⋆Ĝ

ij

⋆⋆(𝜃
j − 𝜃j)⋆

+(𝜃i − 𝜃i)�⋆Ĝ
ij

⋆∙(𝜃
j − 𝜃j)∙ + (𝜃i − 𝜃i)�

∙
Ĝ

ij

∙⋆(𝜃
j − 𝜃j)⋆ + (𝜃i − 𝜃i)�

∙
Ĝij

∙∙
(𝜃j − 𝜃j)∙

]

+

m∑
i=1

p0
i∑

j=1

𝜆i
n,j
|𝜃i

j
|qi +

m∑
i=1

pi∑
j=p0

i
+1

𝜆i
n,j
|𝜃i

j
|qi .

F
n
(𝜃̌) =

m∑
i=1

(𝜃i − 𝜃i)�⋆Ĝ
ii

⋆⋆(𝜃
i − 𝜃i)⋆ +

m∑
i=1

(𝜃i)�∙Ĝ
ii

∙∙𝜃
i

∙ − 2

m∑
i=1

(𝜃i − 𝜃i)�⋆Ĝ
ii

⋆∙𝜃
i

∙

+ 2

m∑
i=1

∑
j>i

[
(𝜃i − 𝜃i)�⋆Ĝ

ij

⋆⋆(𝜃
j − 𝜃j)⋆ − (𝜃i − 𝜃i)�⋆Ĝ

ij

⋆∙𝜃
j

∙
− (𝜃i

∙
)�Ĝ

ij

∙⋆(𝜃
j − 𝜃j)⋆ + (𝜃i

∙
)�Ĝij

∙∙
𝜃j
∙

]

+

m∑
i=1

p
0

i∑
j=1

𝜆i
n,j
|𝜃i

j
|qi .
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Let Bi
n
∶= {min1≤j≤p0

i
|𝜃̂i

j
| > 0, 𝜃̂i

∙
= 0, det(Ĝii

⋆⋆) > 0}, by Theorem  1–2 follows 
P(∩m

i=1
Bi
n
) ⟶ 1. We observe that, if ∩m

i=1
Bi
n
 holds, then Fn(𝜃̂) = min𝜃̌∈ℝ�

0
Fn(𝜃̌), 

where ℝ�

0
∶= {� ∈ ℝ

� ∶ �i
∙
= 0, i = 1,… ,m}. This remark implies on Bi

n

where Z(𝜃̂i) ∶= (
1

2
qi𝜆

i
n,1
|𝜃̂i

1
|qi−1sgn(𝜃̂i

1
),… ,

1

2
qi𝜆

i

n,p0
i

|𝜃̂i
p0
i

|qi−1sgn(𝜃̂i
p0
i

))�. Therefore,

Let �̂i ∶= (�p0
i

1

(ri
n
)2
(Ĝii

⋆⋆)
−1(ri

n
)2Ĝii

⋆∙)
p

⟶�i. Hence,

 where the last step holds because:

Finally,

and then the result (8) holds.

0 =
1

2

𝜕

𝜕𝜃i⋆
Fn(𝜃)

|||||𝜃=𝜃̂
= Ĝii

⋆⋆(𝜃̂
i − 𝜃i)⋆ − Ĝii

⋆∙𝜃
i
∙

+
∑
j>i

[
Ĝ

ij

⋆⋆(𝜃̂
j − 𝜃j)⋆ − Ĝ

ij

⋆∙𝜃
j
∙

]
+ Z(𝜃̂i)

(𝜃̂i − 𝜃i
0
)⋆ = (𝜃i − 𝜃i

0
)⋆ + (Ĝii

⋆⋆)
−1Ĝii

⋆∙𝜃
i
∙

−
∑
j>i

[
(Ĝii

⋆⋆)
−1Ĝ

ij

⋆⋆(𝜃̂
j − 𝜃j)⋆ − (Ĝii

⋆⋆)
−1Ĝ

ij

⋆∙𝜃
j
∙

]
− (Ĝii

⋆⋆)
−1Z(𝜃̂i).

1

ri
n

(𝜃̂i − 𝜃i
0
)⋆ −�i

{
1

ri
n

(𝜃i − 𝜃i
0
)

}

= �Bi
n

{
1

ri
n

(𝜃i − 𝜃i
0
)⋆ +

1

ri
n

(Ĝii
⋆⋆)

−1Ĝii
⋆∙𝜃

i
∙
−
∑
j>i

[
1

ri
n

(Ĝii
⋆⋆)

−1Ĝ
ij

⋆⋆(𝜃̂
j − 𝜃j)⋆ −

1

ri
n

(Ĝii
⋆⋆)

−1Ĝ
ij

⋆∙𝜃
j
∙

]

−
1

ri
n

(Ĝii
⋆⋆)

−1Z(𝜃̂i) −�i

{
1

ri
n

(𝜃i − 𝜃i
0
)

}}
+ �(Bi

n
)c

{
1

ri
n

(𝜃̂i − 𝜃i
0
)⋆ −�i

{
1

ri
n

(𝜃i − 𝜃i
0
)

}}

= �Bi
n

{
(�̂i −�i)

{
1

ri
n

(𝜃i − 𝜃i
0
)

}
−
∑
j>i

[
1

ri
n

(Ĝii
⋆⋆)

−1Ĝ
ij

⋆⋆(𝜃̂
j − 𝜃j)⋆ −

1

ri
n

(Ĝii
⋆⋆)

−1Ĝ
ij

⋆∙𝜃
j
∙

]

−
1

ri
n

(Ĝii
⋆⋆)

−1Z(𝜃̂i)

}
+ �(Bi

n
)c

{
1

ri
n

(𝜃̂i − 𝜃i
0
)⋆ −�i

{
1

ri
n

(𝜃i − 𝜃i
0
)

}}

= �Bi
n

{
(�̂i −�i)

{
1

ri
n

(𝜃i − 𝜃i
0
)

}
+ op(1)

}
+ �(Bi

n
)c

{
1

ri
n

(𝜃̂i − 𝜃i
0
)⋆ −�i

{
1

ri
n

(𝜃i − 𝜃i
0
)

}}
,

1

(ri
n
)2
(Ĝii

⋆⋆)
−1ri

n
rj
n
Ĝ

ij

⋆⋆
1

r
j
n

(𝜃̂j − 𝜃j)⋆ �Bi
n
= op(1)Op(1) = op(1);

1

(ri
n
)2
(Ĝii

⋆⋆)
−1ri

n
rj
n
Ĝ

ij

⋆∙
1

r
j
n

𝜃j
∙
�Bi

n
= op(1);

1

(ri
n
)2
(Ĝii

⋆⋆)
−1ri

n
Z(𝜃̂i) �Bi

n
= op(1).

1

ri
n

(𝜃̂i − 𝜃i
0
)⋆ −�i

{
1

ri
n

(𝜃i − 𝜃i
0
)

}
p

⟶0,
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By adding the assumption A3, (9) is a trivial consequence of (8). Furthermore, if 
G = Γ = diag(Γ11,Γ22,… ,Γmm), we get

and

where ℑii ∶= (Γii)−1, i = 1, 2,… , .m. By exploiting the blockwise inversion of Γii, 
we recall that

where

By taking into account (33) and (34), we obtain

which concludes the proof. 	�  ◻

Proof of Theorem  4  The consistency, the selection consistency and the asymptotic 
normality are consequences of Theorem 1–3. From (31) and the Cauchy–Schwarz 
inequality, we derive the following bound

ℑ = diag(ℑ11,ℑ22,… ,ℑmm)

𝔊ℑ𝔊� = diag(𝔊1 ℑ
11 𝔊�

1
,𝔊2 ℑ

22 𝔊�
2
,… ,𝔊m ℑmm 𝔊�

m
),

(33)ℑii =

⎛
⎜⎜⎝

ℑii
⋆⋆ −ℑii

⋆⋆Γ
ii
⋆∙(Γ

ii
∙∙
)−1

−(Γii
∙∙
)−1Γii

∙⋆ℑ
ii
⋆⋆ (Γii

∙∙
)−1 + (Γii

∙∙
)−1Γii

∙⋆ℑ
ii
⋆⋆Γ

ii
⋆∙(Γ

ii
∙∙
)−1

⎞
⎟⎟⎠

(34)ℑii
⋆⋆ = (Γii

⋆⋆ − Γii
⋆∙(Γ

ii
∙∙
)−1Γii

∙⋆)
−1.

𝔊i ℑ
ii 𝔊�

i
= ℑii

⋆⋆ − (Γii
⋆⋆)

−1Γii
⋆∙(Γ

ii
∙∙
)−1Γii

∙⋆ℑ
ii
⋆⋆ −ℑii

⋆⋆Γ
ii
⋆∙(Γ

ii
∙∙
)−1Γii

∙⋆(Γ
ii
⋆⋆)

−1

+ (Γii
⋆⋆)

−1Γii
⋆∙(Γ

ii
∙∙
)−1Γii

∙⋆(Γ
ii
⋆⋆)

−1

+ (Γii
⋆⋆)

−1Γii
⋆∙(Γ

ii
∙∙
)−1Γii

∙⋆ℑ
ii
⋆⋆Γ

ii
⋆∙(Γ

ii
∙∙
)−1Γii

∙⋆(Γ
ii
⋆⋆)

−1

= ℑii
⋆⋆

[
Γii
⋆⋆ − Γii

⋆∙(Γ
ii
∙∙
)−1Γii

∙⋆

]
(Γii

⋆⋆)
−1 + (Γii

⋆⋆)
−1Γii

⋆∙(Γ
ii
∙∙
)−1Γii

∙⋆(Γ
ii
⋆⋆)

−1

− (Γii
⋆⋆)

−1Γii
⋆∙(Γ

ii
∙∙
)−1Γii

∙⋆ℑ
ii
⋆⋆

[
Γii
⋆⋆ − Γii

⋆∙(Γ
ii
∙∙
)−1Γii

∙⋆

]
(Γii

⋆⋆)
−1

= (Γii
⋆⋆)

−1,

�|A−1
n
(𝜃̂n − 𝜃0)|q ≤ 22q−1�

[
||�̂−1

n
||q ||�̂n||q |A−1

n
(𝜃QL

n
− 𝜃0)|q

]

+ 2(q−1)(m−1)
m∑
i=1

�
[
p0
i
Kir

i
n
ai
n

]q

≤ 22q−1
√

�||�̂−1
n
||2q

(
�||�̂n||4q

)1∕4 (
�|A−1

n
(𝜃QL

n
− 𝜃0)|4q

)1∕4

+ 2(q−1)(m−1)
m∑
i=1

�
[
p0
i
Kir

i
n
ai
n

]q
.
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From the assumptions, the polynomial-type large deviation result (25) and Proposi-
tion 1 in Yoshida (2011), we obtain the uniform Lq-boundedness of the estimator. 	
� ◻
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