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Abstract
We propose a new estimation scheme for estimation of the volatility parameters of 
a semimartingale with jumps based on a jump detection filter. Our filter uses all of 
the data to analyze the relative size of increments and to discriminate jumps more 
precisely. We construct quasi-maximum likelihood estimators and quasi-Bayesian 
estimators and show limit theorems for them including Lp-estimates of the error 
and asymptotic mixed normality based on the framework of the quasi-likelihood 
analysis. The global jump filters do not need a restrictive condition for the distri-
bution of the small jumps. By numerical simulation, we show that our “global” 
method obtains better estimates of the volatility parameter than the previous “local” 
methods.

Keywords Volatility · Jump · Global filter · High-frequency data · Quasi-likelihood 
analysis · Stochastic differential equation · Order statistic · Asymptotic mixed 
normality · Polynomial-type large deviation · Moment

1 Introduction

We consider an �-dimensional semimartingale Y = (Yt)t∈[0,T] admitting a 
decomposition
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on a stochastic basis (�,F,�,P) with a filtration � = (Ft)t∈[0,T] . Here, b = (bt)t∈[0,T] 
is an �-dimensional càdlàg adapted process, X = (Xt)t∈[0,T] is a �-dimensional càdlàg 
adapted process, w = (wt)t∈[0,T] is an �-dimensional standard �-Wiener process, � is 
a parameter in the closure of an open set � in ℝ� , and 𝜎 ∶ ℝ

𝖽 × �̄� → ℝ
𝗆 ⊗ℝ

𝗋 is a 
continuous function. J = (Jt)t∈[0,T] is the jump part of Y, i.e., Jt =

∑
s∈[0,t] �Ys , where 

�Ys = Ys − Ys− and �Y0 = 0 . We assume J0 = 0 and 
∑

t∈[0,T] 1{𝛥Jt≠0} < ∞ a.s. Model 
(1) is a stochastic regression model, but for example, it can express a diffusion-type 
process with jumps �JX contaminated by exogenous jump noise JY:

with J = JX + JY , and as a special case, a jump-diffusion process. We want to esti-
mate the true value �∗ ∈ � of � based on the data (Xtj

, Ytj )j=0,1,...,n , where 
tj = tn

j
= jT∕n . Asymptotic properties of estimators will be discussed when n → ∞ . 

That is, the observations are high-frequency data. The data of the processes b and J 
are not available since they are not directly observed.

Today, a substantial amount of literature is available on parametric estimation 
of the diffusion parameter � of diffusion-type processes with/without jumps. In the 
ergodic diffusion case of J = 0 and T → ∞ , the drift coefficient is parameterized 
as well as the diffusion coefficient. Certain asymptotic properties of estimators are 
found in Prakasa Rao (1983, 1988). The joint asymptotic normality of estimators 
was given in Yoshida (1992) and later generalized in Kessler (1997). The quasi-
likelihood analysis (QLA, Yoshida 2011) ensures not only limit theorems but also 
moment convergence of the QLA estimators, i.e., the quasi-maximum likelihood 
estimator (QMLE) and the quasi-Bayesian estimator (QBE). The adaptive estimators 
(Uchida and Yoshida 2012, 2014) and the hybrid multi-step estimators (Kamatani 
and Uchida 2014) are of practical importance from computational aspects. Statistics 
becomes nonergodic under a finite time horizon T < ∞ . Dohnal (1987) discussed 
estimation of the diffusion parameter based on high-frequency data. Stable conver-
gence of the quasi-maximum likelihood estimator was given by Genon-Catalot and 
Jacod (1993). Uchida and Yoshida (2013) showed stable convergence of the quasi-
Bayesian estimator and moment convergence of the QLA estimators. The methods 
of the QLA were essential there and will be applied in this article. The nonsynchro-
nous case is addressed by Ogihara and Yoshida (2014) within QLA. As for inference 
for jump-diffusion processes, under ergodicity, Ogihara and Yoshida (2011) showed 
asymptotic normality of the QLA estimators and moment convergence of their error. 
They used a type of optimal jump-filtered quasi-likelihood function in Shimizu and 
Yoshida (2006).

The filter in the quasi-likelihood functions of Shimizu and Yoshida (2006) 
is based on the magnitude of the absolute value of the increment: {|𝛥iY| > Ch𝜌

n
} , 

where �iY = Yti − Yti−1 , � ∈ [0, 1∕2) and C > 0 . If an increment is sufficiently large 
relative to the threshold, then it is classified as a jump. If, on the other hand, the 

(1)Yt =Y0 + ∫
t

0

bsds + ∫
t

0

�(Xs, �)dws + Jt, t ∈ [0, T]

{
Yt = Xt + JY

t
,

Xt = X0 + ∫ t

0
bsds + ∫ t

0
�(Xs, �)dws + JX

t
,
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size of the increment is “moderate,” it is regarded as coming from the continuous 
part. Then, the parameters in the continuous and jump parts can optimally be esti-
mated by respective datasets obtained by classification of increments. This threshold 
is natural, and in fact, historically, the idea goes back to studies of limit theorems for 
semimartingales, even further back to Lévy processes.

However, this jump detection filter has a caveat. Though the efficiency of the esti-
mators has been established theoretically, it is known that their real performance 
strongly depends on a choice of tuning parameters; see, e.g., Shimizu (2009), Iacus 
and Yoshida (2018). The filter is each time based on only one increment of the data. 
In this sense, this filter can be regarded as a local method. This localism would cause 
misclassification of increments in practice, even though it should not occur math-
ematically by the large deviation principle in the limit, and estimated values’ insta-
bility and strong dependency on the tuning parameters. To overcome these prob-
lems, we introduce a global filtering method, which we call the �-threshold method. 
It uses all of the data to more accurately detect increments having jumps, based on 
the order statistics associated with all increments. Another advantage of the global 
filter is that it does not need any restrictive condition on the distribution of small 
jumps. This paper provides efficient parametric estimators for the model (1) under 
a finite time horizon T < ∞ by using the �-threshold method, while applications of 
this method to the realized volatility and other related problems are straightforward. 
Additionally, it should be remarked that though the �-threshold method involves the 
tuning parameter � to determine a selection rule for increments, it is robust against 
the choice of � as we will see later.

The organization of this paper is as follows. In Sect.  2.2, we introduce the �
-quasi-log likelihood function ℍn(�;�) , which is a truncated version of the quasi-log 
likelihood function made from local Gaussian approximation, based on the global 
filter for the tuning parameter � . The �-quasi-maximum likelihood estimator ( �-
QMLE) �̂�M,𝛼

n
 is defined with respect to ℍn(�;�) . Since the truncation is formulated 

by the order statistics of the increments, this filter destroys adaptivity and martin-
gale structure. However, the global filtering lemmas in Sect. 2.4 enable us to recover 
these properties. Section 2.5 gives a rate of convergence of the �-QMLE �̂�M,𝛼

n
 in Lp 

sense. In order to prove it, with the help of the QLA theory (Yoshida 2011), the 
so-called polynomial-type large deviation inequality is derived in Theorem 1 for an 
annealed version of the quasi-log likelihood ℍ�

n
(�;�) of (11), where � is the anneal-

ing index. Moreover, the (�, �)-quasi-Bayesian estimator ( (�, �)-QBE) �̂�B,𝛼,𝛽
n

 can be 
defined as the Bayesian estimator with respect to ℍ�

n
(�;�) as (12). Then, the polyno-

mial-type large deviation inequality makes it possible to prove Lp-boundedness of 
the error of the (�, �)-QBE �̂�B,𝛼,𝛽

n
 (Proposition 2). The �-QMLE and (�, �)-QBE do 

not attain the optimal rate of convergence when the parameter � is fixed though the 
fixed �-method surely removes jumps as a matter of fact. In Sect. 3, we introduce a 
quasi-likelihood function ℍn(�) depending on a moving level �n . The random field 
ℍn(�) is more aggressive than ℍn(�;�) with a fixed � . Then, a polynomial-type large 
deviation inequality is obtained in Theorem 2 but the scaling factor is n−1∕2 in this 
case so that we can prove 

√
n-consistency in Lp sense for both QMLE �̂�M,𝛼n

n  and QBE 
�̂�
B,𝛼n
n  associated with the random field ℍn(�) (Proposition 3). Stable convergence of 

these estimators and moment convergence are validated by Theorem 3. The moving 
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threshold method attains the optimal rate of convergence in contrast to the fixed-� 
method. However, the theory requires the sequence �n should keep a certain bal-
ance: too large �n causes deficiency and too small �n may fail to filter out jumps. To 
balance efficiency of estimation and precision in filtering by taking advantage of the 
stability of the fixed-� scheme, in Sect. 4, we construct a one-step estimator �̌�M,𝛼

n
 for 

a fixed � and the aggressive ℍn(�) with the �-QMLE �̂�M,𝛼
n

 as the initial estimator. 
Similarly, the one-step estimator �̌�B,𝛼,𝛽

n
 is constructed for fixed (�, �) and ℍn(�) with 

the (�, �)-quasi-Bayesian estimator �̂�B,𝛼,𝛽
n

 for the initial estimator. By combining the 
results in Sects. 2 and 3, we show that these estimators enjoy the same stable con-
vergence and moment convergence as QMLE �̂�M,𝛼n

n  and QBE �̂�B,𝛼nn  . It turns out in 
Section 6 in Supplementary materials that the so-constructed estimators are accurate 
and quite stable against � , in practice. In Sect. 5, we relax the conditions for stable 
convergence by a localization argument. Section 6 in Supplementary materials pre-
sents some simulation results and shows that the global filter can detect jumps more 
precisely than the local threshold methods.

2  Global filter: ̨ ‑threshold method

2.1  Model structure

We will work with model (1). To structure the model suitably, we begin with an 
example.

Example 1 Consider a two-dimensional stochastic differential equation partly having 
jumps:

We can set Y = (�, �) , X = (�, �, �) and J = (J� , 0) . No jump filter is necessary for 
the component �.

This example suggests that different treatments should be given componentwise. 
We assume that

for some �k ×�k nonnegative symmetric matrices �(k)(x, �) , k = 1, ..., � , and we fur-
ther assume that w = (w(k))k=1,...,� with � =

∑�

k=1
�k = � . Let S = 𝜎⊗2 = 𝜎𝜎⋆ . Then, 

S(x, �) has the form of

for �k ×�k matrices S(k)(x, 𝜃)= 𝜎(k)(𝜎(k))⋆(x, 𝜃) , k = 1, ..., � . According to the blocks 
of S, we write

{
d�t = b

�
t dt + ��(�t, �t, �t, �)dw

�
t + dJ

�
t

d�t = b
�
t dt + ��(�t, �t, �t, �)dw

�
t .

� = diag[�(1)(x, �),… , �(�)(x, �)]

S(x, �) = diag
[
S(1)(x, �), ..., S(�)(x, �)

]
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Let NX
t
=
∑

s≤t 1{�Xs≠0} . We will pose a condition that NX
T
< ∞ a.s. The jump part JX 

of X is defined by JX
t
=
∑

s≤t �Xs.

2.2  Quasi‑likelihood function by order statistics

In this section, we will give a filter that removes �J . Shimizu and Yoshida (2006) 
and Ogihara and Yoshida (2011) used certain jump detection filters that cut large 
increments �jY  by a threshold comparable to diffusion increments. It is a local fil-
ter because the classification is done for each increment without using other incre-
ments. Contrarily, in this paper, we propose a global filter that removes increments 
�jY  when |�jY| is in an upper class among all data {|�iY|}i=1,...,n.

We prepare statistics S̄(k)
n,j−1

 ( k = 1, ..., � ; j = 1, ..., n ; n ∈ ℕ ) such that each S̄(k)
n,j−1

 is 

an initial estimator of S(k)(Xtj−1
, �∗) up to a scaling constant; that is, there exists a 

(possibly unknown) positive constant c(k) such that every S(k)(Xtj−1
, �∗) is approxi-

mated by c(k)S̄(k)
n,j−1

 , as precisely stated later. We do not assume that S̄(k)
n,j−1

 is Ftj−1

-measurable.

Example 2 Let K be a positive integer. Let (īn) be a diverging sequence of positive 
integers, e.g., īn ∼ h−1∕2 . Let

Here, �jY
(k) reads 0 when j ≤ 0 or j > n . An example of S̄(k)

n,j−1
 is

and suppose that inf
x,�

�min(S
(k)(x, �)) ≥ �0 for some positive constant �0 , where �min is 

the minimum eigenvalue of the matrix.

Let � = (�(k))k∈{1,…,�} ∈ [0, 1)� . Our global jump filter is constructed as follows. 
Denote by J(k)

n
(�(k)) the set of j ∈ {1, ..., n} such that

for k = 1, ..., � and n ∈ ℕ . If �(k) = 0 , then J(k)
n
(�(k)) = {1, ...., n} ; that is, there is no 

filter for the kth component. The density function of the multidimensional normal 
distribution with mean vector � and covariance matrix C is denoted by �(z;�,C) . Let

Yt =

⎡
⎢⎢⎣

Y
(1)
t

⋮

Y
(�)
t

⎤
⎥⎥⎦
, bt =

⎡
⎢⎢⎣

b
(1)
t

⋮

b
(�)
t

⎤
⎥⎥⎦
, wt =

⎡
⎢⎢⎣

w
(1)
t

⋮

w
(�)
t

⎤
⎥⎥⎦
, Jt =

⎡
⎢⎢⎣

J
(1)
t

⋮

J
(�)
t

⎤
⎥⎥⎦
.

Ŝ
(k)

n,j−1
=

∑īn

i=−īn

�
𝛥j−iY

(k)
�⊗2

1��𝛥j−i−K+1Y
(k)�∧⋯∧�𝛥j−i−1Y

(k)�≥�𝛥j−iY
(k)�
�

hmax

�
1,
∑īn

i=−īn
1��𝛥j−i−K+1Y

(k)�∧⋯∧�𝛥j−i−1Y
(k)�≥�𝛥j−iY

(k)�
�
� .

(2)S̄
(k)

n,j−1
=Ŝ

(k)

n,j−1
1
{𝜆min(Ŝ

(k)

n,j−1
)>2−1𝜖0}

+ 2−1𝜖0I�k
1
{𝜆min(Ŝ

(k)

n,j−1
)≤2−1𝜖0},

#
{
j� ∈ {1, ..., n}; |(S̄(k)

n,j�−1
)−1∕2𝛥j�Y

(k)|>|(S̄(k)
n,j−1

)−1∕2𝛥jY
(k)|} ≥𝛼(k)n
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equivalently,

for a random variable V ∼ �2(�k) , the Chi-squared distribution with �k degrees of 
freedom, where c(�(k)) is determined by

Let p(�(k)) = 1 − �(k) . Now the � -quasi-log likelihood function ℍn(�;�) is defined 
by

where

and C(k)
∗  are arbitrarily given positive constants. For a tensor T = (Ti1,...,ik )i1,...,ik , we 

write

for x1 = (x
i1
1
)i1 , ..., xk = (x

ik
k
)ik . We denote u⊗r = u⊗⋯⊗ u (r times). Brackets [ ] 

stand for a multilinear mapping. This notation also applies to tensor-valued tensors.
If �(k) = 0 , then J

(k)
n
(�(k)) = {1, ..., n} , c(�(k)) = +∞ , p(k)(�(k)) = 1 and 

q(k)(�(k)) = 1 , so the kth component of ℍn(�;�) essentially becomes the ordinary 
quasi-log likelihood function by local Gaussian approximation.

Remark 1 (i) The cap K(k)

n,j
 can be removed if a suitable condition is assumed for the 

big jump sizes of J, e.g., supt∈[0,T] |𝛥Jt| ∈ L∞-= ∩p>1L
p . It is also reasonable to use

q(k)(𝛼(k)) =

Tr

(
∫
{|z|≤c(𝛼(k))1∕2} z⊗2𝜙(z;0, I�k

)dz

)

Tr

(
∫
ℝ

�k
z⊗2𝜙(z;0, I�k

)dz

) ,

q(k)(𝛼(k)) =(�k)
−1Tr

(
�{|z|≤c(𝛼(k))1∕2}

z⊗2𝜙(z;0, I�k
)dz

)

=(�k)
−1E[V1{V≤c(𝛼(k))}],

P[V ≤ c(�(k))] =1 − �(k).

ℍn(𝜃;𝛼) = −
1

2

�∑
k=1

∑
j∈J(k)

n
(𝛼(k))

{
q(k)(𝛼(k))−1h−1S(k)(Xtj−1

, 𝜃)−1
[(
𝛥jY

(k)
)⊗2]

K
(k)

n,j

+ p(𝛼(k))−1 log det S(k)(Xtj−1
, 𝜃)

}

(3)K
(k)

n,j
=1{|𝛥jY

(k)|<C(k)
∗ n

−
1
4

}

T[x1, ..., xk] =T[x1 ⊗⋯⊗ xk] =
∑
i1,...,ik

Ti1,...,ik x
i1
1
⋯ x

ik
k

K
(k)

n,j
=1{|S̄−1∕2

n,j−1
𝛥jY

(k)|<C(k)
∗ n

−
1
4

}
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if S̄n,j−1 is uniformly L∞--bounded. In any case, the factor K(k)

n,j
 only serves for remov-

ing the effects of too big jumps and the classification is practically never affected by 
it since the global filter puts a threshold of the order less than n−1∕2 log n . As a mat-
ter of fact, the threshold of K(k)

n,j
 is of order O(n−1∕4) , which is far looser than the ordi-

nary local filters, and the truncation is exercised only with exponentially small prob-
ability. On the other hand, the global filter puts no restrictive condition on the 
distribution of the size of small jumps, like vanishing at the origin or boundedness 
of the density of the jump sizes, as assumed for the local filters so far. It should be 
emphasized that the difficulties in jump filtering are focused on the treatments of 
small jumps that look like the Brownian increments. (ii) The symmetry of �(k)(x, �) 
is not restrictive because �(k)(Xt , �)dw

(k)
t = S(k)(Xt , �)

1∕2 ⋅
(
S(k)(Xt, �)

−1∕2�(k)(Xt , �)dw
(k)
t

) . On the 
other hand, we could introduce an �k ×�k random matrix �̄�(k)

n,j−1
 approximating 

�(k)(Xtj−1
, �∗) up to scaling and use 

(
�̄�
(k)

n,j−1

)−1
𝛥jY

(k) for 
(
S̄
(k)

n,j−1

)−1∕2
𝛥jY

(k) , in order to 
remove the assumption of symmetry.

The �-quasi-maximum likelihood estimator of � ( �-QMLE) is any measurable 
mapping �̂�M,𝛼

n
 characterized by

We will identify an estimator of � that is a measurable mapping of the data, with the 
pullback of it to � since the aim of discussion here is to obtain asymptotic proper-
ties of the estimators’ distribution.

2.3  Assumptions

We assume Sobolev embedding inequality

for a bounded open set � in ℝ� , where C�,p is a constant, p > � . This inequality 
is valid, e.g., if � has a Lipschitz boundary. Denote by Ca,b

↑
(ℝ𝖽 × 𝛩;ℝ𝗆 ⊗ℝ

𝗋) the 
set of continuous functions f ∶ ℝ

𝖽 × 𝛩 → ℝ
𝗆 ⊗ℝ

𝗋 that have continuous deriva-
tives �s1 ⋯ �s𝓁 f  for all (s1, ..., s�) ∈ {�, x}� such that #{i ∈ {1, ...,�}; si = x} ≤ a and 
#{i ∈ {1, ...,�}; si = �} ≤ b , and each of these derivatives satisfies

for some positive constant C(s1, ..., s�) . Let ‖V‖p =
�
E[�V�p])1∕p for a vector-valued 

random variable V and p > 0 . Let N(k)
t =

∑
s≤t 1{�J(k)s ≠0} and Nt =

∑
s≤t 1{�Js≠0} We 

shall consider the following conditions. Let X̃ = X − JX for JX =
∑

s∈[0,⋅] �Xs.
[F1]�   (i)   For every p > 1 , supt∈[0,T] ‖Xt‖p < ∞ and there exists a constant C(p) 

such that

ℍn(�̂�
M,𝛼
n

;𝛼) =max
𝜃∈�̄�

ℍn(𝜃;𝛼).

sup
�∈�

||f (�)|| ≤C�,p

{ 1∑
i=0

��

||�i�f (�)||pd�
}1∕p

(f ∈ C1(�))

sup
�∈�

||�s1 ⋯ �s𝓁 f (x, �)
|| ≤C(s1, ..., s𝓁)(1 + |x|C(s1,...,s𝓁 )) (x ∈ ℝ

�)
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(ii)    supt∈[0,T] ‖bt‖p < ∞ for every p > 1.
(iii)    𝜎 ∈ C

2,𝜅
↑

(ℝ𝖽 × 𝛩;ℝ𝗆 ⊗ℝ
𝗋) , S(Xt, �) is invertible a.s. for every � ∈ � , and 

supt∈[0,T],𝜃∈𝛩 ‖S(Xt, 𝜃)
−1‖p < ∞ for every p > 1.

(iv)    NT ∈ L∞- and NX
T
∈ L∞-.

[F2]   (i)   S̄(k)
n,j−1

 are symmetric, invertible and supn∈ℕ maxj=1,...,n
‖‖(S̄(k)n,j−1

)−1‖‖p < ∞ 
for every p > 1 and k = 1, ..., �.

(ii)   There exist positive constants �0 and c(k) ( k = 1, ..., � ) such that

for every p > 1 and k = 1, ..., �.

Remark 2 In [F2] (ii), we assumed that there exists a positive constant c(k) such that 
every S(k)(Xtj−1

, �∗) is approximated by c(k)S̄(k)
n,j−1

 . In estimation of � , we only assume 
positivity of c(k) but the values of them can be unknown since the function ℍn does 
not involve c(k) . When S(k)(Xtj−1

, �∗) is a scalar matrix, Condition [F2] is satisfied 
simply by S̄(k)

n,j−1
= I�k

.

Remark 3 The S̄(k)
n,j−1

 given by (2) in Example 2 satisfies Condition [F2] with 
�0 = 1∕4 if one takes īn ∼ h−1∕2 . The constant c(k) depends on the depth K of the 
threshold. It is possible to give an explicit expression of c(k) but not required by the 
condition.

2.4  Global filtering lemmas

The �-quasi-log likelihood function ℍn(�;�) involves the summation regarding the 
index set J(k)

n
(�(k)) . The global jump filter J(k)

n
(�(k)) avoids taking jumps but it com-

pletely destroys the martingale structure that the ordinary quasi-log likelihood func-
tion originally possessed, and without the martingale structure, we cannot follow a 
standard way to validate desirable asymptotic properties the estimator should have. 
However, it is possible to recover the martingale structure to some extent by deform-
ing the global jump filter to a suitable deterministic filter. In this section, we will 
give several lemmas that enable such a deformation.

As before, � = (�(k))k=1,...,� is a fixed vector in [0, 1)� . We may assume that 
�0 ∈ (0, 1∕2] in [F2]. Let

By [F1]0 and [F2], we have

for every p > 1 , where

‖X̃t − X̃s‖p ≤ C(p)�t − s�1∕2 (t, s ∈ [0, T]).

sup
n∈ℕ

max
j=1,...,n

n𝛾0‖‖S(k)(Xtj−1
, 𝜃∗) − c(k)S̄

(k)

n,j−1
‖‖p <∞

U
(k)

j
=(c(k))−1∕2h−1∕2(S̄

(k)

n,j−1
)−1∕2𝛥jY

(k) and W
(k)

j
= h−1∕2𝛥jw

(k).

sup
j=1,...,n

‖‖R(k)

j
1{�jN

X=0}
‖‖p = O(n−�0 )
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Remark that A1∕2 =
1

�
∫ ∞

0
�−1∕2A(� + A)−1d� for a positive-definite matrix A.

Denote |W (k)

j
| and |U(k)

j
| by W

(k)

j
 and U

(k)

j
 , respectively. W

(k)

(j)
 denotes the jth-

ordered statistic of {W
(k)

1
, ...,W

(k)

n
} , and U

(k)

(j)
 denotes the jth-ordered statistic of 

{U
(k)

1
, ...,U

(k)

n
} . The rank of W

(k)

j
 is denoted by r(W

(k)

j
) . Denote by q�(k) the �(k)-quan-

tile of the distribution of W
(k)

1
 . The number q�(k) depends on �k.

Let 0 < 𝛾2 < 𝛾1 < 𝛾0 . Let a(k)
n

= ⌊�̄�(k)n − n1−𝛾2⌋ , where �̄�(k) = 1 − 𝛼(k) = p(𝛼(k)) . 
Define the event N(k)

n,j
 by

Lemma 1 Suppose that �(k) ∈ (0, 1) . Then P
[⋃

j=1,..,,n
N

(k)

n,j

]
= O(n−L) as n → ∞ 

for every L > 0.

Proof We have

for every L > 0 , where (c(n))n∈ℕ is a sequence of numbers such that infn∈ℕ c(n) > 0 
(the existence of such c(n) can be proved by the mean value theorem). The last 
equality in the above estimates is obtained by the following argument. For 
Aj = {W

(k)

j
≤ q�̄�(k) + n−𝛾1} and Zj = 1Aj

− P[A1] , by the Burkholder–Davis–Gundy 
inequality, Jensen’s inequality and |Zj| ≤ 1 , we obtain

for every p > 1.
Let

We can estimate P
[
W

(k)

(a
(k)
n )

< q�̄�(k) − n−𝛾1
]
 , and so we have

R
(k)

j
= U

(k)

j
−W

(k)

j
− (c(k))−1∕2h−1∕2(S̄

(k)

n,j−1
)−1∕2𝛥jJ

(k).

N
(k)

n,j
=
{
r(W

(k)

j
) ≤ a(k)

n
− n1−𝛾2

}
∩
{
W

(k)

(a
(k)
n )

−W
(k)

j
< n−𝛾1

}
.

P
[
W

(k)

(a
(k)
n )

> q�̄�(k) + n−𝛾1
]

=P

[ n∑
j=1

1
{W

(k)

j
≤q

�̄�(k)
+n−𝛾1}

< a(k)
n

]

=P

[
n−1∕2

n∑
j=1

{
1
{W

(k)

j
≤q

�̄�(k)
+n−𝛾1}

− P
[
W

(k)

j
≤ q�̄�(k) + n−𝛾1

]}
< −n

1

2
−𝛾1c(n)

]

=O(n−L)

P

[
n−1∕2

n∑
j=1

Zj < −n
1

2
−𝛾1c(n)

]
≲ n

−2p(
1

2
−𝛾1)c(n)−2pE

[
n−1

n∑
j=1

|Zj|2p
]

= O(n−p(1−2𝛾1))

B(k)
n

=
{||W

(k)

(a
(k)
n )

− q�̄�(k)
|| > n−𝛾1

}
.
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for every L > 0.
By definition, on the event N(k)

n,j
∩ (B(k)

n
)c , the number of data W

(k)

j�
 on the interval [

q�̄�(k) − 2n−𝛾1 , q�̄�(k) + 2n−𝛾1
]
 is not less than n1−�2 . However,

for every L > 0 . Indeed, the family

is bounded in L∞- (this can be proved by the same argument as above). Since the 
estimate (5) is independent of j ∈ {1, ..., n} , combining it with (4), we obtain

as n → ∞ for every L > 0 . Now the desired inequality of the lemma is obvious.   ◻

Let

where

Let L(k)
n

= {j; �jN
(k) + �jN

X ≠ 0} . Let

Lemma 2 

on �n . In particular

(4)P
[
B(k)
n

]
=O(n−L)

(5)

P

[ n∑
j�=1

1{
W

(k)

j�
∈
[
q
�̄�(k)

−2n−𝛾1 ,q
�̄�(k)

+2n−𝛾1
]} ≥ n1−𝛾2

]

=P

[
n−1+𝛾1

n∑
j�=1

1{
W

(k)

j�
∈
[
q
�̄�(k)

−2n−𝛾1 ,q
�̄�(k)

+2n−𝛾1
]} ≥ n𝛾1−𝛾2

]

=O(n−L)

{
n−1∕2

n∑
j�=1

(
1{

W
(k)

j�
∈
[
q
�̄�(k)

−2n−𝛾1 ,q
�̄�(k)

+2n−𝛾1
]} − E

[
1{

W
(k)

j�
∈
[
q
�̄�(k)

−2n−𝛾1 ,q
�̄�(k)

+2n−𝛾1
]}

])}

n∈ℕ

max
j=1,..,,n

P
[
N

(k)

n,j

]
= O(n−L)

Ĵ
(k)

n
(𝛼(k)) =

{
j ∈ {1, ..., n}; r(W

(k)

j
) ≤ â(k)

n

}
,

â(k)
n

=⌊a(k)
n

− n1−𝛾2⌋.

𝛺n =

{
NT + NX

T
< n1−𝛾2

}

⋂( ⋂
k=1,...,�

⋂
j=1,...,n

[{|R(k)

j
|1{𝛥jN

X=0} < 2−1n−𝛾1
}
∩ (N

(k)

n,j
)c
])

.

(6)
Ĵ
(k)

n
(𝛼(k)) ∩ (L(k)

n
)c ⊂J(k)

n
(𝛼(k))

(7)#
[
J
(k)
n
(𝛼(k))⊖ Ĵ

(k)

n
(𝛼(k))

] ≤c∗n1−𝛾2 + N
(k)

T
+ NX

T
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on �n, where c∗ is a positive constant. Here, ⊖ denotes the symmetric difference 
operator of sets.

Proof On �n , if a pair (j1, j2) ∈ (L(k)
n
)c × (L(k)

n
)c satisfies r(W

(k)

j1
) ≤ â(k)

n
 and 

r(W
(k)

j2
) ≥ a(k)

n
 , then U(k)

j1
< W

(k)

j1
+ 2−1n−𝛾1 ≤ W

(k)

(a
(k)
n )

− 2−1n−𝛾1 ≤ W
(k)

j2
− 2−1n−𝛾1 < U

(k)

j2
 . There-

fore, if j ∈ Ĵ
(k)

n
(𝛼(k)) ∩ (L(k)

n
)c , then j ∈ J

(k)
n
(�(k)) since one can find at least 

⌈�(k)n⌉(≤ (n − a(k)
n

+ 1) − n1−�2) variables among U
(k)

(a
(k)
n )
, .....,U

(k)

(n)
 that are larger than 

U
(k)

j
 . Therefore, (6) holds, and so does (7) as follows. From (6), we have 

#
[
J
(k)
n
(𝛼(k))⊖ Ĵ

(k)

n
(𝛼(k))

] ≤ � + #L(k)
n

 for

Suppose that j ∈ J
(k)
n
(𝛼(k)) ∩ Ĵ

(k)

n
(𝛼(k))c ∩ (L(k))c . In case r(W

(k)

j
) < a(k)

n
 , since 

â(k)
n

< r(W
(k)

j
) < a(k)

n
 , we know the number of such j is less than or equal to n1−�2 . In 

Case r(W
(k)

j
) ≥ a(k)

n
 , as seen above, U

(k)

j1
< U

(k)

j
 on �n for all j1 ∈ (L(k))c satisfying 

r(W
(k)

j1
) ≤ â(k)

n
 , since j ∈ (L(k))c and r(W

(k)

j
) ≥ a(k)

n
 . The number of such j1 s is at least 

â(k)
n

− ⌊n1−𝛾2⌋ . On the other hand, j ∈ J
(k)
n
(�(k)) gives 

#{j� ∈ {1, ..., n}; U
(k)

j
< U

(k)

j�
} ≥ ⌈𝛼(k)n⌉ . Therefore

on �n . Since #L(k)
n

≤ N
(k)

T
+ NX

T
 , we obtain (7) on �n with c∗ = 6 if we use the ine-

quality 4n1−�2 + 2 ≤ 6n1−�2 .   ◻

Let 𝛾3 > 0 . For random variables (Vj)j=1,...,n , let

Lemma 3 

 (i) Let p1 > 1 . Then, 

 for p ∈ (1, p1).
 (ii) Let 𝛾4 > 0 and p1 > 1 . Then, 

� =#
[
J
(k)
n
(𝛼(k)) ∩ Ĵ

(k)

n
(𝛼(k))c ∩ (L(k))c

]
.

� ≤n1−𝛾2+n − �
â(k)
n

− ⌊n1−𝛾2⌋� − ⌈𝛼(k)n⌉ ≤ 4n1−𝛾2 + 2

D
(k)
n

=n𝛾3
|||||
1

n

∑
j∈J(k)

n
(𝛼(k))

Vj −
1

n

∑
j∈Ĵ

(k)

n
(𝛼(k))

Vj

|||||
.

‖D(k)
n
‖p ≤�c∗n�3−�2 + n−1+�3‖N(k)

T
+ NX

T
‖p1

����� max
j=1,...,n

��Vj
��
����pp1(p1−p)−1

+ n�3
���� max
j=1,...,n

��Vj
��1�c

n

����p
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 for p ∈ (1, p1).

Proof The estimate in (i) is obvious from (7). (ii) follows from (i).   ◻

Let �J
(k)

n
(𝛼(k)) =

{
j; |h−1∕2𝛥jw

(k)| ≤ q�̄�(k)
}
=
{
j;W

(k)

j
≤ q�̄�(k)

}
 . Let

Lemma 4 Let �̃�n =
{||W

(k)

(â
(k)
n )

− q�̄�(k)
|| < Č n−𝛾2

}
, where Č is a positive constant. 

Then, 

 (i) For p ≥ 1 , 

 (ii) For p1 > p ≥ 1 , 

Proof (i) follows from

and (ii) follows from (i).   ◻

‖D(k)
n
‖p ≤�c∗n𝛾3−𝛾2 + n−1+𝛾3‖N(k)

T
+ NX

T
‖p1

�

×

�
n𝛾4 + n max

j=1,...,n

����
��Vj

��1{�Vj�>n𝛾4}
����pp1(p1−p)−1

�

+ n𝛾3
���� max
j=1,...,n

��Vj
��1𝛺c

n

����p

D̃
(k)

n
=n𝛾3

||||
1

n

∑
j∈Ĵ

(k)

n
(𝛼(k))

Vj −
1

n

∑
j∈�J

(k)

n
(𝛼(k))

Vj

||||.

‖D̃(k)

n
‖p ≤n𝛾3���� max

j�=1,...,n
�Vj� � 1

n

n�
j=1

1���W(k)

j −q
�̄�(k)

��≤Č n−𝛾2
�����p + n𝛾3

����1�̃�c
n
max
j�=1,...,n

�Vj� �
����p.

‖D̃(k)

n
‖p ≤n𝛾3���� max

j=1,...,n
�Vj�

����pP
�
��W

(k)

1
− q�̄�(k)

�� ≤ Č n−𝛾2

�

+ n𝛾3
���� max
j=1,...,n

�Vj�
����pp1(p1−p)−1

����
1

n

n�
j=1

�
1���W (k)

j
−q

�̄�(k)
��≤Č n−𝛾2

� − P

�
��W

(k)

1
− q�̄�(k)

�� ≤ Č n−𝛾2

������p1
+ n𝛾3P[�̃�c

n
]1∕p1

���� max
j=1,...,n

�Vj�
����pp1(p1−p)−1

.

1�̃�n

||||1{W (k)

j
≤W (k)

(â
(k)
n )

}
− 1

{W
(k)

j
≤q

�̄�(k)
}

|||| ≤1{||W (k)

j
−q

�̄�(k)
||≤Č n−𝛾2

},
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We take a sufficiently large Č . Then, the term involving �̃�c
n
 on the right-hand side 

of each inequality in Lemma 4 can be estimated as the proof of Lemma 1. For exam-
ple, P[�̃�c

n
] = O(n−L) for any L > 0.

Lemma 5 Let k ∈ {1, ..., �} and let f ∈ C
1,1

↑

(
ℝ

𝖽 × �;ℝ) . Suppose that [F1]0 is ful-
filled. Then,

for every p ≥ 1 and 𝜖 < 𝛾2 .

Proof Use Sobolev inequality and Burkholder inequality as well as Lemmas 1, 3 (ii) 
and 4 (ii). More precisely, we have the following decomposition

 We may assume 𝛼(k) > 0 since only I(k)
4,n
(�) remains when �(k) = 0 , and it will be 

estimated below.
As for I(k)

1,n
(�) , we apply Lemma 3 (ii) to obtain

sup
n∈ℕ

‖‖‖‖‖‖‖
sup
𝜃∈𝛩

n𝜖

|||||||
1

n

∑
j∈J(k)

n
(𝛼(k))

p(𝛼(k))−1f (Xtj−1
, 𝜃) −

1

T ∫
T

0

f (Xt, 𝜃)dt

|||||||

‖‖‖‖‖‖‖p
<∞

1

n

�
j∈J(k)

n
(𝛼(k))

p(𝛼(k))−1f (Xtj−1
, 𝜃) −

1

T �
T

0

f (Xt, 𝜃)dt

=p(𝛼(k))−1

⎧⎪⎨⎪⎩
1

n

�
j∈J(k)

n
(𝛼(k))

f (Xtj−1
, 𝜃) −

1

n

�
j∈Ĵ

(k)

n
(𝛼(k))

f (Xtj−1
, 𝜃)

⎫⎪⎬⎪⎭

+ p(𝛼(k))−1

⎧⎪⎨⎪⎩
1

n

�
j∈Ĵ

(k)

n
(𝛼(k))

f (Xtj−1
, 𝜃) −

1

n

�
j∈J̃

(k)

n
(𝛼(k))

f (Xtj−1
, 𝜃)

⎫⎪⎬⎪⎭
+

1

np(𝛼(k))

n�
j=1

f (Xtj−1
, 𝜃)

�
1�

W
(k)

j
≤q

�̄�(k)

� − p(𝛼(k))

�

+
1

nh

n�
j=1

�
tj

tj−1

[f (Xtj−1
, 𝜃) − f (Xt, 𝜃)]dt

=∶I
(k)

1,n
(𝜃) + I

(k)

2,n
(𝜃) + I

(k)

3,n
(𝜃) + I

(k)

4,n
(𝜃).
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By taking 𝛾4 > 0 small enough, we can verify that the right-hand side is o(1). Note 
that we have used the fact P[�c

n
] = O(n−L) for any L > 0 . A similar argument with 

Lemma 4 (ii) yields ‖‖ sup�∈� n�||I(k)2,n
(�)||‖‖p = o(1).

As for I(k)
3,n
(�) , applying the Burkholder–Davis–Gundy inequality for the discrete-

time martingales as well as Jensen’s inequality, we have

for every p ≥ 2 and i = 0, 1 . Hence, by Sobolev inequality, we conclude

for every p ≥ 1.
Finally, we will estimate I(k)

4,n
(�) . Since f ∈ C

1,1

↑
(ℝ𝖽 × �;ℝ) , there exists a positive 

constant C such that

where Cf (x, y) = ∫ 1

0
sup�∈�

||�xf (x + �(y − x), �)||d� for x, y ∈ ℝ
� . Then, by [F1]0 (i) 

and (ii), we obtain

�����
sup
𝜃∈𝛩

n𝜖��I(k)1,n
(𝜃)��

�����p
≲
�
i=0,1

sup
𝜃∈𝛩

�������
n𝜖

�������
1

n

�
j∈J(k)

n
(𝛼(k))

𝜕i
𝜃
f (Xtj−1

, 𝜃) −
1

n

�
j∈Ĵ

(k)

n
(𝛼(k))

𝜕i
𝜃
f (Xtj−1

, 𝜃)

�������

�������p
≲
�
i=0,1

sup
𝜃∈𝛩

��
c∗n

𝜖−𝛾2 + n−1+𝜖‖N(k)

T
+ NX

T
‖p1

�

×

�
n𝛾4 + nmax

j

�����
�𝜕i

𝜃
f (Xtj−1

, 𝜃)�1{�𝜕i
𝜃
f (Xtj−1

,𝜃)�≥n𝛾4}
����� pp1

p1−p

�

+n𝜖
�����
max

j
�𝜕i

𝜃
f (Xtj−1

, 𝜃)�1𝛺c
n

�����p

�
.

sup
𝜃∈𝛩

‖‖‖‖‖‖
n𝜖

n∑
j=1

1

n
𝜕i
𝜃
f (Xtj−1

, 𝜃)

{
1{

W
(k)

j
≤q

�̄�(k)

} − p(𝛼(k))

}‖‖‖‖‖‖

p

p

≲ sup
𝜃∈𝛩

n
−p
(

1

2
−𝜖
)
E

[|||||
1

n

n∑
j=1

||𝜕i𝜃f (Xtj−1
, 𝜃)||2

{
1{

W
(k)

j
≤q

�̄�(k)

} − p(𝛼(k))

}2|||||

p

2
]

=O
(
n
−(

1

2
−𝜖)p

)

‖‖‖‖ sup�∈�

n�||I(k)3,n
(�)||

‖‖‖‖p =O
(
n
−

1

2
+�
)

Cf (x, y) ≤C(1 + |x|C + |y|C)
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for every p ≥ 1 . This completes the proof.   ◻

By Lp-estimate, we obtain the following lemma.

Lemma 6 Let k ∈ {1, ..., �} and let f ∈ C
0,1

↑

(
ℝ

𝖽 × 𝛩;ℝ𝗆k ⊗ℝ
𝗆k ) . Suppose that 

[F1]0 is fulfilled. Then,

for every p ≥ 1 and 𝜖 > 0.

Proof Let Ỹ (k) = Y (k) − J(k) . Let Ň = N + NX . Let

Then

as n → ∞ thanks to K(k)

n,j
.

Let � = 1 − �∕2 . Then, by the Burkholder–Davis–Gundy inequality, for any 
L ≥ 2,

‖‖‖‖n
𝜖 sup
𝜃∈𝛩

||I(k)4,n
(𝜃)||

‖‖‖‖p ≤n
𝜖 ×

1

nh

n∑
j=1

�
tj

tj−1

‖‖1{𝛥jN
X=0}Cf (Xtj−1

,Xt)|Xt − Xtj−1
|‖‖p dt

+ n𝜖
‖‖‖‖‖
1

nh

n∑
j=1

1{𝛥jN
X≠0} �

tj

tj−1

Cf (Xtj−1
,Xt)|Xt − Xtj−1

| dt
‖‖‖‖‖p

≲n−
1

2
+𝜖 + n

−
1

2
+𝜖
‖‖‖‖‖
(NX

T
)
1

2

{
n−1

n∑
j=1

(
h−1 �

tj

tj−1

Cf (Xtj−1
,Xt)|Xt − Xtj−1

| dt
)2} 1

2 ‖‖‖‖‖p
≲n−

1

2
+𝜖 + n

−
1

2
+𝜖‖‖NX

T
‖‖

1

2

p

=O(n−
1

2
+𝜖)

sup
n∈ℕ

‖‖‖‖‖‖‖
sup
𝜃∈𝛩

n
1

2
−𝜖

|||||||

∑
j∈J(k)

n
(𝛼(k))

f (Xtj−1
, 𝜃)

[(
𝛥jY

(k)
)⊗2

K
(k)

n,j
−
(
𝜎(k)(Xtj−1

, 𝜃∗)𝛥jw
(k)
)⊗2

]|||||||

‖‖‖‖‖‖‖p
< ∞

Qj =
(
𝜎(k)(Xtj−1

, 𝜃∗)𝛥jw
(k)
)⊗2

.

(8)

sup
𝜃∈𝛩

�������
n

1

2
−𝜖

�������

�
j∈J(k)

n
(𝛼(k))

1{𝛥jŇ>0}
f (Xtj−1

, 𝜃)

��
𝛥jY

(k)
�⊗2

K
(k)

n,j
− Qj

��������

�������p
≤ sup

𝜃∈𝛩

�����
n

1

2
−𝜖 max

j=1,...,n

�����
f (Xtj−1

, 𝜃)

��
𝛥jY

(k)
�⊗2

K
(k)

n,j
− Qj

������
�����2p

��ŇT‖2p
=o(1)
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In the last part, we used Taylor’s formula and Hölder’s inequality. Therefore, 
Pn = O(n−L) for any L > 0.

Expand �jỸ
(k) with the formula

Then, we have

Thus, we can see

for (i1, i2) ∈ {1, 2, 3}2 ⧵ {(1, 1)} . Consequently,

Pn ∶=P

[
max
j=1,...,n

||||1{𝛥jŇ=0} �
tj

tj−1

{
𝜎(Xt, 𝜃

∗) − 𝜎(Xtj−1
, 𝜃∗)

}
dwt

|||| > n−𝜂
]

≤P
[
max
j=1,...,n

||||�
tj

tj−1

{
𝜎(�Xt + JX

tj−1
, 𝜃∗) − 𝜎(Xtj−1

, 𝜃∗)
}
dwt

|||| > n−𝜂
]

≲

n∑
j=1

nL𝜂E

[(
�

tj

tj−1

||𝜎(�Xt + JX
tj−1

, 𝜃∗) − 𝜎(Xtj−1
, 𝜃∗)||2dt

)L∕2]

≤
n∑
j=1

nL𝜂hL∕2−1 �
tj

tj−1

E
[||𝜎(�Xt + JX

tj−1
, 𝜃∗) − 𝜎(�Xtj−1

+ JX
tj−1

, 𝜃∗)||L
]
dt

=O
(
n × nL𝜂 × n−L∕2+1 × n−1 × n−L(1∕2−𝜖∕4)

)

=O(n1−L𝜖∕4).

�jỸ
(k) =�(k)(Xtj−1

, �∗)�jw
(k) + ∫

tj

tj−1

{
�(k)(Xt, �

∗) − �(k)(Xtj−1
, �∗)

}
dw

(k)
t + ∫

tj

tj−1

b
(k)
t dt

=∶�1,j + �2,j + �3,j.

sup
𝜃∈𝛩

‖‖‖‖‖
n

1

2
−𝜖
|||||

∑
j∈J(k)

n
(𝛼(k))

1{𝛥jŇ=0}
f (Xtj−1

, 𝜃)
[
𝜉1,j ⊗ 𝜉2,j

]|||||
‖‖‖‖‖p

≲n
1

2
−

𝜖

2 sup
j=1,...,n

𝜃∈𝛩

‖‖|f (Xtj−1
, 𝜃)||𝜉1,j| ‖‖p + n1−𝜖P

1

2p

n

=o(1).

sup
𝜃∈𝛩

‖‖‖‖‖
n

1

2
−𝜖
|||||

∑
j∈J(k)

n
(𝛼(k))

1{𝛥jŇ=0}
f (Xtj−1

, 𝜃)
[
𝜉i1,j ⊗ 𝜉i2,j

]|||||
‖‖‖‖‖p

= o(1)
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for every p > 1 and L > 0.
From (8) and (9), we obtain

for every p > 1 . Applying the same estimate as (10) to ��f  for f, we conclude the 
proof by Sobolev inequality.   ◻

Lemmas 3, 4 and 6 suggest approximation of n−1ℍn(�;�) by

as we will see its validity below.

2.5  Polynomial‑type large deviation inequality and the rate of convergence 
of the ̨ ‑QMLE and the (˛,ˇ)‑QBE

We will show convergence of the �-QMLE. To this end, we will use a polynomial-
type large deviation inequality given in Theorem  1 for a random field associated 
with ℍn(�;�) . Proof of Theorem 1 will be given in Sect. 2.6, based on the QLA the-
ory (Yoshida 2011) with the aid of the global filtering lemmas in Sect. 2.4. Though 
the rate of convergence is less optimal, the global filter has the advantage of elimi-
nating jumps with high precision, and we can use it as a stable initial estimator to 
obtain an efficient estimator later. We do not assume any restrictive condition of the 
distribution of small jumps though the previous jump filters required such a condi-
tion for optimal estimation.

We introduce a middle-resolution (or annealed) random field. A similar method 
was used in Uchida and Yoshida (2012) to relax the so-called balance condition 

(9)

sup
𝜃∈𝛩

‖‖‖‖‖‖‖
n

1

2
−𝜖

|||||||

∑
j∈J(k)

n
(𝛼(k))

1{𝛥jŇ=0}
f (Xtj−1

, 𝜃)

[(
𝛥jY

(k)
)⊗2

K
(k)

n,j
− Qj

]|||||||

‖‖‖‖‖‖‖p

≤ sup
𝜃∈𝛩

‖‖‖‖‖‖‖
n

1

2
−𝜖

|||||||

∑
j∈J(k)

n
(𝛼(k))

1{𝛥jŇ=0}
f (Xtj−1

, 𝜃)

[(
𝛥j
�Y (k)

)⊗2
− Qj

]|||||||

‖‖‖‖‖‖‖p
+ O(n−L)

=o(1)

(10)sup
𝜃∈𝛩

‖‖‖‖‖‖‖
n

1

2
−𝜖

|||||||

∑
j∈J(k)

n
(𝛼(k))

f (Xtj−1
, 𝜃)

[(
𝛥jY

(k)
)⊗2

K
(k)

n,j
− Qj

]|||||||

‖‖‖‖‖‖‖p
=o(1)

−
1

2n

�∑
k=1

∑
j∈�J

(k)

n
(𝛼(k))

{
q(k)(𝛼(k))−1S(k)(Xtj−1

, 𝜃∗)1∕2S(k)(Xtj−1
, 𝜃)−1

× S(k)(Xtj−1
, 𝜃∗)1∕2

[(
h−1∕2𝛥jw

(k)
)⊗2]

+ p(𝛼(k))−1 log det S(k)(Xtj−1
, 𝜃)

}
,
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between the number of observations and the discretization step for an ergodic diffu-
sion model. For � ∈ (0, �0) , let

The random field ℍ�
n
(�;�) mitigates the sharpness of the contrast ℍn(�;�) . Let

Let

The key index �0 is defined by

Nondegeneracy of �0 plays an essential role in the QLA. 

[F3]  For every positive number L, there exists a constant CL such that 

Remark 4 An analytic criterion and a geometric criterion are known to ensure Con-
dition [F3] when X is a nondegenerate diffusion process. See Uchida and Yoshida 
(2013) for details. Since the proof of this fact depends on short-time asymptotic 
properties, we can modify it by taking the same approach before the first jump even 
when X has finitely active jumps. Details will be provided elsewhere. On the other 
hand, those criteria can apply to the jump diffusion X without remaking them if we 
work under localization. See Sect. 5.

Let 𝕌�
n
= {u ∈ ℝ

�; �∗ + n−�u ∈ �} . Let � �
n
(r) = {u ∈ �

�
n
; |u| ≥ r} . The quasi-

likelihood ratio random field ℤ�
n
(⋅;�) of order � is defined by

The random field ℤ�
n
(u;�) is “annealed” since the contrast function −ℍ�

n
(�;�) 

becomes a milder penalty than −ℍn(�;�) because 𝛽 < 1∕2.
The following theorem will be proved in Sect. 2.6.

Theorem 1 Suppose that [F1]4 , [F2] and [F3] are fulfilled. Let  c0 ∈ (1, 2). Then, 
for every positive number L, there exists a constant C(�, �, c0, L) such that

(11)ℍ
�
n
(�;�) =n−1+2�ℍn(�;�).

𝕐n(�;�) =n
−2�

{
ℍ

�
n
(�;�) − ℍ

�
n
(�∗;�)

}
= n−1

{
ℍn(�;�) − ℍn(�

∗;�)
}
.

� (�) = −
1

2T

�∑
k=1

∫
T

0

{
Tr

(
S(k)(Xt, �)

−1S(k)(Xt, �
∗) − I�k

)

+ log
det S(k)(Xt, �)

det S(k)(Xt, �
∗)

}
dt.

�0 = inf
�≠�∗

−� (�)

|� − �∗|2 .

P
[
𝜒0 < r−1

] ≤CL r
−L (r > 0).

ℤ
�
n
(u;�) = exp

{
ℍ

�
n

(
�∗ + n−�u;�

)
− ℍ

�
n

(
�∗;�

)}
(u ∈ 𝕌

�
n
).
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for all r > 0 and n ∈ ℕ.

Obviously, an �-QMLE �̂�M,𝛼
n

 of � with respect to ℍn(⋅;�) is a QMLE with respect to 
ℍ

�
n
(⋅;�) . The following rate of convergence is a consequence of Theorem 1, as usual in 

the QLA theory.

Proposition 1 Suppose that [F1]4 , [F2] and [F3] are satisfied. Then, 
sup
n∈ℕ

‖‖n𝛽
(
�̂�M,𝛼
n

− 𝜃∗
)‖‖p < ∞ for every p > 1 and every 𝛽 < 𝛾0.

The (�, �)-quasi-Bayesian estimator ( (�, �)-QBE) �̂�B,𝛼,𝛽
n

 of � is defined by

where � is a continuous function on � satisfying 
0 < inf𝜃∈𝛩 𝜛(𝜃) ≤ sup𝜃∈𝛩 𝜛(𝜃) < ∞ . Once again, Theorem  1 ensures L∞--bound-
edness of the error of the (�, �)-QBE:

Proposition 2 Suppose that [F1]4 , [F2] and [F3] are satisfied. Let � ∈ (0, �0) . Then,

for every p > 1.

Proof Let ûB,𝛼,𝛽
n

= n𝛽
(
�̂�B,𝛼,𝛽
n

− 𝜃∗
)
 . Then,

recall 𝕌�
n
= {u ∈ ℝ

�; �∗ + n−�u ∈ �}.
Let C1 > 0 , p > 1 , L > p + 1 and D > � + p . In what follows, we take a suffi-

ciently large positive constant C′
1
 . We have

P

[
sup

u∈𝕍n(r)

ℤ
�
n
(u;�) ≥ e−r

c0

]
≤C(�, �, c0, L)

rL

(12)�̂�B,𝛼,𝛽
n

=

[
∫𝛩

exp
(
ℍ

𝛽
n
(𝜃;𝛼)

)
𝜛(𝜃)d𝜃

]−1
∫𝛩

𝜃 exp
(
ℍ

𝛽
n
(𝜃;𝛼)

)
𝜛(𝜃)d𝜃,

sup
n∈ℕ

‖‖n𝛽
(
�̂�B,𝛼,𝛽
n

− 𝜃∗
)‖‖p < ∞

ûB,𝛼,𝛽
n

=

(
∫
𝕌
𝛽
n

ℤ
𝛽
n
(u;𝛼)𝜛(𝜃∗ + n−𝛽u)du

)−1

∫
𝕌
𝛽
n

u ℤ𝛽
n
(u;𝛼)𝜛(𝜃∗ + n−𝛽u)du;
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by Theorem 1, suppose that

However, one can show (13) by using Lemma 2 of Yoshida (2011).   ◻

2.6  Proof of Theorem 1

We will prove Theorem 1 by Theorem 2 of Yoshida (2011) with the aid of the global 
filtering lemmas in Sect. 2.4. Choose parameters � , �1 , �1 , �2 and �2 satisfying the fol-
lowing inequalities:

Let

Let

E
[|ûB,𝛼,𝛽

n
|p] ≤ E

[(
�
𝕌
𝛽
n

ℤ
𝛽
n
(u;𝛼)𝜛(𝜃∗ + n−𝛽u)du

)−1

�
𝕌
𝛽
n

|u|pℤ𝛽
n
(u;𝛼)𝜛(𝜃∗ + n−𝛽u)du

]
(Jensen’s inequality, p ≥ 1)

≤ C(𝜛)

∞∑
r=1

(r + 1)p
{
E

[(
�
𝕌
𝛽
n

ℤ
𝛽
n
(u;𝛼)du

)−1

× �{u;r<|u|≤r+1}∩𝕌𝛽
n

ℤ
𝛽
n
(u;𝛼)du 1{

∫
{u;r<|u|≤r+1}∩𝕌𝛽n ℤ

𝛽
n (u;𝛼)du>

C�
1

rD−�+1

}
]

+ E

[(
�
𝕌
𝛽
n

ℤ
𝛽
n
(u;𝛼)du

)−1

�{u;r<|u|≤r+1}∩𝕌𝛽
n

ℤ
𝛽
n
(u;𝛼)du

× 1{
∫
{u;r<|u|≤r+1}∩𝕌𝛽n ℤ

𝛽
n (u;𝛼)du≤ C�

1

rD−�+1

}
]}

+ C(𝜛)

(The last term is for r = 0. The integrand is not greater than one.)

≤ C(𝜛)

∞∑
r=1

(r + 1)p
{
P

[
�{u;r<|u|≤r+1}∩𝕌𝛽

n

ℤ
𝛽
n
(u;𝛼)du >

C�
1

rD−�+1

]

+
C�
1

rD−�+1
E

[(
�
𝕌
𝛽
n

ℤ
𝛽
n
(u;𝛼)du

)−1]}
+ C(𝜛)

≤ C(𝜛)

∞∑
r=1

(r + 1)p
{
P

[
sup

u∈𝕍
𝛽
n (r)

ℤ
𝛽
n
(u;𝛼)) >

C1

rD

]

+
C�
1

rD−�+1
E

[(
�
𝕌
𝛽
n

ℤ
𝛽
n
(u;𝛼)du

)−1]}
+ C(𝜛)

≲

∞∑
r=1

r−(L−p) +

∞∑
r=1

r−(D−p−�+1)E

[(
�
𝕌
𝛽
n

ℤ
𝛽
n
(u;𝛼)du

)−1]
+ C(𝜛).

<∞

(13)E

[(
∫
𝕌
𝛽
n

ℤ
𝛽
n
(u;𝛼)du

)−1]
<∞.

(14)

0 < 𝜂 < 1, 0 < 𝛽1 <
1

2
, 0 < 𝜌1 < min{1, 𝜂(1 − 𝜂)−1, 2𝛽1(1 − 𝜂)−1},

2𝜂 < 𝜌2, 𝛽2 ≥ 0, 1 − 2𝛽2 − 𝜌2 > 0.

�n(�, �) =n
−���ℍ

�
n
(�∗;�) = n−1+���ℍn(�

∗;�).
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The � × � symmetric matrix � (k) is defined by the following formula:

where u ∈ ℝ
� , and �  by � =

∑�

k=1
� (k) . We will need several lemmas. We 

choose positive constants �i ( i = 1, 2 ) so that 𝛽 < 𝛾2 < 𝛾1 < 𝛾0 . Then, we 
can choose parameters �1(↓ 0) , �2(↑ 1∕2) , �2(↓ 0) , �(↓ 0) and �1(↓ 0) so that 
max{2𝛽𝛽1, 𝛽(1 − 2𝛽2)} < 𝛾2 . Then, there is an � ∈ (max{2��1, �(1 − 2�2)}, �2).

Lemma 7 For every p ≥ 1,

Proof We have ℍn(�;�) = ℍ
◦

n
(�;�) +𝕄

◦(�;�) +ℝ
◦(�;�) , where

and

Apply Lemma 6 to �i
�
ℝ

◦

n
(�;�) ( i = 0, ..., 3 ) to obtain

for every p > 1 . Moreover, we apply Sobolev inequality, Lemma 3 (ii) and Lemma 4 
(ii). Then, it is sufficient to show that

�n(�) = − n−2��2
�
ℍ

�
n
(�∗;�) = −n−1�2

�
ℍn(�

∗;�).

𝛤 (k)[u⊗2] =
1

2T ∫
T

0

Tr

(
(𝜕𝜃S

(k)[u])(S(k))−1(𝜕𝜃S
(k)[u])(S(k))−1(Xt, 𝜃

∗)

)
dt,

sup
n∈ℕ

E

[(
n−2𝛽 sup

𝜃∈𝛩

||𝜕3𝜃ℍ𝛽
n
(𝜃;𝛼)||

)p]
<∞.

ℍ
◦

n
(𝜃;𝛼) = −

1

2

�∑
k=1

∑
j∈J(k)

n
(𝛼(k))

p(𝛼(k))−1
{
S(k)(Xtj−1

, 𝜃)−1
[
S(k)(Xtj−1

, 𝜃∗)
]

+ log det S(k)(Xtj−1
, 𝜃)

}
,

𝕄
◦

n
(𝜃;𝛼) = −

1

2

�∑
k=1

∑
j∈J(k)

n
(𝛼(k))

h−1S(k)(Xtj−1
, 𝜃)−1

⋅
[
q(k)(𝛼(k))−1

(
𝜎(k)(Xtj−1

, 𝜃∗)𝛥jw
(k)
)⊗2

− hp(𝛼(k))−1S(k)(Xtj−1
, 𝜃∗)

]

ℝ
◦

n
(𝜃;𝛼) = −

1

2

�∑
k=1

∑
j∈J

(k)
n (𝛼(k))

q(k)(𝛼(k))−1h−1S(k)(Xtj−1
, 𝜃)−1

[(
𝛥jY

(k)
)⊗2

K
(k)

n,j
−
(
𝜎(k)(Xtj−1

, 𝜃∗)𝛥jw
(k)
)⊗2]

.

3∑
i=0

‖‖‖‖ sup𝜃∈𝛩

||𝜕i𝜃n−1ℝ◦

n
(𝜃;𝛼)||

‖‖‖‖p <∞
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for proving the lemma, where ℍ×
n
(�;�) and �×

n
(�;�) are defined by the same formula 

as ℍ◦

n
(�;�) and �◦

n
(�;�) , respectively, but with J̃

(k)

n
(�(k)) in place of J(k)

n
(�(k)) . How-

ever, (15) is obvious.   ◻

Lemma 8 For every p ≥ 1,

Proof Consider the decomposition �n(�) = � ∗
n
+M∗

n
+ R∗

n
 with

and

Since 2𝛽𝛽1 < 𝛾2 , we obtain

by Lemma 5, and also obtain

by Lemma 6 for every p > 1 . Moreover, by Lemmas 3 (ii) and 4 (ii) applied to 
2𝛽𝛽1(< 𝛾2) for “ �3 ,” we replace J(k)

n
(�(k)) in the expression of M∗

n
 by J̃

(k)

n
(�(k)) and 

then apply the Burkholder–Davis–Gundy inequality to show

for every p > 1 . This completes the proof.   ◻

(15)
4∑
i=0

sup
𝜃∈𝛩

{
‖‖𝜕i𝜃n−1ℍ×

n
(𝜃;𝛼)‖‖p + ‖‖𝜕i𝜃n−1𝕄×

n
(𝜃;𝛼)‖‖p

}
<∞

sup
n∈ℕ

E

[(
n2𝛽𝛽1 ||𝛤n(𝛼) − 𝛤 ||

)p]
<∞.

𝛤 ∗
n
=

1

2n

�∑
k=1

∑
j∈J(k)

n
(𝛼(k) )

p(𝛼(k))−1
{
𝜕2
𝜃
log det S(k)(Xtj−1

, 𝜃∗) +
(
𝜕2
𝜃
(S(k) −1)

)
(Xtj−1

, 𝜃∗)
[
S(Xtj−1

, 𝜃∗)
]}

,

M∗
n
=

1

2n

�∑
k=1

∑
j∈J(k)

n
(𝛼(k) )

(
𝜕2
𝜃
(S(k) −1)

)
(Xtj−1

, 𝜃∗)

⋅

[
q(k)(𝛼(k))−1h−1

(
𝜎(k)(Xtj−1

, 𝜃∗)𝛥jw
(k)
)⊗2

− p(𝛼(k))−1S(Xtj−1
, 𝜃∗)

]

R∗
n
=

1

2n

�∑
k=1

∑
j∈J(k)

n
(𝛼(k))

q(k)(𝛼(k))−1h−1
(
𝜕2
𝜃
(S(k) −1)

)
(Xtj−1

, 𝜃∗)

⋅

[(
𝛥jY

(k)
)⊗2

K
(k)

n,j
−
(
𝜎(k)(Xtj−1

, 𝜃∗)𝛥jw
(k)
)⊗2

]
.

sup
n∈ℕ

‖‖n2𝛽𝛽1 ||𝛤 ∗
n
− 𝛤 ||‖‖p <∞

sup
n∈ℕ

‖‖n2𝛽𝛽1 ||R∗
n
||‖‖p <∞

sup
n∈ℕ

‖‖n2𝛽𝛽1 ||M∗
n
||‖‖p <∞
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The following two lemmas are obvious under [F3].

Lemma 9 For every p ≥ 1 , there exists a constant Cp such that

for all r > 0 , where �min(� ) denotes the minimum eigenvalue of � .

Lemma 10 For every p ≥ 1 , there exists a constant Cp such that

for all r > 0.

Lemma 11 For every p ≥ 1,

Proof We consider the decomposition �n(�, �) = n−1+���ℍn(�
∗;�) = M∨

n
+ R∨

n
 with

and

We see supn∈ℕ ‖‖R∨
n
(𝛼, 𝛽)‖‖p < ∞ by Lemma 6. Moreover, supn∈ℕ ‖‖M∨

n
(𝛼, 𝛽)‖‖p < ∞ 

by Lemmas 3 (ii) and 4 (ii) and the Burkholder–Davis–Gundy inequality. We note 
that symmetry between the components of W (k)

j
 is available.  ◻

As a matter of fact, �n(�, �) converges to 0, as seen in the proof of Lemma 11. 
The location shift of the random field ℤ�

n
(⋅;�) asymptotically vanishes.

P
[
𝜆min(𝛤 ) < r−𝜌1

] ≤Cp

rp

P
[
𝜒0 < r−(𝜌2−2𝜂)

] ≤Cp

rp

sup
n∈ℕ

E
[||𝛥n(𝛼, 𝛽)

||p
]
<∞.

M∨
n
= −

n𝛽

2n

�∑
k=1

∑
j∈J(k)

n
(𝛼(k))

(
𝜕𝜃(S

(k) −1)
)
(Xtj−1

, 𝜃∗)

⋅

[
q(k)(𝛼(k))−1h−1

(
𝜎(k)(Xtj−1

, 𝜃∗)𝛥jw
(k)
)⊗2

− p(𝛼(k))−1S(Xtj−1
, 𝜃∗)

]

R∨
n
= −

n𝛽

2n

�∑
k=1

∑
j∈J(k)

n
(𝛼(k))

q(k)(𝛼(k))−1h−1

×
(
𝜕𝜃(S

(k) −1)
)
(Xtj−1

, 𝜃∗)

[(
𝛥jY

(k)
)⊗2

K
(k)

n,j
−
(
𝜎(k)(Xtj−1

, 𝜃∗)𝛥jw
(k)
)⊗2

]
.
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Lemma 12 For every p ≥ 1,

Proof In this situation, we use the decomposition

with

and

As assumed, 𝛽(1 − 2𝛽2) < 𝛾2 ≤ 1∕2 . Lemma 6 gives

for every p > 1 . Furthermore, Lemma 5 gives

On the other hand, Lemmas 3 (ii) and 4 (ii) and the Burkholder–Davis–Gundy ine-
quality together with Sobolev inequality deduce

for every p > 1 , which completes the proof.   ◻

sup
n∈ℕ

E

[(
sup
𝜃∈𝛩

n𝛽(1−2𝛽2)||𝕐n(𝜃;𝛼) − 𝕐 (𝜃)||
)p]

<∞.

𝕐n(�;�) =𝕐
+
n
(�;�) +𝕄

+
n
(�;�) +ℝ

+
n
(�;�)

�
+
n
(𝜃;𝛼) = −

1

2n

�∑
k=1

∑
j∈J(k)

n
(𝛼(k))

p(𝛼(k))−1
{
Tr

(
S(k)(Xtj−1

, 𝜃)−1S(k)(Xtj−1
, 𝜃∗) − I�k

)

+ log
det S(k)(Xtj−1

, 𝜃)

det S(k)(Xtj−1
, 𝜃∗)

}
,

�
+
n
(𝜃;𝛼) = −

1

2n

�∑
k=1

∑
j∈J(k)

n
(𝛼(k))

(
S(k)(Xtj−1

, 𝜃)−1 − S(k)(Xtj−1
, 𝜃∗)−1

)

⋅

[
q(k)(𝛼(k))−1h−1

(
𝜎(k)(Xtj−1

, 𝜃∗)𝛥jw
(k)
)⊗2

− p(𝛼(k))−1S(k)(Xtj−1
, 𝜃∗)

]

ℝ
+
n
(𝜃;𝛼) = −

1

2n

�∑
k=1

∑
j∈J(k)

n
(𝛼(k))

q(k)(𝛼(k))−1h−1
(
S(k)(Xtj−1

, 𝜃)−1 − S(k)(Xtj−1
, 𝜃∗)−1

)

⋅

[(
𝛥jY

(k)
)⊗2

K
(k)

n,j
−
(
𝜎(k)(Xtj−1

, 𝜃∗)𝛥jw
(k)
)⊗2

]
.

sup
n∈ℕ

E

[(
sup
𝜃∈𝛩

n𝛽(1−2𝛽2)||ℝ+
n
(𝜃;𝛼)||

)p]
<∞

sup
n∈ℕ

E

[(
sup
𝜃∈𝛩

n𝛽(1−2𝛽2)||𝕐 +
n
(𝜃;𝛼) − 𝕐 (𝜃)||

)p]
<∞.

sup
n∈ℕ

E

[(
sup
𝜃∈𝛩

n𝛽(1−2𝛽2)||𝕄+
n
(𝜃;𝛼)||

)p]
<∞
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Proof of  Theorem  1 Now Theorem  1 follows from Theorem  2 of Yoshida (2011) 
combined with Lemmas 7, 8, 9, 10, 11 and 12.   ◻

3  Global filter with moving threshold

3.1  Quasi‑likelihood function with moving quantiles

Though the threshold method presented in the previous section removes jumps 
surely, it is conservative and does not attain the optimal rate of convergence that is 
attained by the QLA estimators (i.e., QMLE and QBE) in the case without jumps. 
On the other hand, it is possible to give more efficient estimator by aggressively tak-
ing bigger increments while it may cause miss detection of certain portion of jumps.

Let �0 ∈ (0, 1∕4) and �(k)
1

∈ (0, 1∕2) . For simplicity, let s(k)
n

= n − B(k)⌊n�(k)1 ⌋ with 
positive constants B(k) . Let �(k)

n
= 1 − s(k)

n
∕n and �n = (�(1)

n
, ..., �(�)

n
) . Let

where

with some positive definite random matrix �(k)

n,j−1
 , and V (k)

(j)
 is the jth-order statistic of 

V
(k)

1
, ...,V (k)

n
.

We consider a random field by removing increments of Y including jumps from the 
full quasi-likelihood function. Define ℍn(�) by

Remark 5 The truncation functional K(k)

n,j
 is given by (3). It is also reasonable to set it 

as

where C(k)
∗  is an arbitrarily given positive constant.

Remark 6 The threshold is larger than n−
1

2
+0 . The truncation K(k)

n,j
 is for stabilizing 

the increments of Y, not for filtering. The factors �(k)

n,j−1
 , q(k)

n
 and p(k)

n
 can freely be 

chosen if �(k)

n,j−1
 and its inverse are uniformly bounded in L∞- and if q(k)

n
 and p(k)

n
 are 

sufficiently close to 1. S̄(k)
n,j−1

 , q(k)(�(k)
n
) and p(�(k)

n
) are natural choices for �(k)

n,j−1
 , q(k)

n
 

K
(k)
n

=
{
j ∈ {1, ..., n};V

(k)

j
< V

(k)

(s
(k)
n )

}

V
(k)

j
= |(�(k)

n,j−1
)−1∕2�jY

(k)|

(16)

ℍn(𝜃) = −
1

2

�∑
k=1

∑
j∈K(k)

n

{
(q(k)

n
)−1h−1S(k)(Xtj−1

, 𝜃)−1
[(
𝛥jY

(k)
)⊗2]

K
(k)

n,j

+ (p(k)
n
)−1 log det S(k)(Xtj−1

, 𝜃)

}
.

K
(k)

n,j
=1{

V
(k)

j
<C

(k)
∗ n

−
1
4
−𝛿0

},
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and p(k)
n

 , respectively. Asymptotic theoretically, the factors (q(k)
n
)−1 and (p(k)

n
)−1 can be 

replaced by 1, and one can take �(k)

n,j−1
= I��

 ; see Condition [F2�] . Thus, a modifica-
tion of ℍn(�) is 

◦

ℍn(�) defined by

 with K(k)
n

 for V (k)

j
= |�jY

(k)| . The quasi-log likelihood function 
◦

ℍn gives the same 
asymptotic results as ℍn.

We denote by �̂�M,𝛼n
n  a QMLE of � with respect to ℍn given by (16). We should 

remark that �̂�M,𝛼n
n  defined by ℍn(�) can differ from �̂�M,𝛼

n
 previously defined by ℍn(�;�) . 

The quasi-Bayesian estimator (QBE) �̂�B,𝛼nn  of � is defined by

where � is a continuous function on � satisfying 
0 < inf𝜃∈𝛩 𝜛(𝜃) ≤ sup𝜃∈𝛩 𝜛(𝜃) < ∞.

3.2  Polynomial‑type large deviation inequality

Let 𝕌n = {u ∈ ℝ
�; �∗ + n−1∕2u ∈ �} . Let �n(r) = {u ∈ �n; |u| ≥ r} . We define the 

quasi-likelihood ratio random field ℤn by

[F2′]      (i)      The positive-definite measurable random matrices �
(k)

n,j−1
 

( k ∈ {1, ..., �}, n ∈ ℕ, j ∈ {1, ..., n} ) satisfy

for every p > 1.
(ii)      Positive numbers q(k)

n
 and p(k)

n
 satisfy |q(k)

n
− 1| = o(n−1∕2) and 

|1 − p(k)
n
| = o(n−1∕2).

A polynomial-type large deviation inequality is given by the following theorem, a 
proof of which is in Sect. 3.3.

Theorem 2 Suppose that [F1]4 , [F2�] and [F3] are fulfilled. Let c0 ∈ (1, 2) . Then, 
for every positive number L, there exists a constant C(c0, L) such that

◦

ℍn(𝜃) = −
1

2

�∑
k=1

∑
j∈K(k)

n

{
h−1S(k)(Xtj−1

, 𝜃)−1
[(
𝛥jY

(k)
)⊗2]

K
(k)

n,j

+ log det S(k)(Xtj−1
, 𝜃)

}

�̂�B,𝛼n
n

=

[
∫𝛩

exp
(
ℍn(𝜃)

)
𝜛(𝜃)d𝜃

]−1
∫𝛩

𝜃 exp
(
ℍn(𝜃)

)
𝜛(𝜃)d𝜃,

ℤn(u) = exp

{
ℍn(�

∗ + n−1∕2u) − ℍn(�
∗)

}
(u ∈ 𝕌n).

sup
k∈{1,...,�}

n∈ℕ, j∈{1,...,n}

�‖�(k)

n,j−1
‖p + ‖(�(k)

n,j−1
)−1‖p

�
<∞
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for all r > 0 and n ∈ ℕ.

The polynomial-type large deviation inequality for ℤn in Theorem 2 ensures L∞-

-boundedness of the QLA estimators.

Proposition 3 Suppose that [F1]4 , [F2�] and  [F3] are satisfied. Then,

for every p > 1.

3.3  Proof of Theorem 2

Recall Ỹ (k) = Y (k) − J(k) . Let

Lemma 13 For every p ≥ 1,

as n → ∞.

Proof Let

Let

For � ∈ �(k)
n

∩ (�(k)
n
)c , there exists j(�) ∈ (K(k)

n
)c such that �j(�)N

(k)(�) = 0 , and 
also there exists j�(�) ∈ {1, ..., n} such that V

(k)

j�(𝜔)
(𝜔) < V

(k)

(sn)
(𝜔) and 

|𝛥j�(𝜔)J
(k)(𝜔)| > n

−
1

4
−𝛿0 . Then,

P

[
sup

u∈𝕍n(r)

ℤn(u) ≥ e−r
c0

]
≤C(c0, L)

rL

sup
n∈ℕ

��
√
n
�
�̂��,𝛼n
n

− 𝜃∗
���p < ∞ (� = M,B)

�ℍn(𝜃) = −
1

2

�∑
k=1

n∑
j=1

{
h−1S(k)(Xtj−1

, 𝜃)−1
[(
𝛥j
�Y (k)

)⊗2]

+ log det S(k)(Xtj−1
, 𝜃)

}
.

(17)
4∑
i=0

sup
�∈�

‖‖‖‖n
−1∕2�i

�
ℍn(�) − n−1∕2�i

�
ℍ̃n(�)

‖‖‖‖p →0

�(k)
n

=

n⋃
j=1

[{
j ∈ (K(k)

n
)c
}
∩
{
�jN

(k) = 0
}]

.

�(k)
n

=

n⋂
j=1

[{
V
(k)

j
≥ V

(k)

(sn)

}
∪
{|�jJ

(k)| ≤ n
−

1

4
−�0

}]
.
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and hence

where ||M|| = {Tr(MM⋆)}1∕2 for a matrix M. Since 
{
h−1∕2||�jỸ

(k)||; j = 1, ..., n, n ∈ ℕ
}
 

is bounded in L∞- , we obtain

as n → ∞ for every L > 0 . Moreover, P[(�(k)
n
)c] = O(n−L) from the assumption for 

N(k) since

Thus,

as n → ∞ for every L > 0.
Define ℍ†

n
(�) by

where the indicator function controls the moment outside of ∩�
k=1

�(k)
n

 . Then, by (18), 
the cap and NT ∈ L∞- , we obtain

as n → ∞ for every p ≥ 1 . Indeed, we can estimate this difference of the two varia-
bles on the event ℭn ∶= ∩�

k=1
𝔅(k)

n
 and on ℭc

n
 as follows. On ℭn , |�jJ

(k)| ≤ n−1∕4−�01{�jJ
(k)≠0} whenever j ∈ K

(k)
n

 . The cap K(k)

n,j
 also offers the estimate 

|𝛥jY
(k)| < C

(k)
∗ n−1∕4 . On ℭn , after removing the factor 1{|�jJ

(k)|≤1} from the expression 

||||(�
(k)

n,j�(𝜔)−1
)−1∕2𝛥j�(𝜔)J

(k)(𝜔)
|||| −

||||(�
(k)

n,j�(𝜔)−1
(𝜔))−1∕2𝛥j�(𝜔)

�Y (k)(𝜔)
||||

≤V (k)

j�(𝜔)
(𝜔) < V

(k)

j(𝜔)
(𝜔) =

||||(�
(k)

n,j(𝜔)−1
(𝜔))−1∕2𝛥j(𝜔)

�Y (k)(𝜔)
||||

n
−

1

4
−�0 ≤2||�(k)

n,j�(�)−1
||1∕2 max

j=1,..,n

||||(�
(k)

n,j−1
(�))−1∕2�jỸ

(k)(�)
||||

P
[
�(k)

n
∩ (�(k)

n
)c
]
=O(n−L)

(
�(k)

n

)c
⊂

{
#
{
j ∈ {1, ..., n}; 𝛥jN

(k) ≠ 0
} ≥ n − s(k)

n
+ 1

}

⊂
{
N

(k)

T
≥ B(k)n𝛿

(k)

1

}
.

(18)P

[ �⋂
k=1

�(k)
n

]
=1 − O(n−L)

ℍ
†
n
(𝜃) = −

1

2

�∑
k=1

∑
j∈K(k)

n

{
(q(k)

n
)−1h−1S(k)(Xtj−1

, 𝜃)−1[
(
𝛥jY

(k) − 𝛥jJ
(k)
)⊗2]

× K
(k)

n,j
1{|𝛥jJ

(k)|≤1} + (p(k)
n
)−1 log det S(k)(Xtj−1

, 𝜃)

}
,

4∑
i=0

sup
�∈�

‖‖‖‖n
−1∕2�i

�
ℍn(�) − n−1∕2�i

�
ℍ

†
n
(�)

‖‖‖‖p →0
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of n−1∕2�i
�
ℍ

†
n
(�) with the help of NT ∈ L∞- and the Lp-estimate of h−1||�jỸ|2 , we can 

estimate the cross term in the difference with

for M(k)
n

= maxj=1,...,n |S(k)(Xtj−1
, �)−1| , as well as the term involving 

(
𝛥jJ

(k)
)⊗2 and 

admitting a similar estimate. Estimation is much simpler on ℭc
n
 thanks to (18). The 

cap 1{|�jJ
(k)|≤1} helps.

We know that #(K(k)
n
)c ∼ B(k)n�

(k)

1  and have assumed that |q(k)
n

− 1| = o(n−1∕2) and 
that |1 − p(k)

n
| = o(n−1∕2) . Then, with (18), it is easy to show

which implies (17) as n → ∞ for every p ≥ 1 .   ◻

We choose parameters � , �1 , �1 , �2 and �2 satisfying (14) with 𝛽2 > 0 . Let

Let

The following two estimates will play a basic role.

Lemma 14 Let f ∈ C
0,1

↑

(
ℝ

𝖽 × 𝛩;ℝ𝗆k ⊗ℝ
𝗆k

)
 . Then, under [F1]0,

for every p > 1 and 𝜖 > 0.

Proof One can validate this lemma in a quite similar way as Lemma 6.   ◻

Lemma 15 Let p > 1 and 𝜖 > 0 . Let f ∈ C
1,1

↑
(ℝ𝖽 × �;ℝ) . Suppose that [F1]0 is sat-

isfied. Then,

Proof Let p > 1 . By taking an approach similar to the proof of Lemma 14, we obtain

n−1∕2
∑
j∈K(k)

n

||||h
−1S(k)(Xtj−1

, 𝜃)−1[𝛥jY
(k) ⊗ 𝛥jJ

(k)
]
K

(k)

n,j

||||

≤M(k)
n
n−𝛿0

n∑
j=1

1{𝛥jJ
(k)≠0} ≤

(
n𝛿0∕2 +M

(k)
n
1{Mn>n

𝛿0∕2}

)
n−𝛿0NT

4∑
i=0

sup
�∈�

‖‖‖‖n
−1∕2�i

�
ℍ

†
n
(�) − n−1∕2�i

�
ℍ̃n(�)

‖‖‖‖p →0,

�n =n
−1∕2��ℍn(�

∗) and �n = −n−1�2
�
ℍn(�

∗).

𝕐n(�) =n
−1
{
ℍn(�) − ℍn(�

∗)
}
.

sup
n∈ℕ

E

[(
sup
𝜃∈𝛩

||||n
1

2
−𝜖

n∑
j=1

f (Xtj−1
, 𝜃)

[(
𝛥j
�Y (k)

)⊗2
−
(
𝜎(k)(Xtj−1

, 𝜃∗)𝛥jw
(k)
)⊗2

]||||
)p]

< ∞

sup
n∈ℕ

E

[(
sup
𝜃∈𝛩

n
1

2
−𝜖
||||
1

n

n∑
j=1

f (Xtj−1
, 𝜃) −

1

T ∫
T

0

f (Xt, 𝜃)dt
||||
)p]

<∞.
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as n → ∞ . We also have the same estimate for ��f  in place of f. Then, the Sobolev 
inequality implies the result.   ◻

We have the following estimates.

Lemma 16 For every p ≥ 1,

Proof Applying Lemma 13 and Sobolev inequality, one can prove the lemma in a 
fashion similar to Lemma 7.   ◻

Lemma 17 For every p ≥ 1,

Proof Thanks to Lemma 13, it is sufficient to show that

where

Now taking a similar way as Lemma 8, one can prove the desired inequality by 
applying Lemmas 14 and 15 as well as the Burkholder–Davis–Gundy inequality.  
 ◻

Lemma 18 For every p ≥ 1 , sup
n∈ℕ

E
[||𝛥n

||p
]
< ∞.

Proof By Lemma 13, it suffices to show

sup
�∈�

n
1

2
−�
‖‖‖‖h

n∑
j=1

f (Xtj−1
, �) − �

T

0

f (Xt, �)dt
‖‖‖‖p

≤ sup
�∈�

n
1

2
−�

n∑
j=1

‖‖‖‖
||||�

tj

tj−1

{
f (Xt, �) − f (Xtj−1

, �)
}
dt
||||1{�jN

X=0}

‖‖‖‖p
+ sup

�∈�

n
1

2
−�
‖‖‖‖ max
j=1,...,n

||||�
tj

tj−1

{
f (Xt, �) − f (Xtj−1

, �)
}
dt
||||
‖‖‖‖2p

‖‖E
[
NX
T

]‖‖2p
≤O(n 1

2
−� × n × n−1.5) + o(n1∕2−� × n−1∕2+� × 1)

=o(1)

sup
n∈ℕ

E

[(
n−1 sup

𝜃∈𝛩

||𝜕3𝜃ℍn(𝜃)
||
)p]

<∞.

sup
n∈ℕ

E
[(
n𝛽1 ||𝛤n − 𝛤 ||

)p]
<∞.

(19)sup
n∈ℕ

E
[(
n𝛽1 || �𝛤n − 𝛤 ||

)p]
<∞

�̃n = − n−1�2
�
ℍ̃n(�

∗)

(20)sup
n∈ℕ

E
[|| �𝛥n

||p
]
<∞
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for

where

and

We have NX
T
∈ L∞- and

for every p > 1 . Therefore,

for every p > 1 . In this situation, it suffices to show that

as n → ∞ for every p > 1.
Now, we have the equality

where

Define C(x, y) by

(21)�̃n =n
−1∕2��ℍ̃n(�

∗) =
1

2
√
n

��
k=1

n�
j=1

ftj−1

�
D

(k)

j

�

ftj−1 =
(
(S(k))−1(��S

(k))(S(k))−1
)
(Xtj−1

, �∗)

D
(k)

j
=h−1

(
𝛥j
�Y (k)

)⊗2
− S(k)(Xtj−1

, 𝜃∗).

‖‖‖‖ max
j=1,...,n

||ftj−1
[
D

(k)

j

]||
‖‖‖‖p = O(n1∕4)

‖‖‖‖n
−1∕2

n∑
j=1

ftj−1

[
D

(k)

j

]‖‖‖‖p =
‖‖‖‖n

−1∕2

n∑
j=1

1{�jN
X=0}ftj−1

[
D

(k)

j

]‖‖‖‖p + o(1)

(22)
‖‖‖‖n

−1∕2

n∑
j=1

1{�jN
X=0}ftj−1

[
D

(k)

j

]‖‖‖‖p =O(1)

1{�jN
X=0}�jỸ

(k) =1{�jN
X=0}

(
�1,j + �2,j + �3,j

)
,

�1,j =�
(k)(Xtj−1

, �∗)�jw
(k),

�2,j =∫
tj

tj−1

{
�(k)(Xtj−1

+ X̃t − X̃tj−1
, �∗) − �(k)(Xtj−1

, �∗)
}
dw

(k)
t ,

�3,j =∫
tj

tj−1

b
(k)
t dt.

C(x, y) =
||||∫

1

0

�x�
(k)(x + r(y − x), �∗)dr

||||.
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Then, by the same reason as in (22), and by Itô’s formula and the Burkholder–
Davis–Gundy inequality,

and the last expression is not greater than

for p > 1 since ‖‖X̃t − X̃tj−1
‖‖2p ≤ C2pn

−1∕2 and supt∈[0,T] ‖Xt‖p + supt∈[0,T] ‖�Xt‖p < ∞ 
by the continuity of the mapping t ↦ X̃t ∈ Lp for every p > 1 . In a similar manner, 
we obtain

for every p > 1 and (i1, i2) ∈ {1, 2, 3}2 ⧵ {(1, 1)} . Finally, for (i1, i2) = (1, 1),

‖‖‖‖n
−1∕2

n∑
j=1

1{𝛥jN
X=0}h

−1ftj−1

[
𝛯1,j ⊗𝛯2,j

]‖‖‖‖p

=
‖‖‖‖n

−1∕2

n∑
j=1

h−1ftj−1

[
𝛯1,j ⊗𝛯2,j

]‖‖‖‖p + o(1)

≲
‖‖‖‖n

−1∕2

n∑
j=1

h−1|ftj−1 |||𝜎(k)(Xtj−1
, 𝜃∗)||

× ∫
tj

tj−1

||𝜎(k)(Xtj−1
+ �Xt −

�Xtj−1
, 𝜃∗) − 𝜎(k)(Xtj−1

, 𝜃∗)||dt
‖‖‖‖p + O(1)

‖‖‖‖n
−1∕2

n∑
j=1

h−1|ftj−1 |||𝜎(k)(Xtj−1
, 𝜃∗)||

× ∫
tj

tj−1

C(Xtj−1
, �Xt −

�Xtj−1
)||�Xt −

�Xtj−1
||dt

‖‖‖‖p + O(1)

≲ n−1∕2
n∑
j=1

h−1 ∫
tj

tj−1

‖‖‖‖|ftj−1 |
||𝜎(k)(Xtj−1

, 𝜃∗)||C(Xtj−1
, �Xt −

�Xtj−1
)

× ||�Xt −
�Xtj−1

||
‖‖‖‖pdt + O(1)

≲ n−1∕2
n∑
j=1

{
sup

t∈[tj−1,tj]

‖‖�Xt −
�Xtj−1

‖‖2p

× sup
t∈[tj−1,tj]

j=1,...,n

‖‖‖‖|ftj−1 |
||𝜎(k)(Xtj−1

, 𝜃∗)||C(Xtj−1
, �Xt −

�Xtj−1
)
‖‖‖‖2p

}
+ O(1)

= O(1)

‖‖‖‖n
−1∕2

n∑
j=1

1{𝛥jN
X=0}h

−1ftj−1

[
𝛯i1,j

⊗𝛯i2,j

]‖‖‖‖p =O(1)
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by the Burkholder–Davis–Gundy inequality. Therefore, we obtained (22) and hence 
(20).   ◻

Lemma 19 For every p ≥ 1,

Proof We use Lemmas 13, 14 and 15 besides the Burkholder–Davis–Gundy ine-
quality and Sobolev inequality. Then, the proof is similar to Lemma 12 and also to 
Lemma 6 of Uchida and Yoshida (2013).   ◻

Proof of Theorem 2 The result follows from Theorem 2 of Yoshida (2011) with the 
aid of Lemmas 9, 10, 16, 17, 18 and 19.   ◻

3.4  Limit theorem and convergence of moments

In this section, asymptotic mixed normality of the QMLE and QBE will be 
established.

[F1′]� Conditions (ii), (iii) and (iv) of [F1]� are satisfied in addition to 

(i) the process X has a representation 

where JX = (JX
t
)t∈[0,T] is a càdlàg adapted pure jump process, w̃ = (w̃t)t∈[0,T] is 

an �1-dimensional �-Wiener process, b̃ = (b̃t)t∈[0,T] is a �-dimensional càdlàg 
adapted process and ã = (ãt)t∈[0,T] is a progressively measurable processes tak-
ing values in ℝ� ⊗ℝ

�1 . Moreover, 

 for every p > 1.
The Wiener process w̃ is possibly correlated with w.

Recall that �̂�B,𝛼nn  denotes the quasi-Bayesian estimator (QBE) of � with respect to 
ℍn defined by (16). We extend the probability space (�,F,P) so that a �-dimensional 

‖‖‖‖n
−1∕2

n∑
j=1

1{𝛥jN
X=0}ftj−1

[
h−1𝛯1,j ⊗𝛯1,j − S(k)(Xtj−1

, 𝜃∗)
]‖‖‖‖p

=
‖‖‖‖n

−1∕2

n∑
j=1

ftj−1

[
h−1𝛯1,j ⊗𝛯1,j − S(k)(Xtj−1

, 𝜃∗)
]‖‖‖‖p + o(1)

=O(1)

sup
n∈ℕ

E

[(
sup
𝜃∈𝛩

n
1

2
−𝛽2 ||𝕐n(𝜃) − 𝕐 (𝜃)||

)p]
<∞.

Xt =X0 + ∫
t

0

b̃sds + ∫
t

0

ãsdw̃s + JX
t

(t ∈ [0, T])

‖X0‖p + sup
t∈[0,T]

�‖b̃t‖p + ‖ãt‖p+‖JXt ‖p
�
<∞
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standard Gaussian random vector � independent of F  is defined on the extension 
(�,F,P) . Define a random field ℤ on (�,F,P) by

where �[u] = � 1∕2[� , u] . We write û�,𝛼nn =
√
n
�
�̂�
�,𝛼n
n − 𝜃∗

�
 for � ∈ {M,B}.

Let B(R) = {u ∈ ℝ
�; |u| ≤ R} for R > 0 . Equip the space C(B(R)) of continuous 

functions on B(R) with the sup-norm. Denote by ds(F) the F-stable convergence.

Lemma 20 Suppose that [F1�]4 , [F2�] and  [F3] are fulfilled. Then,

as n → ∞ for every R > 0.

Proof Fix k ∈ {1, ..., �} . Let

 and let ftj−1 =
(
(S(k))−1(��S

(k))(S(k))−1
)
(Xtj−1

, �∗) . We will show

for every p > 1 . Let

Then,

It is easy to see

For p > 2 , we have

ℤ(u) = exp

(
𝛥[u] −

1

2
𝛤 [u⊗2]

)
(u ∈ ℝ

�)

(23)ℤn|B(R) →ds(F) ℤ|B(R) in C(B(R))

�D
(k)

j
=
(
𝛥j
�Y (k)

)⊗2
−
(
𝜎(k)(Xtj−1

, 𝜃∗)𝛥jw
(k)
)⊗2

,

(24)
‖‖‖‖

n∑
j=1

n1∕2ftj−1[D̃
(k)

j
]
‖‖‖‖p →0

�j = ∫
tj

tj−1

b(k)
s
ds, �j = �(k)(Xtj−1

, �∗)�jw
(k),

�j = ∫
tj

tj−1

(
�(k)(Xs, �

∗) − �(k)(Xtj−1
, �∗)

)
dws, �j = ∫

tj

tj−1

�(k)(Xs, �
∗)dws.

�D
(k)

j
=(�j)

⊗2 +
{
�j ⊗ �j + �j ⊗ �j

}
+
{
�j ⊗ �j + �j ⊗ �j + �j ⊗ �j

}
.

(25)
‖‖‖‖

n∑
j=1

n1∕2ftj−1[𝖡
⊗2

j
]
‖‖‖‖p →0.
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by the Burkholder–Davis–Gundy inequality and Hölder’s inequality. Therefore,

since

Indeed, for any 𝜖 > 0 , there exists a number 𝛿 > 0 such that P
[
w�(b, 𝛿) > 𝜖

]
< 𝜖 , 

where w�(x, �) is the modulus of continuity defined by

where S� is the set of sequences (si) such that 0 = s0 < s1 < ⋯ < sv = T  and 
mini=1,...,v−1(si − si−1) > 𝛿 . Then,

for n > T∕𝛿 , where

‖‖‖‖
n∑
j=1

n1∕2ftj−1[�j ⊗ �j]
‖‖‖‖p ≤

‖‖‖‖
n∑
j=1

n1∕2ftj−1[hbtj−1 ⊗ �j]
‖‖‖‖p

+
‖‖‖‖

n∑
j=1

n1∕2ftj−1

[
�

tj

tj−1

(
bs − btj−1

)
ds⊗ �j

]‖‖‖‖p

≲
‖‖‖‖

n∑
j=1

n−1|ftj−1 |2|btj−1 |2|�j|2
‖‖‖‖
1∕2

p∕2

+
‖‖‖‖

n∑
j=1

n1∕2ftj−1

[
�

tj

tj−1

(
bs − btj−1

)
ds⊗ �j

]‖‖‖‖p

≤
{ n∑

j=1

n−1‖‖|ftj−1 |‖‖
2

3p
‖‖|btj−1 |‖‖

2

3p
‖‖|�j|‖‖23p

}1∕2

+
‖‖‖‖

n∑
j=1

n1∕2||ftj−1 ||||�j
||�

tj

tj−1

||bs − btj−1
||ds

‖‖‖‖p

(26)
‖‖‖‖

n∑
j=1

n1∕2ftj−1[𝖡j ⊗ 𝖤j]
‖‖‖‖p →0

In ∶=
‖‖‖‖

n∑
j=1

n1∕2||ftj−1 ||||𝖤j
||∫

tj

tj−1

||bs − btj−1
||ds

‖‖‖‖p →0.

w�(x, �) = inf
(si)∈S�

max
i

sup
r1,r2∈[si−1,si)

|x(r1) − x(r2)|,

In ≤‖‖‖‖
n∑
j=1

n1∕2||ftj−1 ||||�j
||
‖‖‖‖p𝜖h +

‖‖‖‖ max
j=1,...,n

Vj

‖‖‖‖p
T

𝛿
+
‖‖‖‖

n∑
j=1

Vj

‖‖‖‖2pP
[
w�(b, 𝛿) > 𝜖

] 1

2p

≲𝜖 +

(
n−1∕2 +

n∑
j=1

‖‖Vj1{Vj>n
−1∕2}

‖‖p
)
T

𝛿
+ 𝜖

1

2p

Vj =n
1∕2||ftj−1 ||||�j

||∫
tj

tj−1

(||bs|| + ||btj−1 ||
)|ds.
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Thus, we obtain limn→∞ In = 0 and hence (26).
Itô’s formula gives

for t ∈ [tj−1, tj] . With Itô’s formula, one can show

Obviously,

Moreover, for V̂j = n1∕2||ftj−1 ||||�j
|||| ∫ tj

tj−1
�j(s)dws

|| , we have

Therefore,

Similarly to (27), we know

and also

𝜎(k)(Xt, 𝜃
∗) − 𝜎(k)(Xtj−1

, 𝜃∗) =∫
t

tj−1

(
𝜕x𝜎

(k)(Xs, 𝜃
∗)[b̃s] +

1

2
𝜕2
x
𝜎(k)(Xs, 𝜃

∗)
[
ãsã

⋆
s

])
ds

+ ∫
t

tj−1

𝜕x𝜎
(k)(Xs−, 𝜃

∗)[ãsdw̃s]

+ ∫(tj−1,t]

(
𝜎(k)(Xs, 𝜃

∗) − 𝜎(k)(Xs−, 𝜃
∗)
)
dNX

s

=∶�j(t) + �j(t) + �j(t)

‖‖‖‖
n∑
j=1

n1∕2ftj−1

[
𝖢j ⊗ ∫

tj

tj−1

𝖺j(s)dws

]‖‖‖‖p →0.

‖‖‖‖
n∑
j=1

n1∕2ftj−1

[
𝖢j ⊗ ∫

tj

tj−1

𝖻j(s)dws

]‖‖‖‖p →0.

(27)

‖‖‖‖
n∑
j=1

n1∕2ftj−1

[
𝖢j ⊗ �

tj

tj−1

𝖽j(s)dws

]‖‖‖‖p ≤
‖‖‖‖ max
j=1,...,n

V̂jN
X
T

‖‖‖‖p

≤n−1∕4‖‖NX
T
‖‖p + P

[
max
j=1,...,n

V̂j > n−1∕4
] 1

2p ‖‖NX
T
‖‖2p

→0.

(28)
‖‖‖‖

n∑
j=1

n1∕2ftj−1[𝖢j ⊗ 𝖣j]
‖‖‖‖p →0.

‖‖‖‖
n∑
j=1

n1∕2ftj−1

[(
∫

tj

tj−1

𝖽j(s)dws

)⊗2]‖‖‖‖p →0

(29)
‖‖‖‖

n∑
j=1

n1∕2ftj−1[𝖣j ⊗ 𝖣j]
‖‖‖‖p →0.
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From (25), (26), (28), (29) and symmetry, we obtain (24). In particular, (24) and 
(21) give the approximation

and so �̃n →
ds(F) �

1

2 � as n → ∞ . Furthermore, Lemma 13 ensures

as n → ∞.
Let R > 0 . Then, there exists n(R) such that for all n ≥ n(R) and all u ∈ B(R),

where

with �†
n
(u) = �∗ + n−1∕2u . Combining (30), Lemmas 17 and 16 with representation 

(31), we conclude the finite-dimensional stable convergence

as n → ∞ . Since Lemma 16 validates the tightness of {ℤn|B(R)}n≥n(R) , we obtain the 
functional stable convergence (23).   ◻

Theorem 3 Suppose that [F1�]4 , [F2�] and  [F3] are fulfilled. Then,

as n → ∞ for � ∈ {M,B} , any continuous function f of at most polynomial growth, 
and any F -measurable random variable 𝛷 ∈ ∪p>1L

p.

Proof To prove the result for � = M , we apply Theorem  5 of Yoshida (2011) 
with the help of Lemma 20 and Proposition 3. For the case � = B , we obtain the 
convergence

for any continuous function of at most polynomial growth, by applying Theorem 6 
of Yoshida (2011). For that, we use Lemma 20 and Theorem  2. Estimate with 
Lemma 2 of Yoshida (2011) ensures Condition (i) of Theorem 8 of Yoshida (2011), 
which proves the stable convergence as well as moment convergence.   ◻

�𝛥n ≡n−1∕2𝜕𝜃 �ℍn(𝜃
∗)

=
1

2
√
n

��
k=1

n�
j=1

ftj−1

�
h−1

�
𝜎(k)(Xtj−1

, 𝜃∗)𝛥jw
(k)
�⊗2

− S(k)(Xtj−1
, 𝜃∗)

�
+ op(1),

(30)�n →
ds(F) �

1

2 �

(31)logℤn(u) =𝛥n[u] +
1

2n
𝜕2
𝜃
ℍn(𝜃

∗)[u⊗2] + rn(u),

rn(u) =∫
1

0

(1 − s)
{
n−1𝜕2

𝜃
ℍn(𝜃

†
n
(su))[u⊗2] − n−1𝜕2

𝜃
ℍn(𝜃

∗)[u⊗2]
}
ds

(32)ℤn →
ds-f (F) ℤ

E
[
f
(
û𝖠,𝛼n
n

)
𝛷
]
→�

[
f
(
𝛤 −1∕2𝜁

)
𝛷
]

∫
𝕌n

f (u)ℤn(u)�(�∗ + n−1∕2u)du →ds(F) ∫
ℝ𝗉

f (u)ℤ(u)�(�∗)du
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4  Efficient one‑step estimators

In Sect. 3, the asymptotic optimality was established for the QMLE �̂�M,𝛼n
n  and the 

QBE �̂�B,𝛼nn  having a moving threshold specified by �n converging to 0. However, in 
practice for fixed n, these estimators are essentially the same as the �-QMLE and 
�-QBE for a fixed � though they gained some freedom of choice of �(k)

n,j−1
 , p(k)

n
 and 

q(k)
n

 in the asymptotic theoretical context.
It was found in Sect. 2.5 that the �-QMLE �̂�M,𝛼

n
 and the (�, �)-QBE �̂�B,𝛼,𝛽

n
 based 

on a fixed �-threshold are consistent. However, they have pros and cons. They 
are expected to remove jumps completely but they are conservative and the rate 
of convergence is not optimal. In this section, as the second approach to optimal 
estimation, we try to recover efficiency by combining these less optimal estima-
tors with the aggressive random field ℍn given by (16), expecting to keep high 
precision of jump detection by the fixed � filters.

Suppose that � ∈ ℕ satisfies 𝜅 > 1 + (2𝛾0)
−1 . We assume [F1�]�∨4 , [F2], 

[F2�] and [F3]. According to Proposition 1, �̂�M,𝛼
n

 attains n−�-consistency for any 
� ∈

(
2−1(� − 1)−1, �0

)
 , and then 𝛽(𝜅 − 1) > 1∕2 . For �∗ ∈ � , there exists an open 

ball B(𝜃∗) ⊂ 𝛩 around �∗ . If �2
�
ℍn(�0) is invertible, then Taylor’s formula gives

for �1, �0 ∈ B(�∗) . The second term on the right-hand side reads 0 when � = 3 . Here, 
A1,i ( i = 2, ..., � − 2 ) are written by 

(
�2
�
ℍn(�0)

)−1 and �i
�
ℍn(�0) ( i = 3, ..., � − 1 ), 

respectively, and A1,�−1(�0, �1) is by 
(
�2
�
ℍn(�0)

)−1 and ��
�
ℍn(�) ( � ∈ B(�∗) ). Let

 where

i.e., �(�0)[u] = −
(
�2
�
ℍn(�0)

)−1
[��ℍn(�0), u] for u ∈ ℝ

� . We write ∑𝜅−2

i=2
A1,i(𝜃0)

�
F(𝜃1, 𝜃0)

⊗i
�
 in the form

with

 Next, we write

𝜃1 − 𝜃0 =
(
𝜕2
𝜃
ℍn(𝜃0)

)−1[
𝜕𝜃ℍn(𝜃1) − 𝜕𝜃ℍn(𝜃0)

]
+

𝜅−2∑
i=2

A1,i(𝜃0)
[
(𝜃1 − 𝜃0)

⊗i
]

+ A1,𝜅−1(𝜃1, 𝜃0)
[
(𝜃1 − 𝜃0)

⊗(𝜅−1)
]

(33)F(𝜃1, 𝜃0) =𝜖(𝜃0) +

𝜅−2∑
i=2

A1,i(𝜃0)
[
(𝜃1 − 𝜃0)

⊗i
]
,

�(�0) = −
(
�2
�
ℍn(�0)

)−1
[��ℍn(�0)],

𝜅−2∑
i=2

A1,i(𝜃0)
[
F(𝜃1, 𝜃0)

⊗i
]
=A2(𝜃0) +

∑
i1+i2≥3

A2,i1,i2
(𝜃0)

[
𝜖(𝜃0)

⊗i1 , (𝜃1 − 𝜃0)
⊗i2

]

A2(𝜃0) =

𝜅−2∑
i=2

A1,i(𝜃0)
[
𝜖(𝜃0)

⊗i
]
.
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with

Repeat this procedure up to

with

Let A1(�0) = �(�0) . Thus, the sequence of ℝ�-valued random functions

is defined on {�0 ∈ �; �2
�
ℍn(�0) is invertible} . For example, when � = 4,

Let

Define �̌�M,𝛼
n

 by

where �∗ is an arbitrary value in �.
On the event �0

n
∶= {�̂�

M,𝛼n
n , �̂�M,𝛼

n
∈ B(𝜃∗)} ∩�n , the QMLE �̂�M,𝛼n

n  for ℍn 
satisfies

 Let

∑
i1+i2≥3

A2,i1,i2
(𝜃0)

[
𝜖(𝜃0)

⊗i1 ,F(𝜃1, 𝜃0)
⊗i2

]
=A3(𝜃0) +

∑
i1+i2≥4

A3,i1,i2
(𝜃0)

[
𝜖(𝜃0)

⊗i1 , (𝜃1 − 𝜃0)
⊗i2

]

A3(𝜃0) =
∑

i1+i2≥3
A2,i1,i2

(𝜃0)
[
𝜖(𝜃0)

⊗(i1+i2)
]
.

∑
i1+i2≥𝜅−2

A𝜅−3,i1,i2
(𝜃0)

[
𝜖(𝜃0)

⊗i1 ,F(𝜃1, 𝜃0)
⊗i2

]

=A𝜅−2(𝜃0) +
∑

i1+i2≥𝜅−1
A𝜅−2,i1,i2

(𝜃0)
[
𝜖(𝜃0)

⊗i1 , (𝜃1 − 𝜃0)
⊗i2

]

A𝜅−2(𝜃0) =
∑

i1+i2≥𝜅−2
A𝜅−3,i1,i2

(𝜃0)
[
𝜖(𝜃0)

⊗(i1+i2)
]
.

Ai(�0) (i = 1, ..., � − 2)

A1(𝜃0) = −
(
𝜕2
𝜃
ℍn(𝜃0)

)−1
[𝜕𝜃ℍn(𝜃0)],

A2(𝜃0) = −
1

2

(
𝜕2
𝜃
ℍn(𝜃0)

)−1[
𝜕3
𝜃
ℍn(𝜃0)[A1(𝜃0)

⊗2]
]
.

�n =

{
�̂�M,𝛼
n

∈ 𝛩, det 𝜕2
𝜃
ℍn(�̂�

M,𝛼
n

)≠ 0, �̂�M,𝛼
n

+

𝜅−2∑
i=1

Ai(�̂�
M,𝛼
n

) ∈ 𝛩

}
.

�̌�M,𝛼
n

=

�
�̂�M,𝛼
n

+
∑𝜅−2

i=1
Ai(�̂�

M,𝛼
n

) on �n

𝜃∗ on �c
n

(34)�̂�M,𝛼n
n

− �̂�M,𝛼
n

=F(�̂�M,𝛼n
n

, �̂�M,𝛼
n

) + A1,𝜅−1(�̂�
M,𝛼n
n

, �̂�M,𝛼
n

)
[
(�̂�M,𝛼n

n
− �̂�M,𝛼

n
)⊗(𝜅−1)

]
.
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Then, the estimate

for every p > 1 follows from representation (34), Propositions 1 and 3 and Lemma 
9. Moreover, Lemmas 9, 17 and 16 together with Lp-boundedness of the estimation 
errors yield P[(��

n
)c] = O(n−L) for every L > 0.

Now on the event �0
n
 , we have

Therefore, it follows from (35) that

for every p > 1 . Inductively,

Consequently, using boundedness of � on (��
n
)c , we obtain

and this implies

for every p > 1 . We note that � in the above argument is a working parameter chosen 
so that 𝛽 > 2−1(𝜅 − 1)−1.

��
n
=

{
�̂�M,𝛼n
n

, �̂�M,𝛼
n

∈ B(𝜃∗), | det n−1𝜕2
𝜃
ℍn(�̂�

M,𝛼
n

)| ≥ 2−1 det𝛤 ,

�̂�M,𝛼
n

+

𝜅−2∑
i=1

Ai(�̂�
M,𝛼
n

) ∈ 𝛩

}
.

(35)

‖‖‖‖
{
�̂�M,𝛼n
n

− �̂�M,𝛼
n

− A1(�̂�
M,𝛼
n

) −

𝜅−2∑
i=2

A1,i(�̂�
M,𝛼
n

)
[
(�̂�M,𝛼n

n
− �̂�M,𝛼

n
)⊗i

]}
1��

n

‖‖‖‖p = O(n−𝛽(𝜅−1))

𝜅−2∑
i=2

A1,i(�̂�
M,𝛼
n

)
[(
�̂�M,𝛼n
n

− �̂�M,𝛼
n

)⊗i]

=

𝜅−2∑
i=2

A1,i(�̂�
M,𝛼
n

)

[(
F(�̂�M,𝛼n

n
, �̂�M,𝛼

n
) + A1,𝜅−1(�̂�

M,𝛼n
n

, �̂�M,𝛼
n

)
[
(�̂�M,𝛼n

n
− �̂�M,𝛼

n
)⊗(𝜅−1)

])⊗i]
.

‖‖‖‖
{
�̂�M,𝛼n
n

− �̂�M,𝛼
n

− A1(�̂�
M,𝛼
n

) − A2(�̂�
M,𝛼
n

)

−
∑

i1+i2≥3
A2,i1,i2

(�̂�M,𝛼
n

)
[
𝜖(�̂�M,𝛼

n
)⊗i1 , (�̂�M,𝛼n

n
− �̂�M,𝛼

n
)⊗i2

]}
1��

n

‖‖‖‖p
=O(n−𝛽(𝜅−1))

‖‖‖‖
{
�̂�M,𝛼n
n

− �̂�M,𝛼
n

−

𝜅−2∑
i=1

Ai(�̂�
M,𝛼
n

)

}
1��

n

‖‖‖‖p =O(n
−𝛽(𝜅−1)).

‖‖�̂�M,𝛼n
n

− �̌�M,𝛼
n

‖‖p =O(n−𝛽(𝜅−1)) = o(n−1∕2)

‖‖�̌�M,𝛼
n

− 𝜃∗‖‖p =O(n−1∕2)
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Next, we will consider a Bayesian estimator as the initial estimator. We 
are supposing that 𝜅 > 1 + (2𝛾0)

−1 , and furthermore we suppose � satisfies 
� ∈ (2−1(� − 1)−1, �0) . Remark that this � is the parameter involved in the estima-
tor �̂�B,𝛼,𝛽

n
 , not a working parameter. Let

Define �̌�B,𝛼,𝛽
n

 by

Then, we obtain

and

for every p > 1.
Write ǔ�

n
=
√
n
�
�̌��
n
− 𝜃∗

�
 for � =“M, � ” and “ B, �, � .” Thus, we have obtained 

the following result from Theorem 3 for �̂�M,𝛼n
n .

Theorem 4 Suppose that [F1�]�∨4 , [F2], [F2�] and [F3] are fulfilled. Let f be any 
continuous function of at most polynomial growth, and let � be any F -measura-
ble random variable in ∪p>1L

p . Suppose that an integer � satisfies 𝜅 > 1 + (2𝛾0)
−1 . 

Then, 

(a) E
[
f
(
ǔM,𝛼
n

)
𝛷
]
→ �

[
f
(
𝛤 −1∕2𝜁

)
𝛷
]
 as n → ∞.

(b) E
[
f
(
ǔB,𝛼,𝛽
n

)
𝛷
]
→ �

[
f
(
𝛤 −1∕2𝜁

)
𝛷
]
 as n → ∞ , suppose that � ∈ (2−1(� − 1)−1, �0).

5  Localization

In the preceding sections, we established asymptotic properties of the estimators, in 
particular, Lp-estimates for them. Though it was thanks to [F3], verifying it is not 
straightforward. An analytic criterion and a geometric criterion are known to insure 
Condition [F3] when X is a nondegenerate diffusion process (Uchida and Yoshida 
2013). It is possible to give similar criteria even for jump-diffusion processes but we do 
not pursue this problem here. Instead, it is also possible to relax [F3] in order to only 
obtain stable convergences.

We will work with 

[F3♭]  𝜒0 > 0 a.s.

�n =

{
�̂�B,𝛼,𝛽
n

∈ 𝛩, det 𝜕2
𝜃
ℍn(�̂�

B,𝛼,𝛽
n

)≠ 0, �̂�B,𝛼,𝛽
n

+

𝜅−2∑
i=1

Ai(�̂�
B,𝛼,𝛽
n

) ∈ 𝛩

}
.

�̌�B,𝛼,𝛽
n

=

�
�̂�B,𝛼,𝛽
n

+
∑𝜅−2

i=1
Ai(�̂�

B,𝛼,𝛽
n

) on �n

𝜃∗ on �c
n
.

‖‖�̂�M,𝛼n
n

− �̌�B,𝛼,𝛽
n

‖‖p =O(n−𝛽(𝜅−1)) = o(n−1∕2)

‖‖�̌�B,𝛼,𝛽n
− 𝜃∗‖‖p =O(n−1∕2)
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 in place of [F3].
Let 𝜖 > 0 . Then, there exists a 𝛿 > 0 such that P[A�] ≥ 1 − � for A𝛿 = {𝜒0 > 𝛿} . 

Define �ℍn(�;�) by

The way of modification of ℍn on Ac
�
 is not essential in the following argument. Let

for �ℍ�
n
(�;�) = n−1+2� �

ℍn(�;�) . The random field ��n(�;�) is defined by

The limit of ��n(�;�) is now

The corresponding key index is

Then, Condition [F3] holds for ��0 under the conditional probability given A� , that 
is,

for every L > 0 . Now it is not difficult to follow the proof of Propositions 1 and 2 to 
obtain

for every p > 1 and every 𝛽 < 𝛾0 , under [F1]4 and [F2] in addition to [F3♭] . Thus, we 
obtained the following results.

Proposition 4 Suppose that [F1]4, [F2] and [F3♭] are satisfied. Then, 
n𝛽
(
�̂�M,𝛼
n

− 𝜃∗
)
= Op(1) and n𝛽

(
�̂�B,𝛼,𝛽
n

− 𝜃∗
)
= Op(1) as n → ∞ for every 𝛽 < 𝛾0.

In a similar way, we can obtain the stable convergence of the estimators with 
moving � , as a counterpart to Theorem 3.

Theorem 5 Suppose that [F1�]4 , [F2�] and [F3♭] are fulfilled. Then,

�
ℍn(�;�)� =

{
ℍn(�;�)� (� ∈ A�)

−n|� − �∗|2 (� ∈ Ac
�
).

�
ℤ

�
n
(u;�) = exp

{
�
ℍ

�
n

(
�∗ + n−�u;�

)
− �

ℍ
�
n

(
�∗;�

)}
(u ∈ 𝕌

�
n
)

�
𝕐n(�;�) =n

−2�
{

�
ℍ

�
n
(�;�) − �

ℍ
�
n
(�∗;�)

}
= n−1

{
�
ℍn(�;�) −

�
ℍn(�

∗;�)
}
.

�
� (�) =� (�)1A�

− |� − �∗|21Ac
�
.

��0 = inf
�≠�∗

− �
� (�)

|� − �∗|2 .

P
[
𝛿𝜒0 < r−1||A𝛿

] ≤CL,𝛿 r
−L (r > 0)

sup
n∈ℕ

{
E
[||n𝛽

(
�̂�M,𝛼
n

− 𝜃∗
)||p1A𝛿

]
+ E

[||n𝛽
(
�̂�B,𝛼,𝛽
n

− 𝜃∗
)||p1A𝛿

]}
< ∞

û𝖠,𝛼n
n

→ds 𝛤 −1∕2𝜁
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as n → ∞ for � ∈ {M,B}.

Moreover, a modification of the argument in Sect. 4 gives the stable convergence 
of the one-step estimators.

Theorem 6 Suppose that [F1�]�∨4 , [F2], [F2�] and [F3♭] are fulfilled. Suppose that 
an integer � satisfies 𝜅 > 1 + (2𝛾0)

−1 . Then, 

(a) ǔM,𝛼
n

→ds 𝛤 −1∕2𝜁 as n → ∞.
(b) ǔB,𝛼,𝛽

n
→ds 𝛤 −1∕2𝜁 as n → ∞ , suppose that � ∈ (2−1(� − 1)−1, �0).

Suppose that the process X satisfies the stochastic integral equation

with a finitely active jump part JX with �JX
0
= 0 . The first jump time T1 of JX satis-

fies T1 > 0 a.s. Suppose that X′ is a solution to

and that X� = XT1 on [0, T1) for the stopped process XT1 of X at T1 . This is the case 
where the stochastic differential equation has a unique strong solution. Furthermore, 
suppose that the key index �0,� defined for (X�

t
)t∈[0,�] is nondegenerate for every 𝜖 > 0 

in that supr>0 rLP[𝜒0,𝜖 < r−1] < ∞ for every L > 0 . Then, on the event {T1 > 𝜖} , we 
have positivity of �0 . This implies Condition [F3♭] . To verify nondegeneracy of �0,� , 
we may apply a criterion in Uchida and Yoshida (2013).
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