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Abstract
In this paper, we propose a non-negative feature selection/feature grouping (nnFSG) 
method for general sign-constrained high-dimensional regression problems that 
allows regression coefficients to be disjointly homogeneous, with sparsity as a 
special case. To solve the resulting non-convex optimization problem, we provide 
an algorithm that incorporates the difference of convex programming, augmented 
Lagrange and coordinate descent methods. Furthermore, we show that the afore-
mentioned nnFSG method recovers the oracle estimate consistently, and that the 
mean-squared errors are bounded. Additionally, we examine the performance of our 
method using finite sample simulations and applying it to a real protein mass spec-
trum dataset.
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1  Introduction

In recent decades, high-dimensional problems appear in many fields due to the 
increasing prevalence of big data. A classical model for data analysis is the linear 
regression model,

where yi are response observations, xi = (xi1,… , xip)
⊤ are p-dimensional vectors 

of predictors, � ∈ ℝ
p is a vector of unknown regression coefficients, �i are random 

errors, and xi are independent of �i . Regression analysis aims at identifying the rel-
evant explanatory variables of the response and achieving high prediction accuracy 
(Rekabdarkolaee et  al. 2017). In the high-dimensional setting, p is at least of the 
same order of magnitude as n, say p = O(n) (p is not fixed), or p >> n , in which 
case � is usually assumed to be sparse, i.e., only a small set of elements are non-
zero (Slawski and Hein 2013). For high-dimensional regression problems, regulari-
zation methods are of critical importance in a broad sense, and much work has been 
devoted to exploring sparseness of regression vectors. Examples include Bridge 
regression (Frank and Friedman 1993), Lasso (Tibshirani 1996), SCAD (Fan and 
Li 2001), elastic net (Zou and Hastie 2005), adaptive Lasso (Zou 2006), and MCP 
(Zhang 2010). Moreover, extracting one kind of lower-dimensional structure defined 
by groups has received increasing attention. One can turn to Tibshirani et al. (2005), 
Yuan and Lin (2006), Huang et al. (2009), She (2010), Jang et al. (2011), Tibshirani 
and Taylor (2011), Shen et al. (2012a), Yang et al. (2012), Zhu et al. (2013), Xiang 
et al. (2015), Arnold and Tibshirani (2016), and among others, for overviews of the 
literature. Methods introduced in the above articles intend to solve the problems 
where the regression vectors may contain some kind of structure, in which the vec-
tors can be partitioned into disjoint, homogeneous subgroups.

Statistical modeling can entail many challenges stemming from the complexity of 
data. In high-dimensional regression models, there are some commonly stated con-
straints that should be imposed on the regression coefficients in order to avoid physi-
cally impossible or uninterpretable results. For instance, non-negativity is a com-
mon constraint when modeling non-negative data, e.g., time measurements, count 
data, chemical concentrations, intensity values of an image and economical quanti-
ties such as prices, incomes and growth rates (Slawski and Hein 2013).

The non-negativity constraint on the regression coefficients is an effective 
regularization technique for a certain class of high-dimensional regression prob-
lems. Slawski et  al. (2012) proposed non-negative least squares (NNLS)/non-
negative least absolute deviation (NNLAD) regression to extract patterns from 
a raw spectrum. Slawski and Hein (2013) showed that the performance of NNLS 
is comparable to that of Lasso in terms of prediction and estimation. Similarly, 
Meinshausen (2013) confirmed the effectiveness of the sign constraint for sparse 
recovery if explanatory variables are strongly correlated. Koike and Tanoue 
(2019) extended the results of Slawski and Hein (2013) and Meinshausen (2013)) 
to a more general setup, allowing for general convex loss functions and nonlinear-
ity relationships between response and explanatory variables. Wen et al. (2015) 

(1)yi = x⊤
i
� + 𝜖i ( i = 1,… , n),
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proposed a projection-based gradient descent method for solving NNLS problems 
and then applied it to the inverse problem of constructing a probabilistic Boolean 
network. Shadmi et al. (2019) investigated NNLS for recovering sparse non-nega-
tive vectors from noisy linear and biased measurements, as good as l1 regularized 
estimations but without tuning parameters.

Other methods for dealing with such non-negative and sparse structures of 
regression coefficients combine the regularization techniques with non-negativity 
constraints, like, non-negative Lasso (Wu et al. 2014; Itoh et al. 2016), non-negative 
elastic net (Wu and Yang 2014) and non-negative adaptive Lasso (Yang and Wu 
2016). Esser et  al. (2013) added sparsity penalties, which are related to the ratio 
of l1 and l2 norms, to the objective function in an NNLS-type model to solve linear 
unmixing problems. Hu et  al. (2015) applied a non-negative Lasso-based variable 
selection to identify the important amino acid sites and to evaluate their importance. 
Mandal and Ma (2016) proposed an efficient regularization path algorithm for gen-
eralized linear models with non-negative regression coefficients. Those methods are 
based on convex optimization with non-negative constraints.

To the best of our knowledge, many aspects of the sign-constrained feature 
selection/grouping remain unknown, including its theoretical properties and com-
putational result. Note that, throughout this paper, we only consider non-negative 
constraints on the regression coefficients since one can replace the predictors that 
are imposed to be negative coefficients by their negative counterparts (Meinshausen 
2013). In this paper, we propose a novel regularization scheme-based method to deal 
with the non-negative feature selection problem, i.e., the regression coefficients have 
sparse structures and non-negative constraints. In addition, our method is applica-
ble to the feature grouping cases where those regression coefficients may contain 
homogeneous subgroups within which the elements are similar or identical. In light 
of Shen et  al. (2012a), we initially introduce the nnFSG in its constrained form, 
followed by its regularized form. To solve the resulting non-convex regularization 
problem, we provide a hybrid algorithm that combines with the difference convex 
programming, augmented Lagrange and coordinate descent.

Our study makes four contributions. First, we propose a regularization scheme-
based method that deals with a series of sign-constrained high-dimensional regres-
sion problems. It permits the regression coefficients to contain a structure of disjoint 
homogeneity, including sparsity as a special case. Second, to obtain a non-negative 
estimate, we initially adopt a penalty method instead of convex optimization with 
non-negative constraints. Although our method is in light of Shen et al. (2012a) by 
imposing non-negative constraints, one significant difference is the penalty function 
that we adopted shrinking these negative regression coefficients. Third, we leverage 
the associated proofs of Shen et al. (2012a), but we make the following theoretical 
improvements: (1) we introduce an oracle estimate defined by (5) that is based on 
the underlying true groupings with non-negative constraints, which is different from 
the one defined in Shen et al. (2012a). The probability of the event that the oracle 
estimate is not equal to the least squares estimate defined by (6) converges to 0 at a 
rate of O(n−1(log n)1∕2) under some mild conditions; (2) we further show that both 
the constrained estimate and the nnFSG estimate recover the oracle estimate consist-
ently, and the mean-squared errors are bounded. Last but foremost, the proposed 
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nnFSG outperforms other existing methods in terms of prediction accuracy, identi-
fying informative variables and subgroups.

The rest of this paper is organized as follows. In Sect. 2, we introduce the con-
strained optimization problem. We develop the regularized nnFSG and an algorithm 
in Sect. 3, along with the convergence of the algorithm and the theoretical properties 
of the estimator. We present the numerical studies in Sect. 4. We conclude this paper 
in Sect. 5. The proofs of these lemmas and theorems are given in “Appendix”.

Throughout the rest of this paper, the following notations and definitions will be 
used. We denote the design matrix X = (x1,… , xn)

⊤ = (x(1),… , x(p)) . Define PX as 
the projection matrix onto X. For any A ⊂ {1,… , p} , |A| and Ac denote the size and 
the complement of A , respectively. For any B ⊂ A , A�B = A ∩ Bc . We define 
XA = (x(j1),… , x(j|A|)) , a n × |A| matrix indexed by A = {j1,… , j|A|} . Let 1d be a 
d × 1 vector having elements 1. For a square matrix A, we define its smallest and 
largest eigenvalues by �min(A) and �max(A) , respectively. We use I{⋅} and I to denote 
an indicator function and an identity matrix, respectively. We denote the l2-norm, l1-
norm and l∞-norm of a vector a by ‖a‖, ‖a‖1, ‖a‖∞ , respectively. We define a vector 
a ≥ 0 , and thus has all components larger or equal to 0. For any a, b ∈ ℝ , min{a, b} 
and max{a, b} return the minimum and maximum of a and b, respectively. sign(a) is 
the sign of a. a+ = a if a ≥ 0 , otherwise a+ = 0 . We use �(⋅) to denote the cumula-
tive distribution function of the standard normal distribution.

2 � Constrained optimization problem

Consider the linear regression model (1), where the regression coefficients are 
assumed to be sparse with non-negative constraints. Suppose that �0 is the true 
regression vector. Define the support of �0 , S = {j ∶ 𝛽0

j
> 0}, j = 1,… , p . The non-

negative feature selection (nnFS) problem is formulated by the constrained least 
squares criterion

subject to

where s1(> 0) is a tuning parameter that controls feature selection. 𝜏 > 0 , a threshold 
parameter, determines when a small regression coefficient should be penalized.

In particular, the unknown vector � may contain a structure with disjoint homo-
geneous subgroups within which the coordinates are identical or similar. Let the 
number of disjoint subgroups be K + 1 (K ≤ p − 1) , and denote the coefficients 
index of k-th group by Gk satisfying ∪kGk = {1, 2,… , p} and ∩kGk = � . Denote 
� = (�⊤

0
, �⊤

1
,… , �⊤

K
)⊤ , where �k = �k1|Gk| , 𝛼0 = 0 and 𝛼k > 0 for k = 1,… ,K . In 

(2)min
�≥0

1

2n

n∑
i=1

(yi − x⊤
i
�)2,

(3)
p∑
j=1

min

{|�j|
�

, 1

}
≤ s1,
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light of Shen et al. (2012a), the nnFSG problem is formulated by solving the problem 
(2) subjecting to

where 𝜀 = {(j, j�) ∶ j < j�, j, j� = 1,… , p} , an arbitrary undirected graph. The tun-
ing parameter, s2(> 0) , controls feature grouping. 𝜏(> 0) also determines when 
a small difference between two coefficients should be penalized. More details on 
the constraints of (4) can be referred to Shen et  al. (2012b, 2013). Note that the 
nnFSG problem is reduced to nnFS problem if K = p − 1 . Throughout this paper, 
we thus only consider the nnFSG problem. Our goal is to estimate � or equivalently, 
� = (𝛼1,… , 𝛼K)

⊤ and G = (G0,G1,… ,GK)
⊤ . A solution to (2) subjecting to (4) will 

be referred to as a constrained nnFSG estimator, denoted by �̂cons.
We denote the true grouping by G0 = (G0

0
,G0

1
,… ,G0

K0) = (G0
0
,G0

0

c
) , and the true 

regression parameter for the group k by �0
k
 for k = 1,… ,K0, where K0 + 1 is the true 

grouping number. Then �0 can be written as

Denote �0 = (𝛼0
1
,… , 𝛼0

K0
)⊤ , and ZG0c

0
= (XG0

1
1|G0

1
|,… ,XG0

K0
1|G0

K0
|) , where XG0

k
 is the 

design matrix spanned by the predictors of G0
k
.

Now, we define the oracle estimator,

where �̂ora = (𝛼̂ora
1

,… , 𝛼̂ora

K0
)⊤ , satisfying that

We denote the least squares estimator by

where �̂ols = (𝛼̂ols
1
,… , 𝛼̂ols

K0
)⊤ = (Z⊤

G0
0

cZG0
0

c)−1Z⊤

G0
0

cy with Z⊤

G0
0

cZG0
0

c invertible. Note that 

both �̂ora and �̂ols are defined based on the true grouping G0.
Before proceeding, we provide two metrics proposed by Shen et al. (2012a) and Zhu 

et al. (2013), which reflect the model’s difficulty, i.e.,

(4)
p∑
j=1

min

{|�j|
�

, 1

}
≤ s1, and

∑
(j,j�)∈�

min

{|�j − �j� |
�

, 1

}
≤ s2,

�0 =

(
01⊤|G0

0
|, 𝛼

0
1
1
⊤

|G0
1
|,… , 𝛼0

K01
⊤

|G0

K0
|

)⊤

.

(5)�̂
ora

=
(
𝛽ora
1

,… , 𝛽ora
p

)⊤

=

(
01⊤|G0

0
|, 𝛼̂

ora
1

1
⊤

|G0
1
|,… , 𝛼̂ora

K0 1
⊤

|G0

K0
|

)⊤

,

�̂ora = argmin
�

1

2n
‖y − ZG0

0

c�‖2, 𝛼k > 0, k = 1,… ,K0.

(6)�̂
ols

=
(
𝛽ols
1
,… , 𝛽ols

p

)⊤

=

(
01⊤|G0

0
|, 𝛼̂

ols
1
1
⊤

|G0
1
|,… , 𝛼̂ols

K0 1
⊤

|G0

K0
|

)⊤

,

Cmin = min
G∈T

‖(I − PZGc
0

)X�0‖2

nmax{�G0�G
0
0
�, 1} ,
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and

where G = (G0,G
c
0
) = (G0,G1,… ,GK) , ZGc

0
= (XG1

1|G1|,… ,XGK
1|GK |) , 

PZGc
0

= ZGc
0
(Z⊤

Gc
0

ZGc
0
)−1Z⊤

Gc
0

 , T = {G ≠ G0 ∶
∑p

j=1
I{𝛽j>0} ≤ s0

1
,
∑

(j,j�)∈𝜀 I{𝛽j≠𝛽j� } ≤ s0
2
} , a 

constrained set corresponding to (4), with s0
1
= |S| = p − |G0

0
| , s0

2
=
∑

(j,j�)∈� I{�0j ≠�0j� } . 
We remark that Cmin defines the degree of separation between G0

0
 and a least favora-

ble candidate model for feature grouping and selection in the l2-norm, while �min 
represents the resolution level of true regression coefficients. The smaller the values 
of Cmin and �min , the more difficult the situation. Denote

where K∗
i
= max{G∈T,|G0�G

0
0
|=i} K(G

c
0
) , and K(Gc

0
) is the grouping number of Gc

0
 . Let

where Ti = max{G∈T,|G0�G
0
0
|=i} |TGc

0
| and TGc

0
= {G = (G∗

0
,G1,… ,GK) ∈ T ∶ G∗

0
= G0} , 

a set of groupings indexed by the sets of positive coefficients. More details on Cmin , 
�min , T̄  and K̄ can be referred to Shen et al. (2012a) and Zhu et al. (2013).

Now, we make the following assumptions. 

	(A1)	 �i
iid
∼N(0, �2) , i = 1,… , n.

	(A2)	 There exists a constant c0 such that 𝜆min

(
n−1Z⊤

G0
0

cZG0
0

c

)
≥ c0 > 0.

	(A3)	 For the same constant c0 as in (A2), 𝛾min > [2𝜎2 log{2nK0∕(2𝜋)1∕2}∕(nc0)]
1∕2.

Lemma 1  Under the assumptions (A1)–(A3), it holds that

In Lemma 1, we show that min1≤k≤K0 𝛼̂ols
k

> 0 with probability at least 
1 − 2K0

{
1 −�

(
[2 log{2nK0∕(2�)1∕2}]1∕2

)}
 , which implies that with probability 

at least 1 − 2K0
{
1 −�

(
[2 log{2nK0∕(2�)1∕2}]1∕2

)}
 , �̂ora

= �̂
ols . More details can 

be found in the proof of Lemma 1.

Theorem  1  Under the assumptions (A1)–(A3), it follows that, for any 
0 < 𝜏 ≤ 𝜎[log p∕{2np𝜆max(X

⊤X)}]1∕2,

�min = min
{j,j�∈S,(j,j�)∈�}

{
�0
j
, |�0

j
− �0

j�
|
}
,

K̄ = max
1≤i≤s0

1

K∗
i
∕i,

T̄ = max
1≤i≤s0

1

log Ti∕i,

pr(�̂
ora ≠ �̂

ols
) = O

(
1

n(log n)1∕2

)
.

pr
(
�̂
cons ≠ �̂

ora
) ≤ {exp(1) + 1} exp(c∗) +

c

n(log n)1∕2
,
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where c∗ = −10−1𝜎−2n{Cmin − 10𝜎2n−1(3 log p + T̄ + K̄∕2)} . If, additionally, 
Cmin ≥ 10𝜎2n−1

(
log n + 2−1 log log n + 3 log p + T̄ + 2−1K̄

)
, then

1.	 pr
(
�̂
cons ≠ �̂

ora
)
= O

(
n−1(log n)−1∕2

)
;

2.	 n−1E
‖‖‖X�̂

cons
− X�0‖‖‖

2

= n−1K0𝜎2(1 + o(1)).

Note that �̂cons yields a consistent recovery of �̂ora , and also generates a 
bounded mean-squared error.

3 � Regularized optimization method

3.1 � Penalty method

Before proceeding, we briefly describe the penalty method. The idea of a pen-
alty method is to replace a constrained problem by an unconstrained problem. 
Consider the constrained problem

where g is a continuous function on ℝp . Applying the idea of penalty method, prob-
lem (7) can be replaced by

where �3 is a positive constant and p3(�) =
∑p

j=1
(min{�j, 0})

2 , satisfying: (1) p3 is 
continuous, (2) p3(�) ≥ 0 for all � ∈ ℝ

p , and (3) p3(�) = 0 if and only if 
�j ≥ 0, j = 1,… , p.

By the penalty method, the procedure for solving problem (7) are as follows. 
Let {�3,k}, k = 1, 2,… , be a sequence tending to infinity such that for each k, 
𝜆3,k ≥ 0, 𝜆3,k+1 > 𝜆3,k . For each �3,k , problem (8) has a solution, denoted by �k . 
Luenberger and Ye (2015) showed the global convergence of the penalty method.

Theorem  2  Let {�k} be a sequence of solution to problem (8) for each 
{�3,k}, k = 1, 2,… . Then, any limit point of the sequence is a solution to problem 
(7).

The proof of this theorem is provided on page 412 of Luenberger and Ye 
(2015). This theorem implies that there exists a large value M such that a solu-
tion to problem (8) is a solution to problem (7) if 𝜆3 > M . One can refer to Chap-
ter 13 of Luenberger and Ye (2015) for more details. We also perform simula-
tions to illustrate the effects of �3 in Sect. 4.2.

(7)min
�

g(�) subject to �j ≥ 0, j = 1,… , p,

(8)min
�

g(�) + �3p3(�),
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3.2 � Formulation on the regularized nnFSG problem

By Lemma 1 of Shen et al. (2012a), the minimizer of

subject to

is a local minimizer of

where p1(�) =
∑p

j=1
min

���j�∕�, 1
�
 , and p2(�) =

∑
(j,j�)∈� min

���j − �j� �∕�, 1
�
 . We 

impose non-negative constraints on � , i.e.,

Using the penalty method above, the regularized form of (9) is thus given by

where p3(�) =
∑p

j=1
(min{�j, 0})

2 . 𝜆1(> 0), 𝜆2(≥ 0) correspond to s1, s2 in (4), 
respectively. 𝜆3(> 0) controls the shrinkage speed of negative regression coeffi-
cients. Obviously, by setting �2 = 0 , problem (10) reduces to the regularized nnFS 
problem, which solves the feature selection problems with non-negative constraints 
on the regression coefficients. A solution to (10), denoted by �̂ , will be referred to as 
a nnFSG estimator.

Denote S(�) = (2n)−1
∑n

i=1
(yi − x⊤

i
�)2 + 𝜆1p1(�) + 𝜆2p2(�) + 𝜆3p3(�). Since S(�) 

is non-convex, the difference of convex programming is thus applied to solve (10). Our 
main technical contribution is to extend the algorithm in Shen et al. (2012a) to a more 
general one by adding another penalty term p3(�) , which, together with p1(�) , controls 
the non-negativity of the regression coefficients.

Firstly, decompose the objective function S(�) in (10) into the difference of two con-
vex functions as follows,

where the convex functions S1(�) and S2(�) are given, respectively, by

1

2n

n∑
i=1

(yi − x⊤
i
�)2

p∑
j=1

min

{|�j|
�

, 1

}
≤ s1,

∑
(j,j�)∈�

min

{|�j − �j� |
�

, 1

}
≤ s2,

f (�) =
1

2n

n∑
i=1

(yi − x⊤
i
�)2 + 𝜆1p1(�) + 𝜆2p2(�),

(9)min
�

f (�) subject to �j ≥ 0, j = 1,… , p.

(10)min
�

1

2n

n∑
i=1

(yi − x⊤
i
�)2 + 𝜆1p1(�) + 𝜆2p2(�) + 𝜆3p3(�),

(11)S(�) = S1(�) − S2(�),
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Define � = (|𝛽1|,… , |𝛽p|, |𝛽12|,… , |𝛽1p|,… , |𝛽(p−1)p|, 𝛽21 ,… , 𝛽2
p
)⊤ , where 

�jj� = �j − ��
j
, (j, j�) ∈ � . Then, S2(�) can be expressed to

Approximate S̃2(�) by its affine minorization S̃2(�
∗) + ⟨� − �∗, 𝜕S̃2(�

∗)⟩ at a 
neighborhood of �∗ ∈ ℝ

(p2+3p)∕2 , where 𝜕S̃2(�) is the first derivative of S̃2(�) 
with respect to � ; ⟨⋅, ⋅⟩ is the inner product. Now we construct a sequence of 
approximations of S2(�) iteratively. At the m-th iteration, we replace S2(�) by 
S
(m)

2
(�) = S̃

(m)

2
(�) = S̃2(�̂

(m−1)) + ⟨� − �̂(m−1), 𝜕S̃2(�̂
(m−1))⟩ . Specifically,

Finally, an approximation function to S(�) in (11) at the m-th iteration can be 
obtained by S(m)(�) = S1(�) − S

(m)

2
(�) , which formulates the following subproblem,

where

How to efficiently solve the subproblem (12) plays a key role in solving the problem 
(10). Though we can apply quadratic programming to solve the subproblem (12), it 
is inefficient for large-scale problems.

S1(�) =
1

2n

n∑
i=1

(yi − x⊤
i
�)2 +

𝜆1

𝜏

p∑
j=1

|𝛽j| +
𝜆2

𝜏

∑
(j,j�)∈𝜀

|𝛽j − 𝛽j� | + 𝜆3

p∑
j=1

𝛽2
j
,

S2(�) =
𝜆1

𝜏

p∑
j=1

(|𝛽j| − 𝜏)+ +
𝜆2

𝜏

∑
(j,j�)∈𝜀

(|𝛽j − 𝛽j� | − 𝜏)+ + 𝜆3

p∑
j=1

((𝛽j)+)
2.

S̃2(�) =
𝜆1

𝜏

p∑
j=1

(|𝛽j| − 𝜏)+ +
𝜆2

𝜏

∑
(j,j�)∈𝜀

(|𝛽jj� | − 𝜏)+ + 𝜆3

p∑
j=1

𝛽2
j
I{𝛽j≥0}.

S
(m)

2
(�) = S2

(
�̂
(m−1)

)
+

𝜆1

𝜏

p∑
j=1

I{|𝛽(m−1)
j

|≥𝜏}
(
|𝛽j| − |𝛽(m−1)

j
|
)

+
𝜆2

𝜏

∑
(j,j�)∈𝜀

I{|𝛽(m−1)
j

−𝛽
(m−1)

j�
|≥𝜏}

(
|𝛽j − 𝛽j� | − |𝛽(m−1)

j
− 𝛽

(m−1)

j�
|
)

+ 𝜆3

p∑
j=1

I{𝛽(m−1)
j

≥0}
(
𝛽2
j
−
(
𝛽
(m−1)

j

)2
)
.

(12)

min
�

1

2n

n∑
i=1

(yi − x⊤
i
�)2 +

𝜆1

𝜏

∑
j∈F(m−1)

|𝛽j| +
𝜆2

𝜏

∑
(j,j�)∈𝜀(m−1)

|𝛽j − 𝛽j� | + 𝜆3
∑

j∈N(m−1)

𝛽2
j
,

(13)

F(m−1) =
{
j ∶ |𝛽(m−1)

j
| < 𝜏

}
,

𝜀(m−1) =
{
(j, j�) ∶ j < j�, |𝛽(m−1)

j
− 𝛽

(m−1)

j�
| < 𝜏

}
,

N(m−1) =
{
j ∶ 𝛽

(m−1)

j
< 0

}
.
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3.3 � Algorithm

For the subproblem (12), it is necessary to develop an effective computational strat-
egy. In light of Shen et al. (2012a), an algorithm integrated with augmented Lagrange 
and coordinate descent methods is developed to solve the subproblem (12).

We convert the subproblem (12) with linear constraints to its unconstrained ver-
sion through slack variables �jj� = �j − �j� . Define

Then an augmented equivalent problem of (12) is given, i.e.,

For (14), the augmented Lagrange is employed to solve its equivalent unconstrained 
problem iteratively with respect to t at the m-th iteration. Denote 
S̃(m)(�) = (2n)−1

∑n

i=1
(yi − x⊤

i
�)2 + 𝜆1𝜏

−1
∑

j∈F(m−1) �𝛽j� + 𝜆2𝜏
−1

∑
(j,j�)∈𝜀(m−1) �𝛽jj� � + 𝜆3

∑
j∈N(m−1) 𝛽2

j
. 

In the t-th iteration, we minimize

where � (t)
jj�

 , �(t) are Lagrange multipliers. Update �jj′ and � by

where � controls the speed of convergence. To speed convergence, � is chosen to be 
larger than 1.

We use the coordinate descent method to compute �̂(m,t) in terms of (15). For each 
component of � , we fix the other components at their current values. Set an ini-
tial value �̂(m,0) = �̂

(m−1) , where �̂(m−1) is the solution of the subproblem (12). Then 
update �̂(m,t) by the following formulas, t = 1, 2,… . 

1.	 Given 𝛽(m,t−1)
j

 , updating 𝛽(m,t)
j

(j = 1, 2,… , p) by: 

 where 

� = (𝛽1,… , 𝛽p, 𝛽12,… , 𝛽1p,… , 𝛽(p−1)p)
⊤.

(14)

min
�

1

2n

n∑
i=1

(
yi − x⊤

i
�
)2

+
𝜆1

𝜏

∑
j∈F(m−1)

|𝛽j| +
𝜆2

𝜏

∑
(j,j�)∈𝜀(m−1)

|𝛽jj� | + 𝜆3
∑

j∈N(m−1)

𝛽2
j
.

(15)

S̄(m)(�) = S̃(m)(�) +
∑

(j,j�)∈𝜀(m−1)

𝜏
(t)

jj�

(
𝛽j − 𝛽j� − 𝛽jj�

)

+
1

2
𝜈(t)

∑
(j,j�)∈𝜀(m−1)

(
𝛽j − 𝛽j� − 𝛽jj�

)2
,

(16)𝜏
(t+1)

jj�
= 𝜏

(t)

jj�
+ 𝜈(t)

(
𝛽
(m,t)

j
− 𝛽

(m,t)

j�
− 𝛽

(m,t)

jj�

)
and 𝜈(t+1) = 𝜌𝜈(t),

(17)𝛽
(m,t)

j
= 𝛼−1𝛾 ,

𝛼 =
1

n

n∑
i=1

x2
ij
+ 2𝜆3I{𝛽(m−1)

j
<0} + 𝜈(t)

|||j
� ∶ (j, j�) ∈ 𝜀(m−1) or (j�, j) ∈ 𝜀(m−1)

|||.
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 Let 

Then � = �∗ if |𝛽(m−1)
j

| ≥ 𝜏 , i.e., j ∈ F
(m−1)c . Otherwise, � = ST

(
�∗, �1∕�

)
 . 

Herein, b(m,t)
i,j

= yi − x⊤
i(j)
�̂
(m,t)

(j)
 ; xi(j) is the vector xi after deleting the j-th element; 

xij is the j-th element of vector xi ; �jj� = −�j�j if j > j′ ; �jj� = −�j�j if j > j′ . 
ST(b, �) = sign(b)(|b| − �)+ is the soft-thresholding operator.

2.	 Given 𝛽(m,t−1)
jj�

 , updating 𝛽(m,t)
jj�

, (1 ≤ j < j� ≤ p) by: 

The process of coordinate descent iterates until convergence, which satisfies the 
terminate condition ‖�̂(m,t)

− �̂
(m,t−1)‖∞ ≤ 𝛿∗ , where �∗ is a given small positive 

value, say, 10−5 . Hence, �̂(m)
= �̂

(m,t∗) , where t∗ denotes the iteration at termina-
tion. The pseudo codes of the developed algorithm are summarized in Algo-
rithm 1. The convergence of the algorithm is given in Theorem 3. When solving 
the problem (10), the proposed method could potentially lead to a local optimum 
as the objective function in (10) is non-convex. Hence, it is critical to assign a 
suitable initial value �̂(0) . Possible candidate initial values are ones estimated by 
the R package glmnet (Friedman et al. 2016) or nnls (Mullen and van Stok-
kum 2012). We remark that our numerical studies indicate that the algorithm still 
converges if we only update non-zero 𝛽(m,t)

j
 in (17). 

𝛾∗ =
1

n

n∑
i=1

xijb
(m,t)

i,j
−

∑
(j,j�)∈𝜀(m−1)

𝜏
(t)

jj�
+ 𝜈(t)

∑
(j,j�)∈𝜀(m−1)

(
𝛽
(m,t)

j�
+ 𝛽

(m,t)

jj�

)
.

(18)𝛽
(m,t)

jj�
=

{
(𝜈(t))−1ST

(
𝜏
(t)

jj�
+ 𝜈(t)(𝛽

(m,t)

j
− 𝛽

(m,t)

j�
),

𝜆2

𝜏

)
(j, j�) ∈ 𝜀(m−1),

𝛽
(m−1)

jj�
(j, j�) ∈ 𝜀(m−1)

c

.
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Theorem 3  The proposed algorithm 1 converges. That is

where c is a non-negative constant.

We derive the convergence of the proposed algorithm that is analogous to 
Shen et al. (2012a). Next, we show some properties of the proposed nnFSG esti-
mator �̂ . Before proceeding, we make the following assumption. 

	(A4)	 4𝜏−2(𝜆1s∗ + 𝜆2|N|) < minK(Gc
0
)≤K∗ 𝜆min(n

−1Z⊤
Gc
0

ZGc
0
) , where s∗ and K∗ are the 

upper bounds of maximal number of non-zero coefficients and non-zero group-
ings, respectively. |N| is the maximal number of direct connections of variable 
xj to variable xj′ , where (j, j�) ∈ � and j, j� ∈ Gk, k = 1,… ,K.

We remark that for a full connection 𝜀 = {(j, j�) ∶ j < j�, j, j� = 1,… , p} , 
|N| = s∗(s∗ − 1)∕2 . s∗ and K∗ are different from the s0

1
 and K0 , respectively. Spe-

cifically, s0
1
≤ s∗ ≤ p , K0 ≤ K∗ ≤ s∗.

Theorem 4  Under the assumptions (A1)- (A4), if 𝛾min > 2𝜏,

where D = maxk,A⊂G0
k
‖XA1‖∕�𝜀 ∩ {A × (G0

k
⧵A)}� , and �×� denotes the Cartesian 

product, then

Furthermore, if

then we have

Note that the results of Theorem  4 are parallel to that of Theorem  1. We 
remark that the feature selection problem, which only contains a zero group, can 
be regarded as a special case of our problem.

(19)S(�̂
(m)

) → c, as m → +∞,

�
(𝛾min − 2𝜏)n1∕2𝜆

1∕2

min
(n−1Z⊤

G0c
0

ZG0c
0
)𝜎−1

�2 ≥ max

�
8 log

nK0(K0 − 1)

(2𝜋)1∕2
, 2 log

2n(p − �G0
0
�)

(2𝜋)1∕2

�
,

⎛⎜⎜⎝
n𝜆1∕𝜏

𝜎 max
1≤j≤p ‖x(j)‖

⎞⎟⎟⎠

2

≥ 2 log
2n�G0

0
�

(2𝜋)1∕2
,

�
n𝜆2∕𝜏

2𝜎D

�2

≥ 2 log
2n�N�
(2𝜋)1∕2

,

pr
(
�̂ ≠ �̂

ora
)
= O

(
1

n(log n)1∕2

)
.

1

n
‖X�0‖2 + 𝜏2

16
min

K(Gc
0
)≤K∗

𝜆min

�
1

n
Z⊤
Gc
0

ZGc
0

�
= o(K0(log n)1∕2),

1

n
E
‖‖‖X�̂ − X�0‖‖‖

2

=
K0𝜎2

n
(1 + o(1)).
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4 � Numerical studies

4.1 � Evaluation measures

The criteria used for measuring the prediction accuracy of the estimate �̂ are the 
mean-squared error (MSE), MSE = n−1‖X�0 − X�̂‖2 , and mean absolute error 
(MAE), MAE = n−1‖X(�̂ − �0)‖1 . Since the regression vector is sparse and may 
also contain a structure with disjoint subgroups, in light of (Yang et al. 2012), we 
thus provide another two metrics, feature true positive rate (FTP),

and group true positive rate (GTP),

where

FTP and GTP measure the accuracy of method’s performance in terms of feature 
selection and feature grouping. It is clear that FTP, GTPk(k = 1,… ,K0) and GTP 
∈ [0, 1] . Ideally, they should be close to 1.

4.2 � Tuning free parameter: �
3

�3 shrinks the negative coordinates of � , which, together with �1 , controls the non-
negativity. We perform 500 simulations to illustrate the effects of �3 by fixing 
�, �1, �2 . We generate the samples (xi, yi), i = 1,… , n , from the linear model 
yi = x⊤

i
� + 𝜖i , where xi

iid
∼Np(0,�) with � = (�

�j) and �
�j = 0.5|�−j|,�, j = 1,… , p ; 

the random error �i
iid
∼N(0, �2) . We set the true regression coefficient 

�0 = (1,… , 1
���

4

, 2,… , 2
���

4

, 3,… , 3
���

4

, 4,… , 4
���

4

, 0,… , 0
���

p−16

)⊤ ∈ ℝ
p . Let 𝜏 = 0.1, 𝜆1 = 𝜆2 = 10−3𝜆̄ , 

where 𝜆̄ = ‖X⊤y‖∞ , and �3 ∈ {0, 1, 5, 10, 15} . Herein, we take � = 1, n = 100,

p = 500, 1000, 2000.
Define STP as the proportion of non-negative coordinates of �̂ , i.e., 

STP =
∑p

j=1
I{𝛽j≥0}∕p . Figure  1 displays the values of STP, MAE, FTP and GTP, 

averaged over 500 simulations for the post samples. In an instance where p is fixed, 
as �3 increases, the values of STP, FTP and GTP increase slightly, while the values 
of MAE decrease. Nonetheless, all the measures tend to be stable as �3 exceeds a 
critical value. For example, when p = 500 , the FTPs, GTPs and MAEs no longer 

FTP =

∑
j∈G0

0
I{𝛽j=0}

+
∑

j∉G0
0
I{𝛽j≠0}

p
,

GTP =

∑K0

k=1
GTPk + FTP

K0 + 1
,

GTPk =

∑
i≠j,i,j∈G0

k
I{𝛽i=𝛽j}

+
∑

i≠j,i∈G0
k
,j∉G0

k
I{𝛽i≠𝛽j}

�G0
k
�(p − 1)

, k = 1,… ,K0.
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change with �3 and the STP values are exactly 1 as �3 ≥ 5 . We arrive at the same 
results for the other two instances, say, p = 1000, 2000 . It is noted that when �3 = 0 , 
nnFSG is reduced to the model proposed by Shen et al. (2012a). When the underly-
ing true regression coefficients are non-negative, the penalty p3(�) involved in 
nnFSG helps to increase the capacity of prediction accuracy of �̂ as well as its fea-
ture selection and grouping slightly. Although the regularization nnFSG method 
contains four parameters, say, �, �1, �2 and �3 , the amount of work to select tuning 
parameters is parallel to that of Shen et  al. (2012a). The introduction of p3(�) 
achieves non-negative estimates with the associated �3 free tuning. We remark that 
the critical value may be different under different model settings. In a real applica-
tion, we thus take a large number of �3 , say, 10, or even larger.

A natural question that one may ask is regarding the computing time of nnFSG. 
To estimate �̂ , the algorithm involves the difference of convex programming, 
Lagrange, and coordinate descent methods. Though it appears to be complex, the 
updating formulas of (17) and (18) are explicit. Under the above settings, and let 
�3 = 10, the average time (seconds) for p = 500, 1000, 2000 are 13.87  s, 84.96  s 
and 371.29  s, respectively. We conduct simulation studies in the R programming 
environment. The machine we used equips Intel(R) Xeon(R) CPU E5-2660 v4 @ 
2.00 GHZ.

4.3 � Model comparisons of non‑negative feature selection

In our simulation study, we are interested in the performance of our proposed 
method in feature selection. We carry out simulations via the linear model 

Fig. 1   The values of STP, MAE, FTP and GTP with different �3 by fixing �1, �2, � , averaged over 500 
simulations. The upper three panels show STP (left black axis) and MAE (right blue axis) when p = 500 , 
1000, and 2000, while the lower three panels present the corresponding FTP (left black axis) and GTP 
(right blue axis)
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yi = x⊤
i
� + 𝜖i, i = 1,… , n . The positive elements of the true coefficient vec-

tor �0 are randomly generated from a uniform distribution [0.5,  5], s0
1
= 10 . 

The setting of xi is the same as in Sect. 4.2. And the noise term �i
iid
∼N(0, �2) . Put 

�2 = �1, �3 = 10 . �1 and � are selected from candidate sets using fivefold cross-val-
idation. The method’s performance is assessed using the simulation settings with 
n = 100, p = 100, 500, 1000, 2000, � = 0.5, 1, 2.

We compare our method with others that also achieve non-negative estimators 
and are available in the R packages, such as nnls, glmnet, penalized (Goe-
man 2010), CVXR (Fu et  al. 2017). The comparisons are based on how well they 
estimate the true underlying parameters, measured using MSE and MAE; and how 
well they perform in terms of feature selection, measured using FTP. The larger the 
values of FTP, the better the performance of feature selection. Table 1 reports the 
average and standard deviations of MSE, MAE and FTP, which are obtained based 
on 500 simulations. As Table 1 illustrates, nnFSG outperforms the other methods in 
terms of MSE, MAE and FTP uniformly.

4.4 � Synthetic malaria vaccine data

Not all sites in amino acid (AA) sequence have equal importance due to the struc-
tures of protein. In vaccine design study, it is thus very crucial to locate the impor-
tant AA sites. A vaccine that is designed to match those important AA sites can 
improve induced immunity. Furthermore, the sites associated with immune response 
with negative coefficients should be excluded from the model (Hu et al. 2015). A 
non-negative lasso method was thus applied. For some confidential reasons, we are 
not allowed to access the original data. We thus assess the performance of our pro-
posed method using the synthetic, but realistic, data under the simulation bench-
marks, similar to what was done in Hu et al. (2015). In this paper, three cases are 
considered under the settings of n = 500, p = 3000, s0

1
= 24 , which is more challeng-

ing than that in their article where n = 100 and p = 90 . Suppose that the explanatory 
variables are all independent. We randomly generate the i-th sample (xi, yi) via the 
linear model yi = x⊤

i
� + 𝜖i . Denote xi = (xi1,… , xip)

⊤ , where xij ∼ Bernoulli (pj) , 
pj ∼ Beta(2, 5) for j = 1,… , p . And �i ∼ N(0, �2) for i = 1,… , n . Consider three 
cases for the underlying true �0,

•	 Case I: |G0| = 2 , �0 = (10,… , 10
�������

s0
1

, 0,… , 0
���

p−s0
1

)⊤.

•	 Case II: |G0| = 3 , �0 = (2,… , 2
���

s0
1
∕2

, 1,… , 1
���

s0
1
∕2

, 0,… , 0
���

p−s0
1

)⊤.

•	 Case III: |G0| = 4 , �0 = (1,… , 1
���

s0
1
∕3

, 0.5,… , 0.5
���������

s0
1
∕3

, 0.3,… , 0.3
���������

s0
1
∕3

, 0,… , 0
���

p−s0
1

)⊤.

�j (j = 1,… , p) within a subgroup implies that the associated AA sites have equal 
importance. We remark that the order of the elements of �0 is randomly given. 
Note that yi are the immune response observations that are usually measured by 
the growth inhibition assay. The source of measurement error may be systematic. 
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We thus assume that the variability of measurement error is small. Let � = 0.2, 0.3 . 
Again, put �2 = �1, �3 = 10 . �1 and � are selected via fivefold cross-validation. We 
compare our proposed method with the others that are estimable by using the R 
package glmnet, penalized, CVXR, nnls.

Hu et  al. (2015) computed sensitivity (Sen) to measure the probability of an 
important variable associated with a non-zero coefficient being selected, and speci-
ficity (Spe) to measure the probability of an unimportant variable associated with 
a zero coefficient not being selected. The larger the values of both Spe and Sen, 
the better the performance of the method. A perfect situation would be described as 
100% sensitivity, meaning all important sites were correctly identified, and 100% 
specificity, meaning all unimportant sites were not selected.

The simulation results are shown in Tables 2 and 3. From Table 2, we observe 
that our proposed method performs best for all scenarios in terms of MSE and 
MAE. With the purpose of locating important AA sites where the associated coef-
ficients are non-zero, we are more interested in Spe, Sen and FTP (see Table  3), 
measuring effectiveness of identifying main sites or features. Moreover, one may 
be interested in identifying those important AA sites that have equal importance. 
Considering the simulation settings of �0 , we thus provide the GTP and estimated 
number of grouping |G| in Table  3 as well. In terms of Spe, Sen, FTP and GTP, 
nnFSG achieves the largest values almost all cases except Case III when � = 0.2 , 
where the largest values of Spe, FTP and GTP are obtained by our method, albeit the 
Sen is slightly smaller than others. In reality, there is usually a trade-off between Spe 

Table 2   Comparison of glmnet, penalized, CVXR, nnls and nnFSG assessed on synthetic malaria vac-
cine data under the settings with n = 500, p = 3000, � = 0.2, 0.3

The averaged MSE and MAE as well as their standard deviations (in parenthesis) are based on 500 simu-
lations

Case Methods � = 0.2 � = 0.3

MSE MAE MSE MAE

I glmnet 0.2661 (0.0317) 0.4099 (0.0246) 0.2457 (0.0317) 0.3939 (0.0255)
Penalized 0.0482 (0.0205) 0.1817 (0.0441) 0.1085 (0.0462) 0.2726 (0.0662)
CVXR 0.0166 (0.0034) 0.1027 (0.0103) 0.0375 (0.0076) 0.1542 (0.0155)
nnls 0.0196 (0.0038) 0.1117 (0.0106) 0.0441 (0.0085) 0.1675 (0.0158)
nnFSG 0.0001 (0.0001) 0.0069 (0.0052) 0.0002 (0.0002) 0.0099 (0.0074)

II glmnet 0.0137 (0.0028) 0.0932 (0.0093) 0.0316 (0.0065) 0.1417 (0.0142)
Penalized 0.0482 (0.0206) 0.1817 (0.0442) 0.1085 (0.0462) 0.2726 (0.0663)
CVXR 0.0168 (0.0034) 0.1031 (0.0104) 0.0379 (0.0078) 0.1549 (0.0157)
nnls 0.0196 (0.0038) 0.1117 (0.0106) 0.0441 (0.0085) 0.1675 (0.0158)
nnFSG 0.0002 (0.0002) 0.0092 (0.0049) 0.0004 (0.0004) 0.0139 (0.0076)

III glmnet 0.0147 (0.0029) 0.0967 (0.0095) 0.0331 (0.0065) 0.1450 (0.0142)
Penalized 0.0485 (0.0206) 0.1823 (0.0441) 0.1100 (0.0450) 0.2754 (0.0645)
CVXR 0.0174 (0.0035) 0.1046 (0.0105) 0.0385 (0.0078) 0.1556 (0.0156)
nnls 0.0198 (0.0037) 0.1121 (0.0104) 0.0446 (0.0083) 0.1684 (0.0156)
nnFSG 0.0004 (0.0008) 0.0131 (0.0089) 0.0022 (0.0044) 0.0291 (0.0234)
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and Sen, informedness (Spe + Sen − 1) , the magnitude of which measures the prob-
ability of an informed decision. Considering informedness, nnFSG outperforms the 
other methods. The outperformance of nnFSG is also demonstrated by the fact that 
the estimated grouping number |G| is similar to |G0| for each scenario.

4.5 � Protein mass spectrometry data

Mass spectrometry (MS) analysis has become a key tool for extracting reliable pro-
teomic features (peptides) from complex biological mixtures (Renard et al. 2008), 
which is a fundamental step in the automated analysis of proteomic MS experi-
ments. A peptide produces a signal at multiple mass positions, which manifests as 
a series of regularly spaced peaks. For more details on MS analysis, one can refer to 
Renard et al. (2008), Slawski and Hein (2010), and Slawski et al. (2012). Figure 2 
shows a protein mass spectrum of Myoglobine in the m/z 800–2500 range, 118,464 
(m/z, intensity) pairs in total. The m/z range of 800–834 is shown in greater detail. 
The peptides whose intensities differ drastically occur in different m/z-regions. The 
data set was kindly provided by B. Gregorius and A. Tholey, Department of Experi-
mental Medicine, Working Group for Systematic Proteomics, Christian-Albrechts-
Universitaet zu Kiel, and is avaialable in the R package IPPD (Slawski et al. 2012).

The peptides extraction problem is to identify those m/z-positions where a peptide is 
located. This can be recast as a sparse recovery problem. Renard et al. (2008), Slawski 
and Hein (2010), and Slawski et al. (2012) proposed template matching-based methods 

Fig. 2   Raw protein mass spectrum of Myoglobine in the m/z 800–2500 range. The left upper panel 
zooms at the m/z range of 800–834
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to solve the problem. Motivated by Tibshirani and Wang (2008), we can also regard the 
peptides extraction to be a ‘hot spot’ detection problem. The model’s setup for the pro-
tein MS data is p = n = 118,464 , and X = Ip , that is, yi = �i + �i, i = 1,… , n . Given 
the non-negativity of yi (intensity), it is reasonable to impose non-negative constraints 
on �i , the weight of the i-th m/z-site. Since the design matrix is identity and n = p , nnls 
thus doesn’t work for this case. The estimate of �i is exactly equal to yi, i = 1,… , n. 
We compare the performance of the methods: glmnet, penalized, CVXR, and nnFSG.

Simultaneously estimating the weights of all m/z sites for the MS data in Fig.  2 
is difficult since p = 118,464 is ultra-high. We thus divide the data into consecutive 
blocks, which has no effect on estimation. Herein, we choose m/z-sites in the range of 
800–834 for analysis, giving a total of 2009 points. The performance of those methods 
on the MS data is illustrated in Fig. 3 and Table 4. The proposed method nnFSG puts 
the same weights at those sites where the amplifications are not significant, rather than 
zeros obtained via the other three methods. We consider the sites with identical weights 
as one base group (see the horizontal black solid line in Fig. 3d). Sites that are not in 
the base group can be regarded as peptides, which are extracted and marked with black 
points in Fig. 3. Those methods successfully identify the amplification. The R pack-
age glmnet, penalized and nnFSG perform well on peptides extraction, while in 
terms of prediction errors, nnFSG outperforms the others.

5 � Conclusions

We have proposed a method for high-dimensional regression problems where the 
regression coefficients are sign-constrained, sparse, or even containing a structure 
with homogeneous subgroups. We aim to identify the underlying optimal grouping 

Fig. 3   The estimates of �i ( yi, i = 1,… , n ) at the m/z range of 800–834 via a glmnet, b penalized c 
CVXR, d nnFSG. The grey points represent the MS data, and the solid black line represents the esti-
mated weights �̂ from the proposed method. The black points describe the weights of these m/z sites that 
are extracted

Table 4   Prediction 
Performance: MSE and MAE 
for the methods of glmnet, 
penalized, CVXR, nnls and 
nnFSG

Measures glmnet Penalized CVXR nnFSG

MAE 13.2411 13.3579 13.0176 6.4912
MSE 245.3436 255.9443 228.152 110.0166
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and obtain the optimal estimator that satisfies the sign constraints. Specifically, we 
formulate a regularized minimization problem with a non-convex, but difference of 
convex, objective function. Using the difference of convex programming, a subprob-
lem at each iteration is reformulated as a constrained minimization problem with a 
convex objective, which is solved applying augmented Lagrange and coordinated 
decent methods. The theoretical results show that the developed nnFSG method 
recovers the oracle estimate consistently, and the MSE are also bounded. In addi-
tion, the numerical studies show that the proposed nnFSG outperforms some exist-
ing methods in terms of prediction accuracy, feature selection and grouping.
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Appendix

Proof of  Lemma 1  Since �̂ols = (𝛼̂ols

1
,… , 𝛼̂ols

K0
)⊤ = (Z⊤
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0

cZG0
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c)−1.

By the assumption (A2), it yields that the variance of 𝛼̂ols
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 is bounded from above 
by �2∕(nc0) for all k = 1,… ,K0 . In view of the assumption (A3), 
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= minj∈G0

0

c 𝛽0
j
> cn , where cn = [2�2 log{2nK0∕(2�)1∕2}∕(nc0)]

1∕2 . 
Similar to Meinshausen (2013), by Bonferroni’s inequality, we thus have

with probability at least
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(
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[2 log{2nK0∕(2𝜋)1∕2}]1∕2
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(
1

n(log n)1∕2
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.
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Proof of Theorem 1  Let G = (G0,G1,… ,GK) be a grouping of the constrained prob-
lem in Sect. 2, satisfying that 0 ≤ 𝛽cons

j
≤ 𝜏 if j ∈ G0 , |𝛽consj

− 𝛽cons
j�

| > 𝜏 if j ∈ Gk , 
j� ∈ Gk� , j = 1,… , p;1 ≤ k ≠ k� ≤ K.

If G = G0 , then |Gc
0
| = s0

1
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∑p

j=1
min

���j�
�
, 1
� ≤ s1 , ∑

j∈G0
𝛽cons
j

∕𝜏 + s0
1
≤ s0

1
 , which implies that 𝛽cons

j
= 0 , j ∈ G0 . By the second con-
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(j,j�)∈� min
���j−�j� �

�
, 1
� ≤ s2 , similarly, we obtain that 𝛽cons
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j�
 , 

j, j� ∈ Gk = G0
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pr(�̂

cons ≠ �̂
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(20) thus becomes

The second term in (21) has already provided in Lemma 2.1. Next, we work on the 
first term in (21), and denote it by � .
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where L1 = {� − (a − 1)(I − PZGc
0

)X�0}⊤(I − PZGc
0

){� − (a − 1)(I − PZGc
0

)X�0} , and 
L1�

−2 follows noncentral Chi-squared distribution �2
k,�

 with degrees of freedom 
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0
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by Shen et al. (2012a),
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We take x = −10−1𝜎−2n{Cmin − 10𝜎2n−1(3 log p + T̄ + K̄∕2)} if 
Cmin > 10𝜎2n−1(3 log p + T̄ + K̄∕2) . Together with � ≤ 1 , (25) becomes

Similarly, we can show that (26) still holds for Cmin ≤ 10𝜎2n−1(3 log p + T̄ + K̄∕2) . 
By Lemma 2.1 and (26), (21) becomes
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)
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Since ‖X�̂cons

− X�0‖2 ≤ 2(‖Y − X�̂
cons‖2 + ‖Y − X�0‖2) ≤ 4‖Y − X�0‖2 = 4‖�‖2 , the 

first ‘ ≤ ’ follows. The second ‘ ≤ ’ is obtained by the Markov inequality. In view 
of the moment generating function for Chi-squared distribution, the first ‘ = ’ 
holds. For the second term of T1 , 

 By (28) and (29), we thus have T1 = o(K0�2∕n).
On the other hand,
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Proof of Theorem 3  This proof mimics the proof of Theorem 1 in (Shen et al. 2012a). 
We thus omit the details. � □

Proof of Theorem 4  By Sect. 3, there exists a finite m∗ such that �̂ = �̂
(m∗) . Denote 

the grouping of �̂ by G = (G0,G1,… ,GK) with K < K∗ . Then �̂ satisfies that, for 
grouping G,

where

Denote J = J11 ∩ J12 ∩ J21 ∩ J22 , where J11 = {minj∉G0
0
𝛽ols
j

> 2𝜏} , 
J12 = {maxj∈G0

0
|x⊤

(j)
(y − X�̂

ols
)| ≤ n𝜆1𝜏

−1} , J21 = {min1≤k<l≤K0 |𝛼̂ols
k

− 𝛼̂ols
l
| > 2𝜏} , 

J22 = ∩k=1,…,K0∶|G0
k
|>1{maxA⊂G0

k
|(XA1)

⊤(y − X�̂
ols
)| ≤ n𝜆2𝜏

−1|𝜀 ∩ {A × (G0
k
⧵A)}|}   . 

First, we show that �̂
ols is a solution to (34) on J  . Note that, 

∑
j∈G0

k
𝛥j

�
�̂
ols
�
= 0 on 

the set J11 ∩ J21 . By the definition of �̂ols , (XG0
k
1)⊤(y − X�̂

ols
) = 0 . Thus, the first 

equation in (34) holds for � = �̂
ols

 . Since 
∑

j∈G0
k
𝛥j

�
�̂
ols
�
= 0 on J  , one can easily 

see that the second and third inequalities also hold for � = �̂
ols

.
Next, we show that (34) has a unique solution on J  , and thus �̂ = �̂

ols . We pro-
vide the proof by contradiction. Assume that �̂ ≠ �̂

ols . Let 
H = (H1,… ,HL) = Gc

0
∨ G0c

0
 . Herein, we give an example to explain the sign ’ ∨ ’. 

Define two sets A1 = {{1, 2, 3, 4}, {5, 6}} , and A2 = {{1, 2}, {3, 4, 5, 6}, {7}} . Then 
A1 ∨ A2 = {{1, 2}, {3, 4}, {5, 6}, {7}} . Denote �̂ols

H
= (𝛼̂ols

H1
,… , 𝛼̂ols

HL

)⊤ , 
�̂H = (𝛼̂H1

,… , 𝛼̂HL
)⊤ the coefficients estimated by OLS and the algorithm 1, respec-

tively. Then S(�H) = (2n)−1‖y − ZH�H‖2 + J(�H) , where

for �H = (𝛼H1
,… , 𝛼HL

)⊤ , where �kl is the set of undirected edge between Hk and Hl . 
We thus have

(34)

⎧
⎪⎪⎨⎪⎪⎩

−(XGk
1)⊤(y − X�) + n

∑
j∈Gk

𝛥j(�) = 0 k = 1,… ,K

�(XA1)
⊤(y − X�) − n

∑
j∈A

𝛥j(�)� ≤ n
𝜆2

𝜏
�𝜀 ∩ {A × (Gk⧵A)}� A ⊂ Gk, �Gk� > 1,

�x⊤
(j)
(y − X�) − n𝛥j(�)� ≤ n

𝜆1

𝜏
j ∈ G0,

𝛥j(�) = 𝜆1𝜏
−1sign(𝛽j)I{|𝛽j|≤𝜏} + 𝜆2𝜏

−1
∑

j�∶(j�,j)∈𝜀

sign(𝛽j − 𝛽j� )I{|𝛽j−𝛽j� |≤𝜏} + 2𝜆3𝛽jI{𝛽j<0}.

J(�H) = 𝜆1

L∑
k=1

|Hk|min

{|𝛼Hk
|

𝜏
, 1

}
+ 𝜆2

∑
1≤k<l≤L

|𝜀kl|min

{|𝛼Hk
− 𝛼Hl

|
𝜏

, 1

}

+ 𝜆3

L∑
k=1

|Hk|(min{𝛼Hk
, 0})2
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where � = (𝜑1,… ,𝜑L)
⊤ = �1 + �2 , �1 = (𝜑11,… ,𝜑L1)

⊤ , �2 = (𝜑12,… ,𝜑L2)
⊤ , 

𝜑k1 = 𝜆1𝜏
−1�Hk�(akI{�𝛼̂Hk

�≤𝜏} − aols
k
I{�𝛼̂ols

Hk
�≤𝜏}) + 𝜆2𝜏

−1 ∑
l≠k �𝜀kl�(bklI{�𝛼̂Hk

−𝛼̂Hl
�≤𝜏} − bols

kl
I{�𝛼̂ols

Hk
−𝛼̂ols

Hl
�≤𝜏}),𝜑k2

= 2𝜆
3
(|Hk|𝛼̂Hk

I{𝛼̂Hk
<0} − |Hk|𝛼̂ols

Hk

I{𝛼̂ols
Hk

<0}), where k = 1,… , L , ak = sign(𝛼̂Hk
) , if 

𝛼̂Hk
≠ 0 , ak ∈ [−1, 1] otherwise; bkl = sign(𝛼̂Hk

− 𝛼̂Hl
) if 𝛼̂Hk

− 𝛼̂Hl
≠ 0 , bkl ∈ [−1, 1] 

otherwise. Similarly, we have aols
k

 and bols
kl

 . Note that ‖�1‖2 ≤ 4�−2(�1s
∗ + �2�N�)2.

Now, we consider two cases: (1) ‖�̂H − �̂ols
H
‖ < 𝜏∕2 and (2) ‖�̂H − �̂ols

H
‖ ≥ 𝜏∕2 . 

For each case, we show that both �̂H and �̂ols
H

 are the local minimizers of S(�H) and 
�̂H = �̂ols

H
 on J  . 

1.	 ‖�̂H − �̂ols
H
‖ < 𝜏∕2 . On the set J  , 𝛼̂Hk

≥ 𝛼̂ols
Hk

− |𝛼̂Hk
− 𝛼̂ols

Hk

| ≥ 2𝜏 − 𝜏∕2 > 𝜏 if 
𝛼̂ols
Hk

> 2𝜏   ;  |𝛼̂Hk
| < |𝛼̂ols

Hk

| + |𝛼̂Hk
− 𝛼̂ols

Hk

| < 𝜏∕2  i f  |𝛼̂ols
Hk

| = 0   ; 
|𝛼̂Hk

− 𝛼̂Hl
| ≥ −|𝛼̂Hk

− 𝛼̂ols
Hk

| − |𝛼̂Hl
− 𝛼̂ols

Hl

| + |𝛼̂ols
Hk

− 𝛼̂ols
Hl

| ≥ 𝜏 if |𝛼̂ols
Hk

− 𝛼̂ols
Hl

| ≥ 2𝜏 ; 
|𝛼̂Hk

− 𝛼̂Hl
| ≤ |𝛼̂Hk

− 𝛼̂ols
Hk

| + |𝛼̂Hl
− 𝛼̂ols

Hl

| + |𝛼̂ols
Hk

− 𝛼̂ols
Hl

| < 𝜏 if |𝛼̂ols
Hk

− 𝛼̂ols
Hl

| = 0 . It 
implies that both �̂H and �̂ols

H
 are the local minimizers of S(�H) and �̂H = �̂ols

H
 on 

J .
2.	 ‖�̂H − �̂ols

H
‖ ≥ 𝜏∕2 . By Cauchy–Schwarz inequality, 

 It is easy to verify that (𝛼̂Hk
I{𝛼̂Hk

<0} − 𝛼̂ols
Hk

I{𝛼̂ols
Hk

<0})(𝛼̂Hk
− 𝛼̂ols

Hk

) ≥ 0 , followed by 

 By the assumption (A4), 

On the other hand, 𝜕S(�̂H)

𝜕�H

= 0 and 𝜕S(�̂
ols
H
)

𝜕�H

= 0 on J  if �̂H ≠ �̂ols
H

 , which contracts to 
(35). Therefore, the problem (34) has a unique solution on J  . That is �̂ = �̂

ols on 
J  , which yields that

Next, we show the bounds of pr(Jc
11
), pr(Jc

12
), pr(Jc

21
), pr(Jc

12
).

Before proceeding, we provide the following inequality, for x > 0 , 
�(−x) ≤ (2�)−1∕2x−1 exp(−x2∕2) . If x2 ≥ 2 log{2na∕(2�)1∕2} , a ≥ 1 , x > 0 , then 
2a�(−x) ≤ cn−1(log n)−1∕2.

𝜕S(�̂H)

𝜕�H

−
𝜕S(�̂ols

H
)

𝜕�H

=
1

n
Z⊤
H
ZH(�̂H − �̂ols

H
) + �,

����
⊤
1
(�̂H − �̂ols

H
)
��� ≤ 2

𝜏

�
𝜆1s

∗ + 𝜆2�N��‖�̂H − �̂ols
H
‖.

�⊤
2
(�̂H − �̂ols

H
) ≥ 0.

(35)

�
𝜕S(�̂H)

𝜕�H

−
𝜕S(�̂ols

H
)

𝜕�H

�⊤
�̂H − �̂ols

H

‖�̂H − �̂ols
H
‖

≥ min
K(H)≤K∗

𝜏

2
𝜆min

�
1

n
Z⊤
H
ZH

�
−

2

𝜏

�
𝜆1s

∗ + 𝜆2�N�� > 0.

(36)pr(�̂ ≠ �̂
ols
) ≤ pr(Jc) ≤ pr(Jc

11
) + pr(Jc

12
) + pr(Jc

21
) + pr(Jc

12
).
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For Jc
11

 , by the assumptions (A1)–(A2), 𝛽ols
j

∼ N(𝛽0
j
, var(𝛽ols

j
)) , where 

var(𝛽ols

j
) ≤ n−1𝜎2𝜆−1

min
(n−1Z⊤

G0c
0

ZG0c
0

) . If 𝛾min > 2𝜏 , and {(𝛾
min

− 2𝜏)n1∕2𝜆
1∕2

min
(n−1Z⊤

G0c
0

ZG0c
0

)

�−1}2 ≥ 2 log{2n(p − |G0
0
|)∕(2�)1∕2} , then

For Jc
12

 , by (A1)–(A2), x⊤
(j)
(y − X⊤�̂

ols
) = x⊤

(j)
(I − PZ

G0c
0

)� ∼ N(0, 𝜎2‖(I − PZ
G0c
0

)x(j)‖2), 
and ‖(I − PZ

G0c
0

)x(j)‖2 ≤ ‖x(j)‖2 . If (n�1�−1�−1∕max1≤j≤p ‖x(j)‖)2 ≥ 2 log{2n�G0

0
�∕(2�)1∕2} , 

then

For Jc
21

 , by (A1)–(A2), 𝛼̂ols
k

− 𝛼̂ols
l

∼ N(𝛼0
k
− 𝛼0

l
, var(𝛼̂ols

k
− 𝛼̂ols

l
)), where 

var(𝛼̂ols
k

− 𝛼̂ols
l
) ≤ 4n−1𝜎2𝜆−1

min
(n−1Z⊤

G0c
0

ZG0c
0
) . If 𝛾min > 2𝜏 , and 

{2−1𝜎−1(𝛾min − 2𝜏)n1∕2𝜆
1∕2

min
(n−1Z⊤

G0c
0

ZG0c
0
)}2 ≥ 2 log{nK0(K0 − 1)∕(2𝜋)1∕2} , then

For Jc
22

 , by (A1)–(A2), (XA1)
⊤(y − X⊤�̂

ols

) = (XA1)
⊤(I − PZ

G0c
0

)� ∼ N(0, 𝜎2‖(I − PZ
G0c
0

)XA1‖2), 
and ‖(I − PZ

G0c
0

)XA1‖2 ≤ ‖XA1‖2 . Denote D = maxk,A⊂G0
k
‖XA1‖∕�𝜀 ∩ {A × (G0

k
⧵A)}� . 

If (2−1n�2�−1�−1∕D)2 ≥ 2 log{2n|N|∕(2�)1∕2} , then

(37)

pr(Jc
11
) ≤ ∑

j∈G0c
0

pr
(
𝛽ols
j

≤ 2𝜏
) ≤ ∑

j∈G0c
0

pr(𝛽0
j
− |𝛽ols

j
− 𝛽0

j
| ≤ 2𝜏)

≤ 2
(
p − |G0

0
|)𝛷

(
−(𝛾min − 2𝜏)n1∕2𝜆

1∕2

min
(n−1Z⊤

G0c
0

ZG0c
0
)𝜎−1

)

= O

(
1

n(log n)1∕2

)
.

(38)

pr(Jc
12
) ≤ �

j∈G0
0

pr

����x
⊤
(j)
(y − X�̂

ols
)
��� > n

𝜆1

𝜏

�

≤ 2�G0
0
�𝛷

⎛⎜⎜⎝
−

n𝜆1∕𝜏

𝜎 max
1≤j≤p ‖x(j)‖

⎞⎟⎟⎠
= O

�
1

n(log n)1∕2

�
.

(39)

pr(Jc
21
) ≤ ∑

1≤k<l≤K0

pr(|𝛼̂k − 𝛼̂l| ≤ 2𝜏)

≤ ∑
1≤k<l≤K0

pr(|𝛼0
k
− 𝛼0

l
| − |(𝛼̂k − 𝛼̂l) − (𝛼0

k
− 𝛼0

l
)| ≤ 2𝜏)

≤ K0(K0 − 1)𝛷
(
−2−1𝜎−1(𝛾min − 2𝜏)n1∕2𝜆

1∕2

min
(n−1Z⊤

G0c
0

ZG0c
0
)
)

= O

(
1

n(log n)1∕2

)
.
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By (36)–(40), we thus have pr(�̂ ≠ �̂
ols
) = O

(
1

n(log n)1∕2

)
, which, together with 

Lemma 2.1, yields that

(2) Note that, �̂ satisfies that −Z⊤
Gc
0

(
y − ZGc

0
�̂
)
+ 2n𝜆3M0�̂ + n�̂ = 0, where M0 is a 

K × K diagonal matrix with diagonal elements |Gk|I{�̂k<0}
 for k = 1,… ,K ; 

�̂ = (𝛿1,… , 𝛿K)
⊤ , 𝛿k =

∑
j∈Gk

𝛶j(�̂) , and �j(�) = �
1
�−1sign(�j)I{|�j|≤�} + �

2
�−1

∑
j�∶(j�,j)∈� sign(�j − �j� )I{��j−�j� �≤�} . Note that ‖�̂‖2 ≤ 𝜏−2(𝜆1s

∗ + 𝜆2�N�)2.We obtain 

that �̂ = (Z⊤
Gc
0

ZGc
0
+ 2n𝜆3M0)

−1(Z⊤
Gc
0

y − n�̂), followed by

Denote T1 = n−1E(‖X�̂ − X�0‖2I{G}) and T2 = n−1E(‖X�̂ − X�0‖2I{Gc}) , 
where G = {n−1‖X�̂ − X�0‖2 ≥ D} . By the definition, we have 
n−1E(‖X�̂ − X�0‖2) = T1 + T2. Next, we work on T1, T2. Let

For T1 , it follows that

(40)

pr(Jc
22
) ≤ ∑

k=1,…,K0;A⊂G0
k

pr

(|||(XA1)
⊤(y − X�̂

ols
)
||| > n

𝜆2

𝜏

|||𝜀 ∩ {A × (G0
k
⧵A)}

|||
)

≤ 2|N|𝛷
(
−
n𝜆2∕𝜏

2𝜎D

)
= O

(
1

n(log n)1∕2

)
.

pr(�̂ ≠ �̂
ora
) ≤ pr(�̂ ≠ �̂

ols
) + pr(�̂

ora ≠ �̂
ols
) = O

(
1

n(log n)1∕2

)
.

(41)

‖X�̂ − X�0‖2
= ‖ZGc

0
(Z⊤

Gc
0

ZGc
0
+ 2n𝜆3M0)

−1(Z⊤
Gc
0

y − n�̂) − ZG0c
0
�0‖2

= ‖{I − ZGc
0
(Z⊤

Gc
0

ZGc
0
+ 2n𝜆3M0)

−1Z⊤
Gc
0

}ZG0c
0
�0 − ZGc

0
(Z⊤

Gc
0

ZGc
0
+ 2n𝜆3M0)

−1Z⊤
Gc
0

�

+ nZGc
0
(Z⊤

Gc
0

ZGc
0
+ 2n𝜆3M0)

−1�̂)‖2

≤ 3‖X�0‖2 + 3‖�‖2 + 3𝜏2n

16
min

K(Gc
0
)≤K∗

𝜆min

�
1

n
Z⊤
Gc
0

ZGc
0

�
.

(42)D =
3

n
‖X�0‖2 + 10𝜎2 +

3𝜏2

16
min

K(Gc
0
)≤K∗

𝜆min

�
1

n
Z⊤
Gc
0

ZGc
0

�
.
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By (41) and (42), thus the first ‘ ≤ ’ follows. In view of the moment generating func-
tion for Chi-squared distribution, taking t = 1∕3 , the third ‘ ≤ ’ holds. For T2,

For the first term in (44), if D = o{K0(log n)1∕2}, then

For the second term in (44),

By (43), (44)–(47), n−1E(‖X�̂ − X�0‖2) = T1 + T2 = n−1K0𝜎2(1 + o(1)). � □
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