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Abstract
Gaussian graphical models are semi-algebraic subsets of the cone of positive defi-
nite covariance matrices. They are widely used throughout natural sciences, compu-
tational biology and many other fields. Computing the vanishing ideal of the model 
gives us an implicit description of the model. In this paper, we resolve two conjec-
tures given by Sturmfels and Uhler. In particular, we characterize those graphs for 
which the vanishing ideal of the Gaussian graphical model is generated in degree 
1 and 2. These turn out to be the Gaussian graphical models whose ideals are toric 
ideals, and the resulting graphs are the 1-clique sums of complete graphs.

Keywords  Clique sum · Toric ideals · SAGBI bases · Initial algebra

1  Introduction

Any positive definite n × n matrix � can be seen as the covariance matrix of a mul-
tivariate normal distribution in ℝn . The inverse matrix K = �−1 is called the con-
centration matrix of the distribution, which is also positive definite. The statistical 
models where the concentration matrix K can be written as a linear combination of 
some fixed linearly independent symmetric matrices K1,K2,… ,Kd are called linear 
concentration models.

Let �n denote the vector space of real symmetric matrices and let L be a linear 
subspace of �n generated by K1,K2,… ,Kd . The set L−1 is defined as

L
−1 = {� ∈ �

n ∶ �−1 ∈ L}.
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The homogeneous ideal of all the polynomials in ℝ[�] = ℝ[�11, �12,… , �nn] that 
vanish on L−1 is denoted by PL . Note that PL is prime because it is the vanishing 
ideal of L−1 , which is the image of the irreducible variety L under the rational inver-
sion map. In this paper, we study the problem of finding a generating set of PL for 
the special case of Gaussian graphical models.

Gaussian graphical models are used throughout the natural sciences and espe-
cially in computational biology as seen in Koller and Friedman (2009) and Lauritzen 
(1996). These models explicitly capture the statistical relationships between the vari-
ables of interest in the form of a graph. The undirected Gaussian graphical model is 
obtained when the subspace L of �n is defined by the vanishing of some off-diago-
nal entries of the concentration matrix K. We fix a graph G = ([n],E) with vertex set 
[n] = {1, 2,… , n} and edge set E, which is assumed to contain all self loops. The sub-
space L is generated by the set {Kij|(i, j) ∈ E} of matrices Kij with 1 entry at the (i, j)th 
and (j, i)th position and 0 in all other positions. We denote the ideal PL as PG in this 
model.

One way to compute PG is to eliminate the entries of an indeterminate symmetric 
n × n matrix K from the following system of equations:

where Idn is the n × n identity matrix. However, this elimination is computationally 
expensive, and we would like methods to identify generators of PG directly in terms 
of the graph.

Various methods have been proposed for finding some generators in the ideal PG and 
for trying to build PG from smaller ideals associated to subgraphs. These approaches 
are based on separation criteria in the graph G.

Definition 1  Let G = (V ,E) be a graph.

–	 A set C ⊆ V is called a clique of G if the subgraph induced by C is a complete 
graph.

–	 Let A, B,   and C be disjoint subsets of the vertex set of G with A ∪ B ∪ C = V . 
Then, C separates A and B if for any a ∈ A and b ∈ B , any path from a to b passes 
through a vertex in C.

–	 The graph G is said to be a c-clique sum of smaller graphs G1 and G2 if there exists a 
partition (A, B, C) of its vertex set such that 

	 (i)	 C is a clique with |C| = c,
	 (ii)	 C separates A and B,
	 (iii)	 G1 and G2 are the subgraphs induced by A ∪ C and B ∪ C , respectively.

	    In the case that G is a c-clique sum, we call the corresponding partition (A, B, C) 
a c-clique partition of G.

If G is a c-clique sum of G1 and G2 , the ideal

� ⋅ K = Idn, K ∈ L,
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is contained in PG . Here, �A∪C,B∪C denotes the submatrix of � obtained by taking all 
rows indexed by A ∪ C and columns indexed by B ∪ C , and so

is the conditional independence ideal associated to the conditional independence 
statement A ⫫ B|C . Though the ideal (1) fails to equal PG , (or even have the same 
radical as that of PG ) for c ≥ 2 , Sturmfels and Uhler (2010) conjectured it to be 
equal to PG for c = 1.

Conjecture 1  (Sturmfels and Uhler 2010) Let G be a 1-clique sum of two smaller 
graphs G1 and G2 . If (A, B, C) is the 1-clique partition of G where G1 and G2 are the 
subgraphs induced by A ∪ C and B ∪ C , respectively, then

In Sect.  2, we give counterexamples to this conjecture, and even a natural 
strengthening of it. However, the motivation for Conjecture 1 was to use it as a 
tool to prove a different conjecture characterizing the graphs for which the van-
ishing ideal PG is generated in degree ≤ 2 . To explain the details of this conjec-
ture we need some further notions.

Let X = (X1,X2,… ,Xn) be a Gaussian random vector. If A,B,C ⊆ [n] are pair-
wise disjoint subsets, then from Proposition 4.1.9 of Sullivant (2018) we know 
that XA is conditionally independent of XB given XC (i.e.,  ) if and only 
if the submatrix �A∪C,B∪C of the covariance matrix � has rank |C|. The Gauss-
ian conditional independence ideal for the conditional independence statement 

 is given by 

If G is an undirected graph and (A,  B,  C) is a partition with C separating A 
from B, then the conditional independence statement  holds for all mul-
tivariate normal distributions where the covariance matrix � is obtained from 
G (by the global Markov property). The conditional independence ideal for the 
graph G is defined by

Proposition 1  For any given graph G, CIG ⊆ PG.

Proof  As the rank of the submatrices �A∪C,B∪C of the covariance matrix � is |C| for 
all partitions (A, B, C) of G, the generators of CIG vanish on the matrices in L−1 . 	� ◻

(1)PG1
+ PG2

+ ⟨(c + 1) × (c + 1)-minors of �A∪C,B∪C⟩

⟨(c + 1) × (c + 1)-minors of �A∪C,B∪C⟩

PG = PG1
+ PG2

+ ⟨2 × 2-minors of �A∪C,B∪C⟩.

JA⫫B�C = ⟨(�C� + 1)×(�C� + 1)minors of
�

A∪C,B∪C
⟩.

CIG =
∑

A⫫B |C holds forG

JA⫫B|C.



760	 P. Misra, S. Sullivant 

1 3

Definition 2  A graph G is called a 1-clique sum of complete graphs if there exists a 
partition (A, B, C) of its vertex set such that 

	 (i)	 |C| = 1,
	 (ii)	 C separates A and B,
	 (iii)	 the subgraphs induced by A ∪ C and B ∪ C are either complete graphs or 

1-clique sum of complete graphs.

The second conjecture in Sturmfels and Uhler (2010) which we prove in this paper 
is as follows:

Theorem 1  (Conjecture 4.4, Sturmfels and Uhler 2010) The prime ideal PG of an 
undirected Gaussian graphical model is generated in degree ≤ 2 if and only if each 
connected component of the graph G is a 1-clique sum of complete graphs.

The “only if” part of the conjecture is proved in Sturmfels and Uhler (2010). That is, 
it is shown there that a graph that is not the 1-clique sum of complete graphs must have 
a generator of degree ≥ 3 . Such a generator comes from a conditional independence 
statement with #C ≥ 2.

For 1-clique sum of complete graphs, the conditional independence ideal can be 
written as

where C1(G) denotes the set of all 1-clique partitions of G. In this paper, our main 
result will be a proof that CIG = PG when G is a 1-clique sum of complete graphs.

The expression “1-clique sum of complete graphs” is somewhat cumbersome. We 
use the alternate expression block graphs for most of the paper, as that is a commonly 
used name in the literature. One important property of block graphs is that there is a 
unique locally shortest path between any pair of vertices in a connected component of 
a block graph.

Example 1  We illustrate the structure of Theorem  1 with an example. Let 
G = ([6],E) be the block graph as shown in Fig.  1. This block graph G has four 
1-clique partitions as follows:

Partition 1: A = {1, 2},B = {4, 5, 6},C = {3}, Partition 2: A = {1, 2, 3},B = {5, 6},C = {4}

Partition 3: A = {1, 2, 3, 5},B = {6},C = {4}, Partition 4: A = {1, 2, 3, 6},B = {5},C = {4}.

The associated matrices are as follows:

CIG = ⟨ �
(A,B,C) ∈ C1(G)

2 × 2 minors of �A∪C,B∪C⟩,

For 1 ∶ �A∪C,B∪C =

⎡⎢⎢⎣

�13 �14 �15 �16
�23 �24 �25 �26
�33 �34 �35 �36

⎤
⎥⎥⎦
, 2 ∶ �A∪C,B∪C =

⎡
⎢⎢⎢⎣

�14 �15 �16
�24 �25 �26
�34 �35 �36
�44 �45 �46

⎤⎥⎥⎥⎦
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The ideal CIG = PG is the ideal generated by the 2 × 2 minors of all four matrices:

The history of trying to characterize constraints on the covariance matrices in 
Gaussian graphical models goes back to Kelley (1935) and the discovery of the pen-
tad constraints in the factor analysis model. Since then, the study of the constraints 
on Gaussian graphical models has seen many results including the deeper study of 
the factor analysis model in Drton et al. (2007), the study of directed graphical mod-
els and characterization of tree models in Sullivant (2008), and the complete charac-
terization of the determinantal constraints that apply to Gaussian graphical models 
in Sullivant et al. (2010).

3 ∶ �A∪C,B∪C =

⎡
⎢⎢⎢⎢⎣

�14 �16
�24 �26
�34 �36
�44 �46
�45 �56

⎤
⎥⎥⎥⎥⎦
, 4 ∶ �A∪C,B∪C =

⎡
⎢⎢⎢⎢⎣

�14 �15
�24 �25
�34 �35
�44 �45
�46 �56

⎤
⎥⎥⎥⎥⎦
.

CIG = ⟨�13�24 − �14�23, �13�25 − �15�23, �13�26

− �16�23, �14�25 − �15�24, �23�34 − �24�33,

�23�35 − �25�33, �23�36 − �26�33, �24�35

− �25�34, �24�36 − �26�34, �25�36 − �26�35,

�13�34 − �14�33, �13�35 − �15�33, �13�36

− �16�33, �14�35 − �15�34, �14�36 − �16�34,

�15�36 − �16�35, �14�45 − �15�44, �14�46

− �16�44, �15�46 − �16�45, �24�45 − �25�44,

�24�46 − �26�44, �25�46 − �26�45, �34�45

− �35�44, �34�46 − �36�44, �35�46 − �36�45,

�14�56 − �16�45, �24�56 − �26�45, �34�56

− �36�45, �44�56 − �46�45, �14�56 − �15�46,

�24�56 − �25�46, �34�56 − �35�46, �44�56

− �45�46, �14�26 − �16�24, �15�26 − �16�25⟩.

Fig. 1   A block graph with four 
1-clique partitions
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The study of the generators of the ideals PG is an important problem for con-
straint-based inference for inferring the structure of the underlying graph from data. 
Elements of the vanishing ideal are tested to determine if the graph has certain 
underlying features, which are then used to reconstruct the entire graph. A proto-
typical example of this method is the TETRAD procedure in Spirtes et al. (2000) 
which specifically tests the degree 2 generators (tetrads) of the vanishing ideals of 
Gaussian graphical models for directed graphs. Our main result in this paper gives a 
characterization of which undirected graphs the tetrads are sufficient to characterize 
all distributions from the model, and is a key structural result for trying to use con-
straint based inference for undirected Gaussian graphical models. Developing char-
acterizations of the vanishing ideals of Gaussian graphical models by higher order 
constraints (for example, determinantal constraints in Drton et al. (2008) and Sul-
livant et al. (2010) ) has the potential to extend constraint-based inference beyond 
tetrad constraints.

This paper is organized as follows. We give two counterexamples to Conjecture 1 
in Sect. 2. In Sect. 3 we define a rational map � and its pullback map �∗ , whose ker-
nel is the ideal PG . We review properties of block graphs including the existence 
of a unique shortest path. Using this uniqueness property, we define the “shortest 
path map” � and the initial term map � and show that the two maps have the same 
kernel. We prove that the kernel of � is equal to the ideal CIG for block graphs with 
one central vertex in Sect. 4. This result is generalized for all block graphs in Sect. 5. 
Finally, in Sect. 6 we put all the pieces together to prove Theorem 1 using the results 
proved in the previous sections. We end the section by showing that the set F forms 
a SAGBI basis ( Subalgebra Analog to Gröbner Basis for Ideals ) using the initial 
term map.

2 � Counterexamples to Conjecture 1

We first begin with some counterexamples to Conjecture 1. Initial counterexamples 
suggest a modification of Conjecture 1 might be true, but we show that that strength-
ened version is also false. This last counterexample suggests that it is unlike that 
there is a repair for the conjecture.

Example 2  Let G = ([6],E) be the graph as shown in Fig.  2. Here, 
A = {1, 2},B = {4, 5, 6} and C = {3} . Computing the ideals PG and 
PG1

+ PG2
+ ⟨2 × 2 minors of �A∪C,B∪C⟩ , we get

Note that even for some small block graphs Conjecture 1 is false.

PG = ⟨�14�25�46 − �14�26�45 − �15�24�46 + �15�26�44 + �16�24�45 − �16�25�44,

�24�45�56 − �24�46�55 − �25�44�56 + �25�46�45 + �26�44�55 − �26�
2
45
⟩

+ PG1
+ PG2

+ ⟨2 × 2 minors of �A∪C,B∪C⟩.
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Example 3  Consider the graph G = ([4],E) which is a path of length 4. Taking 
c = {3} , we get a decomposition of G into G1 and G2 which are paths of length 3 and 
2, respectively. A quick calculation in Macaulay2 [Grayson and Stillman (2017)] 
shows that PG = CIG is generated by 5 quadratic binomials. However,

has only 4 minimal generators.

Although PG is not equal to PG1
+ PG2

+ ⟨2 × 2 minors of �A∪C,B∪C⟩ in these 
examples, we observe that the extra generators of PG are also determinantal condi-
tions arising from submatrices of � . Furthermore, they can be seen as being implied 
by the original rank conditions in PG1

 and PG2
 plus the rank conditions that are 

implied by ⟨2 × 2 minors of �A∪C,B∪C⟩.
For instance, in Example  3, the ideal 

RG = PG1
+ PG2

+ ⟨2 × 2-minors of �{1,2,3},{3,4}⟩ is generated by the 2 × 2 minors of 
the two matrices

 whereas the PG is generated by the 2 × 2 minors of the two matrices.

However, we can take the generators RG and, assuming that �33 is not zero (which is 
valid since � is positive definite), we see that this implies that

must be a rank 1 matrix.

PG1
+ PG2

+ ⟨2 × 2-minors of �{1,2,3},{3,4}⟩

�
�12 �13
�22 �23

�
and

⎛⎜⎜⎝

�13 �14
�23 �24
�33 �34

⎞⎟⎟⎠
,

�
�12 �13 �14
�22 �23 �24

�
and

⎛⎜⎜⎝

�13 �14
�23 �24
�33 �34

⎞⎟⎟⎠
.

(
�12 �13 �14
�22 �23 �24

)

Fig. 2   A counterexample to 
Sturmfels-Uhler conjecture 1
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Similarly, in Example  2, we know that ({3}, {6}, {4, 5}) is a separat-
ing partition for the subgraph G2 . So, the ideal  is contained 
in PG2

 , which implies that rank of the submatrix �{3,4,5},{4,5,6} is 2. Similarly, 
({1, 2}, {4, 5, 6}, {3}) is a separating partition of G, which implies that rank of the 
submatrix �{1,2,3},{3,4,5,6} is 1. Now, as �{1,2,3},{4,5,6} is a submatrix of �{1,2,3},{3,4,5,6} , 
we can say that �{1,2,3},{4,5,6} also has rank 1. Hence, from these two rank con-
straints and the added assumption that �33 is not zero we can conclude that the 
submatrix �{1,2,4,5},{4,5,6} has rank 2.

The details of these examples suggest that a better version of the conjecture 
might be

Here, Lift(PG1
) denotes some operation that takes the generators of PG1

 and extends 
them to the whole graph, analogous to how the toric fiber product in Sullivant 
(2007) lifts generators for reducible hierarchical models on discrete variables (Dobra 
and Sullivant 2004; Hoşten and Sullivant 2002). We do not make precise what this 
lifting operation could be, because if it preserves the degrees of generating sets the 
following example shows that no precise version of this notion could make this con-
jecture be true.

Example 4  Let G = ([7],E) be the graph as shown in Fig. 3 and let (A, B, C) be the 
partition ({1, 2, 3}, {5, 6, 7}, {4}) . Computing the vanishing ideal, we get PG = CIG , 
but that among the minimal generators of PG is one degree 4 polynomial m where

As both PG1
 and PG2

 are generated by polynomials of degree 3, this degree 4 polyno-
mial could not be obtained from a degree preserving lifting operation.

PG = Lift(PG1
) + Lift(PG2

) + ⟨2 × 2 minors of �A∪C,B∪C⟩.

m = �2
17
�23�56 − �13�17�27�56 − �12�17�37�56 + �11�27�37�56 − �16�17�23�57

+ �13�16�27�57 + �12�16�37�57 − �11�26�37�57 − �15�17�23�67 + �13�15�27�67

+ �12�15�37�67 − �11�25�37�67 − �12�13�57�67 + �11�23�57�67 + �15�16�23�77

− �13�15�26�77 − �12�15�36�77 + �11�25�36�77 + �12�13�56�77 − �11�23�56�77.

Fig. 3   A 1-clique sum of two 
graphs with a degree 4 generator
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3 � Shortest path in block graphs

Our goal for the rest of the paper is to prove Theorem 1. To do this, we need to 
phrase some parts in the language of commutative algebra. The vanishing ideal is 
the kernel of a certain ring homomorphism, or the presentation ideal of a certain 
ℝ-algebra. We will show that we can pass to a suitable initial algebra and analyze 
the combinatorics of the resulting toric ideal. This is proven in this section and 
those that follow.

We begin this section by giving an overview of toric ideals. We then define a 
rational map � such that the kernel of its pullback map gives us the ideal PG . We 
also show the existence of a unique shortest path between any two vertices of a 
block graph. This property allows us to define the “shortest path map”.

Let A = {a1, a2,… , an} be a fixed subset of ℤ
d . We consider the 

homomorphism

This map � lifts to a homomorphism of subgroup algebras:

The kernel of 𝜋̂ is called the toric ideal of A . By Lemma 4.1 of Sturmfels (1996) we 
know that the toric ideal can be generated by the set of binomials of the form

From the construction above we observe that any monomial map can be written as 
𝜋̂ for some given set of vectors A . This gives us that the kernel of every monomial 
map is a toric ideal.

Now, let ℝ[K] = ℝ[k11, k12,… , knn] denote the polynomial ring in the entries of 
the concentration matrix K, and ℝ(K) its fraction field.

We define the rational map � ∶ L ⤏ L
−1 as follows:

where �ij ∈ ℝ(K) is the (i,  j) coordinate of K−1 . The rational map does not yield a 
well defined function from L to L−1 as every matrix in L is not invertible (chapter 3, 
Hassett 2007). Also note that the definition of � depends on the underlying graph G, 
since the zero pattern of K is determined by G.

The pull-back map of � is

So, for each p ∈ ℝ[�] and K ∈ L,

� ∶ ℕ
n
→ ℤ

d, u = (u1,… , un) ↦ u1a1 +⋯ + unan.

𝜋̂ ∶ ℝ[x1,… , xn] → ℝ[t1,… , td, t
−1
1
,… , t−1

d
], xi ↦ tai .

{xu − xv ∶ u, v ∈ ℕ
n with �(u) = �(v)}.

�(K) = �(k11, k12,… , knn) = (�11(k11, k12,… , knn),

�12(k11, k12,… , knn),… , �nn(k11, k12,… , knn)),

�∗ ∶ ℝ[�] → ℝ(K), �ij ↦ �ij(K).

�∗(p)(K) = p◦�(K) = p(�11(K), �12(K),… , �nn(K)).
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Hence, we have

For a given graph G = ([n],E) , let fij ∈ ℝ[K] be the polynomial defined as det(K) 
times the (i,  j) coordinate of the matrix K−1 . Let F = {fij ∶ 1 ≤ i ≤ j ≤ n} . So, the 
map �∗ can be written as

As 1∕ det(K) is a constant which is present in the image of every �ij , removing that 
factor from every image would not change the kernel of �∗ . Hence, we change the 
map �∗ as

where ℝ[F] = ℝ[f11, f12,… , fnn] ⊆ ℝ[K].

Example 5  Let G = ([4],E) be a graph with 4 vertices as shown in Fig  4. The 
matrices � and K for this graph are:

The ideal PG can be calculated by using the equation � ⋅ K = Id4 and eliminating 
the K variables.

Eliminating the K variables, we get

From the map �∗ , we have

PG = I(L−1) = ker(�∗).

�∗ ∶ ℝ[�] → ℝ(K) �∗(�ij) =
1

det(K)
⋅ fij.

�∗ ∶ ℝ[�] → ℝ[F], �∗(�ij) = fij,

� =

⎡
⎢⎢⎢⎣

�11 �12 �13 �14
�12 �22 �23 �24
�13 �23 �33 �34
�14 �24 �34 �44

⎤
⎥⎥⎥⎦
, K =

⎡
⎢⎢⎢⎣

k11 k12 k13 0

k12 k22 k23 0

k13 k23 k33 k34
0 0 k34 k44

⎤
⎥⎥⎥⎦
.

⟨� ⋅ K − Id4⟩ = ⟨�11k11 + �12k12 + �13k13 − 1, �11k12 + �12k22 + �13k23,… ,

�14k13 + �24k23 + �34k33 + �44k34, �34k33 + �44k44 − 1⟩.

PG = ⟨� ⋅ K − Id4⟩ ∩ℝ[�] = ⟨�13�34 − �14�33, �23�34

− �24�33, �14�23 − �13�24⟩.

Fig. 4   A block graph with a sin-
gle 1-clique sum decomposition

41
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where fij is det(K) times the (i, j) coordinate of K−1 . Evaluating the kernel of �∗ , we 
get

which is same as the ideal PG . Note that G is a block graph with a single 1-clique 
sum decomposition. As the generators of PG are the 2 × 2 minors of �{1,2,3},{3,4} , the 
conjecture holds for this example.

Observe that in Example 5, each fij contains a monomial which corresponds to 
the shortest path from i to j in the graph G along with loops at the vertices not in 
the path. For example, f24 has the monomial k23k34k11 where k23k34 corresponds to 
the shortest path from 2 to 4 and k11 corresponds to the loop at the vertex 1. In the 
(2), the underlined term is this special term.

This turns out to be important in our proofs, and we formalize this observation 
in Proposition 3. We now look at some properties of block graphs and 1-clique 
partitions in order to prove the existence of shortest paths.

Proposition 2  If G is a block graph, then for any two vertices i and j there exists a 
unique shortest path in G connecting them. Further, if (A, B, C) is a 1-clique parti-
tion of G with c ∈ C and if i ∈ A and j ∈ B , then the unique shortest path from i to j 
can be decomposed into the unique shortest paths from i to c and c to j.

Proof  We prove this by applying induction on the number of vertices in G. If i and 
j are connected by a single edge, then that is the unique shortest path. If they are 
not connected by a single edge, then there exists a 1-clique partition (A, B, C) with 
C = {c} which separates them. But as A ∪ C and B ∪ C are also block graphs and 
have fewer vertices than G, by induction there exist unique shortest paths from i to 
c and from c to j. But as any path from i to j must pass through c, the concatenation 
of the unique shortest paths from i to c and c to j would be the unique shortest path 
from i to j.

The second part follows from a property of unique shortest paths that if c is a 
point on the path, then the subpaths from i to c and c to j are the unique shortest 
paths from i to c and c to j, respectively. 	�  ◻

(2)

f11 = k22k33k44 − k22k
2
34
− k2

23
k44

f22 = k11k33k44 − k11k
2
34
− k2

13
k44

f33 = k11k22k44 − k44k
2
12

f44 = k11k22k33 − k11k
2
23
− k2

12
k33

+ k12k13k23 + k13k12k23 − k2
13
k22

f12 = −k12k33k44 − k12k
2
34
− k23k13k44

f13 = −k13k22k44 + k12k23k44

f14 = k13k34k22 − k12k23k34

f23 = −k23k11k44 + k12k13k44

f24 = k23k34k11 − k34k13k12

f34 = −k34k11k22 + k34k
2
12

ker(�∗) = ⟨�13�34 − �14�33, �23�34 − �24�33, �14�23 − �13�24⟩
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For the rest of the paper, we assume that G is a block graph and the shortest 
path from i to j in G is denoted by i ↔ j . We use (i�, j�) ∈ i ↔ j to indicate that the 
edge (i�, j�) appears in the path i ↔ j . We let �(i, j) denote the length of the shortest 
path from i to j. We now state a result from Jones and West (2005) which will be 
used to prove Proposition 3.

Theorem 2  (Theorem 1, Jones and West 2005) Consider an n-dimensional multi-
variate normal distribution with a finite and non-singular covariance matrix � , with 
precision matrix K = �−1 . Let K determine the incidence matrix of a finite, undi-
rected graph on vertices {1,… , n} , with nonzero elements in K corresponding to 
edges. The element of K corresponding to the covariance between variables x and y 
can be written as a sum of path weights over all paths in the graph between x and y:

where Pxy represents the set of paths between x and y, so that p1 = x and pm = y 
for all P ∈ Pxy and K⧵P is the matrix with rows and columns corresponding to vari-
ables in the path P omitted, with the determinant of a zero-dimensional matrix taken 
to be 1.

Proposition 3  Let G = ([n],E) be a block graph with the corresponding concentra-
tion matrix K. If fxy denote det(K) times the (x, y) coordinate of K−1 , then fxy has the 
monomial

as one of its terms. Furthermore, this term has the highest number of diagonal 
entries ktt among all the monomials of fxy.

Proof  From Theorem 2, we have

From Proposition 2 we know that if G is a block graph, then for any two vertices x 
and y, there exists a unique shortest path between x and y. If z ∈ x ↔ y with z ≠ x, y , 
then there exists a 1-clique partition (A, B, C) of G with C = {z} and x ∈ A, y ∈ B . 
By the definition of 1-clique partition we know that any path from x to y must pass 
through z. As z is arbitrarily chosen, any path in G from x to y must pass through all 
the vertices in x ↔ y . This gives us that the unique shortest path has the least num-
ber of vertices among all the other paths from x to y. So, the matrix K⧵x↔y has the 
highest dimension among all the other matrices K⧵P,P ∈ Pxy.

Now, for any P ∈ Pxy , det(K⧵P ) contains the monomial 
∏

t∉P ktt as G is assumed 
to have self loops. This monomial has the highest number of diagonals among all the 

�xy =
∑

P∈Pxy

(−1)m+1kp1p2kp2p3 … kpm−1pm

det(K⧵P)

det(K)
,

(−1)�(i,j)
∏

(x�,y�)∈x↔y

kx�y�
∏
t∉x↔y

ktt

fxy = det(K) ⋅ �xy =
∑

P∈Pxy

(−1)m+1kp1p2kp2p3 … kpm−1pmdet(K⧵P).
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monomials in det(K⧵P ) as the degree of det(K⧵P ) is same as the degree of 
∏

t∉P ktt . 
So, the monomial

has the highest number of diagonal terms among all the monomials in ∏
(x�,y�)∈P kx�y�det(K⧵P) . As K⧵x↔y has the highest dimension, we can conclude that the 

monomial

has the maximum number of diagonal terms among all the monomials in fxy . 	�  ◻

We call the monomial defined above as the shortest path monomial of fij . 
As the shortest path monomial in each fij has the highest power of diagonals ktt 
among all the other monomials in fij , we can define a weight order on ℝ[K] where 
the weight of any monomial is the number of diagonal entries of the monomial. 
The initial term of fij in this order will be precisely the shortest path monomial.

Definition 3  Let G be a block graph. Define the ℝ-algebra homomorphism

This monomial homomorphism is called the initial term map.

The map � is the initial term map of �∗ , but with the sign (−1)�(i,j) omitted. We 
will use this to show that the set F forms a SAGBI basis of ℝ[F] by using this 
term order, as part of our proof of Theorem 1. This appears in Sect. 6. To do this 
we must spend some time proving properties of � and ker�.

Note that the kernel of � is the same with or without the signs (−1)�(i,j) . This is 
because the monomials that appear are graded by the number of diagonal terms that 
appear, which is also counted by the (−1)�(i,j) . Any binomial relation �u − �v ∈ ker� 
much also lead to the same power of negative one on both sides of the equation.

From the standpoint of proving results about this monomial map based on 
shortest paths in a block graph, it turns out to be easier to work with a related 
map that we call the shortest path map.

Definition 4  Let G = ([n],E) be a block graph. The shortest path map � is defined 
as

∏
(x�,y�)∈P

kx�y�
∏
t∉P

ktt

∏
(x�,y�)∈x↔y

kx�y�
∏
t∉x↔y

ktt

� ∶ ℝ[�] → ℝ[K], �ij ↦
∏

(i�,j�)∈i↔j

ki�j�
∏
t∉i↔j

ktt.

� ∶ ℝ[�] → ℝ[a1,… , an, k12,… , kn−1,n] = ℝ[A,K]

�(�ij) =

�
aiaj

∏
(i�,j�)∈i↔j ki�j� i ≠ j

a2
i

i = j.
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Example 6  Let G be the graph in Example 5. Let � be the shortest path map and � 
the initial monomial map as given in Definitions 3 and 4. So for example,

As is typical for monomial parametrizations, we can represent them by matrices 
whose columns are the exponent vectors of the monomials appearing in the para-
metrization. In this case, we get the following matrices corresponding to � and � , 
respectively.

The rows of M� are ordered as {k11, k22, k33, k44, k12, k13, k23, k34} and the rows of M� 
are ordered as {a1, a2, a3, a4, k12, k13, k23, k34}.

In fact, these two monomial maps have the same kernel for block graphs.

Proposition 4  Let G be a block graph and let � and � be the initial term map and 
the shortest path map, , respectively. Then ker(�) = ker(�).

Proof  Both ker(�) and ker(�) are toric ideals. To show that they have the same ker-
nel, it suffices to show that the associated matrices of exponent vectors have the same 
kernel, or equivalently, that they have the same row span. Let M� and M� denote 
those matrices. As �(�ij) = aiaj

∏
(i�,j�)∈i↔j ki�j� and �(�ij) =

∏
(i�,j�)∈i↔j ki�j�

∏
s∉i↔j kss , 

the rows corresponding to kij with i ≠ j remain the same in both the matrices. So, we 
only need to write the kii rows of M� as a linear combination of the rows of M� and 
vice versa.

The row vector corresponding to kii in M� is 1 at the �pq coordinates where 
i ∉ p ↔ q and is 0 elsewhere. Similarly, the row vector corresponding to ai in M� 

�(�11) = k22k33k44,�(�12) = k12k33k44,…

�(�11) = a2
1
,�(�12) = a1a2k12,… .

M� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 1 1 1 1 1

1 0 1 1 0 0 0 1 1 1

1 1 0 0 1 0 0 0 0 1

1 1 1 0 1 1 0 1 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0

0 0 0 1 0 0 1 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

M� =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 1 1 0 0 0 0 0 0

0 1 0 0 2 1 1 0 0 0

0 0 1 0 0 1 0 2 1 0

0 0 0 1 0 0 1 0 1 2

0 1 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0

0 0 0 1 0 0 1 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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is 2 at the �ii coordinate, 1 at the �pq coordinates where either of the end points is i 
(either p = i or q = i ) and 0 elsewhere.

We observe that the kii rows of M� can be written as a linear combination of the 
rows of M� using the following relation:

Here, we are using kii to denote the row vector of M� corresponding to the indeter-
minate kii , and similarly for aj and kis . We have

So,

As this relation is true for any i, the row space of M� is contained in the row space of 
M� . So, ker(𝜓) ⊆ ker(𝜙).

To get the reverse containment, we need to write the ai rows of M� as a linear 
combination of the rows of M� . From (3), we get

Writing these n equations in the matrix form, we get an n × n matrix in the left-hand 
side which has 0 in its diagonal entries and 1 elsewhere. As this matrix is invertible 
for any n > 1 , we can conclude that the row space of M� is contained in the row 
space of A. Hence, ker(�) = ker(�) . 	�  ◻

Our goal in the next two sections will be to characterize the vanishing ideal of 
the shortest path map for block graphs.

Definition 5  Let G be a block graph. Let SPG = ker(�) = ker(�) be the kernel of 
the shortest path map. This ideal is called the shortest path ideal.

As the shortest path map is a monomial map, we know that the shortest path 
ideal is a toric ideal. We will eventually show that SPG = CIG = PG , however 
we find it useful to have different notation for these ideals while we have not yet 
proven the equality.

(3)2kii =
∑
j≠i

aj −
∑

s∶i↔s is an edge

kis.

∑
j≠i

aj = paths ending at i + 2 (paths not ending at i) − i ↔ i,

∑
s∶i↔s is an edge

kis = paths ending at i + 2 (paths containing i but not ending at i) − i ↔ i.

∑
j≠i

aj −
∑

s∶i↔s is an edge

kis = 2 (paths not containing i) = 2kii.

∑
j≠i

aj = 2kii +
∑

s∶i↔s is an edge

kis.
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4 � Shortest path map for block graphs with 1 central vertex

In this section, we show that SPG = CIG in the case that G is a block graph with 
only one central vertex. This will be an important special case and tool for prov-
ing that SPG = CIG for all block graphs, which we do in Sect.  5. Our proof for 
graphs with only one central vertex depends on reducing the study of the ideal 
SPG in this case to related notions of edge rings in DeLoera et al. (1995) and Her-
zog et al. (2018).

Definition 6  If G is a block graph, a vertex c in G is called a central vertex if there 
exists a 1-clique partition (A, B, C) of G such that C = {c}.

Example 7  Let G be the block graph with 5 verti-
ces as in Fig.  5. There are three possible 1-clique partitions of G, 
({1, 2}, {4, 5}, {3}), ({1, 2, 4}, {5}, {3}) and ({1, 2, 5}, {4}, {3}) . We see that 3 is the 
only central vertex of G as C = {3} for all the three partitions. Now computing SPG 
for this graph, we get

We observe that in Example 7, none of the generators of SPG contain the terms 
�12, �11, �22, �44 and �55 . These terms correspond to the edges in G which cannot 
be separated by any 1-clique partition of G. This property is true for all block 
graphs with one central vertex as we prove it in the next Lemma.

Lemma 1  Let G be a block graph with one central vertex c and let D be the set of 
variables �pq , where the shortest path p ↔ q does not intersect c. Then, none of the 
variables appearing in D appear in any of the minimal generators of the kernel of �.

ker(�) = ⟨�34�35 − �33�45, �24�35 − �23�45, �14�35 − �13�45, �25�34 − �23�45,

�15�34 − �13�45, �25�33 − �23�35, �24�33 − �23�34, �15�33 − �13�35,

�14�33 − �13�34, �15�24 − �14�25, �15�23 − �13�25, �14�23 − �13�24⟩.

Fig. 5   A block graph with 
exactly one central vertex

2

3

5

41
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Proof  Since � is a monomial parametrization, the kernel of � is a homogeneous 
binomial ideal. Let

be an arbitrary binomial in any generating set for the kernel of SPG . In particular, 
this implies that �u and �v have no common factors. Suppose by way of contradic-
tion that �pq is some variable in D that divides one of the terms of f, say �u . Then, 
�(�u) would have kpq as a factor. But kpq appears only in the image of �pq as no other 
shortest path between any two vertices in G contains the edge (p, q). This would 
imply that �pq is also a factor of �v contradicting the fact that �u and �v have no com-
mon factors.

Similarly, if �pp is a factor of �u where p is not the central vertex, then �(�u) 
would have a2

p
 as a factor. In order to have a2

p
 as a factor of �(�v) , it would require 

two variables in �v to have p as one of their end points. As p is not a central vertex, 
we will have k2

cp
 as a factor of �(�v) . But then this means that there must be two 

variables in �u that touch vertex p. Which in turn forces another factor of a2
p
 to divide 

�(�u) . Which in turn forces another two variables in �v to touch vertex p, and so on. 
This process never terminates, showing that it is impossible that �pp is a factor of �u.

Hence, we can conclude that none of the variables in D appear in any of the gen-
erators of SPG . 	�  ◻

Note that the proof of Lemma 1 also applies to any block graph with multiple 
central vertices. Hence, we can eliminate some of the variables in the computation 
of the shortest path ideal.

We let ℝ[�⧵D] denote the polynomial ring with the variables D eliminated. Here, 
we are always taking D to the be set of variables corresponding to paths that do not 
touch the central vertex x. Lemma 1 shows that it suffices to consider the problem of 
finding a generating set of SPG inside of ℝ[�⧵D].

The next step in our analysis of SPG for block graphs with one central vertex will 
be to relate this ideal to a simplified parametrization which we can then relate to 
edge ideals.

Let G be a block graph with one central vertex. Consider the map

Proposition 5  Let G be a block graph with one central vertex. Then ker 𝜓̂ = ker𝜓.

Proof  Note that because we only consider �pq ∈ ℝ[�⧵D] then any time �(�pq) con-
tains kpc it will automatically contain ap as well, and vice versa. Hence, the apkpc 
always occurs as a factor together in �(�pq) . So we can eliminate the kpc from the 
parametrization without affecting the kernel of the homomorphism. 	�  ◻

In order to analyze SPG = ker 𝜓̂ = ker𝜓 , we find it useful to first extend the map 
to all of ℝ[�] , where the kernel is well understood. In particular, we associate an 
edge in the graph K◦

n
 to each variable in ℝ[�] , where K◦

n
 denotes the complete graph 

f = �u − �v

𝜓̂ ∶ ℝ[𝛴⧵D] → ℝ[a], 𝜎ij ↦ aiaj.
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Kn with a loop added to each vertex. We embed K◦

n
 in the plane so that the vertices 

are arranged to lie on a circle. We consider the map

and its kernel SPK◦

n
= ker 𝜓̂ . We describe a Gröbner basis for this ideal, based on the 

combinatorics of the embedding of the graph K◦

n
 . We consider a pair of edges 

(i, j), (k, l) to be intersecting if the two edges share a vertex or the edges intersect 
each other in the circular embedding of K◦

n
.

The circular distance between two vertices of Kn is defined as the length of the 
shorter path among the two paths present along the edges of the n-gon. We define 
the weight of the variable �ij as the number of edges of K◦

n
 that do not intersect the 

edge (i, j). Let ≺ denote any term order that refines the partial order on monomials 
specified by these weights. Now, for any pair of non-intersecting edges (i, j), (k, l) of 
K◦

n
 , one of the pairs (i, k), (j, l) or (i, l)(j, k) is intersecting. If (i, k), (j, l) is the inter-

secting pair, we associate the binomial �ij�kl − �ik�jl with the non-intersecting pair 
of edges (i, j), (k, l). We denote by S′ the set of all binomials obtained in this way.

Lemma 2  For any binomial �ij�kl − �ik�jl , where (i,  j),  (k,  l) are non-intersecting 
edges and (i, k), (j, l) intersect, the initial term with respect to ≺ corresponds to the 
non-intersecting edges in K◦

n
.

Proof  We divide the set of vertices in K◦

n
 into four different parts (excluding the 

vertices i,  j, k and l). Let P1 denote the set of vertices that are present in the path 
between i and j along the edges of the n-gon that do not contain k and l. Similarly, let 
P2,P3 and P4 denote the set of vertices between j and k, k and l and l and i, respec-
tively. Let the cardinality of each Pi be pi for i = 1, 2, 3, 4 . Then, the weight of the 
four variables are as follows:

This gives us

Hence, the initial term of �ij�kl − �ik�jl with respect to ≺ is �ij�kl . Further, if k = l 
then we have the binomial �ij�kk − �ik�jk where

𝜓̂ ∶ ℝ[𝛴] → ℝ[a], 𝜎ij = aiaj

w(�ij) =

4∑
i=1

(
pi

2

)
+ p2p3 + p2p4 + p3p4 + 2(p2 + p3 + p4) + 1 + (n − 2)

w(�kl) =

4∑
i=1

(
pi

2

)
+ p1p2 + p1p4 + p2p4 + 2(p1 + p2 + p4) + 1 + (n − 2)

w(�ik) =

4∑
i=1

(
pi

2

)
+ p1p2 + p3p4 + p1 + p2 + p3 + p4 + (n − 2)

w(�jl) =

4∑
i=1

(
pi

2

)
+ p1p4 + p2p3 + p1 + p2 + p3 + p4 + (n − 2).

w(𝜎ij) + w(𝜎kl) − (w(𝜎ik) + w(𝜎jl)) = 2p2p4 + 2(p2 + p4) + 2 > 0.



775

1 3

Gaussian graphical models with toric vanishing ideals﻿	

This gives us

So, the initial term of �ij�kk − �ik�jk with respect to ≺ is �ij�kk . 	� ◻

Lemma 3  Let S′ be the set of binomials obtained from all the pairs of non-intersect-
ing edges of K◦

n
 . Then S′ is the reduced Gröbner basis of SPK◦

n
 with respect to ≺.

Proof  By Lemma  2 we know that for any binomial �ij�kl − �il�jk ∈ S� , where 
(i, j), (k, l) are non-intersecting edges and (i, l), (j, k) intersect, the initial term with 
respect to ≺ corresponds to the non-intersecting edges in K◦

n
 . Clearly, 

�ij�kl − �il�jk ∈ SPK◦

n
.

The proof follows the basic outline as the proof of Theorem  9.1 in Sturmfels 
(1996). For any even closed walk � = (i1, i2,… , i2k−1, i2k, i1) in K◦

n
 we associate the 

binomial

which belongs to SPK◦

n
 . To prove that S′ is a Gröbner basis, it is enough to prove that 

the initial monomial of any binomial b� is divisible by some monomial �ij�kl which 
is the initial term of some binomial in S′ , where (i,  j) and (k,  l) are a pair of non-
intersecting edges. Let there exist a binomial b� = �u − �v ∈ SPK◦

n
 with in≺(b𝛤 ) = 𝜎u 

which contradicts the assertion. Then assuming that b� has minimal weight, we can 
say that each pair of edges appearing in �v intersects.

The edges of the walk are labeled as even or odd, where even edges look like 
(i2r, i2r+1) and the odd edges are of the form (i2r−1, i2r) . We pick an edge (s, t) of the 
walk �  which has the least circular distance between s and t. The edge (s, t) sepa-
rates the vertices of K◦

n
 except s and t into two disjoint sets P and Q where |P| ≥ |Q| . 

We start �  at (s, t) = (i1, i2) . From our assertion on b� we have that each pair of odd 
(resp. even) edges intersect. Also, it can be proved that if P contains an odd vertex 
i2r−1 , then it contains all the subsequent odd vertices i2r+1, i2r+3,… , i2k−1 . As the cir-
cular distance between s and t is the least, we need to have i3 to be in P. So, all the 
odd vertices except i1 lie in P and all the even vertices lie in Q ∪ {i1, i2} . This gives 

w(�kk) =

(
n − 1

2

)
+ n − 1 and

w(�jk) =

4∑
i=1

(
pi

2

)
+ p1p4 + p1p3 + p3p4 + 2(p1 + p3 + p4) + 1 + (n − 2).

w(𝜎ij) + w(𝜎kk) − (w(𝜎ik + w(𝜎jk)) =

4∑
i=2

pi

2
+ 2(p2p3 + p2p4)

+
3

2
(p2 + p3 + p4) + p2 + 4 > 0.

b� ∶=

k∏
l=1

�i2l−1,i2l −

k∏
l=1

�i2l,i2l+1



776	 P. Misra, S. Sullivant 

1 3

us that the two even edges (i2, i3) and (i2k, i1) do not intersect, which is a contradic-
tion. 	�  ◻

Our goal next is to use Lemma  3, to prove that SPG = CIG for block graphs 
with one central vertex. Recall that the set D consisted of all pairs �ij such that in 
the graph G i ↔ j does not touch the central vertex. As the �ij appearing in D do 
not appear in any generators of SPG , let us construct an associated subgraph of K◦

n
 

without those edges. Specifically, let G◦ be the graph obtained by removing the 
edges (i,  j) from K◦

n
 such that �ij ∈ D . Note that we choose an embedding of G◦ 

so that each maximal clique minus c forms a contiguous block on the circle. The 
placement of c can be anywhere that is between the maximal blocks.

Figure 6 illustrates the construction of the graph G◦ in an example.

Example 8  Let G be a block graph with 5 vertices in Fig. 6. There are 3 possible 
1-clique partitions of G, each of them having C = {3} . The edges in K◦

5
 which cannot 

be separated by any 1-clique partition of G are D = {(1, 2), (1, 1), (2, 2), (4, 4), (5, 5)} . 
So we remove them from K◦

5
 to get G◦.

Lemma 4  For any non-intersecting pair of edges (i,  j),  (k,  l) in G◦ , there exists a 
1-clique partition (A, B, C) of G such that i, l ∈ A ∪ C and j, k ∈ B ∪ C.

Proof  We first prove this for the non-intersecting edges (i, j), (k, l) with i, j, k, l ≠ c . 
Without loss of generality we can assume that i < j < k < l . We know that for each 
edge (i, j) in G◦ there exists a 1-clique partition (A, B, C) of G such that i ∈ A ∪ C 
and j ∈ B ∪ C . This implies that i and j (similarly k and l) lie in different maxi-
mal cliques of G. As the vertices of G◦ are labeled counter-clockwise, there are only 
three ways how the vertices i, j, k, l can be placed:

(i) i, l ∈ C1, j, k ∈ C2, (ii) i, l ∈ C1, j ∈ C2, k ∈ C3,

(iii) i ∈ C1, j ∈ C2, k ∈ C3, l ∈ C4,

3

1

2

4

5

G

3 4

2 5

1

K◦
5

4

2 5

1

G◦

3

Fig. 6   Construction of the graph G◦ . The dark lines in K◦

5
 correspond to the edges in G, whereas a dotted 

line between i and j tells us that there is no edge between i and j in G. The dotted line basically corre-
sponds to the shortest path between the two vertices in G. Note that the addition of extra edges gives us 
K

◦

5
 and the deletion of some edges gives us G◦
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where Ci are the different maximal cliques of G. In all the three cases i and k (simi-
larly j and l) are in different maximal cliques. Hence, there exists a 1-clique partition 
(A, B, C) such that i, l ∈ A ∪ C and k, j ∈ B ∪ C.

A similar argument can be given for the non-intersecting edges (i, c), (k,  l) and 
(c, c), (i, j). 	�  ◻

Lemma 5  Let S′ be the Gröbner basis for SPK◦

n
⊆ ℝ[𝛴] as defined in Lemma  3. 

Then, the set S� ∩ℝ[�⧵D] forms a Gröbner basis for SPG.

Proof  Let g = �u − �v be an arbitrary binomial in SPG = ker 𝜓̂ . This implies that 
the initial term of g is contained in ℝ[�⧵D] . Since S′ is a Gröbner basis for SPK◦

n
 

with respect to ≺ , there must exist some f ∈ S� such that in≺(f ) divides in≺(g) . This 
gives us that the initial term of f is contained in ℝ[�⧵D].

So it is enough to show that for every f ∈ S� whose leading term is in ℝ[�⧵D] is 
actually contained in ℝ[�⧵D] . Let

be a binomial in S′ whose leading term is contained in ℝ[�⧵D] . Let �ij�kl be the lead-
ing term. Then the edges (i, j), (k, l) are non-intersecting as the initial term of each 
binomial in S′ corresponds to the non-intersecting edges. So by Lemma 4, there must 
exist a 1-clique partition (A, B, C) of G which separates the edges (i, j) and (k, l), that 
is, i, l ∈ A ∪ C and j, k ∈ B ∪ C . This implies that (A, B, C) also separates the edges 
(i, k) and (j, l). Hence, we can say that �ik, �jl ∉ D and �ij�kl − �ik�jl ∈ ℝ[�⧵D] . 	� ◻

Now that we have all the required results, we prove the main result of this section.

Theorem  3  Let G be a block graph with n vertices having only one central ver-
tex. Then, the set of all 2 × 2 minors of �A∪C,B∪C for all possible 1-clique partitions 
(A, B, C) of G form a Gröbner basis for SPG . In particular, SPG = CIG.

Proof  We rearrange the graph by placing the vertices in K◦

n
 such that there is no 

intersection among the edges of G in A ∪ C and B ∪ C for any 1-clique partition 
(A, B, C) (with C = {c} ). We complete the graph by drawing the remaining edges 
with dotted lines.

The complete graph K◦

n
 gives us a partial term order on ℝ[�] by defining the 

weight of the variable �ij as the number of edges of K◦

n
 which do not intersect the 

edge (i, j). Let ≺ denote the term order that refines the partial order on monomials 
specified by the weights. Let S be the set of all 2 × 2 minors of �A∪C,B∪C for all pos-
sible 1-clique partitions of G. Any binomial in S has one of the three forms: 

	 (i)	 �ij�kl − �ik�jl with i, l ∈ A ∪ C and j, k ∈ B ∪ C

	 (ii)	 �ij�kl − �il�jk with i, k ∈ A ∪ C and j, l ∈ B ∪ C

	 (iii)	 �il�jk − �ik�jl with i, j ∈ A ∪ C and k, l ∈ B ∪ C.

f = �ij�kl − �ik�jl
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Here, (i, j), (k, l) and (i, l), (j, k) are the non-intersecting pairs of edges and (i, k)(j, l) 
is the intersecting pair in G◦ . So any binomial in S of the form (i) or (iii) is contained 
in S′ . If the binomial �ij�kl − �il�jk (of form (ii)) is in S, then by Lemma 4 we know 
that the binomials �ij�kl − �ik�jl and �il�jk − �ik�jl are also in S. As

we can conclude that S and S ∩ S� generate the same ideal. Furthermore, the set 
S ∩ S� has the same initial terms as S� ∩ℝ[�⧵D] so this guarantees that S is a Gröb-
ner basis for SPG as well. 	�  ◻

5 � The shortest path ideal for an arbitrary block graph

To generalize the statement in Theorem 3 for any arbitrary block graph, we further 
exploit the toric structure of the ideal SPG . As SPG is the kernel of a monomial map, 
it is a toric ideal, a prime ideal generated by binomials. Finding a generating set of 
SPG is equivalent to finding a set of binomials that make some associated graphs 
connected. We use this perspective to prove that SPG = CIG.

From the shortest path map � , we can obtain the matrix M� as shown in Exam-
ple 6. So SPG = ker(�) is the toric ideal of the matrix M� as

where � = (�11, �12,… , �nn) and t = (a1, a2,… , an, k12,… , kn−1n).
Let G = ([n],E) be a block graph. For any vector b ∈ ℕ

(n+|E|) , the fiber of M� 
over b is defined as

As the columns of M� are nonzero and nonnegative, M−1
�
(b) is always finite for any 

b ∈ ℕ
(n+|E|) . Let F  be any finite subset of ker

ℤ
(M� ) . The fiber graph M−1

�
(b)F  is 

defined as follows: 

	 (i)	 The nodes of this graph are the elements of M−1
�
(b).

	 (ii)	 Two nodes u and u′ are connected by an edge if u − u� ∈ F  or u� − u ∈ F .

The fundamental theorem of Markov bases connects the generating sets of toric ide-
als to connectivity properties of the fiber graphs. We state this explicitly in the case 
of the fiber graphs for the shortest path maps.

Theorem 4  (Thm 5.3, Sturmfels 1996) Let F ⊂ ker
ℤ
(M𝜓 ) . The graphs M−1

�
(b)F are con-

nected for all b ∈ ℕM� = {�1M�1 +⋯ + �
n+|E|M�n+|E| ∶ �

i
∈ ℕ,M� i

are columns ofM�} if 
and only if the set {�v+ − �v− ∶ v ∈ F} generates the toric ideal SPG.

�ij�kl − �il�jk = �ij�kl − �ik�jl − (�il�jk − �ik�jl),

�(�u) = tM�u,

M−1
�
(b) = {u ∈ ℕ

(n2+n)∕2 ∶ M�u = b}.
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As we proved in Theorem 3 that the set of all 2 × 2 minors of �A∪C,B∪C for all 
possible 1-clique partitions of G form a Gröbner basis for ker(�) for all block graphs 
with one central vertex, by using Theorem 4 we can say that the graph M−1

�
(b)F  is 

connected for all b ∈ ℕM� . Here, F  is the set of all 2 × 2 minors of �A∪C,B∪C in the 
vector form, for all possible 1-clique partitions of G.

So, to generalize the result in Theorem 3 for all block graphs, we need to show 
that M−1

�
(b)F  is connected for any b ∈ ℕM� . For a fixed b, let u, v ∈ M−1

�
(b)F  . This 

implies that both M�u and M�v are equal to b, which gives us �(�u − �v) = 0 . 
Therefore, it is enough to show that for any f = �u − �v ∈ SPG , �u and �v are con-
nected by the moves in F .

Let G be a block graph with n vertices. Let u ∈ ℕ
(n2+n)∕2 which is a node in the 

graph of M−1
�
(b)F  . We represent this u, or equivalently �u , as a graph in the follow-

ing way: For each factor �ij of �u we draw the shortest path i ↔ j along G with end 
points at i and j. For each �ii we draw a loop at the vertex i. Let degi(�u) denote the 
degree of a vertex i in �u which is defined to be the number of end points of paths in 
�u . We count the loops corresponding to �ii as having two endpoints at i.

If f = �u − �v is a homogeneous binomial in SPG , then �(�u) = �(�v) if and 
only if the following conditions are satisfied: 

	 (i)	 The graphs of �u and �v both have the same number of paths (as f is homogene-
ous),

	 (ii)	 The graphs of �u and �v have the same number of edges between any two 
adjacent vertices i and j (as the exponent of kij in �(�u) gives the number of 
edges between i and j in the graph of �u),

	 (iii)	 The degree of any vertex in both the graphs is the same (as the exponent of ai 
in �(�u) gives us the degree of the vertex i in the graph of �u).

Next we show how to use the results from Sect. 4 to make moves that bring �u and 
�v closer together. This approach works by localizing the computations at each cen-
tral vertex in the graph.

Let c be a central vertex in G. We define a map �c between the set of vertices as 
follows:

Let Gc be the graph obtained by applying �c to the vertices of G. Note that G can 
have multiple vertices mapped to a single vertex in Gc . The map �c can also be seen 
as a map between ℝ[�] to itself by the rule �c(�ij) = ��c(i)�c(j).

For a vector u ∈ ℕ
n(n+1)∕2 and c a central vertex let uc be the vector that extracts 

all the coordinates that correspond to shortest paths that touch c. That is,

�c(i) =

⎧
⎪⎨⎪⎩

c i = c

i i is adjacent to c

i� i� is adjacent to c and lies in i ↔ c.

uc(ij) =

{
u(ij) c ∈ i ↔ j

0 otherwise.
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Proposition 6  Suppose that �u − �v ∈ SPG and let c be a central vertex of G. Then 
�Gc

(�c(�
uc)) − �Gc

(�c(�
vc)) = 0.

Note that we use the notation �Gc
 to denote that we use the � map associated to 

the graph Gc . However, the map � associated to G can be used since that will give 
the same result.

Proof  We have

We know that �u and �v have the same number of paths. Also, the degree of each 
vertex and the number of edges between any two adjacent vertices is the same. So, 
it is enough to show that �c(�uc) and �c(�vc ) have the same number of paths and the 
degree of each vertex, number of edges between any two adjacent vertices is also the 
same.

The number of paths in �uc and �c(�uc) are the same as �c maps monomials of degree 
1 to monomials of degree 1.

For any vertex s which adjacent to c, the degree of s in �c(�uc) is

Now, for any two vertices i′ and j′ adjacent to c, the number of edges i′ ↔ j′ in 
�c(�

uc) is 0 as every path in �c(�uc) contains c. The number of edges i′ ↔ c in �c(�uc) 
is equal to the number of edges i′ ↔ c in �u , which is equal to the number of edges 
i′ ↔ c in �v.

Hence, we can conclude that �Gc
(�c(�

uc)) − �Gc
(�c(�

vc)) = 0. 	�  ◻

�c(�ij) =

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�ij i, j are adjacent to c

�ic i is adjacent to c, j = c

�cj j is adjacent to c, i = c

�i�c i� is adjacent to c and i� ∈ i ↔ c, j = c

�cj� j� is adjacent to c and j� ∈ j ↔ c, i = c

�ij� i, j� are adjacent to c and j� ∈ c ↔ j

�i�j i�, j are adjacent to c and i� ∈ i ↔ c

�i�j� i
�, j� are adjacent to c and i� ∈ i ↔ c, j� ∈ j ↔ c

�i�i� i
� is adjacent to c and i� ∈ i ↔ c and j ↔ c.

Number of paths in �uc = number of paths in �u ending at c

+ number of paths containing c but not ending at c

= degree of ac in �(�u) + 1∕2( number of variables of

the form kic in �(�u) − degree of ac in �(�u))

= number of paths in �vc

degs(�c(�
uc)) = number of edges s ↔ c in �u

= number of edges s ↔ c in �v

= degs(�c(�
vc)).
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By Theorem 4 we know that we can reach from �c(�uc) to �c(�vc ) by making a 
finite set of moves from the set of 2 × 2 minors of �A∪C,B∪C , for all possible 1-clique 
partitions of Gc . But from the map �c we have that for each move �i�j��k�l� − �i�l��k�j� 
in Gc there exists a corresponding move �ij�kl − �il�kj in G, where i′ ↔ j′ ⊆ i ↔ j 
and k′ ↔ l′ ⊆ k ↔ l . In fact, there are many such corresponding moves correspond-
ing to all the ways to pull back �c.

Definition 7  Let G be a block graph and let c be a central vertex. We call two 
monomials �u and �v in the same fiber to be similar at a vertex c  if the subgraph 
over c and its adjacent vertices is the same for both the monomials.

For a given block graph G and a central vertex c, let Sc denote the set of all 2 × 2 
minors of all matrices �A∪C,B∪C where (A,  B,  C) is a separation condition that is 
valid for G with C = {c}.

Proposition 7  If a sequence of moves in Gc take �c(�uc) to �c(�vc ) , then there exist a 
corresponding sequence of moves in Sc which takes �u to a monomial which is simi-
lar to �v at c.

Proof  We know that �c(�uc) and �u are similar at c by construction. So, it is enough 
to show that if m is a move in Gc and m′ is the corresponding move in G, then m 
applied to �c(�uc) and m′ applied to �u are similar at c. Let m = �i�j��k�l� − �i�l��k�j� 
be a move in Gc acting on the paths �i′j′ , �k′l′ in �c(�uc) . Let m� = �ij�kl − �il�kj be 
its corresponding move in Sc acting on the paths �ij, �kl in �u . As i′ ↔ j′ ⊆ i ↔ j , 
k′ ↔ l′ ⊆ k ↔ l and c ∈ i� ↔ j� and k′ ↔ l′ , m and m′ make the same changes at c in 
both the graphs. So, we can conclude that m applied to �c(�uc) and m′ applied to �u 
are similar at c. 	�  ◻

Once we have the set of moves which takes �u to a monomial which is similar 
to �v at c, we can apply the same procedure at the other central vertices as well. To 
show that this ends up producing two monomials that are similar at every central 
vertex it is necessary to check that the moves obtained for a different central vertex 
c′ do not affect the structure previously obtained at c.

Proposition 8  Let m = �ij�kl − �il�kj be a move obtained from a partition with 
C = {c} . Let V be the set of vertices in G. Then �u and m applied to �u are similar at 
V⧵c.

Proof  If s is any vertex which is not in i ↔ j or k ↔ l , then �u and m applied to �u 
remain similar at s as the move does not make any change at s. If s ≠ c is a vertex in 
i ↔ j , we then consider 2 cases:

Case 1: s ∈ i ↔ j and s ∉ k ↔ l

Let s ∈ i ↔ c . As m converts i ↔ c ↔ j to i ↔ c ↔ l , i ↔ c is contained in i ↔ l . 
This implies that s and all the vertices in i ↔ j adjacent to s are also present in i ↔ l . 
A similar argument applies for s ∈ c ↔ j.
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Case 2: s ∈ i ↔ j and s ∈ k ↔ l

Let s ∈ i ↔ c and s ∈ k ↔ c . As m converts i ↔ c ↔ j to i ↔ c ↔ l and 
k ↔ c ↔ l to k ↔ c ↔ j , i ↔ c is contained in i ↔ l and k ↔ c is contained in k ↔ j . 
So s and all the vertices in i ↔ j ( k ↔ l ) adjacent to s are present in i ↔ l ( k ↔ j ). A 
similar argument applies for s ∈ c ↔ j, c ↔ l.

In both the cases, m preserves the structure of �u around the vertex s. Hence, �u 
and m applied to �u are similar at all the vertices in V⧵c . 	�  ◻

Note an important key feature that follows from the proof of Proposition 8: If m 
can be obtained from two partitions (A1,B1,C1) and (A2,B2,C2) with different cen-
tral vertices, then �u and m applied to �u are similar at the central vertices as well.

We now give a proof for the generalized version of Theorem 3.

Theorem 5  Let G be a block graph. Then, the shortest path ideal SPG is generated 
by the set of all 2 × 2 minors of �A∪C,B∪C , for all possible 1-clique partitions of G, 
i.e., SPG = CIG.

Proof  Suppose that c1,… , ck are the central vertices of G. Let S1,… Sk be the corre-
sponding quadratic moves associated to each central vertex. Let f = �u − �v ∈ SPG . 
By applying Propositions 7 and 8 together with Theorem 3, we can assume that �u 
and �v are similar at every vertex after applying moves from S1,… , Sk.

We can assume that �u and �v have no variables in common, otherwise we could 
delete this variable from both monomials and do an induction on dimension. So con-
sider an arbitrary path i ↔ j in �u which is not present in �v . We select the path in �v 
which has the highest number of common edges with i ↔ j . Let that path be i′ ↔ j′ 
and let s ↔ t be the common path in both the paths. Let s1 and t1 be the vertices adja-
cent to s and t, respectively, in i ↔ j . Similarly, let s′ and t′ be the vertices adjacent to 
s and t, respectively, in i′ ↔ j′ . Let p be the vertex in s ↔ t adjacent to t (see Fig. 7 
for an illustration of the idea).

If we apply the map �t on both the monomials, we get that there exists a path 
p ↔ t1 in �t(�u) which is not in �t(�v) . But as �u and �v are similar at t, there must 
exist a path x ↔ y in �v containing p ↔ t1 . So, the move m = �i�j��xy − �i�y�xj� is a 
valid move as none of the vertices in i′ ↔ p can be adjacent to any vertex in t1 ↔ y 
(as it would form a closed circuit implying that i′ ↔ t is not the shortest path). Simi-
larly, none of the vertices in x ↔ p can be adjacent to any vertex in t′ ↔ j′ . Further, 

i s s p t t j

σv

x

t1

y

i s1 s p t t1 j

σu

Fig. 7   Graphical illustration for the proof of Theorem 5
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this move can be obtained from two different partitions with central vertices p and t, 
respectively. So, by Proposition 8 and the comment after its proof, we know that the 
move �i�j��xy − �i�y�xj� preserves the similarity of all the vertices.

Applying m on �v increases the length of the common path between i ↔ j and 
i′ ↔ j′ by at least 1, while keeping the monomials �u and m applied to �v similar at 
all the vertices. Repeating this process again, we can continue to shorten the length 
of the disagreement until the resulting monomials have a common monomial, in 
which case induction implies that we can use moves to connect these smaller degree 
monomials.

This implies that the set of binomials S1 ∪⋯ ∪ Sk generates SPG and hence 
CIG = SPG . 	�  ◻

6 � Initial term map and SAGBI bases

In this section, we put all our previous results on shortest path maps together to 
prove Theorem  1. We also show that the set of polynomials {fij ∶ 1 ≤ i ≤ j ≤ n} 
obtained from the inverse of K are a SAGBI basis for the ℝ-algebra they generate in 
the case of block graphs.

Proof of  Theorem  1  We have already seen that SPG = CIG ⊆ PG . We just need to 
show that SPG = PG to complete the proof. Note that both SPG and PG are prime ide-
als so it suffices to show that they have the same dimension.

In both SPG and PG an upper bound on the dimension is equal to the number 
of vertices plus the number of edges in the graph. This follows because that is the 
number of free parameters in both parametrizations. In the case of PG this upper 
bound is tight, because the map that sends � ↦ �−1 is the inverse map that recovers 
the entries of K. Since SPG ⊆ PG we have the dim SPG ≥ dimPG . Hence, they must 
have the same dimension. 	� ◻

Finally, we can show the SAGBI basis property for the polynomials 
{fij ∶ 1 ≤ i ≤ j ≤ n} . Recall the definition of a SAGBI basis (which stands for Sub-
algebra Analogue of Gröbner Basis for Ideals). See Chapter 11 of Sturmfels (1996) 
for more details.

Definition 8  Let R be a finitely generated subalgebra of the polynomial ring ℝ[K] . 
Let ≺ be a term order on ℝ[K] . The initial algebra in≺(R) is defined as the ℝ-vec-
tor space spanned by {in≺(f ) ∶ f ∈ R} . A finite set of polynomials F ⊆ R is called a 
SAGBI basis for R if 

	 (i)	 R = ℝ[F] , and
	 (ii)	 in≺(R) = ℝ[{in≺(f ) ∶ f ∈ F}].
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Let G be a block graph and let F = {fij ∶ 1 ≤ i ≤ j ≤ n} be the polynomials 
appearing as the numerators in K−1 . To prove this, we will use some key result on 
SAGBI bases. Note that if ≺ is a term order on ℝ[K] induced by a weight vector � , 
then this induces a partial term order on ℝ[�] by declaring that the weight of the 
variable �ij is the weight of the largest monomial appearing in fij . Denote by �∗ this 
induced weight order on ℝ[�].

Both the algebras ℝ[F] and ℝ[{in≺(f ) ∶ f ∈ F}] have presentation ideals in ℝ[�] . 
In the first case, this presentation ideal is exactly PG , the vanishing ideal of the 
Gaussian graphical model. That is, ℝ[F] = ℝ[�]∕PG . In the second case, this pres-
entation is exactly SPG , the shortest path ideal, since that is the ideal of relations 
among the shortest path monomials. That is, ℝ[{in≺(f ) ∶ f ∈ F}] = ℝ[𝛴]∕SPG.

A fundamental theorem on SAGBI bases applied in the specific case of these ide-
als says the following.

Theorem 6  (Thm 11.4, Sturmfels 1996) The set F ⊆ ℝ[K] is a SAGBI basis if and 
only if in�∗ (PG) = SPG.

Corollary 1  Let G be a block graph. Then, the set F ⊆ ℝ[K] is a SAGBI basis of 
ℝ[F].

Proof  We have already shown that SPG = PG . By construction, every one of the 
binomials in SPG is homogeneous with respect to the weighting �∗ . Indeed, this 
weighting is exactly the weighting that counts the multiplicity of each edge of �u and 
the degi(�u) as used in Sect. 5. But then in�∗ (PG) = in�∗ (SPG) = SPG as desired. By 
Theorem 6, this shows that F is a SAGBI basis. 	�  ◻
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