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Abstract

The accuracy of response variables is crucially important to train regression models.
In some situations, including the high-dimensional case, response observations tend
to be inaccurate, which would lead to biased estimators by directly fitting a con-
ventional model. For analyzing data with anomalous responses in the high-dimen-
sional case, in this work, we adopt y-divergence to conduct variable selection and
estimation methods. The proposed method possesses good robustness to anomalous
responses, and the proportion of abnormal data does not need to be modeled. It is
implemented by an efficient coordinate descent algorithm. In the setting where the
dimensionality p can grow exponentially fast with the sample size n, we rigorously
establish variable selection consistency and estimation bounds. Numerical simula-
tions and an application on real data are presented to demonstrate the performance
of the proposed method.
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1 Introduction

In the regression model, the prediction rule is to be derived from labeled data-
set. Traditional regression models assume and expect the correct response vari-
ables; however, it is expensive and difficult to obtain accurate responses because
of insufficient information, subjective judgment, measurement error and so on,
which would lead to biased estimators by directly fitting conventional methods
(Piepel 2005).

Anomalous responses would be encountered in the fields of Internet, finance,
image processing, biology and so on. For instance, the real data studied in our paper
contains mislabeled responses owing to the measurement error of the expression of
receptor genes (Lopes et al. 2018). Traditional regression models are not applicable
to this kind of data. It is noteworthy that “mislabeled data” in discrete variables like
that is an important special case of anomalous responses, which is also called “label
noise” (Rebbapragada and Brodley 2007; Frénay and Verleysen 2013) or “misclas-
sification” (Copeland et al. 1977; Grace 2017) in classification problems and “count
error” (Cameron and Trivedi 2013) in count data.

Samples with anomalous responses can be considered as outliers. The exist-
ing approaches for high-dimensional data can be broadly classified into one of two
types. The first type is to filter out outliers. For example, Aggarwal and Yu (2001)
developed a distance-based outlier detection method; She and Owen (2011) pro-
posed the individual intercept model to identify outliers for the linear model; Zimek
et al. (2012) considered using the clusters to detect mislabeling outliers. However,
there might be information loss caused by removing some samples when using this
type of method. The second type is to reduce weights on samples with anomalous
responses, which might be more applicable to the parameter estimation. Take logis-
tic regression for binary classification as an example. Weight functions have differ-
ent forms according to certain assumptions on mislabel probabilities, for instance,
the mislabel probability regarded as an equal constant (Copas 1988), related to
covariates (Hayashi 2012), asymmetric (Komori et al. 2016) and so on. But these
methods might not be applicable when the data do not follow corresponding
assumptions of mislabel probabilities. Hung et al. (2018) proposed y-logistic regres-
sion. Mislabel probabilities do not need to be modeled using y-logistic regression
because the bias from contamination distribution and contamination proportion can
be ignored, which benefits from the robustness of y-divergence. However, they only
focus on binary data without considering “count error” or other types of anoma-
lous responses. In addition, it is not applicable to “large p, small n” data. Besides,
Kawashima and Fujisawa (2017) proposed the robust and sparse regression via y
-divergence and presented the robust properties from two viewpoints of latent bias
and Pythagorean relation. However, their method cannot deal with high-dimensional
data with discrete responses, and they did not theoretically study the consistency of
estimation and variable selection. To address these challenges, in this article, we
consider a penalized generalized linear model based on y-divergence.

In summary, our contributions are the following. On one hand, we are the first
to adopt y-divergence on high-dimensional generalized linear model to deal with
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multiple types of anomalous responses, which includes mislabeled data as a spe-
cial case, and contamination proportion need not be modeled. Numerical simula-
tion and real data analysis are presented to demonstrate the good performance of
the proposed method. On the other hand, asymptotic properties of y-divergence
in the high-dimensional case are studied. We rigorously establish variable selec-
tion consistency and estimation bounds under the setting where the dimensional-
ity p can grow exponentially fast with the sample size n. It is not easy to establish
high-dimensional asymptotic properties due to the complexity of y-divergence.

2 Methodology
2.1 The robust penalized y-divergence estimation

The y-divergence approach is firstly introduced in Roberts and Stramer (2001) for
the robust estimation of a single distribution parameter. It is extended to the robust
regression method with low-dimensional data later (Hung et al. 2018; Fujisawa and
Eguchi 2008). It has been shown that the y-divergence method has multiple statisti-
cal and numerical advantages over the nonrobust and robust alternatives.

Let f; be the model distribution under the p-dimensional parameter B and g be
the data generating distribution. For these two density functions, the y-divergence is

defined as
__ 1 s\
Do) = 755 1>{”“"”y+1 -/ <uf,,||y+1> g}’y >0 M

The parameter y balances efficiency and robustness, with a smaller y corresponding
to more efficient but less robust estimation. In the limiting case, D, (g, fﬂ) is a ver-
sion of the Kullback—Leibler divergence as y — 0.

Remark 1 1f data is contaminated, g = ¢f. + (1 — c)h = g, with contamination dis-
tribution £, contamination proportion 1 — ¢ with 0.5 < ¢ < 1 and the true model
parameter f*. The estimated parameter is obtained by minimizing y-divergence
D,(g..fp), which is equivalent to mlnlmlzlng eD,(fg:.fg) — Fg(c, h, B, y) with

Fye,h,p)=v Ty +Dla - c)f v, ”, h. Suppose that ffﬁ,h is sufficiently

small for an appropriately large y > 0, Wthh implies that the contamination density
h mostly lies on the tail of the underlying density fg.. Then, for some y, the bias
Fg(c, h, B, v) is negligibly small when B in a neighborhood of g*. Namely, the esti-
mation of B is less affected by 1 — ¢ and 4. More detailed discussions about this
property of y-divergence could be referred to Fujisawa and Eguchi (2008).

Consider n independent samples {(xi,yi),i =1,...,n}, where x; is the random
covariate vector with the dimension p and y; is the response for ith sample. Ignoring
terms independent of the unknown parameter, the empirical version of the y-diver-
gence loss function is
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n . 14
f(ﬂ)=—lz f(vilx::B)

n & (/f(ylx,-;ﬂ)”ydy)ml”)’

where f(y;|x;;p) is the conditional probability density function of y; given x; with the
unknown parameter vector . To deal with multiple types of responses, we consider
generalized linear model (GLM), in which

f(yilxi;ﬁ) = C(yi> exXp {)M_Tf)(el) }’

where 0, = p7x;, and b(9) is twice continuously differentiable with b”(9) always
positive. In this paper, we are interested in sparsity estimation of the regression coef-
ficients f, and assume that the dispersion parameter ¢ is known. If unknown, we can
estimate it by solving the estimation equation using the biselection method (Zang
et al. 2017) or linear search methods (Ghosh and Basu 2016).

For analyzing high-dimensional data, we propose the following robust penal-
ized y-divergence loss function

@

P
QB =¢B)+ ). p, (B, 3)
J=1

where £(B) is defined in (2), p; is the jth component of f and p, is a concave penalty
function such as SCAD with first-order derivative
P = AT < A)+ %m > )}, for a>2,¢>0 (Fan and Li 2001) or MCP
with first-order derivative p;(t) = A1 - Ki) 4+ for a>1,t> 0 (Zhang 2010). The
objective function Q(B) consists of the robust loss function dealing with outliers and
a concave penalty on f. The characteristics of the robust loss function are consid-

ered in Remark 2 as follows.

Remark 2 For logistic regression, the loss function £(f) = —ﬁ Z?zl o, (B) , where
exp [i(r+1B"x,) )” ()

1+ exp {(y+1)87x;}

regression without modeling mislabel probabilities. From the estimation equation
n exp (ﬂTxi)

Zi:l wy*i(ﬂ) [y’ - 1+ exp (ﬂTx,-)T

w, ;(B) could be small with non-matched (y;, B’x,). See Hung et al. (2018) for further

discussions.

the weight function w, ;(f) = ( , which is so-called y-logistic

x; = 0, the robustness of y-logistic regression is clear:

It is remarkable that y-divergence used in Hung et al. (2018) is focused on ana-
lyzing binary data in the low-dimensional case. More generally, GLM combining
y-divergence considered in this article can deal with more types of response vari-
ables. y-logistic regression is a special case of the proposed analysis framework.
Although the y-divergence has been previously adopted in regression analysis, to
our best knowledge, this study is the first to adopt y-divergence to deal with high-
dimensional data with multiple types of responses.
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2.2 Statistical properties

In this section, we establish the statistical properties of penalized y-divergence estima-
tion. Write the true coefficient as * and the important predictor index set is labeled as S.
ISI is the cardinality of set S. Let B and B represent the components of f* indexed by S

and its complement, respectively. Denote X; = (x;;, ... ,x,;)’ and X, = (x5, ..., X,»)"

are the submatrices of the design matrix X’ formed by columns in S and its comple-
. ~oracle ~oracle” ~oracle ~oracle PN

ment. Define the oracle estimator as f = {B, B, }, with ﬂ] = f, and

~oracle

B, =0, where
. f(vilxaB))’ }
B, = argmln , 4
{ ; (f fO g8 1+rdy) @

B, € RISl We have V,/(p) = % Y, Li(B)x; and V4I,(B) = H(B)x;, where V repre-
sents the gradient to g, I; and H, are defined by (7) and (9) in “Appendix”, respec-
tively. Write H(f) = diag{H,(p), ..., H,(p)}. Take

:I>—‘

Po = O-max{n_lE(X{XI)}’ PL= O-min{n_lE(X{H(ﬂ*)Xl)}s
= |[EQTHBHXDIEXTHBHX D] s
min -} and o, {+} denote the smallest and largest eigenvalues of the matrix,

respectively, and || - ||, denotes the maximum absolute row sum of the matrix.
To establish statistical properties, the following conditions are needed.

where o

Condition 1. A~'p,(¢) is concave in ¢ € [0, co) with a continuous derivative 47! p; 6
satisfying A~'p/,(0+) € (0, c0). A7'p/, (1) is increasing in 4 € (0, 00) and A~'p/,(0+)
is independent of A.

Condition 2. o = inf{¢/A : A7!p,(¢) = 0,¢ > 0} is bounded.

Condition 3. X is a bounded matrix almost surely and the bound is k.

Condition 1 is considered by Fan and Lv (2011); the SCAD and MCP penalties both
satisfy this condition. And these two penalties satisfy Condition 2, which can guarantee
unbiasedness, with ¢ = a. Condition 3 is assumed to simplify the proof, where k is a
bounded constant related to estimation and probability bounds. The high-dimensional
asymptotic properties are as below and the proof is placed in “Appendix”.

Theorem 1 Let Condition 1-3 hold.

1. Forany € < y/n/|S|, we have
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N . |S| 2
Pr{||B, = Bill, < VIS|/ne} > 1 — exp <_¢ 2)

512pM2°

2 2

npy Py
_o|SP? L) o __ ),
151 eXp< 2|S|2M2K2> 151 eXp( 2|S|2,<2>

where M is a sufficient large bounded constant.
2. Suppose2ai < misnlﬁfj| and g = o(\/nl/|S|). Then with probability at least
€

IS1p} np? npy
- S 2 ) _oggsp T ) g8 o
exP( S12pM2° IS exp | =3 51 ISP exp | =351

n?p*C? n3p? 2
2 1 2 1 ni
2|S|” exp < SRE 2|S|” exp RE —2p - exp (——2 20 1)2>,

fore is a local minimizer of (3).

The variable selection consistency and estimation bounds are described in Theo-
rem 1. Furthermore, a more straightforward corollary, contributing to understanding
of the penalized y-divergence estimation, could be obtained using the above prob-
ability bounds.

Corollary 1 Suppose that p, and p, are bounded away from zero and infinity,

|S| < n, log(p) = O(n®) with a < 1, and C = O(n™) with a, € [0, 1/2). Under Con-

dition 1-3, if 2al < mi§1|ﬂfj and A > n‘“=V/2* then the true sparsity structure can
Jje

be identified and ||B, — B|l, = 0,(/ISI/n).

Corollary 1 shows that the penalized y-divergence estimator could achieve the
consistency rate of O,(1/|S|/n), which is same as that of the penalized maximum
likelihood estimator (see Fan and Lv 2011 and others for reference). For properties
of the y-divergence estimator, previous studies only focus on the low-dimensional
case, such as asymptotic normality based on M-estimation theory (Hung et al. 2018;
Fujisawa and Eguchi 2008). In this paper, we establish variable selection consist-
ency and estimation bounds based on y-divergence in the high-dimensional case.
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2.3 Computation

When we minimize objective function (3), the coordinate descend algorithm can be
adopted. Let V; represent the derivative to f;. A simple calculation shows that

[ KB Olx;:8) 7 dy
Xi-
[ fOlx:B) 1+ dy /

fGilx;:B) Yi—H, e 1
where w,, ; ﬂ = —t N K. -;ﬂ =——>"_ _and U, = E(y;) is linked to
}’J( ) (ff(}'|x,’§ﬂ)l+rdy) H/-V l(yl ) Var (y,-)q’([l,-) ! (yl) A

0, through the canonical link function g(-) in GLM. The overall algorithm is
described in Algorithm 1. As two special cases, the expressions of the gradient (5)
for logistic regression and Poisson regression are given by (28) and (29) in “Appen-
dix B2”.

We adopt the MCP penalty with first-order derivative p;(t) = A1 - ﬁ) 4 for
a>1and t > 0, which contains the tuning parameter A and the regularization
parameter a. Following Zhang (2010), we set a = 3. The robust parameter y
can balance robustness and estimation efficiency; however, there is no consist-
ent methods for selecting y. Bayes Information Criterion (BIC)-type criteria are
able to identify the true model consistently (Wang et al. 2007; Wu and Wang
2020). This motivated us to select the optimal (4,y) by minimizing the following
adjusted Bayes Information Criterion

VB ==L 3 0,8 | Kih) - )
i=1

v(4, y)log(n)

BIC,, = £(B) + —

where Z(B) is defined in (2), v(4, y) is the number of nonzero coefficients and 6 > 1
is an adjustment coefficient. It is of interest to note that the variation in £(f) is not
large under different numbers of nonzero coefficients due to the robustness of y
-divergence. As a result, original BIC would provide too much penalty for variables
in the y-divergence method. Thus, 6 in adjusted Bayes Information Criterion should
result in a weaker penalty. We set 6 = 8 in all numerical studies, which leads to sat-
isfactory performance. As the sensitivity analysis, some simulation results under
various choices of 6 are shown in Table S3 (Supplementary Materials). Overall, the
proposed approach is not much sensitive to the choice of 6 when it is in a sensible
range.
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The proposed algorithm is computationally affordable. For instance, the anal-
ysis of one simulated dataset with n = 400, p = 1000 takes less than 10 min on a
regular PC. The convergence is achieved in our numerical studies and real data
analysis within 30 overall iterations.

3 Simulation studies

In this section, we consider two cases: logistic regression for binary data and Pois-
son regression for count data. In each case, nonrobust and robust alternatives are
compared and two oracle estimators are considered. y-divergence is used based on
known true important variables in the first estimator (Oraclel). In the second esti-
mator (Oracle2), the true label and true important variables are both known and the
conventional regression method is used. All simulations are based on 100 repetitions
and conducted using MATLAB codes.

We denote S = {j : f; # 0} as the set of predictor variables that contributes to
the model, § = {j j: ﬂ # 0} as the set of selected predictor variables. In simulation
results, the column labeled “TP” shows the mean and standard deviation of numbers
of true positives (I8N S]), and the column labeled “FP” shows the mean and stand-
ard deviation of numbers of false positives (|3 \ S|). We consider n = 200, 400 and
p = 1000, 2000 in all simulations.

3.1 Case 1: Logistic regression for binary data

In this case, we numerically compare the proposed penalized y-logistic regression
with penalized conventional logistic regression and penalized constant-mislabel
logistic regression (Copas 1988). We evaluate the performances of variable selec-
tion, parameter estimation and prediction of three methods.

Predictor variables x are from p-dimensional normal distribution N(0, X). Con-
sider two structures of covariance matrix X~ = (o-ij) I<ij<p' The first structure is auto-
regressive correlation (AR) given by o; = pl"7! with p = 0.25 and 0.75. The second
structure is banded correlation, and two scenarios were considered: in the first sce-
nario, o;; = 0.33if |i — j| = 1, and O otherwise; in the second, o; = 0.6 if |i — j| = 1,
0.33 if |i —j| =2, and O otherwise. The response variables are generated from
Bernoulli {P(y = 1|x)}, where P(y=1|x)=1y{1 —7x;p")} + {1 -7 }ﬂ(x;ﬂ*)
with mislabel probabilities 7, = P(y =1y, = O,x), T, = P(y =0y, = 1,x) and the

exp &7 4")
1+ exp T %)
nisms of mislabel probabilities: (S1) 7, =m, and 7, =m; (S2) 7, =m, and
T, = my + (m; — my)w(x;f*). Setting (S1) considers constant-mislabel probabilities,
while setting (S2) considers mislabel probabilities related to x. There are a total of
16 nonzero effects and coefficients are randomly generated from uniform distribu-
tion U[0.5, 1.5]. When evaluating the performances of variable selection and param-
eter estimation, we set (mg,m;) = (0.05,0.2) under (S1) and (S2). And the case

true label y,’s probability of success z(x;8*) = . We consider two mecha-
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where all response labels are correct (my, m;) = (0,0) is considered, denoted by
(S0).

In Table 1, “logistic,” “constant” and “y-logistic” in “methods” represent penal-
ized conventional logistic regression, penalized constant-mislabel logistic regression
and penalized y-logistic regression, respectively. Table 1 shows performances of
these methods under p = 1000 and the results under p = 2000 are placed in Supple-
mentary Materials. When mislabeling exists, the proposed approach can identify the
majority of the true positives with a small number of false positives. It can be also
seen that the results about variable selection of penalized y-logistic regression are
expected to be much closer to the true model as the sample size n increases.

To evaluate the prediction performance, we compute the classification accu-
racy (CA) of each competitor by Monte Carlo from applying the prediction rule
y= I(xTﬁ > () to a clean test dataset (¥,,X) consisting of 1000 observations, in
which the predictor variables X are independent and identically distributed with
the training data, and the responses Y, are generated from Bernoulli {7 (x;6*)}.
For training datasets, we set m, = 0.05 and m; € {0.05,0.10, ...,0.50}. Figures 1
and 2 report the classification accuracy of penalized y-logistic regression and other
methods under S1 and S2 with (n, p) = (400, 1000), respectively. Figure 3 shows an
example of the solution paths. More results are placed in Supplementary Materi-
als. Observe that penalized robust logistic regression dominates the alternatives. It
can be seen that y-logistic and constant-mislabel logistic perform similarity when
m, = m, as expected. As m, increases, the CA loss of the proposed y-logistic is much
less than that of constant-mislabel logistic.

9% ¢
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Fig. 1 Simulation results of the classification accuracy under (S1) with p = 1000, n = 400
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Fig.2 Simulation results of the classification accuracy under (S2) with p = 1000, n = 400

Coefficients

0.5

0.0
0.01

0.03 0.05

0.07

0.09

0.11 0.13 0.15

Fig.3 The path of nonzero effects along A for logistic regression with n = 400, p = 1000 under S2 and
the first AR correlation

We also consider more realistic predictor variables and use the gene expres-
sion data from the TNBC data in the next section. A total of 1000 variables are
selected, of which 16 nonzero effects are set. For each replicate, we randomly sam-
ple 400 subjects. The scenarios of response variables are same as previous parts.
This way, realistic data distributions and correlations can be achieved. Meanwhile,
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the abnormality in predictors could be demonstrated (p values of 966 variables are
less than 0.05 using Shapiro—Wilk normality test). In this scenario, we evaluate
the performances of variable selection and parameter estimation of three methods.
These simulation results are summarized in Table 4 (“Appendix”). The robustness
for abnormality in predictors of the proposed method could be demonstrated.

Besides, we further consider the detection of the suspect mislabeled samples
by searching for instances with small values of the weight function, in which the
instances whose weights of less a cutoff value are considered as candidates of mis-
labeled subjects. Under the first AR correlation, p = 1000 and n = 400, we examine
the relationships between the cutoff value and the performance of detecting mis-
labeled samples (Table 5, “Appendix”). It can be shown that the true positive rate
(TPR) and false positive rate (FPR) are increased with increasing cutoff values of
weights, which reflects that there is no consistently good cutoff values. In practice,
the cutoff value could be selected according to the preference of TPR or FPR.

3.2 Case 2: Poisson regression for count data

In this case, we numerically compare the proposed penalized y-Poisson regression
with penalized conventional Poisson regression. We evaluate the performances of
variable selection and parameter estimation. And detailed implementation algo-
rithms of y-Poisson regression are relegated to “Appendix B2”.

Predictor variables x are from p-dimensional normal distribution N(0, X),
X = DRD, where R is correlation matrix and D is standard deviation diagonal
matrix. The structures of correlation matrix R = (r;);; ¢, are same as the covari-
ance matrix in Case 1. There are a total of 16 nonzero effects. In order to have a rea-
sonable range for the response variable, we set D = diag{0.5, --- ,0.5}pxp and
nonzero coefficients are randomly generated from uniform distribution U[0.5, 1].
The response variable y; ~ Poisson { exp (x! f*) + Ti}, where 7; = 0 or 5. We con-
sider two mechanisms of contamination: (S1) m, of 7;s in each dataset are randomly

exp ()
set as 5, (82) P (Ti = 5) = m

sents that responses are not contaminated (denoted by SO0).

In Table 2, “Poisson” and “y-Poisson” in “methods” represent penalized conven-
tional Poisson regression and penalized y-Poisson regression, respectively. Table 2
shows performances of these methods under p = 1000 and more results are placed
in Supplementary Materials. The penalized y-Poisson regression outperforms penal-
ized conventional Poisson regression for identifying more true positives and less
false positives under both contaminations. When responses are not contaminated,
the results of these two methods are similar.

m;. We set m; = 0,0.2, in which m; = 0 repre-

4 Real data analysis
In this section, the Cancer Genome Atlas (TCGA) data (https://cancergenome.nih.

gov/) on Breast Invasive Carcinoma (BRCA) is used. A total of 57,251 variables
for a total of 1,222 samples (1,102 with a primary solid tumor, 7 with metastases
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and 113 with normal breast tissue) are included in the BRCA gene expression data,
which can be downloaded using the R package brca.data.

4.1 Triple-negative breast cancer data

We focus on the Triple-Negative Breast Cancer (TNBC) built from the BRCA data.
TNBC, the most heterogeneous group of breast cancers, presents a significantly
shorter survival comparing those with non-triple-negative after the first metastatic
event. The TNBC is characterized by lack of expression of three receptors (estro-
gen receptor (ER), progesterone receptor (PR) and human epidermal growth factor
receptor type 2 (HER2)) (Foulkes et al. 2010). TNBC individuals are with ER, PR
and HER2 negative and non-TNBC individuals are with at least one of the three
genes positive.

However, Hammond et al. (2010) reported that up to 20% of immunohistochemi-
cal (IHC) ER and PR determinations worldwide might be inaccurate for some rea-
sons, such as the variation in interpretation criteria, preanalytic variables. In addi-
tion, distinct HER2 labels can be provided by three available variable sources,
namely, the HER2 (IHC) level, HER2 (IHC) status and HER2 (fluorescence in-situ
hybridization, FISH) (Lopes et al. 2018; Wolff et al. 2007).

Following Lopes et al. (2018), only 1,102 samples from primary solid tumor
and 19,688 variables (including the three TNBC-associated key variables ER, PR
and HER2) are considered for analysis, corresponding to the protein coding genes
reported from Ensembl genome browser (2000) and Consensus CDS (2017). Log-
transformed gene expression data are normalized to have zero mean and unit vari-
ance. We conduct a marginal screening and keep the top 3500 genes for downstream
analysis to remove noise.

4.2 Gene identification and outlier detection

From variables selected by penalized y-logistic regression, 26 genes are identified,
in which 14 genes are down-regulated and 12 genes are up-regulated in TNBC listed
in Table 3. As a contrast, the penalized conventional logistic regression identifies
18 genes (11 down-regulated and 7 up-regulated). Quite a lot genes are reported as
strong TNBC-regulated many times previously, in which it is of interest to note that
some genes are identified by y-logistic regression but conventional logistic regres-
sion fail, such as down-regulated genes AGR3, TGFB3, AR and SPDEF and up-reg-
ulated genes CT83, FAM171A1, FZD9, VGLLI and PPPIRI4C. The AGR3 is con-
sidered to be a suitable serum-based biomarker for early cancer detection because
of the low expression in TNBC cell lines (Guo et al. 2017). The TGFB3, encoding a
secreted ligand of the transforming growth factor—f protein superfamily, is found to
be linked with the carcinogenesis of TNBC and involved in the cell cycle pathway
(Naorem et al. 2019). Li (2017) concludes that the AR expression, as a subclassifica-
tion marker, contributes to good prognosis in TNBC and that AR-positive TNBC
patients might respond to anti-androgen endocrine therapy. Jung et al. (2016) report
that SPDEF is expressed at high levels in non-TNBC cell lines. For up-regulated
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Table 3 Identified genes in TNBC based on all samples (y-logistic: highlighted in bold; logistic: high-
lighted with star) and stability results

Down-regulated Up-regulated

Gene y-logistic Logistic Gene y-logistic Logistic Gene y-logistic Logistic
AGR2* 1.000 1.000 Cl60rf95 0.017 PDX1 0.009
AGR3 1.000 CDCA2* 0.974 0.922 POMI21L2* 0.991
AR 1.000 CHODL 1.000 SLC15A1 0.353
CA12" 1.000 1.000 CTS83 1.000 SLC6A15 0.190
CAPNI13 0.034 FAM171A1 1.000 SUV39H2 0.078
ERBB2 0.026 FAM64A 0.009 TLX1 0.026
FOXA1" 1.000 1.000 FOXC1* 1.000 1.000 TMEFF1* 0.603
GATA3" 1.000 1.000 FZD9 1.000 VAX1 0.293
GUCY1A2 0.034 HORMADI1 0.060 ZIC1 0.578
JAM3 0.060 MOGS 0.009 ZIC4 0.009
MLPH" 1.000 1.000 PAPSS1 0.862

MYCT1 0.017 PPP1R14C 1.000

PGAP3* 0.871 1.000 ROPN1 0.043

PRR15* 1.000 1.000 SFT2D2 1.000

SPARCL1 0.931 SRSF12* 1.000 1.000

SPDEF 1.000 TTLL4" 1.000 1.000

TBC1D9*  1.000 0.526 VGLL1 1.000 0.328

TFF3* 1.000 1.000 CLDNI10 0.026

TGFB3 1.000 COL9A3* 0.612

CPE* 1.000 DMRTA2 0.009

HTRAT1* 0.991 FTCD 0.103

TTC6 0.017 ILF2 0.009

VAV3 0.017 LYPDI 0.198

genes, the CT83 has been identified as a potential target for triple-negative breast
cancer (Jessica et al. 2019). In addition, it has been reported that FAM171A1 (Sandra
et al. 2017), FZD9 (Tudoran et al. 2015), VGLLI (Chen et al. 2019) and PPPIRI14C
(Al-Zahrani et al. 2018) would overexpress in TNBC cell lines.

We apply the “leave-one-out” approach to assess the stability of our method and
findings. The proposed method is applied in the case where one sample is removed
from the dataset firstly and then this step is repeated over all samples. Genes’ fre-
quency of being identified is computed (Table 3). It can be seen that all genes,
identified by the proposed method, have stability measures close to 1. We have also
examined those genes not identified and found that their stability measures are equal
or close to 0, which suggests satisfactory stability of our method. For comparison,
the penalized logistic regression is applied in the same process, but it does not work
well in stability.
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We detect the suspect individuals by searching for instances with small values of
the weight function. 57 instances whose weights of less 0.5 are considered as candi-
dates of mislabeled subjects and a careful inspection might contribute to disclosing
the outlierness of suspect individuals detected (Table B3 in “Appendix”). In these
suspect individuals, abnormal ER or PR gene expression values regarding their
TNBC labels can be observed for some individuals, such as “TCGA-GM-A2DI”
(ER-, 23.49; PR-, 12.05) and “TCGA-BH-AIEW” (ER-, 29.98; PR-, 18.9). The
opposite situation can also be observed for non-TNBC patients “TCGA-AR-A1AH”
(ER+, 0.03), “TCGA-AR-AOTP” (ER+, 0.04) and “TCGA-A2-A4S1” (ER+, 0.29),
which might be identified as TNBC if labeled correctly. Besides, the inconsistency
of HER2 labels is observed. For instance, individual “TCGA-C8-A3M7” (HER2-,
25.47) is identified as HER2- by IHC testing, while its HER2 value most probably
indicates positive for the gene expression.

5 Discussion

We have proposed a robust high-dimensional regression method for generalized lin-
ear model with anomalous responses. Mislabeled responses, as an important special
case, have been the focus in this paper, but continuous responses could also be dealt
with in the proposed framework. We have rigorously established variable selection
consistency and estimation bounds in the setting where the dimensionality p can
grow exponentially fast with the sample size n. The reasonable performance of the
proposed method has been shown in simulations and real data analysis. Although
this work focuses on data with anomalous responses, abnormality in the predictors
could also be analyzed using the proposed framework. And relevant simulations in
“Appendix” show that even analyzing data with normal responses, the proposed
method is close to the conventional methods.

This study can be potentially extended in multiple directions. Imbalanced data
is common in classification problems. How to deal with imbalanced data with mis-
labeled responses could also be an interesting problem. In technologies of imbal-
anced data, data-level and algorithm-level methods are two main approaches. For
data-level methods, Stefanowski (2016) proposes algorithms consists of cleaning
overlapping instances and removing noisy objects that might affect models nega-
tively. These ideas combining with y-divergence may offer a solution. Specifically,
when removing overlapping or noisy samples, weight function from y-divergence
could be used to improve detection. As for algorithm-level methods, the cost-sensi-
tive approach is the most popular branch (Thai-Nghe et al. 2010), in which the loss
function incorporates varying penalties for considered groups of examples and the
importance of less represented objects is improved with the assignment of higher
cost. And the weight function derived from y-divergence could be added to these
varying penalties according to a proper way, which might reduce the impact of mis-
labeled responses. Another interesting research is robust high-dimensional statisti-
cal inference (e.g., constructing confidence intervals or statistical testing) based on
the penalized y-divergence. For regularized estimators, inference procedures based
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on asymptotic properties perform poorly, especially when the signal-to-noise ratio
is high and the between covariate correlations are not low (Minnier et al. 2011).
Recently, many powerful techniques have been proposed, see Dezeure et al. (2015)
for an overview. However, little work exists on the robust high-dimensional statisti-
cal inference. This raises many interesting theoretical and methodological questions
for the future.
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Appendix
Appendix A. Proofs of Theorem 1
In this section, we give rigorous proofs of Theorem 1. To prove Theorem 1, some nota-

tions are needed. Define y; = E(y;) = b’(6,), which is linked to 6, through the canonical
link function ¢ ( yi) = 0,. Let Vg represent the derivative to . Then,

V£ (B) = % > LB, ©)
=1
where
_ L Tu(ﬂ) _ f(yilxi;ﬂ)y
18) = ~ro,B) [K"(y"’ﬂ ) %,(ﬂ)]’ 2nil®) = (/ fOlBy+rdy)
. . = ; L) = . ! . 7
K(;:P) ) o(uy) = Var (y;)q' (1) @)

¥,,(B) = / KB (lxs8)'*dy, ¥y (B) = / fOlx:p) "7 dy.

Denote Vgl,(B) = Hi(P)x; and VzH,(B) = J,(B)x;. H;(f) and J,(f) need to be calcu-
lated in Theorem 1. Some calculations show that

Vﬂwy,i(ﬂ) = _Ii(ﬁ)xi’ VﬂKi(yi;ﬁ) = kli(yi;ﬂ)xi,
quju(ﬂ) =y ,(P)x;, Vﬂ'Pzi(ﬂ) =1 +n¥;B)x;,

where
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ki vi:B) = :0iBlg ™ 6T,
§ih) = —ol) _v(Zy(iﬂ_.)Mi)v (;)

viilh) = / (ky;(v38) + (1 + KB Glx;:8)' 7 dy.

0, =p"x,,

®)

Then we can get V,41,(B) = H,(B)x;, where
H(B) = -y, (B)r2;,(B) + 2,B)].

,,()
B =Kib) = s o
) [%(mr
1 — .
v, T w0

Q5(B) =k, (vi:B) —

More calculations show that
Veki(visB) = ki (visB)x;s  Vgy(B) = v (B)x;,
where
ky(yisB) = Cl,(y Bla™ 01" + LB lg™ 01,

Coapy = QT D 20(u) [V ()1 = 02 ()" (1)} + 20%(u)v’ (/4)
2iVis ()

Voi(B) = / [y 38) + 3(1 + DK 0Bk, 03)
+(1+ 7 K B (lx:8) " dy.
Then we can get VzH,(f) = J,(B)x;, where

T(B) = LBy 23,(B) + 2,(B)] — 2r*w, (B)2,,(8)2,,(B)

Wzi(ﬂ) Wli(ﬂ)lpli(ﬂ)
- Bk (vish) — -+ —
e, {(B){ky(yish v, 6) Y V2(5) an
#2014 2Py

lPZZ(ﬁ)

£0,,(p) and Q,,(p) are defined in (9), k,;(y;;8) and y,;(B) are defined in (10), y;(B)
is defined in (8), ¥};(B) and ¥,;(B) are defined in (7). And then we give the proof of
Theorem 1.

(10)

Proof of Theorem 1 First, let © = {B, : ||f; — Bill, =7} and r = €+/|S|/n with
€ < \/n/|S|. It suffices to show that

Pr{ﬂiré%fl(ﬂl) > B} =2 1—-1(r),
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n 2r2 n 2 n 2
where  7(r) = exp (—51;;0M2> +2|5|% exp <_2|S|2fv112;<2) +2|5|% exp (—2|sz°,(2 >,
B, € RSand

IR S
e (,/f(ylle ﬂ,)“ydy)y/(l”)
This implies that with probability at least1 — 7, £;(f,) has a local minimum f]l € 0.

Let u € RS with ||u]l, = 1. Define , = % +ru and g = (B,,07)". Consider
Q) =n{¢,(B)) — ¢,(B))}. Itis equivalent to show that

(12)

Pr < inf Ow) > 0) > 1—10). (13)

[|ue]],=1

In fact
Ow) = " XT1(p*) + %rZuTXlTH(ﬂ*)XIu +57 “u'XT[H(B) - HB")1X u
=:0,+0,+0;
where B is between g* and B, and I(B) = (I,(B), ..., I,(B))" with I, is defined in (7).
Each element of I(f*) and H(f*) are bounded by a sufficient large bounded constant
M.

For Q,, the following inequality can be obtained for any # > 0 using || X 1u||2 np
and Hoeffding’s inequality,

Pr(|Q,| = rt) < 2 exp 2—t2 < 2 exp <— 2” >
‘ X w202 ) npoM? )’
Lett = énplr, then
Pr(Q, > —asnp ) > 1 i 14
T —33"" —exp|l ——— ).
12 73" P\ 5120002 (14

For Q,, note that Q, > %rZ/lmin{XlTH(ﬂ*)X 1 }. From Bonferroni’s inequality and

Hoeffding’s inequality, we have

nzpz
Pr(IIX,TH(ﬁ*)Xl — EIXTHBHX 1|7 > —1>

I():

JES keS

< 2|S|2 npl
€X —_—— |,
S P\ T2spaee

where x;; is the (7, j) component of XT. By the inequality

Z H(B")x 0y — Z E[H,(B")x;x;] >

i=

2|S|

)
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Amin IXTHBHX,} = np, — |IXTH(BX, — EXXTHPBHX )

we have

o (e
Pr(Q2 nplr) 1—2|S| exXp —m . (15)

As for Q;, we have |H(ﬂ) H(ﬂ*)l = |J,(p° )x (,B1 B)| < Mxr, where J; is

l

defined in (11). B° is between B* and B, ﬂ] denotes the components of g indexed by
S. J,(B) is bounded by M. Note that |Q;| < 2r*M K0ma {X] X }. By the inequality

max

max{XTxl} < npy + ||X1TX1 - E[X]TX]]”F’

similarly as the derivation on Q,, it can be derived that

2
3 np
Pr(Q; > ——nr pOMK) 1 —2|8|% exp <—W20K2>.

With r < /’%, it can be obtained that
0

2
3 np
Pr(Q; > 2”/’1’" ?) 2 1-2|S|” exp (‘W;’Cz)- (16)

From (14)-(16), we have

Ou) > n/?l r, (17)

with probability at least

2.2 2 2
npir 5 np; 5 np;
1- —— L _)-2s S — T ——2 )
eXp< 512p0M2) S| exp( 2|S|2M21<2> S| exp( 2ISPR2

Define &(r) = énplrz. Recall that r = £4/|S]|/n, £(r) > 0. Therefore, (13) is proved
and Part 1 of Theorem 1 is established.

Now Part 2 is considered. Let # denote ﬁorade for simplicity. By the Karush—
Kuhn-Tucker (KKT) conditions, we need to prove that B satisfies

X1 = np/,(1B,1) (18)

and

IX2 1Bl < 1A, (19)

where IB)=U,B),....L, AT with I; defined in @) and
pUB. D = @, (1B D sgn By, ....P (B sgn (BT with  s=|S. If
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ai < min|[§],«|, p;(|[}]|) =0, and (18) holds certainly. Note 2a4 < min and
JjES ’ JjES

*
B
r? < 4, it can be concluded that the event {||f, — B7ll, < r} belongs to the event
{a4 < min|p;|}. That is,

j€s

Pr(ad < minlf,,1) > Pr(IB, - B}ll, <) > 1= 7). (20)
Now consider the probability of
IXJIB)l oo < nA.
With Taylor expansion, we have
np' (1B, 1) = X{1(8") = XTH(B"X, (B, - B} — 2. e2))
where z; = XlT(H(B;,) - H(ﬂ*))X](ﬁ1 - B)). ﬁ,l is between f* and [§ Then, we can
have
B\ —B; = XTHBHX )™ X[18") — np/,(1B,]) — 2,)- (22)
Therefore, X7 1 (B) can be rewritten as
XJ1B) = X]18") ~ X;H(B"X, (B, ~ B) ~ 2
=XJ1(B*) — X, H(B" )X, (X[ H(B")X,)™ X[ 1(8") — np/, (1B, ])
—2)) — 2,

where z, = X1 (H(B,) — H(B*)X (B, — B}), B, lies between B* and B. From (20) we
know that ||p;(| B 1Dl = O with probability at least 1 — z(r). Then, the KKT Condi-
tion (19) is guaranteed if

A2 [IXTHBEHX,XTHBEX )l + LAXTIBE /0l + l2lle). (23)

where z = 2XT[H(B* + n(B — B*)) — H(B*)IX, (B, — B}) with n € [0, 1],
Next, we define
qo = IXJHBX,XTH(BHX,)™" — EXJHBHXEX]HBHX )] ||
g = IXTHBHX )™ = [EXTHBHX )] ||
g = |X;H(BHX, — EXSH(B)X )| oo
q; = |XTH(BHX, — EXTH(B"X)||
@ = lEXTHBHX D] -

We can find that

00°
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qo = IIXJH(BX, — EX;H(BHX )] - (XTHBHX)™ — [EXTHBHX)]™)
+EXJHBHXDEXTHBHX )™ - [-XTH(B"X, + EX[H(BHX))]
(XTHBHX, 1!
+[XJHBHX, — EXJHBHX )] - [EXTHBHX )] |
S + Cq3||[X1TH(ﬂ*)X1]_1 loo + 9290
<919 + Cq3(@ + q1) + 4,9

Note that

g = |XTHBX )™ - (EXTHBHX,) - X{HPBHX,) - [EXTHBHX )] o,
< NXTHBHX) o - |IEXTHBHX ) - XTHBHX, || o
NEXTHBHX DI Ml
< NXTHBHX )™ - [EXTHEHX )] + [EXTHBEX )] | - 430
< (g1 + ©)g30-

Hence, as long as ¢;@ <1, then we have ¢, <¢q;¢*/(1—q;p) and
90 < (¢, + Cq3)/(1 —q3).  Now  the events {q,<C/(2p)} and
{g; < 1/(4p)} are considered. Similar to the proof for Q,, and note that

@ < VISI- IEXTHBHX D1 N, < VISI - o LEXTHBX )} < VISI/(npy), it

can be obtained

C 2c2
Pr(g, < =) > 1-2|S|? ex 1 =28 ex ,
(‘]2\2¢)/ IS p( 2|S|2> IS p< JE )

1 2 2
Pr(g; < —) > 1-2|S >1-2IS
"gs < 72) N exp( = |S|2> N exp( 8|S|3>

Then we have gy < @(q, + Cq3)/(1 — q;¢) < C with probability at least

3 22
1 —2|5)? ex o —2|S|% ex 24
p BETNE p 8|S|3 (24)

With |X?H(B)X,XTH(B*)X,)™' ||, < ¢go+ C and above discussions, go back to
(23), it is sufficient to show

A2 QC+DUXTIPB) /1l + Izl )

Therefore, focus on the events that

A
xT16* < —,
X1 il < 55
A
<—2
Izl < 35671
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According to the Bonferroni’s inequality and Hoeffding’s inequality, it can be
obtained

T * }'
Pr(IIXII(ﬂ e < 35655 1)>

>1-2p- ex _”—’12
2T R Ty 12 )

(25)

Asforz = (z, ... ,zp)T, we have
_ln ® = e\l (A _ AL (R _ A
g = > 3yl (B +iiB ~ BB, — 875, By — B)/n.
i=1

where x;; is the (i, j) component of X7, i € [0,n], and J,(B) is defined in (11). By
Cauchy—Swarchz inequality, it can be obtained

n

1 r 5 2

|Z]| < MKO—max{; inlxil }“ﬂl _ﬂT”z
i=1

Recall that Pr(ll[?1 = Bill, <r) = 1-12(r). Note that r? < A, it can be known that
Mxpyr?* < ﬁ Following the proof of part 1, we have

A
P <———|>1- .
r(llzllw S3acq 1)> = 1-1(r) (26)
Part 2 is proved by combining (20) and (24)—(26). O

Appendix B. Additional numeric results and implementation algorithm of y
-Poisson regression

Appendix B1. Additional numeric results

See Tables 4, 5 and 6.

@ Springer



Robust HD regression for data with anomalous responses 729
of wuelase positives (TPFPy Methods TP . 1~ Al
fg;vs i‘lrc‘arz:r::l‘fgg‘]’)‘;;‘fz; SO Logistic 13.66(1.17)  2.91(1.46)  3.87(0.98)
TNBC real data Constant 13.71(1.23) 2.83(1.40) 3.64(0.92)
y-logistic 14.89(1.55) 1.12(1.90) 2.57(0.61)
Oraclel 16.00(0.00) 0.00(0.00) 1.89(0.49)
Oracle2 - - -
S1 Logistic 10.79(2.93) 5.83(2.29) 6.42(1.33)
Constant 11.18(2.76) 5.49(2.14) 5.71(1.39)
y-logistic 12.75(1.88) 3.11(1.53) 4.92(1.21)
Oraclel 16.00(0.00) 0.00(0.00) 2.64(0.85)
Oracle2 16.00(0.00) 0.00(0.00) 1.94(0.51)
S2 Logistic 11.36(2.67) 5.20(2.30) 6.37(1.96)
Constant 11.99(2.30) 4.94(2.19) 5.65(1.87)
y-logistic 13.57(1.08) 3.04(1.23) 3.92(1.33)
Oraclel 16.00(0.00) 0.00(0.00) 2.25(0.76)
Oracle2 16.00(0.00) 0.00(0.00) 1.86(0.42)

Table 5 Mean (SD) of TPR and FPR for the detection of mislabeled samples under logistic regression

Cutoff values S1 S2
TPR FPR TPR FPR

0.05 0.6129(0.0691) 0.0259(0.0093) 0.6966(0.0726) 0.0272(0.0099)
0.10 0.6616(0.0695) 0.0345(0.0109) 0.7350(0.0698) 0.0355(0.0101)
0.15 0.6876(0.0723) 0.0408(0.0119) 0.7574(0.0655) 0.0414(0.0110)
0.20 0.7018(0.0714) 0.0449(0.0119) 0.7715(0.0663) 0.0462(0.0113)
0.25 0.7112(0.0712) 0.0494(0.0130) 0.7820(0.0653) 0.0498(0.0119)
0.30 0.7213(0.0721) 0.0528(0.0136) 0.7910(0.0628) 0.0535(0.0125)
0.35 0.7301(0.0723) 0.0564(0.0137) 0.7991(0.0615) 0.0569(0.0127)
0.40 0.7360(0.0730) 0.0599(0.0138) 0.8069(0.0588) 0.0608(0.0131)
0.45 0.7456(0.0717) 0.0641(0.0137) 0.8166(0.0562) 0.0654(0.0138)
0.50 0.7577(0.0682) 0.0681(0.0141) 0.8259(0.0544) 0.0689(0.0148)
0.55 0.7679(0.0688) 0.0731(0.0146) 0.8359(0.0510) 0.0743(0.0150)
0.60 0.7796(0.0663) 0.0786(0.0152) 0.8452(0.0500) 0.0797(0.0152)
0.65 0.7909(0.0660) 0.0848(0.0164) 0.8542(0.0504) 0.0856(0.0160)
0.70 0.8028(0.0636) 0.0937(0.0171) 0.8642(0.0490) 0.0933(0.0168)
0.75 0.8168(0.0591) 0.1046(0.0170) 0.8748(0.0461) 0.1026(0.0161)
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Table 6 Summary of some outliers detected as suspect individuals in TNBC data

Individual ER PR HER2 HER2 HER?2 status Type
level (IHC)
(IHC)

TCGA-E9- 0.44(-)  0.02(-) 15.32 + NO TNBC
A22G

TCGA-AT- 0.82(+) 0.06(-)  46.08 2+ Equivocal NO TNBC
A13E

TCGA-A2- 0.02(¢-)  0.02(-) 9.64 1+ - NO TNBC
A04U

TCGA-BH- 5.12(+) 0.03(-)  28.08 - NO TNBC
AS5IZ

TCGA-AR- 1.57(+) 0.10(-) 14.02 2+ Equivocal NO TNBC
A251

TCGA-AR- 0.03(+) 0.03(-) 34.12 - NO TNBC
Al1AH

TCGA-AN- 0.08(+) 0.04(-) 1428 1+ + NO TNBC
AOQFJ

TCGA-AR- 0.04(+) 0.03(-) 13.39 - NO TNBC
AQTP

TCGA-A2- 0.09(+) 0.03(-) 24024 0 - NO TNBC
A0YJ

TCGA-OL- 0.09(+) 0.06(-) 3192 NO TNBC
A5S0

TCGA-E2-AlIl  0.14(-)  0.19(+) 10.73 1+ - NO TNBC

TCGA-LL- 0.16(+) 0.05(-) 15.10 1+ - NO TNBC
ASYP

TCGA-AT- 0.52(-)  0.81(+) 42.28 2+ Equivocal NO TNBC
Al13D

TCGA-AR- 1.47(+) 0.07(-) 9.74 - NO TNBC
AlAJ

TCGA-D8- 5.00(+) 0.01(-) 21.85 1+ - NO TNBC
AlIM

TCGA-B6-AOL]  1.18(+) 0.46(+) 11.12 NO TNBC

TCGA-A2- 0.53(-) 0.17¢-) 819.76 2+ Equivocal NO TNBC
AlGl1

TCGA-AO- 0.63(-) 0.08(-) 63.60 1+ - NO TNBC
AOJL

TCGA-AC- 0.19(+) 0.02(-)  28.53 NO TNBC
A62X

TCGA-D8- 0.32(-) 0.11(+) 21.03 1+ - NO TNBC
AIXW

TCGA-LL- 0.33(-)  0.04(+) 3213 2+ Equivocal NO TNBC
A6FR

TCGA-S3- 16.67(+) 0.07(+) 33.07 1+ Equivocal NO TNBC
AA0Z

TCGA-AN- 1.13(-)  0.64(-) 24.02 1+ + NO TNBC
AOFX
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Table 6 (continued)

Individual ER PR HER2 HER2 HER?2 status HER2 (FISH) Type
level (IHC)
(IHC)

TCGA-E9- 0.11¢-)  0.07(+) 1591 + NO TNBC
AINC

TCGA-LL- 1.08(+) 0.04(-) 11.86 1+ - NO TNBC
A8F5

TCGA-AR- 1.00(+) 0.36(-) 20.67 - NO TNBC
A24Q

TCGA-A2- 2.18(+) 0.03(-) 11.34 1+ - NO TNBC
A3Y0

TCGA-E2- 0.67(+) 0.03(+) 48790 2+ Equivocal + NO TNBC
Al4Y

TCGA-A1- 3.16(+) 0.03(-) 32.35 - NO TNBC
AOSB

TCGA-E9- 1.44(-)  0.05(-) 13.05 + NO TNBC
AIND

TCGA-AN- 0.09¢-) 1.07(-) 15.07 1+ + NO TNBC
AOFL

TCGA-A2- 0.62(-)  0.23(+) 5.19 - NO TNBC
A25F

TCGA-BH- 6.99(+) 0.04(-) 9.92 - NO TNBC
AODL

TCGA-A2- 0.68(+) 093(+) 26.64 1+ - NO TNBC
A4RX

TCGA-A2- 0.29(+) 0.01(-) 0.61 - NO TNBC
A4S1

TCGA-BH- 0.59(-) 0.25(+) 8.18 - NO TNBC
A6R9

TCGA-E2- 0.14(-) 0.26(-) 563.81 3+ + NO TNBC
A1BO

TCGA-AO- 10.78(+) 9.12(+) 1491 1+ - NO TNBC
A1KO

TCGA-D8- 15.48(+) 4.17(+) 483 1+ - NO TNBC
A13Y

TCGA-D8- 040(-) 0.72(+) 22.19 1+ - NO TNBC
A1JK

TCGA-AR- 1.22(-) 0.26(-) 410.17 3+ + NO TNBC
A24U

TCGA-AR- 1.47(+) 1.13(-) 1489 1+ - NO TNBC
A1AO

TCGA-C8- 0.15(-)  0.20(-) 259.71 3+ + NO TNBC
A12P

TCGA-BH- 29.98(-) 18.9(-) 42.47 - TNBC
A1lEW

TCGA-GM- 23.49(-) 12.05(-)  20.30 - TNBC
A2DI

TCGA-C8- 4.27(-)  0.76(-) 2547 - TNBC
A3M7
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Table 6 (continued)

Individual ER PR HER2 HER2 HER?2 status HER2 (FISH) Type
level (IHC)
(IHC)
TCGA-JL- 0.35(+) 0.09+) 3147 1+ + NO TNBC
A3YW
TCGA-LL- 7.19(+) 2.10(+) 28.34 2+ Equivocal - NO TNBC
A73Z
TCGA-OL- 0.99(+) 0.38(-) 658.80 + NO TNBC
AS5RY
TCGA-D8- 0.30(-)  0.13(-) 692.72 3+ + NO TNBC
A1XT
TCGA-BH- 14.34(+) 3.30(+) 10.64 NO TNBC
A1FN
TCGA-AC- 4.44(+) 18.2(+) 58.01 - NO TNBC
A2FK
TCGA-AN- 73.18(+)  0.09(-) 12.23 - NO TNBC
AOAM
TCGA-BH- 27.39(+) 7.08(+) 10.00 NO TNBC
A209
TCGA-UU- 0.30(-)  0.12(-) 1668.35 3+ + NO TNBC
A93S
TCGA- 12.43(+) 2.96(+) 1432 1+ - NO TNBC
E2-A108
TCGA-AO- 13.67(+) 1.31(+) 520 0 - NO TNBC
AQJC

Appendix B2. Detailed implementation algorithm of y-logistic and y-Poisson
regression

In this section, the concrete expressions of the gradient (5) for logistic regression and
Poisson regression are given. Recall that the gradient (5) is

[ KB (ylx;;8)' 7 dy )
[ fOlx;B)+rdy Y

VEB) =1 Y 0, B) | K -
i=1

SOilxi:8)
where w, ;(f) = ———— K.(y; _VitHi
i) = gy O = N3

0, through the canonical link function g(-) in GLM.

and p; = E(y;) is linked to

7-Logistic Regression. In logistic regression, f(y|x;;p) = M and

Tp) 1+exp{x ﬁ )y
., ol . . .
Kyp =y Trow( A" Then, it can be obtained that:
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1+ exp((1 + yxT )
(1+ exp{x! p})1+1)
exp(x] B} (explrxl ) — 1)
(1 +exp(x! )+
wy,(ﬂ):< exp (i1 +7)x"B) )‘
‘ I+ exp (1 + 78]

Some calculations show that the gradient (5) for y-logistic regression can be given
as follows.

/f(ylxi;ﬂ)“ydy =

/ KB lx;:8)' 7 dy = ) 27

Vi) =-1 2:, o, (B)[y; — 71+ )B)] X, (28)

: : exp {(1+)x;" B}
where w, ;(f) is defined in (27), z(x;;(1 + y)B) = Trexp (L BT

y-Poisson Regression. In this subsection, we consider detailed implementation algo-
rithms of y-Poisson regression, in which the calculation of two terms f fOlx:p)'Frdy
and f K,(y;B)f (y|x;;8)! 7 dy in the loss function (2) and the derivative to B; (5) are dif-
ferent from the y-logistic regression.

In Poisson regression, f(y|x;;f) = % exp (—yi), and K;(y;p) =y — u;, where
p; = exp (x” B). Then, it can be obtained that:

o ) I+y
/f(ylxi;ﬁ)'”dy =2 (? exp (‘Hi)> :

=0
i—oo /4}’ 4y
/Ki(y;ﬂ)f(ylxi;ﬂ)'”dy = (v-m) (F exp (—m)) :
y=0 ’

The algebraic expression of infinite sum could not be obtained, so we calculate the
infinite sum using numerical approximation with finite sum:

B ,Ll%] 1+y
/f(ylx,-;ﬁ)“ydy R 2 (—’ exp —M,-)> ,
B y I+y
/ KB OlsB) 7y~ Y (v my (—eXp( )) :

y=0

In the simulation, we set B = 1000. For evaluating the performance of numerical
approximation, we consider the ratio of the remaining items to main items defined
by
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¥ I+y
1000B [ #;
Zn (Srexp (-m))

y

Tapproxl = N 147 °

B (K

20 (% exp (-u) )
y 1+y
10008 i
Zy=B+1 (y - /‘i) (l;_, exp (‘M‘))

Tappron =

S (- w) (Sewp ()

The values of (7,pox1+ Tapprox2) @re shown in Table S4 (Supplementary Materials), in
which it can be shown that the values are less than 1078 under all settings. It reflects
that this numerical approximation works in y-Poisson regression.

Therefore, the gradient (5) for y-Poisson regression can be given as follows.

4 . i
VAR = -1~ . — -2 X
B =~ Z] , (B) [y, 7 l[] i (29)
where
o exp =y ;)
o, (B) = —@A!)y 7
= exp {r[y; log(u,) — u; — log(y;)) — log(1)/(1 + 1)1},
B 'uy 1+y B /,ty 1+y
5= Z y_l' exp (—u;) , and ¢ = Z (v—mw) y_l' exp (—u;)
y=0 y=0
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