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Abstract
The accuracy of response variables is crucially important to train regression models. 
In some situations, including the high-dimensional case, response observations tend 
to be inaccurate, which would lead to biased estimators by directly fitting a con-
ventional model. For analyzing data with anomalous responses in the high-dimen-
sional case, in this work, we adopt γ-divergence to conduct variable selection and 
estimation methods. The proposed method possesses good robustness to anomalous 
responses, and the proportion of abnormal data does not need to be modeled. It is 
implemented by an efficient coordinate descent algorithm. In the setting where the 
dimensionality p can grow exponentially fast with the sample size n, we rigorously 
establish variable selection consistency and estimation bounds. Numerical simula-
tions and an application on real data are presented to demonstrate the performance 
of the proposed method.
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1  Introduction

In the regression model, the prediction rule is to be derived from labeled data-
set. Traditional regression models assume and expect the correct response vari-
ables; however, it is expensive and difficult to obtain accurate responses because 
of insufficient information, subjective judgment, measurement error and so on, 
which would lead to biased estimators by directly fitting conventional methods 
(Piepel 2005).

Anomalous responses would be encountered in the fields of Internet, finance, 
image processing, biology and so on. For instance, the real data studied in our paper 
contains mislabeled responses owing to the measurement error of the expression of 
receptor genes (Lopes et al. 2018). Traditional regression models are not applicable 
to this kind of data. It is noteworthy that “mislabeled data” in discrete variables like 
that is an important special case of anomalous responses, which is also called “label 
noise” (Rebbapragada and Brodley 2007; Frénay and Verleysen 2013) or “misclas-
sification” (Copeland et al. 1977; Grace 2017) in classification problems and “count 
error” (Cameron and Trivedi 2013) in count data.

Samples with anomalous responses can be considered as outliers. The exist-
ing approaches for high-dimensional data can be broadly classified into one of two 
types. The first type is to filter out outliers. For example, Aggarwal and Yu (2001) 
developed a distance-based outlier detection method; She and Owen (2011) pro-
posed the individual intercept model to identify outliers for the linear model; Zimek 
et al. (2012) considered using the clusters to detect mislabeling outliers. However, 
there might be information loss caused by removing some samples when using this 
type of method. The second type is to reduce weights on samples with anomalous 
responses, which might be more applicable to the parameter estimation. Take logis-
tic regression for binary classification as an example. Weight functions have differ-
ent forms according to certain assumptions on mislabel probabilities, for instance, 
the mislabel probability regarded as an equal constant (Copas 1988), related to 
covariates (Hayashi 2012), asymmetric (Komori et al. 2016) and so on. But these 
methods might not be applicable when the data do not follow corresponding 
assumptions of mislabel probabilities. Hung et al. (2018) proposed �-logistic regres-
sion. Mislabel probabilities do not need to be modeled using �-logistic regression 
because the bias from contamination distribution and contamination proportion can 
be ignored, which benefits from the robustness of �-divergence. However, they only 
focus on binary data without considering “count error” or other types of anoma-
lous responses. In addition, it is not applicable to “large p, small n” data. Besides, 
Kawashima and Fujisawa (2017) proposed the robust and sparse regression via �
-divergence and presented the robust properties from two viewpoints of latent bias 
and Pythagorean relation. However, their method cannot deal with high-dimensional 
data with discrete responses, and they did not theoretically study the consistency of 
estimation and variable selection. To address these challenges, in this article, we 
consider a penalized generalized linear model based on �-divergence.

In summary, our contributions are the following. On one hand, we are the first 
to adopt �-divergence on high-dimensional generalized linear model to deal with 
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multiple types of anomalous responses, which includes mislabeled data as a spe-
cial case, and contamination proportion need not be modeled. Numerical simula-
tion and real data analysis are presented to demonstrate the good performance of 
the proposed method. On the other hand, asymptotic properties of �-divergence 
in the high-dimensional case are studied. We rigorously establish variable selec-
tion consistency and estimation bounds under the setting where the dimensional-
ity p can grow exponentially fast with the sample size n. It is not easy to establish 
high-dimensional asymptotic properties due to the complexity of �-divergence.

2 � Methodology

2.1 � The robust penalized 
‑divergence estimation

The �-divergence approach is firstly introduced in Roberts and Stramer (2001) for 
the robust estimation of a single distribution parameter. It is extended to the robust 
regression method with low-dimensional data later (Hung et al. 2018; Fujisawa and 
Eguchi 2008). It has been shown that the �-divergence method has multiple statisti-
cal and numerical advantages over the nonrobust and robust alternatives.

Let f��� be the model distribution under the p-dimensional parameter ��� and g be 
the data generating distribution. For these two density functions, the �-divergence is 
defined as

The parameter � balances efficiency and robustness, with a smaller � corresponding 
to more efficient but less robust estimation. In the limiting case, D�

(
g, f���

)
 is a ver-

sion of the Kullback–Leibler divergence as � → 0.

Remark 1  If data is contaminated, g = cf���∗ + (1 − c)h ≐ gc with contamination dis-
tribution h, contamination proportion 1 − c with 0.5 < c ⩽ 1 and the true model 
parameter ���∗ . The estimated parameter is obtained by minimizing �-divergence 
D� (gc, f���) , which is equivalent to minimizing cD� (f���∗ , f���) − F���(c, h,���, �) with 
F�(c, h,���) = � - 1(� + 1) - 1(1 − c) ∫ f

�

���

‖f���‖
�

� + 1

h . Suppose that ∫ f
�

�∗�∗�∗
h is sufficiently 

small for an appropriately large 𝛾 > 0 , which implies that the contamination density 
h mostly lies on the tail of the underlying density f���∗ . Then, for some � , the bias 
F���(c, h,���, �) is negligibly small when ��� in a neighborhood of ���∗ . Namely, the esti-
mation of ��� is less affected by 1 − c and h. More detailed discussions about this 
property of �-divergence could be referred to Fujisawa and Eguchi (2008).

Consider n independent samples {
(
xxxi, yi

)
, i = 1,… , n} , where xxxi is the random 

covariate vector with the dimension p and yi is the response for ith sample. Ignoring 
terms independent of the unknown parameter, the empirical version of the �-diver-
gence loss function is

(1)D𝛾

�
g, f𝛽𝛽𝛽

�
=

1

𝛾(𝛾 + 1)

�
‖g‖𝛾+1 − ∫

�
f𝛽𝛽𝛽

‖f𝛽𝛽𝛽‖𝛾+1

�𝛾

g

�
, 𝛾 > 0.
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where f (yi|xxxi;���) is the conditional probability density function of yi given xxxi with the 
unknown parameter vector ��� . To deal with multiple types of responses, we consider 
generalized linear model (GLM), in which

where �i = ���Txxxi , and b(�) is twice continuously differentiable with b��(�) always 
positive. In this paper, we are interested in sparsity estimation of the regression coef-
ficients ��� , and assume that the dispersion parameter � is known. If unknown, we can 
estimate it by solving the estimation equation using the biselection method (Zang 
et al. 2017) or linear search methods (Ghosh and Basu 2016).

For analyzing high-dimensional data, we propose the following robust penal-
ized �-divergence loss function

where �(���) is defined in (2), �j is the jth component of ��� and p� is a concave penalty 
function such as SCAD with first-order derivative 
p�
𝜆
(t) = 𝜆{I(t ⩽ 𝜆) +

(a𝜆−t)+

(a−1)𝜆
I(t > 𝜆)} , for a > 2, t ⩾ 0 (Fan and Li 2001) or MCP 

with first-order derivative p�
�
(t) = �(1 −

t

a�
)+ , for a > 1, t ⩾ 0 (Zhang 2010). The 

objective function Q(���) consists of the robust loss function dealing with outliers and 
a concave penalty on ��� . The characteristics of the robust loss function are consid-
ered in Remark 2 as follows.

Remark 2  For logistic regression, the loss function �(���) = −
1

n

∑n

i=1
�� ,i(���) , where 

the weight function �� ,i(���) =
(

exp {yi(�+1)���
Txxxi}

1+ exp {(�+1)���Txxxi}

)�∕(1+�)

 , which is so-called �-logistic 
regression without modeling mislabel probabilities. From the estimation equation ∑n

i=1
�� ,i(���)

�
yi −

exp (���Txxxi)

1+ exp (���Txxxi)

�
xxxi = 0 , the robustness of �-logistic regression is clear: 

�� ,i(���) could be small with non-matched (yi,���Txxxi) . See Hung et al. (2018) for further 
discussions.

It is remarkable that �-divergence used in Hung et al. (2018) is focused on ana-
lyzing binary data in the low-dimensional case. More generally, GLM combining 
�-divergence considered in this article can deal with more types of response vari-
ables. �-logistic regression is a special case of the proposed analysis framework. 
Although the �-divergence has been previously adopted in regression analysis, to 
our best knowledge, this study is the first to adopt �-divergence to deal with high-
dimensional data with multiple types of responses.

(2)�(���) = −
1

n

n∑

i=1

f
(
yi|xxxi;���

)�
(∫ f (y|xxxi;���)1+�dy

)�∕(1+�) ,

f
(
yi|xxxi;���

)
= c

(
yi
)
exp

{
yi�i − b

(
�i
)

�

}
,

(3)Q(���) = �(���) +

p∑

j=1

p�(|�j|),



707

1 3

Robust HD regression for data with anomalous responses

2.2 � Statistical properties

In this section, we establish the statistical properties of penalized �-divergence estima-
tion. Write the true coefficient as ���∗ and the important predictor index set is labeled as S. 
|S| is the cardinality of set S. Let ���∗

1
 and ���∗

2
 represent the components of ���∗ indexed by S 

and its complement, respectively. Denote XXX1 = (xxx11,… ,xxxn1)
T and XXX2 = (xxx12,… ,xxxn2)

T 
are the submatrices of the design matrix XXXT formed by columns in S and its comple-
ment. Define the oracle estimator as 𝛽̂𝛽𝛽

oracleT

= {𝛽̂𝛽𝛽
oracleT

1
, 𝛽̂𝛽𝛽

oracleT

2
} , with 𝛽̂𝛽𝛽

oracle

1
= 𝛽̂𝛽𝛽1 and 

𝛽̂𝛽𝛽
oracle

2
= 000 , where

���1 ∈ �|S| . We have ∇����(���) =
1

n

∑n

i=1
Ii(���)xxxi and ∇���Ii(���) = Hi(���)xxxi , where ∇��� repre-

sents the gradient to ��� , Ii and Hi are defined by (7) and (9) in “Appendix”, respec-
tively. Write H(���) = diag{H1(���),… ,Hn(���)} . Take

where �min{⋅} and �max{⋅} denote the smallest and largest eigenvalues of the matrix, 
respectively, and ‖ ⋅ ‖∞ denotes the maximum absolute row sum of the matrix.

To establish statistical properties, the following conditions are needed.

Condition 1. �−1p�(t) is concave in t ∈ [0,∞) with a continuous derivative �−1p�
�
(t) 

satisfying �−1p�
�
(0+) ∈ (0,∞) . �−1p�

�
(t) is increasing in � ∈ (0,∞) and �−1p�

�
(0+) 

is independent of �.
Condition 2. � = inf{t∕� ∶ �−1p�(t) = 0, t ⩾ 0} is bounded.
Condition 3. X is a bounded matrix almost surely and the bound is �.

Condition 1 is considered by Fan and Lv (2011); the SCAD and MCP penalties both 
satisfy this condition. And these two penalties satisfy Condition 2, which can guarantee 
unbiasedness, with � = a . Condition 3 is assumed to simplify the proof, where � is a 
bounded constant related to estimation and probability bounds. The high-dimensional 
asymptotic properties are as below and the proof is placed in “Appendix”.

Theorem 1  Let Condition 1–3 hold. 

1.	 For any 𝜀 <
√
n∕�S�, we have 

(4)𝛽̂𝛽𝛽1 = argmin
𝛽𝛽𝛽1

{
−
1

n

n∑

i=1

f
(
yi|xxxi1;𝛽𝛽𝛽1

)𝛾
(∫ f (y|xxxi1;𝛽𝛽𝛽1)1+𝛾dy

)𝛾∕(1+𝛾)

}
,

�0 = �max{n
−1E(XXXT

1
XXX1)}, �1 = �min{n

−1E(XXXT
1
H(���∗)XXX1)},

C = ‖E(XXXT
2
H(���∗)XXX1)[E(XXX

T
1
H(���∗)XXX1)]

−1‖∞,
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where M is a sufficient large bounded constant.
2.	 Suppose 2a𝜆 < min

j∈S
|𝛽∗

1j
| and � = o(

√
n�∕�S�). Then with probability at least 

𝛽oracle is a local minimizer of (3).

The variable selection consistency and estimation bounds are described in Theo-
rem 1. Furthermore, a more straightforward corollary, contributing to understanding 
of the penalized �-divergence estimation, could be obtained using the above prob-
ability bounds.

Corollary 1  Suppose that �0 and �1 are bounded away from zero and infinity, 
|S| ≪ n , log(p) = O(n�) with � ⩽ 1, and C = O(n�1) with �1 ∈ [0, 1∕2). Under Con-
dition 1–3, if 2a𝜆 < min

j∈S

|||𝛽
∗
1j

||| and 𝜆 ≫ n(𝛼−1)∕2+𝛼1, then the true sparsity structure can 
be identified and ‖𝛽̂𝛽𝛽1 − 𝛽𝛽𝛽∗

1
‖2 = Op(

√
�S�∕n).

Corollary  1 shows that the penalized �-divergence estimator could achieve the 
consistency rate of Op(

√
�S�∕n) , which is same as that of the penalized maximum 

likelihood estimator (see Fan and Lv 2011 and others for reference). For properties 
of the �-divergence estimator, previous studies only focus on the low-dimensional 
case, such as asymptotic normality based on M-estimation theory (Hung et al. 2018; 
Fujisawa and Eguchi 2008). In this paper, we establish variable selection consist-
ency and estimation bounds based on �-divergence in the high-dimensional case.

Pr{‖𝛽̂𝛽𝛽1 − 𝛽𝛽𝛽∗
1
‖2 ⩽

√
�S�∕n𝜀} ⩾ 1 − exp

�
−

�S�𝜌2
1

512𝜌0M
2
𝜀2

�

− 2�S�2 exp
�
−

n𝜌2
1

2�S�2M2𝜅2

�
− 2�S�2 exp

�
−

n𝜌2
0

2�S�2𝜅2

�
,

1 − exp

(
−

|S|�2
1

512�0M
2
�2

)
− 2|S|2 exp

(
−

n�2
1

2|S|2M2�2

)
− 2|S|2 exp

(
−

n�2
0

2|S|2�2

)

− 2|S|2 exp
(
−
n3�2

1
C2

2|S|3

)
− 2|S|2 exp

(
−
n3�2

1

8|S|3

)
− 2p ⋅ exp

(
−

n�2

2M2�2(2C + 1)2

)
,
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2.3 � Computation

When we minimize objective function (3), the coordinate descend algorithm can be 
adopted. Let ∇j represent the derivative to �j . A simple calculation shows that

where �� ,i(���) =
f (yi|xxxi;���)�

(∫ f (y|xxxi;���)1+�dy)
�

1+�

 , Ki(yi;���) =
yi−�i

Var (yi)q�(�i)
 and �i = E(yi) is linked to 

�i through the canonical link function q(⋅) in GLM. The overall algorithm is 
described in Algorithm 1. As two special cases, the expressions of the gradient (5) 
for logistic regression and Poisson regression are given by (28) and (29) in “Appen-
dix B2”.

We adopt the MCP penalty with first-order derivative p�
�
(t) = �(1 −

t

a�
)+ for 

a > 1 and t ⩾ 0 , which contains the tuning parameter � and the regularization 
parameter a. Following Zhang (2010), we set a = 3 . The robust parameter � 
can balance robustness and estimation efficiency; however, there is no consist-
ent methods for selecting � . Bayes Information Criterion (BIC)-type criteria are 
able to identify the true model consistently (Wang et  al. 2007; Wu and Wang 
2020). This motivated us to select the optimal ( �,� ) by minimizing the following 
adjusted Bayes Information Criterion

where �(���) is defined in (2), �(�, �) is the number of nonzero coefficients and 𝛿 > 1 
is an adjustment coefficient. It is of interest to note that the variation in �(���) is not 
large under different numbers of nonzero coefficients due to the robustness of �
-divergence. As a result, original BIC would provide too much penalty for variables 
in the �-divergence method. Thus, � in adjusted Bayes Information Criterion should 
result in a weaker penalty. We set � = 8 in all numerical studies, which leads to sat-
isfactory performance. As the sensitivity analysis, some simulation results under 
various choices of � are shown in Table S3 (Supplementary Materials). Overall, the 
proposed approach is not much sensitive to the choice of � when it is in a sensible 
range.

(5)∇j�(���) = −
�

n

n∑

i=1

�� ,i(���)

[
Ki(yi;���) −

∫ Ki(y;���)f (y|xxxi;���)1+�dy
∫ f (y|xxxi;���)1+�dy

]
Xij

BIC�,� = �(���) +
�(�, �)log(n)

�n
,
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The proposed algorithm is computationally affordable. For instance, the anal-
ysis of one simulated dataset with n = 400, p = 1000 takes less than 10 min on a 
regular PC. The convergence is achieved in our numerical studies and real data 
analysis within 30 overall iterations.

3 � Simulation studies

In this section, we consider two cases: logistic regression for binary data and Pois-
son regression for count data. In each case, nonrobust and robust alternatives are 
compared and two oracle estimators are considered. �-divergence is used based on 
known true important variables in the first estimator (Oracle1). In the second esti-
mator (Oracle2), the true label and true important variables are both known and the 
conventional regression method is used. All simulations are based on 100 repetitions 
and conducted using MATLAB codes.

We denote S ≡ {j ∶ �j ≠ 0} as the set of predictor variables that contributes to 
the model, Ŝ ≡ {j ∶ 𝛽j ≠ 0} as the set of selected predictor variables. In simulation 
results, the column labeled “TP” shows the mean and standard deviation of numbers 
of true positives (|Ŝ ∩ S|) , and the column labeled “FP” shows the mean and stand-
ard deviation of numbers of false positives (|Ŝ ⧵ S|) . We consider n = 200, 400 and 
p = 1000, 2000 in all simulations.

3.1 � Case 1: Logistic regression for binary data

In this case, we numerically compare the proposed penalized �-logistic regression 
with penalized conventional logistic regression and penalized constant-mislabel 
logistic regression (Copas 1988). We evaluate the performances of variable selec-
tion, parameter estimation and prediction of three methods.

Predictor variables x are from p-dimensional normal distribution N(0,�) . Con-
sider two structures of covariance matrix � =

(
�ij
)
1⩽i,j⩽p

 . The first structure is auto-
regressive correlation (AR) given by �ij = �|i−j| with � = 0.25 and 0.75. The second 
structure is banded correlation, and two scenarios were considered: in the first sce-
nario, �ij = 0.33 if |i − j| = 1 , and 0 otherwise; in the second, �ij = 0.6 if |i − j| = 1 , 
0.33 if |i − j| = 2 , and 0 otherwise. The response variables are generated from 
Bernoulli {P(y = 1|xxx)} , where P(y = 1|xxx) = �0{1 − �(xxx;���∗)} +

{
1 − �1

}
�(xxx;���∗) 

with mislabel probabilities �0 = P
(
y = 1|y0 = 0,xxx

)
 , �1 = P

(
y = 0|y0 = 1,xxx

)
 and the 

true label y0′ s probability of success �(xxx;���∗) = exp (xxxT���∗)

1+ exp (xxxT���∗)
 . We consider two mecha-

nisms of mislabel probabilities: (S1) �0 = m0 and �1 = m1 ; (S2) �0 = m0 and 
�1 = m0 + (m1 − m0)�(xxx;���

∗) . Setting (S1) considers constant-mislabel probabilities, 
while setting (S2) considers mislabel probabilities related to xxx . There are a total of 
16 nonzero effects and coefficients are randomly generated from uniform distribu-
tion U[0.5, 1.5]. When evaluating the performances of variable selection and param-
eter estimation, we set (m0,m1) = (0.05, 0.2) under (S1) and (S2). And the case 
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where all response labels are correct (m0,m1) = (0, 0) is considered, denoted by 
(S0).

In Table 1, “logistic,” “constant” and “ �-logistic” in “methods” represent penal-
ized conventional logistic regression, penalized constant-mislabel logistic regression 
and penalized �-logistic regression, respectively. Table  1 shows performances of 
these methods under p = 1000 and the results under p = 2000 are placed in Supple-
mentary Materials. When mislabeling exists, the proposed approach can identify the 
majority of the true positives with a small number of false positives. It can be also 
seen that the results about variable selection of penalized �-logistic regression are 
expected to be much closer to the true model as the sample size n increases.

To evaluate the prediction performance, we compute the classification accu-
racy (CA) of each competitor by Monte Carlo from applying the prediction rule 
y = I(xxxT𝛽̂𝛽𝛽 > 0) to a clean test dataset (YYY0,XXX) consisting of 1000 observations, in 
which the predictor variables XXX are independent and identically distributed with 
the training data, and the responses YYY0 are generated from Bernoulli {�(xxx;���∗)} . 
For training datasets, we set m0 = 0.05 and m1 ∈ {0.05, 0.10,… , 0.50} . Figures  1 
and 2 report the classification accuracy of penalized �-logistic regression and other 
methods under S1 and S2 with (n, p) = (400, 1000) , respectively. Figure 3 shows an 
example of the solution paths. More results are placed in Supplementary Materi-
als. Observe that penalized robust logistic regression dominates the alternatives. It 
can be seen that �-logistic and constant-mislabel logistic perform similarity when 
m0 = m1 as expected. As m1 increases, the CA loss of the proposed �-logistic is much 
less than that of constant-mislabel logistic.

Fig. 1   Simulation results of the classification accuracy under (S1) with p = 1000 , n = 400
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We also consider more realistic predictor variables and use the gene expres-
sion data from the TNBC data in the next section. A total of 1000 variables are 
selected, of which 16 nonzero effects are set. For each replicate, we randomly sam-
ple 400 subjects. The scenarios of response variables are same as previous parts. 
This way, realistic data distributions and correlations can be achieved. Meanwhile, 

Fig. 2   Simulation results of the classification accuracy under (S2) with p = 1000 , n = 400

Fig. 3   The path of nonzero effects along � for logistic regression with n = 400 , p = 1000 under S2 and 
the first AR correlation
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the abnormality in predictors could be demonstrated (p values of 966 variables are 
less than 0.05 using Shapiro–Wilk normality test). In this scenario, we evaluate 
the performances of variable selection and parameter estimation of three methods. 
These simulation results are summarized in Table 4 (“Appendix”). The robustness 
for abnormality in predictors of the proposed method could be demonstrated.

Besides, we further consider the detection of the suspect mislabeled samples 
by searching for instances with small values of the weight function, in which the 
instances whose weights of less a cutoff value are considered as candidates of mis-
labeled subjects. Under the first AR correlation, p = 1000 and n = 400 , we examine 
the relationships between the cutoff value and the performance of detecting mis-
labeled samples (Table 5, “Appendix”). It can be shown that the true positive rate 
(TPR) and false positive rate (FPR) are increased with increasing cutoff values of 
weights, which reflects that there is no consistently good cutoff values. In practice, 
the cutoff value could be selected according to the preference of TPR or FPR.

3.2 � Case 2: Poisson regression for count data

In this case, we numerically compare the proposed penalized �-Poisson regression 
with penalized conventional Poisson regression. We evaluate the performances of 
variable selection and parameter estimation. And detailed implementation algo-
rithms of �-Poisson regression are relegated to “Appendix B2”.

Predictor variables x are from p-dimensional normal distribution N(0,�) , 
� = DRD , where R is correlation matrix and D is standard deviation diagonal 
matrix. The structures of correlation matrix R = (rij)1⩽i,j⩽p are same as the covari-
ance matrix in Case 1. There are a total of 16 nonzero effects. In order to have a rea-
sonable range for the response variable, we set D = diag{0.5,⋯ , 0.5}p×p and 
nonzero coefficients are randomly generated from uniform distribution U[0.5,  1]. 
The response variable yi ∼ Poisson

{
exp (xxxT

i
���∗) + �i

}
 , where �i = 0 or 5. We con-

sider two mechanisms of contamination: (S1) m1 of �i s in each dataset are randomly 
set as 5; (S2) P (�i = 5) =

exp (xxxT
i
���∗)

1+ exp (xxxT
i
���∗)

m1 . We set m1 = 0, 0.2 , in which m1 = 0 repre-
sents that responses are not contaminated (denoted by S0).

In Table 2, “Poisson” and “ �-Poisson” in “methods” represent penalized conven-
tional Poisson regression and penalized �-Poisson regression, respectively. Table 2 
shows performances of these methods under p = 1000 and more results are placed 
in Supplementary Materials. The penalized �-Poisson regression outperforms penal-
ized conventional Poisson regression for identifying more true positives and less 
false positives under both contaminations. When responses are not contaminated, 
the results of these two methods are similar.

4 � Real data analysis

In this section, the Cancer Genome Atlas (TCGA) data (https​://cance​rgeno​me.nih.
gov/) on Breast Invasive Carcinoma (BRCA) is used. A total of 57,251 variables 
for a total of 1,222 samples (1,102 with a primary solid tumor, 7 with metastases 

https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
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and 113 with normal breast tissue) are included in the BRCA gene expression data, 
which can be downloaded using the R package brca.data.

4.1 � Triple‑negative breast cancer data

We focus on the Triple-Negative Breast Cancer (TNBC) built from the BRCA data. 
TNBC, the most heterogeneous group of breast cancers, presents a significantly 
shorter survival comparing those with non-triple-negative after the first metastatic 
event. The TNBC is characterized by lack of expression of three receptors (estro-
gen receptor (ER), progesterone receptor (PR) and human epidermal growth factor 
receptor type 2 (HER2)) (Foulkes et al. 2010). TNBC individuals are with ER, PR 
and HER2 negative and non-TNBC individuals are with at least one of the three 
genes positive.

However, Hammond et al. (2010) reported that up to 20% of immunohistochemi-
cal (IHC) ER and PR determinations worldwide might be inaccurate for some rea-
sons, such as the variation in interpretation criteria, preanalytic variables. In addi-
tion, distinct HER2 labels can be provided by three available variable sources, 
namely, the HER2 (IHC) level, HER2 (IHC) status and HER2 (fluorescence in-situ 
hybridization, FISH) (Lopes et al. 2018; Wolff et al. 2007).

Following Lopes et  al. (2018), only 1,102 samples from primary solid tumor 
and 19,688 variables (including the three TNBC-associated key variables ER, PR 
and HER2) are considered for analysis, corresponding to the protein coding genes 
reported from Ensembl genome browser (2000) and Consensus CDS (2017). Log-
transformed gene expression data are normalized to have zero mean and unit vari-
ance. We conduct a marginal screening and keep the top 3500 genes for downstream 
analysis to remove noise.

4.2 � Gene identification and outlier detection

From variables selected by penalized �-logistic regression, 26 genes are identified, 
in which 14 genes are down-regulated and 12 genes are up-regulated in TNBC listed 
in Table 3. As a contrast, the penalized conventional logistic regression identifies 
18 genes (11 down-regulated and 7 up-regulated). Quite a lot genes are reported as 
strong TNBC-regulated many times previously, in which it is of interest to note that 
some genes are identified by �-logistic regression but conventional logistic regres-
sion fail, such as down-regulated genes AGR3, TGFB3, AR and SPDEF and up-reg-
ulated genes CT83, FAM171A1, FZD9, VGLL1 and PPP1R14C. The AGR3 is con-
sidered to be a suitable serum-based biomarker for early cancer detection because 
of the low expression in TNBC cell lines (Guo et al. 2017). The TGFB3, encoding a 
secreted ligand of the transforming growth factor−� protein superfamily, is found to 
be linked with the carcinogenesis of TNBC and involved in the cell cycle pathway 
(Naorem et al. 2019). Li (2017) concludes that the AR expression, as a subclassifica-
tion marker, contributes to good prognosis in TNBC and that AR-positive TNBC 
patients might respond to anti-androgen endocrine therapy. Jung et al. (2016) report 
that SPDEF is expressed at high levels in non-TNBC cell lines. For up-regulated 
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genes, the CT83 has been identified as a potential target for triple-negative breast 
cancer (Jessica et al. 2019). In addition, it has been reported that FAM171A1 (Sandra 
et al. 2017), FZD9 (Tudoran et al. 2015), VGLL1 (Chen et al. 2019) and PPP1R14C 
(Al-Zahrani et al. 2018) would overexpress in TNBC cell lines.

We apply the “leave-one-out” approach to assess the stability of our method and 
findings. The proposed method is applied in the case where one sample is removed 
from the dataset firstly and then this step is repeated over all samples. Genes’ fre-
quency of being identified is computed (Table  3). It can be seen that all genes, 
identified by the proposed method, have stability measures close to 1. We have also 
examined those genes not identified and found that their stability measures are equal 
or close to 0, which suggests satisfactory stability of our method. For comparison, 
the penalized logistic regression is applied in the same process, but it does not work 
well in stability.

Table 3   Identified genes in TNBC based on all samples ( �-logistic: highlighted in bold; logistic: high-
lighted with star) and stability results

Down-regulated Up-regulated

Gene �-logistic Logistic Gene �-logistic Logistic Gene �-logistic Logistic

AGR2∗ 1.000 1.000 C16orf95 0.017 PDX1 0.009
AGR3 1.000 CDCA2∗ 0.974 0.922 POM121L2∗ 0.991
AR 1.000 CHODL 1.000 SLC15A1 0.353
CA12∗ 1.000 1.000 CT83 1.000 SLC6A15 0.190
CAPN13 0.034 FAM171A1 1.000 SUV39H2 0.078
ERBB2 0.026 FAM64A 0.009 TLX1 0.026
FOXA1∗ 1.000 1.000 FOXC1∗ 1.000 1.000 TMEFF1∗ 0.603
GATA3∗ 1.000 1.000 FZD9 1.000 VAX1 0.293
GUCY1A2 0.034 HORMAD1 0.060 ZIC1 0.578
JAM3 0.060 MOGS 0.009 ZIC4 0.009
MLPH∗ 1.000 1.000 PAPSS1 0.862
MYCT1 0.017 PPP1R14C 1.000
PGAP3∗ 0.871 1.000 ROPN1 0.043
PRR15∗ 1.000 1.000 SFT2D2 1.000
SPARCL1 0.931 SRSF12∗ 1.000 1.000
SPDEF 1.000 TTLL4∗ 1.000 1.000
TBC1D9∗ 1.000 0.526 VGLL1 1.000 0.328
TFF3∗ 1.000 1.000 CLDN10 0.026
TGFB3 1.000 COL9A3∗ 0.612
CPE∗ 1.000 DMRTA2 0.009
HTRA1∗ 0.991 FTCD 0.103
TTC6 0.017 ILF2 0.009
VAV3 0.017 LYPD1 0.198
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We detect the suspect individuals by searching for instances with small values of 
the weight function. 57 instances whose weights of less 0.5 are considered as candi-
dates of mislabeled subjects and a careful inspection might contribute to disclosing 
the outlierness of suspect individuals detected (Table B3 in “Appendix”). In these 
suspect individuals, abnormal ER or PR gene expression values regarding their 
TNBC labels can be observed for some individuals, such as “TCGA-GM-A2DI” 
(ER-, 23.49; PR-, 12.05) and “TCGA-BH-A1EW” (ER-, 29.98; PR-, 18.9). The 
opposite situation can also be observed for non-TNBC patients “TCGA-AR-A1AH” 
(ER+, 0.03), “TCGA-AR-A0TP” (ER+, 0.04) and “TCGA-A2-A4S1” (ER+, 0.29), 
which might be identified as TNBC if labeled correctly. Besides, the inconsistency 
of HER2 labels is observed. For instance, individual “TCGA-C8-A3M7” (HER2-, 
25.47) is identified as HER2- by IHC testing, while its HER2 value most probably 
indicates positive for the gene expression.

5 � Discussion

We have proposed a robust high-dimensional regression method for generalized lin-
ear model with anomalous responses. Mislabeled responses, as an important special 
case, have been the focus in this paper, but continuous responses could also be dealt 
with in the proposed framework. We have rigorously established variable selection 
consistency and estimation bounds in the setting where the dimensionality p can 
grow exponentially fast with the sample size n. The reasonable performance of the 
proposed method has been shown in simulations and real data analysis. Although 
this work focuses on data with anomalous responses, abnormality in the predictors 
could also be analyzed using the proposed framework. And relevant simulations in 
“Appendix” show that even analyzing data with normal responses, the proposed 
method is close to the conventional methods.

This study can be potentially extended in multiple directions. Imbalanced data 
is common in classification problems. How to deal with imbalanced data with mis-
labeled responses could also be an interesting problem. In technologies of imbal-
anced data, data-level and algorithm-level methods are two main approaches. For 
data-level methods, Stefanowski (2016) proposes algorithms consists of cleaning 
overlapping instances and removing noisy objects that might affect models nega-
tively. These ideas combining with �-divergence may offer a solution. Specifically, 
when removing overlapping or noisy samples, weight function from �-divergence 
could be used to improve detection. As for algorithm-level methods, the cost-sensi-
tive approach is the most popular branch (Thai-Nghe et al. 2010), in which the loss 
function incorporates varying penalties for considered groups of examples and the 
importance of less represented objects is improved with the assignment of higher 
cost. And the weight function derived from �-divergence could be added to these 
varying penalties according to a proper way, which might reduce the impact of mis-
labeled responses. Another interesting research is robust high-dimensional statisti-
cal inference (e.g., constructing confidence intervals or statistical testing) based on 
the penalized �-divergence. For regularized estimators, inference procedures based 
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on asymptotic properties perform poorly, especially when the signal-to-noise ratio 
is high and the between covariate correlations are not low (Minnier et  al. 2011). 
Recently, many powerful techniques have been proposed, see Dezeure et al. (2015) 
for an overview. However, little work exists on the robust high-dimensional statisti-
cal inference. This raises many interesting theoretical and methodological questions 
for the future.
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Appendix

Appendix A. Proofs of Theorem 1

In this section, we give rigorous proofs of Theorem 1. To prove Theorem 1, some nota-
tions are needed. Define �i = E(yi) = b�(�i) , which is linked to �i through the canonical 
link function q

(
�i

)
= �i . Let ∇��� represent the derivative to ��� . Then,

where

Denote ∇���Ii(���) = Hi(���)xxxi and ∇���Hi(���) = Ji(���)xxxi . Hi(���) and Ji(���) need to be calcu-
lated in Theorem 1. Some calculations show that

where

(6)∇����(���) =
1

n

n∑

i=1

Ii(���)xxxi,

(7)

Ii(���) = −��� ,i(���)

[
Ki(yi;���) −

�1i(���)

�2i(���)

]
, �� ,i(���) =

f (yi|xxxi;���)�
(∫ f (y|xxxi;���)1+�dy

) �

1+�

,

Ki(yi;���) =
yi − �i

�(�i)
, �(�i) = Var

(
yi
)
q�
(
�i

)
,

�1i(���) = � Ki(y;���)f (y|xxxi;���)1+�dy, �2i(���) = � f (y|xxxi;���)1+�dy.

∇����� ,i(���) = −Ii(���)xxxi, ∇���Ki(yi;���) = k1i(yi;���)xxxi,

∇����1i(���) = �1i(���)xxxi, ∇����2i(���) = (1 + �)�1i(���)xxxi,
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Then we can get ∇���Ii(���) = Hi(���)xxxi , where

More calculations show that

where

Then we can get ∇���Hi(���) = Ji(���)xxxi , where

�1i(���) and �2i(���) are defined in (9), k2i(yi;���) and �2i(���) are defined in (10), �1i(���) 
is defined in (8), �1i(���) and �2i(���) are defined in (7). And then we give the proof of 
Theorem 1.

Proof of  Theorem  1  First, let � = {���1 ∶ ‖���1 − ���∗
1
‖2 = r} and r = �

√
�S�∕n with 

𝜀 <
√
n∕�S� . It suffices to show that

(8)

k1i(yi;���) = �1i(yi;���)[q
−1(�i)]

�,

�1i(yi;���) =
−�(�i) − (yi − �i)�

�(�i)

�2(�i)
, �i = ���Txxxi,

�1i(���) = ∫ (k1i(y;���) + (1 + �)K2
i
(y;���))f (y|xxxi;���)1+�dy.

(9)

Hi(���) = −��� ,i(���)
[
��2

1i
(���) +�2i(���)

]
,

�1i(���) = Ki(yi;���) −
�1i(���)

�2i(���)
,

�2i(���) = k1i(yi;���) −
�1i(���)

�2i(���)
+ (1 + �)

[
�1i(���)

�2i(���)

]2
.

∇���k1i(yi;���) = k2i(yi;���)xxxi, ∇����1i(���) = �2i(���)xxxi,

(10)

k2i(yi;���) = �1i(yi;���)[q
−1(�i)]

�� + �2i(yi;���){[q
−1(�i)]

�}2,

�2i(yi;���) =
(yi − �i){2�(�i)[�

�(�i)]
2 − �2(�i)�

��(�i)} + 2�2(�i)�
�(�i)

�4(�i)
,

�2i(���) = ∫ [k2i(y;���) + 3(1 + �)Ki(y;���)k1i(y;���)

+ (1 + �)2K3
i
(y;���)]f (y|xxxi;���)1+�dy.

(11)

Ji(���) = �Ii(���)[��
2
1i
(���) +�2i(���)] − 2�2�� ,i(���)�1i(���)�2i(���)

− ��� ,i(���){k2i(yi;���) −
�2i(���)

�2i(���)
− (1 + �)

�1i(���)�1i(���)

� 2
2i
(���)

+ 2(1 + �)2[
�1i(���)

�2i(���)
]3},

Pr{ inf
𝛽𝛽𝛽1∈𝛩

�1(𝛽𝛽𝛽1) > �1(𝛽𝛽𝛽
∗
1
)} ⩾ 1 − 𝜏(r),
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where �(r) = exp
(
−

n�2
1
r2

512�0M
2

)
+ 2|S|2 exp

(
−

n�2
1

2|S|2M2�2

)
+ 2|S|2 exp

(
−

n�2
0

2|S|2�2

)
 , 

���1 ∈ �|S| and

This implies that with probability at least 1 − � , �1(���1) has a local minimum 𝛽̂𝛽𝛽1 ∈ 𝛩.
Let uuu ∈ �|S| with ‖uuu‖2 = 1 . Define 𝛽̌𝛽𝛽1 = 𝛽𝛽𝛽∗

1
+ ruuu and 𝛽̌𝛽𝛽 = (𝛽̌𝛽𝛽

T

1
, �T )T . Consider 

Q(uuu) = n{�1(𝛽̌𝛽𝛽1) − �1(𝛽𝛽𝛽
∗
1
)} . It is equivalent to show that

In fact

where 𝛽̃𝛽𝛽 is between ���∗ and 𝛽̌𝛽𝛽 , and I(���) = (I1(���),… , In(���))
T with Ii is defined in (7). 

Each element of I(���∗) and H(���∗) are bounded by a sufficient large bounded constant 
M.

For Q1 , the following inequality can be obtained for any t > 0 using ‖XXX1uuu‖22 ⩽ n�0 
and Hoeffding’s inequality,

Let t = 1

32
n�1r , then

For Q2 , note that Q2 ⩾
1

2
r2�min{XXX

T
1
H(���∗)XXX1} . From Bonferroni’s inequality and 

Hoeffding’s inequality, we have

where xij is the (i, j) component of XXXT . By the inequality

(12)�1(���1) = −
1

n

n∑

i=1

f
(
yi|xxxi1;���1

)�
(∫ f (y|xxxi1;���1)1+�dy

)�∕(1+�) .

(13)Pr

�
inf

‖uuu‖2=1
Q(uuu) > 0

�
⩾ 1 − 𝜏(r).

Q(uuu) = ruuuTXXXT
1
I(𝛽𝛽𝛽∗) +

1

2
r2uuuTXXXT

1
H(𝛽𝛽𝛽∗)XXX1uuu +

1

2
r2uuuTXXXT

1
[H(𝛽̃𝛽𝛽) − H(𝛽𝛽𝛽∗)]XXX1uuu

=∶ Q1 + Q2 + Q3,

Pr(�Q1� ⩾ rt) ⩽ 2 exp

�
−

2t2

‖XXX1uuu‖22M2

�
⩽ 2 exp

�
−

2t2

n�0M
2

�
.

(14)Pr(Q1 ⩾ −
1

32
n�1r

2) ⩾ 1 − exp

(
−

n�2
1
r2

512�0M
2

)
.

Pr

�
‖XXXT

1
H(���∗)XXX1 − E[XXXT

1
H(���∗)XXX1]‖2F ⩾

n2�2
1

4

�

⩽
�

j∈S

�

k∈S

Pr

������

n�

i=1

Hi(���
∗)xijxik −

n�

i=1

E[Hi(���
∗)xijxik] ⩾

n�1

2�S�

�����

�

⩽ 2�S�2 exp
�
−

n�2
1

2�S�2M2�2

�
,
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we have

As for Q3 , we have |Hi(𝛽̃𝛽𝛽) − Hi(𝛽𝛽𝛽
∗)| = |Ji(𝛽𝛽𝛽◦)xxxTi1(𝛽̃𝛽𝛽1 − 𝛽𝛽𝛽∗

1
)| ⩽ M𝜅r , where Ji is 

defined in (11). ���◦ is between ���∗ and 𝛽̃𝛽𝛽 , 𝛽̃𝛽𝛽1 denotes the components of 𝛽̃𝛽𝛽 indexed by 
S. Ji(���) is bounded by M. Note that |Q3| ⩽

1

2
r3M��max{XXX

T
1
XXX1} . By the inequality

similarly as the derivation on Q2 , it can be derived that

With r ≪ 𝜌1

𝜌0
 , it can be obtained that

From (14)–(16), we have

with probability at least

Define �(r) = 1

8
n�1r

2 . Recall that r = �
√
�S�∕n , �(r) ⩾ 0 . Therefore, (13) is proved 

and Part 1 of Theorem 1 is established.
Now Part 2 is considered. Let 𝛽̂𝛽𝛽 denote 𝛽̂𝛽𝛽

oracle
 for simplicity. By the Karush–

Kuhn–Tucker (KKT) conditions, we need to prove that 𝛽̂𝛽𝛽 satisfies

and

where I(���) = (I1(���),… , In(���))
T with Ii defined in (7) and 

ppp�
𝜆
(|𝛽̂𝛽𝛽1|) = (p�

𝜆
(|𝛽11|) sgn (𝛽11),… , p�

𝜆
(|𝛽1s|) sgn (𝛽1s))

T with s = |S| . If 

�min{XXX
T
1
H(���∗)XXX1} ⩾ n�1 − ‖XXXT

1
H(���∗)XXX1 − E[XXXT

1
H(���∗)XXX1]‖F,

(15)Pr(Q2 ⩾
1

4
n�1r

2) ⩾ 1 − 2|S|2 exp
(
−

n�2
1

2|S|2M2�2

)
.

�max{XXX
T
1
XXX1} ⩽ n�0 + ‖XXXT

1
XXX1 − E[XXXT

1
XXX1]‖F,

Pr(Q3 ⩾ −
3

4
nr3�0M�) ⩾ 1 − 2|S|2 exp

(
−

n�2
0

2|S|2�2

)
.

(16)Pr(Q3 ⩾ −
3

32
n�1r

2) ⩾ 1 − 2|S|2 exp
(
−

n�2
0

2|S|2�2

)
.

(17)Q(u) ⩾
1

8
n�1r

2,

1 − exp

(
−

n�2
1
r2

512�0M
2

)
− 2|S|2 exp

(
−

n�2
1

2|S|2M2�2

)
− 2|S|2 exp

(
−

n�2
0

2|S|2�2

)
.

(18)XXXT
1
I(𝛽̂𝛽𝛽) = nppp�

𝜆
(|𝛽̂𝛽𝛽1|)

(19)‖XXXT
2
I(𝛽̂𝛽𝛽)‖∞ ⩽ n𝜆,
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a𝜆 < min
j∈S

|𝛽1j| , ppp�𝜆(|𝛽̂𝛽𝛽1|) = 000 , and (18) holds certainly. Note 2a𝜆 < min
j∈S

|||𝛽𝛽𝛽
∗
1j

||| and 
r2 ≪ 𝜆 , it can be concluded that the event {‖𝛽̂𝛽𝛽1 − 𝛽𝛽𝛽∗

1
‖2 ⩽ r} belongs to the event 

{a𝜆 < min
j∈S

|𝛽1j|} . That is,

Now consider the probability of

With Taylor expansion, we have

where zzz1 = XXXT
1
(H(𝛽̄𝛽𝛽 t1 ) − H(𝛽𝛽𝛽∗))XXX1(𝛽̂𝛽𝛽1 − 𝛽𝛽𝛽∗

1
) , 𝛽̄𝛽𝛽 t1 is between ���∗ and 𝛽̂𝛽𝛽 . Then, we can 

have

Therefore, XXXT
2
I(𝛽̂𝛽𝛽) can be rewritten as

where zzz2 = XXXT
2
(H(𝛽̄𝛽𝛽 t2 ) − H(𝛽𝛽𝛽∗))XXX1(𝛽̂𝛽𝛽1 − 𝛽𝛽𝛽∗

1
) , 𝛽̄𝛽𝛽 t2 lies between ���∗ and 𝛽̂𝛽𝛽 . From (20) we 

know that ‖ppp�
𝜆
(�𝛽̂𝛽𝛽1�)‖∞ = 0 with probability at least 1 − �(r) . Then, the KKT Condi-

tion (19) is guaranteed if

where zzz = 1

n
XT [H(𝛽𝛽𝛽∗ + 𝜂(𝛽̂𝛽𝛽 − 𝛽𝛽𝛽∗)) − H(𝛽𝛽𝛽∗)]XXX1(𝛽̂𝛽𝛽1 − 𝛽𝛽𝛽∗

1
) with � ∈ [0, 1].

Next, we define

We can find that

(20)Pr(a𝜆 < min
j∈S

�𝛽1j�) ⩾ Pr(‖𝛽̂𝛽𝛽1 − 𝛽𝛽𝛽∗
1
‖2 ⩽ r) ⩾ 1 − 𝜏(r).

‖XXXT
2
I(𝛽̂𝛽𝛽)‖∞ ⩽ n𝜆.

(21)nppp�
𝜆
(|𝛽̂𝛽𝛽1|) = XXXT

1
I(𝛽𝛽𝛽∗) −XXXT

1
H(𝛽𝛽𝛽∗)XXX1(𝛽̂𝛽𝛽1 − 𝛽𝛽𝛽∗

1
) − zzz1,

(22)𝛽̂𝛽𝛽1 − 𝛽𝛽𝛽∗
1
= (XXXT

1
H(𝛽𝛽𝛽∗)XXX1)

−1(XXXT
1
I(𝛽𝛽𝛽∗) − nppp�

𝜆
(|𝛽̂𝛽𝛽1|) − zzz1).

XXXT
2
I(𝛽̂𝛽𝛽) = XXXT

2
I(𝛽𝛽𝛽∗) −XXXT

2
H(𝛽𝛽𝛽∗)XXX1(𝛽̂𝛽𝛽1 − 𝛽𝛽𝛽∗

1
) − zzz2

= XXXT
2
I(𝛽𝛽𝛽∗) −XXXT

2
H(𝛽𝛽𝛽∗)XXX1(XXX

T
1
H(𝛽𝛽𝛽∗)XXX1)

−1(XXXT
1
I(𝛽𝛽𝛽∗) − nppp�

𝜆
(|𝛽̂𝛽𝛽1|)

− zzz1) − zzz2,

(23)� ⩾ [‖XXXT
2
H(���∗)XXX1(XXX

T
1
H(���∗)XXX1)

−1‖∞ + 1](‖XXXT
1
I(���∗)∕n‖∞ + ‖zzz‖∞),

q0 = ‖XXXT
2
H(���∗)XXX1(XXX

T
1
H(���∗)XXX1)

−1 − E(XXXT
2
H(���∗)XXX1)[E(XXX

T
1
H(���∗)XXX1)]

−1‖∞,
q1 = ‖(XXXT

1
H(���∗)XXX1)

−1 − [E(XXXT
1
H(���∗)XXX1)]

−1‖∞,
q2 = ‖XXXT

2
H(���∗)XXX1 − E(XXXT

2
H(���∗)XXX1)‖∞,

q3 = ‖XXXT
1
H(���∗)XXX1 − E(XXXT

1
H(���∗)XXX1)‖∞,

� = ‖[E(XXXT
1
H(���∗)XXX1)]

−1‖∞.
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Note that

Hence, as long as q3𝜑 < 1 , then we have q1 ⩽ q3�
2∕(1 − q3�) and 

q0 ⩽ �(q2 + Cq3)∕(1 − q3�) . Now the events {q2 ⩽ C∕(2�)} and 
{q3 ⩽ 1∕(4�)} are considered. Similar to the proof for Q2 , and note that 
� ⩽

√
�S� ⋅ ‖[E(XXXT

1
H(���∗)XXX1)]

−1‖2 ⩽
√
�S� ⋅ �−1

min
{E(XXXT

1
H(���∗)XXX1)} ⩽

√
�S�∕(n�1) , it 

can be obtained

Then we have q0 ⩽ �(q2 + Cq3)∕(1 − q3�) ⩽ C with probability at least

With ‖XXXT
2
H(���∗)XXX1(XXX

T
1
H(���∗)XXX1)

−1‖∞ ⩽ q0 + C and above discussions, go back to 
(23), it is sufficient to show

Therefore, focus on the events that

q0 = ‖[XXXT
2
H(���∗)XXX1 − E(XXXT

2
H(���∗)XXX1)] ⋅

�
(XXXT

1
H(���∗)XXX1)

−1 − [E(XXXT
1
H(���∗)XXX1)]

−1
�

+ E(XXXT
2
H(���∗)XXX1)[E(XXX

T
1
H(���∗)XXX1)]

−1
⋅ [−XXXT

1
H(���∗)XXX1 + E(XXXT

1
H(���∗)XXX1)]

⋅ [XXXT
1
H(���∗)XXX1]

−1

+ [XXXT
2
H(���∗)XXX1 − E(XXXT

2
H(���∗)XXX1)] ⋅ [E(XXX

T
1
H(���∗)XXX1)]

−1‖∞
⩽ q2q1 + Cq3‖[XXXT

1
H(���∗)XXX1]

−1‖∞ + q2�

⩽ q1q2 + Cq3(� + q1) + q2�.

q1 = ‖(XXXT
1
H(���∗)XXX1)

−1
⋅ (E(XXXT

1
H(���∗)XXX1) −XXXT

1
H(���∗)XXX1) ⋅ [E(XXX

T
1
H(���∗)XXX1)]

−1‖∞
⩽ ‖(XXXT

1
H(���∗)XXX1)

−1‖∞ ⋅ ‖E(XXXT
1
H(���∗)XXX1) −XXXT

1
H(���∗)XXX1‖∞

⋅ ‖[E(XXXT
1
H(���∗)XXX1)]

−1‖∞
⩽ ‖(XXXT

1
H(���∗)XXX1)

−1 − [E(XXXT
1
H(���∗)XXX1)]

−1 + [E(XXXT
1
H(���∗)XXX1)]

−1‖∞ ⋅ q3�

⩽ (q1 + �)q3�.

Pr(q2 ⩽
C

2�
) ⩾ 1 − 2|S|2 exp

(
−

nC2

2�2|S|2

)
⩾ 1 − 2|S|2 exp

(
−
n3�2

1
C2

2|S|3

)
,

Pr(q3 ⩽
1

4�
) ⩾ 1 − 2|S|2 exp

(
−

n

8�2|S|2

)
⩾ 1 − 2|S|2 exp

(
−
n3�2

1

8|S|3

)
.

(24)1 − 2|S|2 exp
(
−
n3�2

1
C2

2|S|3

)
− 2|S|2 exp

(
−
n3�2

1

8|S|3

)
.

� ⩾ (2C + 1)(‖XXXT
1
I(���∗)∕n‖∞ + ‖zzz‖∞).

‖XXXT
1
I(���∗)∕n‖∞ ⩽

�

2(2C + 1)
,

‖zzz‖∞ ⩽
�

2(2C + 1)
.
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According to the Bonferroni’s inequality and Hoeffding’s inequality, it can be 
obtained

As for zzz = (z1,… , zp)
T , we have

where xij is the (i,  j) component of XXXT , 𝜂̃ ∈ [0, 𝜂] , and Ji(���) is defined in (11). By 
Cauchy–Swarchz inequality, it can be obtained

Recall that Pr(‖𝛽̂𝛽𝛽1 − 𝛽𝛽𝛽∗
1
‖2 ⩽ r) ⩾ 1 − 𝜏(r) . Note that r2 ≪ 𝜆 , it can be known that 

M��0r
2 ⩽

�

2(2C+1)
 . Following the proof of part 1, we have

Part 2 is proved by combining (20) and (24)–(26). 	�  ◻

Appendix B. Additional numeric results and implementation algorithm of 

‑Poisson regression

Appendix B1. Additional numeric results

See Tables 4, 5 and 6.

(25)
Pr

�
‖XXXT

1
I(���∗)‖∞ ⩽

�

2(2C + 1)

�

⩾ 1 − 2p ⋅ exp

�
−

n�2

2M2�2(2C + 1)2

�
.

zj =
1

n

n∑

i=1

xij𝜂Ji(𝛽𝛽𝛽
∗ + 𝜂̃(𝛽̂𝛽𝛽 − 𝛽𝛽𝛽∗))xxxT

i1
(𝛽̂𝛽𝛽1 − 𝛽𝛽𝛽∗

1
)xxxT

i1
(𝛽̂𝛽𝛽1 − 𝛽𝛽𝛽∗

1
)∕n,

�zj� ⩽ M𝜅𝜎max

�
1

n

n�

i=1

xxxi1xxx
T
i1

�
‖𝛽̂𝛽𝛽1 − 𝛽𝛽𝛽∗

1
‖2
2
.

(26)Pr

�
‖zzz‖∞ ⩽

�

2(2C + 1)

�
⩾ 1 − �(r).
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Table 4   Mean (SD) of numbers 
of true/false positives (TP/FP) 
for variable selection under 
logistic regression based on 
TNBC real data

Methods TP FP ‖𝛽 − 𝛽
0
‖
2

S0 Logistic 13.66(1.17) 2.91(1.46) 3.87(0.98)
Constant 13.71(1.23) 2.83(1.40) 3.64(0.92)
�-logistic 14.89(1.55) 1.12(1.90) 2.57(0.61)
Oracle1 16.00(0.00) 0.00(0.00) 1.89(0.49)
Oracle2 – – –

S1 Logistic 10.79(2.93) 5.83(2.29) 6.42(1.33)
Constant 11.18(2.76) 5.49(2.14) 5.71(1.39)
�-logistic 12.75(1.88) 3.11(1.53) 4.92(1.21)
Oracle1 16.00(0.00) 0.00(0.00) 2.64(0.85)
Oracle2 16.00(0.00) 0.00(0.00) 1.94(0.51)

S2 Logistic 11.36(2.67) 5.20(2.30) 6.37(1.96)
Constant 11.99(2.30) 4.94(2.19) 5.65(1.87)
�-logistic 13.57(1.08) 3.04(1.23) 3.92(1.33)
Oracle1 16.00(0.00) 0.00(0.00) 2.25(0.76)
Oracle2 16.00(0.00) 0.00(0.00) 1.86(0.42)

Table 5   Mean (SD) of TPR and FPR for the detection of mislabeled samples under logistic regression

Cutoff values S1 S2

TPR FPR TPR FPR

0.05 0.6129(0.0691) 0.0259(0.0093) 0.6966(0.0726) 0.0272(0.0099)
0.10 0.6616(0.0695) 0.0345(0.0109) 0.7350(0.0698) 0.0355(0.0101)
0.15 0.6876(0.0723) 0.0408(0.0119) 0.7574(0.0655) 0.0414(0.0110)
0.20 0.7018(0.0714) 0.0449(0.0119) 0.7715(0.0663) 0.0462(0.0113)
0.25 0.7112(0.0712) 0.0494(0.0130) 0.7820(0.0653) 0.0498(0.0119)
0.30 0.7213(0.0721) 0.0528(0.0136) 0.7910(0.0628) 0.0535(0.0125)
0.35 0.7301(0.0723) 0.0564(0.0137) 0.7991(0.0615) 0.0569(0.0127)
0.40 0.7360(0.0730) 0.0599(0.0138) 0.8069(0.0588) 0.0608(0.0131)
0.45 0.7456(0.0717) 0.0641(0.0137) 0.8166(0.0562) 0.0654(0.0138)
0.50 0.7577(0.0682) 0.0681(0.0141) 0.8259(0.0544) 0.0689(0.0148)
0.55 0.7679(0.0688) 0.0731(0.0146) 0.8359(0.0510) 0.0743(0.0150)
0.60 0.7796(0.0663) 0.0786(0.0152) 0.8452(0.0500) 0.0797(0.0152)
0.65 0.7909(0.0660) 0.0848(0.0164) 0.8542(0.0504) 0.0856(0.0160)
0.70 0.8028(0.0636) 0.0937(0.0171) 0.8642(0.0490) 0.0933(0.0168)
0.75 0.8168(0.0591) 0.1046(0.0170) 0.8748(0.0461) 0.1026(0.0161)
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Table 6   Summary of some outliers detected as suspect individuals in TNBC data

Individual ER PR HER2 HER2 
level 
(IHC)

HER2 status 
(IHC)

HER2 (FISH) Type

TCGA-E9-
A22G

0.44(-) 0.02(-) 15.32 + NO TNBC

TCGA-A7-
A13E

0.82(+) 0.06(-) 46.08 2+ Equivocal – NO TNBC

TCGA-A2-
A04U

0.02(-) 0.02(-) 9.64 1+ – + NO TNBC

TCGA-BH-
A5IZ

5.12(+) 0.03(-) 28.08 – – NO TNBC

TCGA-AR-
A251

1.57(+) 0.10(-) 14.02 2+ Equivocal – NO TNBC

TCGA-AR-
A1AH

0.03(+) 0.03(-) 34.12 – NO TNBC

TCGA-AN-
A0FJ

0.08(+) 0.04(-) 14.28 1+ + NO TNBC

TCGA-AR-
A0TP

0.04(+) 0.03(-) 13.39 – NO TNBC

TCGA-A2-
A0YJ

0.09(+) 0.03(-) 240.24 0 – NO TNBC

TCGA-OL-
A5S0

0.09(+) 0.06(-) 31.92 + NO TNBC

TCGA-E2-A1II 0.14(-) 0.19(+) 10.73 1+ – NO TNBC
TCGA-LL-

A5YP
0.16(+) 0.05(-) 15.10 1+ – + NO TNBC

TCGA-A7-
A13D

0.52(-) 0.81(+) 42.28 2+ Equivocal – NO TNBC

TCGA-AR-
A1AJ

1.47(+) 0.07(-) 9.74 – NO TNBC

TCGA-D8-
A1JM

5.00(+) 0.01(-) 21.85 1+ – NO TNBC

TCGA-B6-A0IJ 1.18(+) 0.46(+) 11.12 NO TNBC
TCGA-A2-

A1G1
0.53(-) 0.17(-) 819.76 2+ Equivocal + NO TNBC

TCGA-AO-
A0JL

0.63(-) 0.08(-) 63.60 1+ – + NO TNBC

TCGA-AC-
A62X

0.19(+) 0.02(-) 28.53 NO TNBC

TCGA-D8-
A1XW

0.32(-) 0.11(+) 21.03 1+ – NO TNBC

TCGA-LL-
A6FR

0.33(-) 0.04(+) 32.13 2+ Equivocal + NO TNBC

TCGA-S3-
AA0Z

16.67(+) 0.07(+) 33.07 1+ Equivocal – NO TNBC

TCGA-AN-
A0FX

1.13(-) 0.64(-) 24.02 1+ + NO TNBC



731

1 3

Robust HD regression for data with anomalous responses

Table 6   (continued)

Individual ER PR HER2 HER2 
level 
(IHC)

HER2 status 
(IHC)

HER2 (FISH) Type

TCGA-E9-
A1NC

0.11(-) 0.07(+) 15.91 + NO TNBC

TCGA-LL-
A8F5

1.08(+) 0.04(-) 11.86 1+ – NO TNBC

TCGA-AR-
A24Q

1.00(+) 0.36(-) 20.67 – NO TNBC

TCGA-A2-
A3Y0

2.18(+) 0.03(-) 11.34 1+ – NO TNBC

TCGA-E2-
A14Y

0.67(+) 0.03(+) 487.90 2+ Equivocal + NO TNBC

TCGA-A1-
A0SB

3.16(+) 0.03(-) 32.35 – NO TNBC

TCGA-E9-
A1ND

1.44(-) 0.05(-) 13.05 + NO TNBC

TCGA-AN-
A0FL

0.09(-) 1.07(-) 15.07 1+ + NO TNBC

TCGA-A2-
A25F

0.62(-) 0.23(+) 5.19 – NO TNBC

TCGA-BH-
A0DL

6.99(+) 0.04(-) 9.92 – NO TNBC

TCGA-A2-
A4RX

0.68(+) 0.93(+) 26.64 1+ – NO TNBC

TCGA-A2-
A4S1

0.29(+) 0.01(-) 0.61 – NO TNBC

TCGA-BH-
A6R9

0.59(-) 0.25(+) 8.18 – NO TNBC

TCGA-E2-
A1B0

0.14(-) 0.26(-) 563.81 3+ + NO TNBC

TCGA-AO-
A1KO

10.78(+) 9.12(+) 14.91 1+ – NO TNBC

TCGA-D8-
A13Y

15.48(+) 4.17(+) 4.83 1+ – NO TNBC

TCGA-D8-
A1JK

0.40(-) 0.72(+) 22.19 1+ – NO TNBC

TCGA-AR-
A24U

1.22(-) 0.26(-) 410.17 3+ + NO TNBC

TCGA-AR-
A1AO

1.47(+) 1.13(-) 14.89 1+ – NO TNBC

TCGA-C8-
A12P

0.15(-) 0.20(-) 259.71 3+ + NO TNBC

TCGA-BH-
A1EW

29.98(-) 18.9(-) 42.47 – TNBC

TCGA-GM-
A2DI

23.49(-) 12.05(-) 20.30 – TNBC

TCGA-C8-
A3M7

4.27(-) 0.76(-) 25.47 – TNBC
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Appendix B2. Detailed implementation algorithm of 
‑logistic and 
‑Poisson 
regression

In this section, the concrete expressions of the gradient (5) for logistic regression and 
Poisson regression are given. Recall that the gradient (5) is

where �� ,i(���) =
f (yi|xxxi;���)�

(∫ f (y|xxxi;���)1+�dy)
�

1+�

 , Ki(yi;���) =
yi−�i

Var (yi)q�(�i)
 and �i = E(yi) is linked to 

�i through the canonical link function q(⋅) in GLM.
�-Logistic Regression. In logistic regression, f (y|xxxi;���) =

exp{yxxxT
i
���}

1+exp{xxxT
i
���}

 , and 

Ki(y;���) = y −
exp{xxxT

i
���}

1+exp{xxxT
i
���}

 . Then, it can be obtained that:

∇j�(���) = −
�

n

n∑

i=1

�� ,i(���)

[
Ki(yi;���) −

∫ Ki(y;���)f (y|xxxi;���)1+�dy
∫ f (y|xxxi;���)1+�dy

]
Xij

Table 6   (continued)

Individual ER PR HER2 HER2 
level 
(IHC)

HER2 status 
(IHC)

HER2 (FISH) Type

TCGA-JL-
A3YW

0.35(+) 0.09(+) 31.47 1+ + NO TNBC

TCGA-LL-
A73Z

7.19(+) 2.10(+) 28.34 2+ Equivocal – NO TNBC

TCGA-OL-
A5RY

0.99(+) 0.38(-) 658.80 + NO TNBC

TCGA-D8-
A1XT

0.30(-) 0.13(-) 692.72 3+ + NO TNBC

TCGA-BH-
A1FN

14.34(+) 3.30(+) 10.64 NO TNBC

TCGA-AC-
A2FK

4.44(+) 18.2(+) 58.01 – NO TNBC

TCGA-AN-
A0AM

73.18(+) 0.09(-) 12.23 – NO TNBC

TCGA-BH-
A209

27.39(+) 7.08(+) 10.00 NO TNBC

TCGA-UU-
A93S

0.30(-) 0.12(-) 1668.35 3+ + NO TNBC

TCGA-
E2-A108

12.43(+) 2.96(+) 14.32 1+ – NO TNBC

TCGA-AO-
A0JC

13.67(+) 1.31(+) 5.20 0 – NO TNBC



733

1 3

Robust HD regression for data with anomalous responses

Some calculations show that the gradient (5) for �-logistic regression can be given 
as follows.

where �� ,i(���) is defined in (27), �(xixixi;(1 + �)���) =
exp {(1+�)xixixi

T���}

1+ exp {(1+�)xixixi
T���}

.
�-Poisson Regression. In this subsection, we consider detailed implementation algo-

rithms of �-Poisson regression, in which the calculation of two terms ∫ f (y|xxxi;���)1+�dy 
and ∫ Ki(y;���)f (y|xxxi;���)1+�dy in the loss function (2) and the derivative to �j (5) are dif-
ferent from the �-logistic regression.

In Poisson regression, f (y|xxxi;���) =
�
y

i

y!
exp

(
−�i

)
 , and Ki(y;���) = y − �i , where 

�i = exp
(
xxxT
i
���
)
 . Then, it can be obtained that:

The algebraic expression of infinite sum could not be obtained, so we calculate the 
infinite sum using numerical approximation with finite sum:

In the simulation, we set B = 1000 . For evaluating the performance of numerical 
approximation, we consider the ratio of the remaining items to main items defined 
by

(27)

∫ f (y|xxxi;���)1+�dy =
1 + exp{(1 + �)xxxT

i
���}

(1 + exp{xxxT
i
���})(1+�)

,

∫ Ki(y;���)f (y|xxxi;���)1+�dy =
exp{xxxT

i
���}(exp{�xxxT

i
���} − 1)

(1 + exp{xxxT
i
���})(2+�)

,

�� ,i(���) =

(
exp {yi(1 + �)xixixi

T���}

1 + exp {(1 + �)xixixi
T���}

) �

�+1

.

(28)∇j�(���) = −
�

n

n∑

i=1

�� ,i(���)
[
yi − �(xixixi;(1 + �)���)

]
Xij,

∫ f (y|xxxi;���)1+�dy =
+∞∑

y=0

(
�
y

i

y!
exp

(
−�i

)
)1+�

,
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+∞∑
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(
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)
(
�
y

i
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(
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.

∫ f (y|xxxi;���)1+�dy ≈
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(
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,
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(
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The values of (�approx1, �approx2) are shown in Table S4 (Supplementary Materials), in 
which it can be shown that the values are less than 10−8 under all settings. It reflects 
that this numerical approximation works in �-Poisson regression.

Therefore, the gradient (5) for �-Poisson regression can be given as follows.

where
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