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Abstract
We consider the problem of identification of the position of some source by obser-
vations of K detectors receiving signals from this source. The time of arriving of 
the signal to the k-th detector depends of the distance between this detector and the 
source. The signals are observed in the presence of small Gaussian noise. The prop-
erties of the MLE and Bayesian estimators are studied in the asymptotic of small 
noise.

Keywords  Partially observed linear system · Parameter estimation · Hidden 
process · Small noise · MLE · BE

1  Introduction

Consider the problem of estimation of the position 𝜗0 =
(
x0, y0

)⊤ of the source �0 by 
the observations of the signals from this source received by K detectors �1,… ,�K 
(see Fig. 1).

If we denote 𝜗k =
(
xk, yk

)⊤
∈ R

2 the position of �k and suppose that the source 
starts emission at the moment t = 0 , then the signal arrives at this detector at the 
moment �k

(
�0
)
= �−1‖‖�k − �0

‖‖ . Here 𝜈 > 0 is the rate of propagation of the signals 
and ‖⋅‖ is Euclidean distance in R2 . The set 𝛩 ⊂ R

2 is supposed to be open, convex 
and bounded.

The k-th detector receives the signal Yk =
(
Yk(t), 0 ≤ t ≤ T

)
 from the source � 

and additive Gaussian noise according to equation

(1)dXk(t) = ak(t)𝜓̄
(
t − 𝜏k

(
𝜗0
))
Yk(t)dt + 𝜀𝜎k(t)dWk(t), Xk(0) = 0.
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Here ak(⋅), �k(⋅) and 𝜓̄(⋅) are known functions and Wk(⋅), k = 1,… ,K are independ-
ent Wiener processes. The parameter 𝜀 > 0 controls the level of noise. In this work 
we study the properties of estimators of �0 in the asymptotic of small noise, i.e., as 
� → 0 . This is equivalent to the situation with large signal, which is rather reasona-
ble in many real situations. This problem is quite close to the inverse problem, where 
we have K sources �1,… ,�K of signals with known positions and known moments 
of emission and one detector �0 . The detector receives K signals XK and has to 
estimate its own position. This is typical situation in the global positioning system 
(GPS/INS). The algorithms calculating the positions of different objects (cars, jets, 
ships et cet.) used in GPS/ISN are based essentially on the adaptive Kalman filtering 
theory, see, e.g., Almagbile et al. (2010), Gustaffson (2000), Hutchinson (1984), Luo 
(2013), Wang et al. (2006) and references therein. The same time it seems that the 
mathematical theory of statistical estimation of the position was not yet sufficiently 
well developed. This work is continuation of the study initiated in the papers Cher-
noyarov and Kutoyants (2020), Chernoyarov et  al. (2020), Farinetto et  al. (2020), 
where the observed processes are inhomogeneous Poisson.

The function 𝜓̄(t) = 0 for t < 0 and reflects the form of the signal at the moment 
of its arriving. We consider three different cases: smooth 
𝜓𝛿(t) = t𝛿−1�{0≤t≤𝛿} + �{t>𝛿} , change-point type 𝜓(t) = �{t>0} and cusp type 
𝜓𝛿,𝜅(t) =

1

2

(
1 + sgn(2t − 𝛿)

|||
2t

𝛿
− 1

|||
𝜅)

�{0≤t≤𝛿} + �{t>𝛿} , respectively. The examples 
of such functions are given in Fig. 2.

The parameter 𝛿 > 0 is known and small. In the cusp case � ∈ (0,
1

2
).

The signals Yk(⋅), k = 1,… ,K satisfy the linear stochastic differential equations

The functions fk(⋅) and bk(⋅) are known and the Wiener processes Vk(⋅), k = 1,… ,K 
are independent. The Wiener processes Wk(⋅), k = 1,… ,K and Vk(⋅), k = 1,… ,K 
are supposed to be independent too.

In this work we consider the problem of estimation �0 by the observations 
XT =

(
X1,… ,XK

)
 , where Xk =

(
Xk(t), 0 ≤ t ≤ T

)
 . The processes Yk(⋅) are non-

observable and can be called hidden. The processes (2) are Markov, therefore we 
have the problem of parameter estimation for continuous time hidden Markov 
processes. Note that similar problems for discrete time models were intensively 
studied by many authors, see, e.g., Bickel et al. (1998), Cappé et al. (2005), Elliott 

(2)dYk(t) = −fk(t)Yk(t)dt + �bk(t)dVk(t), Yk(0) = yk,0 ≠ 0.

Fig. 1   Model of observations. 
�0 is position of the source and 
�

k
, k = 1,… , 5 are positions of 

the sensors

S0

D1

D2

D3

D4

D5
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et  al. (1995), Ephraim and Mehrav (2002) and references therein. For continu-
ous time models of partially observed linear stochastic differential equations see, 
e.g., Kutoyants (1984), Konecny (1990), Kallianpur and Selukar (1991), Kutoy-
ants (1994). The problem of parameter estimation for hidden telegraph process 
observed in white Gaussian noise was studied in Chigansky (2009), Khasminskii 
and Kutoyants (2018).

We suppose that the following conditions are always satisfied in this work.
Conditions R . 

1.	 The functions ak(⋅), �k(⋅), k = 1,… ,K are bounded and separated from 0 and the 
functions , fk(⋅), bk(⋅), k = 1,… ,K are bounded.

2.	 The set 𝛩 ⊂ R
2 is open, convex, bounded and such that all arrival times 

�k(�), k = 1,… ,K belong to [0, T].
3.	 There are at least three detectors which are not on the same line.

Under the made assumptions the measures corresponding to the observations 
XT for different values of � ∈ � are equivalent and the likelihood ratio function 
L
(
�,XK

)
 is given by the formula (see Liptser and Shiryayev 2001)

Here we denoted �k = �k(�) , Gk

(
�k, t

)
= ak(t)Mk

(
�k(�), t

)
�k(t)

−1 , 
Mk

(
𝜏k, t

)
= 𝜓̄

(
t − 𝜏k

)
mk

(
𝜏k, t

)
 , where mk

(
�k, ⋅

)
 are conditional expectations 

mk

(
�k, t

)
= ��

(
Yk(t)|Xk(s), 0 ≤ s ≤ t

)
 . The maximum likelihood estimator (MLE) 

𝜗̂𝜀 and Bayesian estimator (BE) 𝜗̃𝜀 for quadratic loss function are defined by the 
relations

(3)lnL
(
�,XK

)
=

K∑

k=1
∫

T

0

Gk

(
�k, t

)

�2�k(t)
dXk(t) −

K∑

k=1
∫

T

0

Gk

(
�k, t

)2

2�2
dt.

(a)

τ0

1

(b)

τ0

1

(c)

τ0

1

Fig. 2   Examples: a ��(⋅) , b ��,� (⋅) and c) �(⋅)
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Here p(�), � ∈ � is prior density which is supposed to be known, continuous and 
positive function on �.

The goal of this work is to study the asymptotic ( � → 0 ) behavior of the MLE 𝜗̂𝜀 
and BE 𝜗̃𝜀 . It is shown that the mean squared error �𝜗0

‖‖‖𝜗̂𝜀 − 𝜗0
‖‖‖
2

∼ C𝜀𝛾 where 
𝛾 > 0 depends on the type of regularity of the model of observations. We show that 
the rates are: in smooth case  �𝜗0

‖‖‖𝜗̂𝜀 − 𝜗0
‖‖‖
2

∼ C𝜀2 , in in cusp-type case  

�𝜗0

‖‖‖𝜗̂𝜀 − 𝜗0
‖‖‖
2

∼ C𝜀
4

2𝜅+1 , and in in change-point case  �𝜗0

‖‖‖𝜗̂𝜀 − 𝜗0
‖‖‖
2

∼ C𝜀4.
The proofs in all three cases are based on two general results by Ibragimov and 

Khasminskii (1981). Note that the Theorems 1.10.1 and 1.10.3 in Ibragimov and 
Khasminskii (1981) describe the asymptotic behavior of the MLE and BE in quite 
general situation. The conditions of these theorems are given in terms of normalized 
likelihood ratio random fields. Therefore the proofs of our results consist in the veri-
fication of the properties of the corresponding likelihood ratio random fields.

2 � Notation and auxiliary results

As �k
(
�0
)
= �−1‖‖�k − �0

‖‖ and 𝜗k =
(
xk, yk

)⊤
, 𝜗0 =

(
x0, y0

)⊤ we can write,

Here a⊤ means transposition of the vector a and ⟨a, b⟩ is scalar product. We have

The random processes mk

(
�k, ⋅

)
 , where �k = �k(�) , satisfy Kalman–Bucy filtration 

equations (see Kalman and Bucy 1961; Liptser and Shiryayev 2001; Arato 1983)

Here we denoted yk(t) solution of Eq. (2) as � = 0

(4)L
(
𝜗̂𝜀,X

K
)
= sup

𝜗∈𝛩

L
(
𝜗,XK

)
, 𝜗̃𝜀 =

∫
𝛩
𝜗p(𝜗)L

(
𝜗,XK

)
d𝜗

∫
𝛩
p(𝜗)L

(
𝜗,XK

)
d𝜗

.

(5)

𝜕𝜏k
�
𝜗0
�

𝜕x0
= −

xk − x0

𝜈𝜌k
= −

𝜇k,x

𝜈
,

𝜕𝜏k
�
𝜗0
�

𝜕y0
= −

yk − y0

𝜈𝜌k
= −

𝜇k,y

𝜈
,

𝜌k =
��𝜗k − 𝜗0

��, 𝜇k =
�
𝜇k,x,𝜇k,y

�⊤
, ��𝜇k

�� = 1,

hk(t) =
ak(t)

𝜎k(t)
, �

+
k
=
�
w ∶ ⟨𝜇k,w⟩ > 0

�
, �−

k
=
�
w ∶ ⟨𝜇k,w⟩ < 0

�
.

�k
�
�0 + ���w

�
= �k

�
�0
�
− ��⟨�k,w⟩ + O

�
�2
�

�
, w ∈ R

2, �� → 0.

(6)

mk

(
𝜏k, t

)
= yk(t), 0 ≤ t ≤ 𝜏k(𝜗),

dmk

(
𝜏k, t

)
= −

[
fk(t) + 𝛾k

(
𝜏k, t

)
hk(t)

2𝜓̄
(
t − 𝜏k

)2]
mk

(
𝜏k, t

)
dt

+
𝛾k
(
𝜏k, t

)
hk(t)𝜓̄

(
t − 𝜏k

)

𝜎k(t)
dXk(t), 𝜏k(𝜗) ≤ t ≤ T .
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We have the representation

where W̄k(⋅) is innovation Wiener process defined by Eq. (7) (see Theorem 7.12 in 
Liptser and Shiryayev (2001)). The function

is solution of the Ricatti equation

Note that the functions �k
(
�k, ⋅

)
, k = 1,… ,K are bounded and do not depend on �.

We denote xk
(
⋅, �0

)
 , the limit ( � = 0 ) deterministic function of the random pro-

cess (1). Then we obtain the following expression

Let us study the random process mk

(
�k, t

)
 as function of �k . Consider the dif-

ference Δmk(�, t) = mk(�, t) − mk

(
�0, t

)
 , Δk�(�, t) = �k(�, t) − �k

(
�0, t

)
 

where � = �k(�), �0 = �k
(
�0
)
 . We take the worst (discontinuous) function 

𝜓̄(t − 𝜏) = 𝜓(t − 𝜏) = �{t≥𝜏} . We omit for instant the index k in other functions too.
Recall that for t ∈ [0, T] we have the equality

with initial value y0 ≠ 0.

Lemma 1  Let the conditions R be fulfilled and 𝜏 < 𝜏0 , then

where the constants C1 > 0 and C2 > 0 do not depend on�.

yk(t) = yk,0 exp

{
−�

t

0

fk(s) ds

}
, 0 ≤ t ≤ T .

(7)dXt = ak(t)𝜓̄
(
t − 𝜏k

(
𝜗0
))
mk

(
𝜗0, t

)
dt + 𝜀𝜎k(t)dW̄k(t), X0 = 0,

�k
(
�k, t

)
= �−2��

(
mk

(
�k, t

)
− Yk(t)

)2

(8)

𝛾k
(
𝜏k, t

)
= �

t

0

exp

{
−2�

t

s

fk(r)dr

}
bk(s)

2ds, 0 ≤ t ≤ 𝜏k(𝜗),

𝜕𝛾k
(
𝜏k, t

)

𝜕t
= −2fk(t)𝛾k

(
𝜏k, t

)
+ bk(t)

2

− 𝛾k
(
𝜏k, t

)2
hk(t)

2𝜓̄
(
t − 𝜏k

)2
, 𝜏k(𝜗) ≤ t ≤ T .

xk
(
t, 𝜗0

)
= �{t>𝜏k(𝜗0)} ∫

t

𝜏k(𝜗0)
ak(s)yk(s)𝜓̄

(
s − 𝜏k

(
𝜗0
))
ds.

(9)dm
(
𝜏0, t

)
= −f (t)m

(
𝜏0, t

)
dt + 𝜀𝛾

(
𝜏0, t

)
h(t)�{t≥𝜏0}dW̄(t),

(10)��0
|Δm(�, t)|2 ≤ C1

||�0 − �||�{�≤t≤�0} + �2C2
||� − �0

||
2
�{�0≤t≤T},

(11)
|||�(�, t) − �

(
�0
)||| ≤ C||�0 − �||�{t≥�},



676	 Y. A. Kutoyants 

1 3

Proof  Suppose that 𝜏 < 𝜏0 . The case 𝜏 > 𝜏0 can be considered by a similar way. 
From (6) and (9) we obtain

where we put S(�, t) = f (t) + �(�, t)h(t)2.
Then we obtain the representation

where Δ�(�, t) = �(�, t) − �
(
�0, t

)
 . For the first term and t ∈

[
�, �0

]
 we have

Let us write the corresponding equation for Δ�(�, t) . Denote

Then we have (see 8) �
(
�0, t

)
= g(t), 0 ≤ t ≤ �0,

and �(�, t) = g(t), 0 ≤ t ≤ �,

As 𝜏0 > 𝜏 we obtain: Δ�(�, t) = 0, 0 ≤ t ≤ �, Δ�(�, t) = �(�, t) − g(t), � ≤ t ≤ �0,

with initial value Δ�
(
�, �0

)
= �

(
�, �0

)
− g

(
�0
)
 . Hence for t ∈

[
�0, T

]
 we have

Δm(𝜏, t) =
[
m(𝜏, t) − y(t)

]
�{𝜏≤t≤𝜏0}, 0 ≤ t ≤ 𝜏0,

dΔm(𝜏, t) = −S(𝜏, t)Δm(𝜏, t)dt + 𝜀h(t)Δ𝛾(𝜏, t) dW̄(t), 𝜏0 < t ≤ T ,

(12)

Δm(𝜏, t) =
[
m(𝜏, t) − y(t)

]
�{𝜏≤t≤𝜏0}

+ �{t>𝜏0}
[
m
(
𝜏, 𝜏0

)
− y

(
𝜏0
)]
e
− ∫ t

𝜏0
S(𝜏,v)dv

+ 𝜀�{t>𝜏0} �
t

𝜏0

e− ∫ t

s
S(𝜏,v)dvh(s)Δ𝛾(𝜏, s) dW̄(s),

m(𝜏, t) − y(t) = y(𝜏)e− ∫ t

𝜏
S(𝜏,v)dv − y(t)

+ 𝜀�
t

𝜏

e− ∫ s

𝜏
S(𝜏,v)dv𝛾(𝜏, s)h(s)dW̄(s)

= 𝜀�
t

𝜏

e− ∫ s

𝜏
S(𝜏,v)dv𝛾(𝜏, s)h(s)dW̄(s).

g(t) = �
t

0

e−2 ∫ t

s
f (v)dvb(s)2ds.

��
(
�0, t

)

�t
= −2f (t)�

(
�0, t

)
+ b(t)2 − h(t)2�

(
�0, t

)2
, �0 ≤ t ≤ T

��(�, t)

�t
= −2f (t)�(�, t) + b(t)2 − h(t)2�(�, t)2, � ≤ t ≤ T .

�Δ(�, t)

�t
= −2f (t)Δ(�, t) − h(t)2

[
�(�, t) + �

(
�0, t

)]
Δ�(�, t), �0 ≤ t ≤ T
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and |Δ�(�, t)| ≤ |||�
(
�, �0

)
− g

(
�0
)|||.

Recall that the function �(�, t) is bounded. On the interval 
[
�, �0

]
 we have

and

Therefore |||Δ�
(
�, �0

)||| ≤ C||� − �0
||, |Δ�(�, t)| ≤ C||� − �0

||.
This estimate and (12) allows us to write (10). 	�  ◻

3 � Smooth case

Consider the model of observations (1), where 
𝜓̄
(
t − 𝜏k

)
= 𝜓𝛿

(
t − 𝜏k

)
=
(
t − 𝜏k

)
𝛿−1�{0≤t−𝜏k≤𝛿} + �{t≥𝛿+𝜏k} and the processes 

Yk(⋅), k = 1,… ,K satisfy Eq. (2). Recall that we have to estimate 𝜗0 =
(
x0, y0

)⊤ by 
observations XK =

(
X1,… ,XK

)
 , where Xk =

(
Xk(t), 0 ≤ t ≤ T

)
.

We write �k = �k(�) , 𝜃 = (x, y)⊤ and for the derivative ṁk

(
𝜏k, t

)
= 𝜕mk

(
𝜏k, t

)
∕𝜕𝜏k 

we obtain equations: ṁk

(
𝜏k, t

)
= 0, 0 ≤ t ≤ 𝜏k(𝜗),

where we denoted �k

(
�k, t

)
= �k

(
�k, t

)
��

(
t − �k

)
 and used the equality

���

(
t − �k

)
∕��k = −�−1�{0≤t−�k≤�}.

The solution of Eq. (13) at point � = 0, � = �0 we denote zk
(
t, �0

)
, 0 ≤ t ≤ T  . 

The function zk
(
t, �0

)
 satisfies equations

Δ�(�, t) = Δ�
(
�, �0

)
exp

{
−∫

t

�0

[
2f (s) + h(s)2

[
�(�, t) + �

(
�0, t

)]]
ds

}

�Δ�(�, t)

�t
= −2f (t)Δ�(�, t) − �(�, t)2h(t)2, Δ�(�, �) = 0

Δ�
(
�, �0

)
= −�

�0

�

e−2 ∫ t

s
f (v)dv�(�, s)2h(s)2ds.

(13)

dṁk

(
𝜏k, t

)
= −

[
fk(t) + 𝛤k

(
𝜏k, t

)
hk(t)

2𝜓𝛿

(
t − 𝜏k

)]
ṁk

(
𝜏k, t

)
dt

−
[
𝛤̇k

(
𝜏k, t

)
𝜓𝛿

(
t − 𝜏k

)
− 𝛤k

(
𝜏k, t

)
𝛿−1

]
hk(t)

2mk

(
𝜏k, t

)
dt

+
𝛤̇k

(
𝜏k, t

)
hk(t)

𝜎k(t)
dXt, 𝜏k(𝜗) < t ≤ 𝜏k(𝜗) + 𝛿,

dṁk

(
𝜏k, t

)
= −

[
fk(t) + 𝛾k

(
𝜏k, t

)
hk(t)

2
]
ṁk

(
𝜏k, t

)
dt +

𝛾̇k
(
𝜏k, t

)
hk(t)

𝜎k(t)
dXt,

− 𝛾̇k
(
𝜏k, t

)
hk(t)

2mk

(
𝜏k, t

)
dt, 𝜏k(𝜗) + 𝛿 < t ≤ T ,
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Of course the solutions of this linear equations can be written explicitly.
Introduce two deterministic functions

and 2 × 2 Fisher information matrix I
(
�0
)
=
(
I
(
�0
)
l,m

)

The family of measures which corresponds to the solutions of Eq. (1) with different 
� ∈ � is locally asymptotically normal (LAN) (see Lemma 2 below). Therefore we 
have the Hajek–Le Cam’s lower minimax bound on the risks of all estimators 𝜗̄𝜀:

(see, e.g., Ibragimov and Khasminskii (1981)). As usual, we call the estimator �∗
�
 

asymptotically efficient if for this estimator and all �0 ∈ � we have equality in (14).
The properties of the estimators are given in the following theorem.

𝜕zk
(
t, 𝜗0

)

𝜕t
= 0, 0 ≤ t ≤ 𝜏k

(
𝜗0
)
,

𝜕zk
(
t, 𝜗0

)

𝜕t
= −

[
fk(t) + 𝛤k

(
𝜏k
(
𝜗0
)
, t
)
hk(t)

2

(
t − 𝜏k

(
𝜗0
))

𝛿

]
zk
(
t, 𝜗0

)

+ 𝛤k

(
𝜏k
(
𝜗0
)
, t
)
hk(t)

2𝛿−1yk(t), 𝜏k
(
𝜗0
)
< t ≤ 𝜏k

(
𝜗0
)
+ 𝛿,

𝜕zk
(
t, 𝜗0

)

𝜕t
= −

[
fk(t) + 𝛾k

(
𝜏k
(
𝜗0
)
, t
)
hk(t)

2
]
zk
(
t, 𝜗0

)
, 𝜏k

(
𝜗0
)
+ 𝛿 < t ≤ T .

Ṁo
k,x

(
𝜏k
(
𝜗0
)
, t
)
= 𝜈

𝜕
[
mk

(
𝜏k(𝜗), t

)
𝜓𝛿

(
t − 𝜏k(𝜗)

)]

𝜕𝜏k

|||||𝜗=𝜗0,𝜀=0

𝜕𝜏k
(
𝜗0
)

𝜕x0

=
[
𝛿−1yk(t)�{𝜏k(𝜗0)≤t≤𝜏k(𝜗0)+𝛿} − zk

(
t, 𝜗0

)
𝜓𝛿

(
t − 𝜏k

(
𝜗0
))]

𝜇k,x,

Ṁo
k,y

(
𝜏k
(
𝜗0
)
, t
)
= 𝜈

𝜕
[
mk

(
𝜏k(𝜗), t

)
𝜓𝛿

(
t − 𝜏k(𝜗)

)]

𝜕𝜏k

|||||𝜗=𝜗0,𝜀=0

𝜕𝜏k
(
𝜗0
)

𝜕y0

=
[
𝛿−1yk(t)�{𝜏k(𝜗0)≤t≤𝜏k(𝜗0)+𝛿} − zk

(
t, 𝜗0

)
𝜓𝛿

(
t − 𝜏k

(
𝜗0
))]

𝜇k,y.

I1,1
(
𝜗0
)
=

K∑

k=1
∫

T

𝜏k(𝜗0)
hk(t)

2Ṁo
k,x

(
𝜏k
(
𝜗0
)
, t
)2
dt,

I2,2
(
𝜗0
)
=

K∑

k=1
∫

T

𝜏k(𝜗0)
hk(t)

2Ṁo
k,y

(
𝜏k
(
𝜗0
)
, t
)2
dt,

I1,2
(
𝜗0
)
= I2,1

(
𝜗0
)
=

K∑

k=1
∫

T

𝜏k(𝜗0)
hk(t)

2Ṁo
k,x

(
𝜏k
(
𝜗0
)
, t
)
Ṁo

k,y

(
𝜏k
(
𝜗0
)
, t
)
dt.

(14)lim
𝛿→0

lim
𝜀→0

sup
‖𝜗−𝜗0‖≤𝛿

𝜀−2�𝜗
��𝜗̄𝜀 − 𝜗��

2 ≥ �𝜗0
‖𝜁‖2, 𝜁 ∼ N

�
0, I

�
𝜗0
�−1�
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Theorem 1  Let the conditions R be fulfilled and the Fisher information matrix is 
uniformly non-degenerate

Then the MLE 𝜗̂𝜀 and BE 𝜗̃𝜀 are uniformly consistent on compacts � ∈ �, asymp-
totically normal

we have the convergence of moments: for any p > 0

where � ∼ N

(
0, I

(
�0
)−1) . The both estimators are asymptotically efficient.

Proof  The proof of this theorem is based on the general results obtained for the MLE 
and BE by Ibragimov and Khasminskii (1981) (see Theorems 1.10.1 and 1.10.3). 
Below we verify the properties of the normalized likelihood ratio random field

which are the conditions of the mentioned theorems. Introduce the random field

We prove three lemmas below.

Lemma 2  The finite-dimensional distributions of the random fields Z�(⋅) converge 
to the finite-dimensional distributions of Z(⋅) and this convergence is uniform on 
compacts � ∈ �.

Proof  Denote: Dk,�

(
�0,w, t

)
= �−1

[
Mk

(
�k
(
�w

)
, t
)
−Mk

(
�k
(
�0
)
, t
)]
, �w = �0 + �w.

Then the log-likelihood ratio admits the representation (see 9)

𝜅̂ = inf
𝜗0∈𝛩

inf
e∈R2,‖e‖=1

e⊤I
�
𝜗0
�
e > 0.

𝜈−1𝜀−1
(
𝜗̂𝜀 − 𝜗0

)
⟹ N

(
0, I

(
𝜗0
)−1)

, 𝜀−1
(
𝜗̃𝜀 − 𝜗0

)
⟹ N

(
0, I

(
𝜗0
)−1)

,

𝜀−p�𝜗0

���𝜗̂𝜀 − 𝜗0
���
p

⟶ �𝜗0
‖𝜁‖p, 𝜀−p�𝜗0

��𝜗̃𝜀 − 𝜗0
��
p
⟶ �𝜗0

‖𝜁‖p,

Z�(w) =
L
(
�0 + �w,XK

)

L
(
�0,X

K
) , w = (u, v) ∈ �� =

{
w ∶ �0 + �w ∈ �

}
,

Z(w) = exp
{
w⊤Δ

(
𝜗0
)
−

1

2
w⊤I

(
𝜗0
)
w
}
, Δ

(
𝜗0
)
∼ N

(
0, I

(
𝜗0
))
, w ∈ R

2.

lnZ𝜀(w) =

K∑

k=1
∫

T

𝜏k(𝜗w)∧𝜏k(𝜗0)
hk(t)Dk,𝜀

(
𝜗0,w, t

)
dW̄k(t)

−
1

2

K∑

k=1
∫

T

𝜏k(𝜗w)∧𝜏k(𝜗0)
hk(t)

2Dk,𝜀

(
𝜗0,w, t

)2
dt.
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The random processes mk

(
�k, t

)
 are differentiable with probability 1 w.r.t. �k and the 

derivative ṁk

(
𝜗0, t

)
 satisfies the estimate

To prove this estimate we have to write the difference of the equations for 
ṁk

(
𝜏k
(
𝜗0
)
, t
)
 and zk

(
�0, t

)
 and then after simple transformations to use the Gron-

wall-Bellman lemma. See similar estimates can be found in Kutoyants (1994).
By Taylor formula we obtain the relation

where Ṁo
k

(
𝜏k
(
𝜗0
)
, t
)
=
(
Ṁo

k,x

(
𝜏k
(
𝜗0
)
, t
)
, Ṁo

k,y

(
𝜏k
(
𝜗0
)
, t
))⊤

 . Introduce the random 
vector

Recall that W̄k(t) depends on � . Then we have

because �k
(
�w

)
= �k

(
�0
)
+ O(�) and

Note that

Hence for the normalized likelihood ratio function we obtain the representation 
called LAN (local asymptotic normality)

�𝜗0

|||ṁk

(
𝜏k
(
𝜗0
)
, t
)
− zk

(
𝜗0, t

)|||
2 ≤ C𝜀2.

Dk,𝜀

�
𝜗0,w, t

�
= ⟨Ṁo

k

�
𝜏k
�
𝜗0
�
, t
�
,w⟩ + o(1)

Δ𝜀

(
𝜗0
)
=

K∑

k=1
∫

T

𝜏k(𝜗0)
hk(t)Ṁ

o
k

(
𝜏k
(
𝜗0
)
, t
)
dW̄k(t).

∫
T

𝜏k(𝜗w)∧𝜏k(𝜗0)
hk(t)Dk,𝜀

�
𝜗0,w, t

�
dW̄k(t)

= ∫
T

𝜏k(𝜗0)
hk(t)⟨Ṁo

k

�
𝜏k
�
𝜗0
�
, t
�
,w⟩ dW̄k(t) + o(1)

∫
T

𝜏k(𝜗w)∧𝜏k(𝜗0)
hk(t)

2Dk,𝜀

�
𝜗0,w, t

�2
dt

= ∫
T

𝜏k(𝜗0)
hk(t)

2⟨Ṁo
k

�
𝜏k
�
𝜗0
�
, t
�
,w⟩2dt + o(1).

K�

k=1
∫

T

𝜏k(𝜗0)
hk(t)

2⟨Ṁo
k

�
𝜏k
�
𝜗0
�
, t
�
,w⟩2dt = w⊤I

�
𝜗0
�
w.

Z𝜀(w) = exp
�
⟨w,Δ𝜀

�
𝜗0
�
⟩ − 1

2
w⊤I

�
𝜗0
�
w + o(1)

�
,
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where

This representation of Z�(⋅) provides the convergence of finite dimensional distri-
butions. Moreover, it can be shown that all convergences are uniform on compacts 
� ⊂ 𝛩 . 	�  ◻

Lemma 3  There exists constant C > 0 such that for any R > 0 and ‖‖w1
‖‖ + ‖‖w2

‖‖ < R 
we have

Proof  Following the proof of Lemma 5.1 in Kutoyants (1994) we first write

where we changed the measure and denoted

Here Dk,�

(
�0,w1,w2, t

)
= Dk,�

(
�0,w2, t

)
− Dk,�

(
�0,w1, t

)
 . Then for the process 

Vt, 0 ≤ t ≤ T  we write Itô formula

Hence

Δ�

(
�0
)
∼ N

(
0, I

(
�0
))
.

(15)sup
�0∈�

��0

|||Z
1∕4
�

(
w2

)
− Z1∕4

�

(
w1

)|||
4 ≤ C

(
1 + R4

)‖‖w2 − w1
‖‖
4
.

��0

|||Z
1∕4
�

(
w2

)
− Z1∕4

�

(
w1

)|||
4

= ��0
Z�
(
w1

)||||||

(
Z�
(
w2

)

Z�
(
w1

)
)1∕4

− 1

||||||

4

= ��0+�w1

||VT − 1||
4
,

VT =

(
Z𝜀
(
w2

)

Z𝜀
(
w1

)
)1∕4

= exp

{
1

4

K∑

k=1
∫

T

0

hk(t)Dk,𝜀

(
𝜗0,w1,w2, t

)
dW̄k(t)

−
1

8

K∑

k=1
∫

T

0

hk(t)
2Dk,𝜀

(
𝜗0,w1,w2, t

)2
dt

}
.

(16)

VT = 1 −
3

32

K∑

k=1
∫

T

0

hk(t)
2VtDk,𝜀

(
𝜗0,w1,w2, t

)2
dt

+
1

4

K∑

k=1
∫

T

0

hk(t)VtDk,𝜀

(
𝜗0,w1,w2, t

)
dW̄k(t).
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Further, recall that �w = �0 + �w and denote �(s) = �0 + �w1 + �s
(
w2 − w1

)
 , then 

we can write

Therefore

Finally we obtain (15). 	�  ◻

Lemma 4  There exists constant c∗ > 0 such that

Proof  Consider the integral

�𝜗0+𝜀w1

||VT − 1||
4 ≤ C�𝜗0+𝜀w1

||||||

K∑

k=1
�

T

0

hk(t)
2VtDk,𝜀

(
𝜗0,w1,w2, t

)2
dt

||||||

4

+ C�𝜗0+𝜀w1

||||||

K∑

k=1
�

T

0

hk(t)VtDk,𝜀

(
𝜗0,w1,w2, t

)
dW̄k(t)

||||||

4

≤ CT3

K∑

k=1
�

T

0

�𝜗0+𝜀w1
V4
t
hk(t)

8Dk,𝜀

(
𝜗0,w1,w2, t

)8
dt

+ CT

K∑

k=1
�

T

0

�𝜗0+𝜀w1
V4
t
hk(t)

4Dk,𝜀

(
𝜗0,w1,w2, t

)4
dt

≤ CT3

K∑

k=1
�

T

0

�𝜗0+𝜀w2
hk(t)

8Dk,𝜀

(
𝜗0,w1,w2, t

)8
dt

+ CT

K∑

k=1
�

T

0

�𝜗0+𝜀w2
hk(t)

4Dk,𝜀

(
𝜗0,w1,w2, t

)4
dt.

Dk,𝜀

�
𝜗0,w1,w2, t

�

= 𝜀−1
�
𝜓𝛿

�
t − 𝜏k

�
𝜗w2

��
mk

�
𝜏k
�
𝜗w2

�
, t
�
− 𝜓𝛿

�
t − 𝜏k

�
𝜗w1

��
mk

�
𝜏k
�
𝜗w1

�
, t
��

= 𝜈−1 ∫
1

0

�
𝜓̇𝛿

�
t − 𝜏k(𝜗(s))

�
mk

�
𝜏k(𝜗(s), t)

�

+𝜓𝛿

�
t − 𝜏k(𝜗(s))

�
ṁk

�
𝜏k(𝜗(s)), t

��
⟨𝜇k,w2 − w1⟩ds.

K∑

k=1
�

T

0

��0+�w2
hk(t)

8Dk,�

(
�0,w1,w2, t

)8
dt ≤ C‖‖w2 − w1

‖‖
8
,

K∑

k=1
�

T

0

��0+�w2
hk(t)

4Dk,�

(
�0,w1,w2, t

)4
dt ≤ C‖‖w2 − w1

‖‖
4

(17)sup
�0∈�

��0
Z�(w)

1∕2 ≤ e−c∗‖w‖
2

.
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Denote

Random functions mk,0(t) and mk,w(t) satisfy equations

The solution of the first equation for � = 0 is denoted as yk(t) = yk
(
�0, t

)
 and 

given in (8). The solution mk,w(t) for � = 0 and t ∈
[
�k
(
�w

)
, T

]
 (we denote it as 

yk
(
�w, t

)
= yk

(
�w, �0, t

)
 ) satisfies equation

If we put qk
(
�0, t

)
= mk

(
�k
(
�0
)
, t
)
− yk(t) and qk

(
�w, t

)
= mk

(
�k
(
�w

)
, t
)
− yk

(
�w, t

)
 , 

then for these differences it is possible to verify the relations

where Qk

(
�w, t

)
= fk(t) + �k

(
�w, t

)
hk(t)

2��

(
t − �k

(
�w

))
.

Thus we have

where �1(t) and �2(t) are Gaussian processes with bounded variances.
Therefore, as it follows from Lemma 2.4 in Kutoyants (1994), it is sufficient to 

consider the deterministic integral

∫
T

0

hk(t)
2D2

k,�(�0,w,t)
dt = ∫

T

0

hk(t)
2

�2

[
M
(
�k
(
�w

)
, t
)
−M

(
�k
(
�0
)
, t
)]2

dt.

mk,w(t) = mk

(
�k
(
�w

)
, t
)
, �k,w(t) = �k

(
�k
(
�w

)
, t
)
,

��,k,w(t) = ��

(
t − �k

(
�w

))
.

mk,0(t) = yk(t), 0 ≤ t ≤ 𝜏k
(
𝜗0
)
,

dmk,0(t) = −fk(t)mk,0(t)dt + 𝜀𝛤k,0(t)hk(t)dW̄t, 𝜏k
(
𝜗0
)
< t ≤ T ,

mk,w(t) = yk(t), 0 ≤ t ≤ 𝜏k
(
𝜗w

)
,

dmk,w(t) = −
[
fk(t) + 𝛤k,w(t)hk(t)

2𝜓𝛿,k,w(t)
]
mk,w(t)dt

+ 𝛤k,w(t)hk(t)
2𝜓𝛿,k,0(t)mk,0(t)dt

+ 𝜀𝛤k,w(t)hk(t)dW̄t, 𝜏k
(
𝜗w

)
< t ≤ T .

�yk
(
�w, t

)

�t
= −

[
fk(t) + �k,w(t)hk(t)

2��,k,w(t)
]
yk
(
�w, t

)

+ �k,w(t)hk(t)
2��,k,0(t)yk(t), yk

(
�w, �k

(
�w

))
= yk

(
�k
(
�w

))
.

qk
(
𝜗0, t

)
= 𝜀�

t

0

e− ∫ t

s
fk(r)dr𝛤k,0(s)hk(s)dW̄s,

qk
(
𝜗w, t

)
= 𝜀�

t

0

e− ∫ t

s
Qk(𝜗w,r)dr𝛤k,w(s)hk(s)dW̄s

+ �
t

0

e− ∫ t

s
Qk(𝜗w,r)dr𝛤k,w

(
𝜗w, s

)
hk(s)

2𝜓𝛿,k(0, s)qk(s)ds,

mk

(
�0, t

)
− yk(t) = ��1(t), mk

(
�w, t

)
− yk

(
�w, t

)
= ��2(t),
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and to show that there exists a constant 𝜅∗ > 0 such that

Remind that for ‖w‖ < R

Hence for some 𝜀1 > 0 and �1‖w‖ ≤ �1R = d and all � ≤ �1 we can write

Here we denoted 𝜅̂ > 0 the constant from the condition of the Theorem 1.
Introduce the function

where �∗ =
(
x∗, y∗

)
∈ � and ‖‖�∗ − �0

‖‖ ≥ d . We have to show that

Suppose that there exists �∗ such that G
(
�∗, �0

)
= 0 and ‖‖�∗ − �0

‖‖ ≥ d . Then we 
have �k

(
�∗
)
= �k

(
�0
)
 and yk

(
�∗, t

)
= yk

(
�0, t

)
 for all k. This means that for two dif-

ferent positions of the source �∗ and �0 we have k equalities

but as we have at least three detectors not on the same line such equalities for all k 
are impossible to have. This is the condition of identifiability.

Therefore for 𝜀‖w‖ > d there exists a constant c∗ > 0 such that

because

Therefore we obtained (18). Now the proof of the estimate (17) follows from the 
proof of Lemma 2.4 in Kutoyants (1994). 	�  ◻

F
(
�w, �0

)
=

K∑

k=1
∫

T

0

hk(t)
2

�2

[
��,k,w(t)yk

(
�w, t

)
− ��,k,0(t)yk(t)

]2
dt

(18)F
�
�w, �0

� ≥ �∗‖w‖2.

F
(
𝜗w, 𝜗0

)
= w⊤I

(
𝜗0
)
w(1 + o(1)).

F
�
𝜗w, 𝜗0

� ≥ 1

2
w⊤I

�
𝜗0
�
w ≥ ‖w‖2

2
inf

‖e‖=1
e⊤I

�
𝜗0
�
e ≥ 𝜅̂

2
‖w‖2.

G
(
�∗, �0

)
=

K∑

k=1
∫

T

0

hk(t)
2
[
��

(
t − �k

(
�∗
))
yk
(
�∗, t

)

−��

(
t − �k

(
�0
))
yk
(
�0, t

)]2
dt,

𝜅̃ = inf
𝜗∗∶‖𝜗∗−𝜗0‖≥d

G
�
𝜗∗, 𝜗0

�
> 0.

‖‖�k − �∗
‖‖ = ‖‖�k − �0

‖‖, k = 1,… ,K

F
�
𝜗w, 𝜗0

� ≥ 𝜀−2G
�
𝜗0 + 𝜀w,𝜗0

� ≥ 𝜅̃

𝜀2
≥ c2

∗
𝜅̃‖w‖2

‖w‖ ≤ �−1 sup
�,��∈�

��� − ���� and �−1 ≥ ‖w‖
sup�,��∈� ‖� − ��‖ = c∗‖w‖.
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The properties of the normalized likelihood ratio function Z�(w),w ∈ �n estab-
lished in Lemmas 2–4 are sufficient conditions for the Theorems 3.1.1, 3.1.3 and 3.2.1 
in Ibragimov and Khasminskii (1981) and therefore the MLE and BE mentioned in the 
Theorem 1 of this work follow from the mentioned theorems in Ibragimov and Khas-
minskii (1981). 	�  ◻

4 � Cusp‑type case

The cusp-type models are proposed as alternative to change-point models with the fol-
lowing motivation. The real signals in technical devices can not have discontinuous 
characteristics. Say, electrical current can not have pure jump at the moment of signal 
arriving. Usually we have continuous curves but with strong increasing at the moment 
of signal arriving. We presented different types of increasing functions: smooth, cusp-
type and change-point type. The cusp-type model is intermediate between smooth 
model case (rate of mean square error is �2 ) and change-point type models (rate of 
mean square error is �4 ). We suppose that the cusp-type model with � close to 0 is bet-
ter approximation of real “change-point” situation, because it proposes a continuous 
curve close in L2[0, T] to discontinuous curve.

We return to the considered above model of K detectors with observations

where Xk(0) = 0 , k = 1,… ,K and the function

The hidden Gaussian processes Yk(⋅), k = 1,… ,K , as before, satisfy the same linear 
equations

We suppose that the conditions R are fulfilled and as before we study the properties 
of estimators as � → 0 , i.e., small noise asymptotic.

The delay �k(�) = �k∕� = �−1‖‖�k − �0
‖‖ and we have to estimate the posi-

tion �0 =
(
x0, y0

)
 by observations XK =

(
X1,… ,XK

)
 . Here the process 

Xk =
(
Xk(t), 0 ≤ t ≤ T

)
.

The likelihood ratio function and estimators 𝜗̂𝜀 , 𝜗̃𝜀 are defined by the same relations 
(3)–(6).

To describe the asymptotic behavior of these estimators we need notations (5) and 
the following ones:

(19)dXk(t) = ak(t)��,�

(
t − �k(�)

)
Yk(t)dt + ��k(t)dWt, 0 ≤ t ≤ T

��,�(t) =
1

2

(
1 + sgn(2t − �)

||||
2t

�
− 1

||||

�
)
�{0≤t≤�} + �{�≤t≤T}.

(20)dYk(t) = −fk(t)Yk(t)dt + 𝜀bk(t)dVk(t), Yk(0) = yk,0 > 0, 0 ≤ t ≤ T .
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Introduce the limit likelihood ratio random field

Here WH,+

k
(s), s ≥ 0, k = 1,… ,K and WH,−

k
(s), s ≥ 0, k = 1,… ,K are independent 

fractional Brownian motions with Hurst parameter H, i.e., independent Gaussian 
processes with properties: �WH,+

k
(s) = 0 and

The limit distributions of the estimators are given by the random vectors ŵ and w̃ 
defined by the following relations

We have the following minimax lower bound for mean square errors of any estimator

This lower bound can be considered as a particular case of the lower bound given in 
the Theorem 1.9.1 in Ibragimov and Khasminskii (1981). We call the estimator �∗

�
 

asymptotically efficient if for all �0 ∈ � for this estimator we have equality in (21).

Theorem 2  Suppose that the conditions are fulfilled, then the MLE 𝜗̂𝜀 and BE 𝜗̃𝜀 
are uniformly consistent, have different limit distributions

we have uniform convergence of moments: for any p > 0

�k
(
�0
)
= hk

(
�k
(
�0 + �∕2

))
yk
(
�k
(
�0
)
+ �∕2

)
,

�k = �k
(
�0
)
, Q(�)2 = ∫

R

[
sgn(s − 1)|s − 1|� − sgn(s)|s|�

]2
ds,

�� = �
1

H Q(�)−
1

H 2
1−�

H �
�

H , H = � +
1

2
.

Z(w) = exp

�
K�

k=1

�
�kW

H,+

k

�
⟨�k,w⟩

�
−

�2
k

2
��⟨�k,w⟩��

2H

�
�{�+

k }

+

K�

k=1

�
�kW

H,−

k

�
−⟨�k,w⟩

�
−

�2
k

2
��⟨�k,w⟩��

2H

�
�{�−

k }

�
, w ∈ R

2.

�W
H,+

k

(
s1
)
W

H,+

k

(
s2
)
=

1

2

(
||s1||

2H
+ ||s2||

2H
− ||s1 − s2

||
2H
)
.

Z(ŵ) = sup
w∈R2

Z(w), w̃ =
∫
R

2 wZ(w)dw

∫
R

2 Z(w)dw
.

(21)lim
𝛿∗→0

lim
𝜀→0

sup
‖𝜗−𝜗0‖≤𝛿∗

𝜑−2
𝜀
�𝜗

��𝜗̄𝜀 − 𝜗��
2 ≥ �𝜗0

‖w̃‖p.

(22)𝜑−1
𝜀

(
𝜗̂𝜀 − 𝜗0

)
⟹ ŵ, 𝜑−1

𝜀

(
𝜗̃𝜀 − 𝜗0

)
⟹ w̃,

𝜑−p
𝜀
�𝜗0

���𝜗̂𝜀 − 𝜗0
���
p

⟶ �𝜗0
‖ŵ‖p, 𝜑−p

𝜀
�𝜗0

��𝜗̃𝜀 − 𝜗0
��
p
⟶ �𝜗0

‖w̃‖p
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and BE are asymptotically efficient.

Proof  We verify the conditions of the general Theorems 1.10.1 and 1.10.2 in Ibragi-
mov and Khasminskii (1981). These conditions are given in terms of the properties 
of the normalized likelihood ratio random field

We do it with the help of three lemmas.

Lemma 5  The finite-dimensional distributions of the random fields Z�(⋅) converge 
to the finite-dimensional distributions of Z(⋅) and this convergence is uniform on 
compacts � ∈ �.

Proof  The normalized log-likelihood ratio random field is

where we used notation �w = �0 + ���w,

We have

It can be shown that

For example, to verify the first estimate we have to write the equations for mk,w(t) 
and mk,0(t) , take the difference ||mk,w(t) − mk,0(t)

|| and then to use Gronwall-Bellman 
lemma and Cauchy-Schwartz inequality. Hence to study

Z�(w) =
L
(
�0 + ���w,X

K
)

L
(
�0,X

K
) , w ∈ �� =

(
w ∶ �0 + ���w ∈ �

)
.

lnZ(w) =

K∑

k=1
∫

T

0

hk(t)

𝜀

[
Mk

(
𝜏k
(
𝜗w

)
, t
)
−Mk

(
𝜏k
(
𝜗0
)
, t
)]
dW̄k(t)

−

K∑

k=1
∫

T

0

hk(t)
2

2𝜀2

[
Mk

(
𝜏k
(
𝜗w

)
, t
)
−Mk

(
𝜏k
(
𝜗0
)
, t
)]2

dt,

��,�,k(w, t) = ��,�

(
t − �k

(
�w

))
, mk,w(t) = m

(
�k
(
�w

)
, t
)
,

Mk

(
�k
(
�w

)
, t
)
= ��,�,k(w, t)mk,w(t) − ��,�,k(0, t)mk,0(t).

Mk

(
�k
(
�w

)
, t
)
−Mk

(
�k
(
�0
)
, t
)
=
[
��,�,k(w, t) − ��,�,k(0, t)

]
mk,w(t)

+ ��,�,k(0, t)
[
mk,w(t) − mk,0(t)

]
.

�−2��0
||mk,w(t) − mk,0(t)

||
2 ≤ C �−2�2

�
= C �

1−2�

�+
1
2 → 0,

��0
||mk,0(t) − yk(t)

||
2 ≤ C �2.
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it is sufficient to find the limit of the integral

Suppose that w ∈ �
−
k
 , i.e., for small � we have

Therefore Hk,𝜀(w) = Ĥk,𝜀(w)(1 + o(1)) , where

In this integral we change the variables several times:

obtain hk(t) = hk
(
�k
(
�0 + �∕2

))
+ o(1) , and yk(t) = yk

(
�k
(
�0
)
+ �∕2

)
+ o(1) and

Recall here that

Therefore we obtained the relation

�−2 ∫
T

0

hk(t)
2
[
Mk

(
�k
(
�w

)
, t
)
−Mk

(
�k
(
�0
)
, t
)]2

dt

Hk,�(w) = �−2 ∫
T

0

hk(t)
2
[
��,�,k(w, t) − ��,�,k(0, t)

]2
mk,w(t)

2dt

= �−2 ∫
T

0

hk(t)
2
[
��,�,k(w, t) − ��,�,k(0, t)

]2
mk,0(t)

2dt(1 + o(1))

= �−2 ∫
T

0

hk(t)
2
[
��,�,k(w, t) − ��,�,k(0, t)

]2
yk(t)

2dt(1 + o(1)).

𝜏k
�
𝜗0 + 𝜈𝜑𝜀w

�
= 𝜏k

�
𝜗0
�
− 𝜑𝜀⟨𝜇k,w⟩ + O

�
𝜑2
𝜀

�
> 𝜏k

�
𝜗0
�
.

Ĥk,𝜀(w) = 𝜀−2 ∫
𝜏k(𝜗0)+𝛿

𝜏k(𝜗0)−𝜑𝜀⟨𝜇k ,w⟩
hk(t)

2
�
𝜓𝛿,𝜅,k(w, t) − 𝜓𝛿,𝜅,k(0, t)

�2
yk(t)

2dt.

t = s + �k
�
�0
�
, s =

�

2
(r + 1), r = −

2��⟨�k,w⟩
�

q,

Ĥk,𝜀(w) = 𝜀−2 ∫
𝜏k(𝜗0)+𝛿

𝜏k(𝜗0)−𝜑𝜀⟨𝜇k ,w⟩
hk(t)

2
�
𝜓𝛿,𝜅,k(w, t) − 𝜓𝛿,𝜅,k(0, t)

�2
yk(t)

2dt

=
𝜋2
k

Q(𝜅)2
��⟨𝜇k,w⟩��

2𝜅+1 ∫
R

�
sgn(q − 1)�q − 1�𝜅 − sgn(q)�q�𝜅

�2
dq(1 + o(1))

= 𝜋2
k
��⟨𝜇k,w⟩��

2𝜅+1
(1 + o(1)).

�2
k
= hk

(
�k
(
�0 + �∕2

))2
yk
(
�k
(
�0
)
+ �∕2

)2
,

Q(�)2 = ∫
R

[
sgn(q − 1)|q − 1|� − sgn(q)|q|�

]2
dq.
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For stochastic integral we have similar relations

Here wk,�(⋅) are independent two-sided Wiener processes obtained from the W̄k(⋅) 
after the mentioned change of variables and the corresponding normalization as 
follows

The Gaussian random function

has the properties

Therefore we have the convergence

�−2 ∫
T

0

hk(t)
2
�
Mk

�
�k
�
�w

�
, t
�
−Mk

�
�k
�
�0
�
, t
��2

dt

= �k
�
�0
�2
Q
�
�, �0

�2��⟨�k,w⟩��
2�+1

(1 + o(1)).

∫
T

0

hk(t)

𝜀

�
Mk

�
𝜏k
�
𝜗w

�
, t
�
−Mk

�
𝜏k
�
𝜗0
�
, t
��
dW̄k(t)

=
𝜋k

Q(𝜅) ∫
𝜑−1
𝜀

−𝜑−1
𝜀

�
sgn

�
q − ⟨𝜇k,w⟩

���q − ⟨𝜇k,w⟩��
𝜅

−sgn(q)�q�𝜅
�
dwk,𝜀(q)(1 + o(1))

= 𝜋k
�
𝜗0
�
Wk,𝜀

�
⟨𝜇k,w⟩

�
(1 + o(1)).

W̄k(t) ⟶ W̄k

(
s + 𝜏k

(
𝜗0
))

− W̄k

(
𝜏k
(
𝜗0
))

⟶ W̃k(r) =

√
2

𝛿

[
W̄k

(
𝛿

2
(r + 1)

)
− W̄k

(
𝛿

2

)]

⟶ wk,𝜀(⋅) =

√
𝛿

2𝜑𝜀

W̃k

(
2𝜑𝜀

𝛿
q

)
.

Wk,�

�
⟨�k,w⟩

�

= Q(�)−1 ∫
�−1
�

−�−1
�

�
sgn

�
q − ⟨�k,w⟩

���q − ⟨�k,w⟩��
�
− sgn(q)�q��

�
dwk,�(q)

��0
Wk,�

�
⟨�k,w⟩

�
= 0, ��0

Wk,�

�
⟨�k,w⟩

�2
= ��⟨�k,w⟩��

2H
(1 + o(1)),

��0
Wk,�

�
⟨�k,w1⟩

�
Wk,�

�
⟨�k,w2⟩

�

=
1

2

�
��⟨�k,w1⟩��

2H
+ ��⟨�k,w2⟩��

2H
− ��⟨�k,w2 − w1⟩��

2H
�
(1 + o(1)).

Wk,�

���⟨�k,w⟩��
�
⟹ W

H,−

k

���⟨�k,w⟩��
�
, w ∈ �

−
k
.
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For w ∈ �
+
k
 we have the similar limits. Therefore the one-dimensional distributions 

of Z�(w) converge to the one-dimensional distributions of Z(w) . As it follows from 
the given proof this convergence is uniform on compacts � ⊂ 𝛩 . To prove the con-
vergence of finite-dimensional distributions

we can use the same steps as in the given above proof. 	�  ◻

Lemma 6  There exists constant C > 0 such that for any R > 0 and ‖‖w1
‖‖ + ‖‖w2

‖‖ < R 
we have

Proof  Using (16) we can write

Introduce notation �1 = �0 + ���w1, �2 = �0 + ���w2

and write

We have

(
Z�
(
w1

)
,… , Z�

(
wN

))
⟹

(
Z
(
w1

)
,… , Z

(
wN

))

(23)sup
�0∈�

��0

|||Z
1∕4
�

(
w2

)
− Z1∕4

�

(
w1

)|||
4 ≤ C

(
1 + R4

)‖‖w2 − w1
‖‖
4�+2

.

�𝜗0

|||Z
1∕4
𝜀

(
w2

)
− Z1∕4

𝜀

(
w1

)|||
4

= �𝜗0+𝜑𝜀w1

||VT − 1||
4

≤ C�𝜗0+𝜑𝜀w1

(
K∑

k=1
�

T

0

Vth
2
t
Dk,𝜀

(
𝜗0,w1,w2, t

)2
dt

)4

+ C�𝜗0+𝜑𝜀w1

(
K∑

k=1
�

T

0

VthtDk,𝜀

(
𝜗0,w1,w2, t

)
dW̄k(t)

)4

≤ C

K∑

k=1

�𝜗0+𝜑𝜀w1

(

�
T

0

VtDk,𝜀

(
𝜗0,w1,w2, t

)2
dt

)4

+ C

K∑

k=1

�𝜗0+𝜑𝜀w1

(

�
T

0

V2
t
Dk,𝜀

(
𝜗0,w1,w2, t

)2
dt

)2

.

Δ�k(t) = ��,�

(
t − �k

(
�1
))

− ��,�

(
t − �k

(
�2
))
,

Δmk(t) = m
(
�k
(
�1
)
, t
)
− m

(
�k
(
�2
)
, t
)
,

�Dk,�

(
�0,w1,w2, t

)
= m

(
�k
(
�1
)
, t
)
Δ�k(t) + ��,�

(
t − �k

(
�2
))
Δm(t).

��1

(

�
T

0

V2
t
Dk,�

(
�0,w1,w2, t

)2
dt

)2

≤ C

�2
��1

(

�
T

0

[
Δ�k(t)

2V2
t
m
(
�k
(
�1
)
, t
)2

+ V2
t
Δmk(t)

2
]
dt

)2

.



691

1 3

Localization of source by hidden Gaussian processes

Recall that m
(
�k
(
�1
)
, t
)
, 0 ≤ t ≤ T  is Gaussian process with bounded variance. 

Hence ( 2ab ≤ a2 + b2)

and

Note that the Gaussian process mk(�, t) is mean square differentiable w.r.t. � and we 
have

These estimates allow us to write

for ‖‖w1
‖‖ + ‖‖w2

‖‖ < R.
For the term

2��1
V2
s
V2
t
m
(
�k
(
�1
)
, t
)2
m
(
�k
(
�1
)
, s
)2

≤ ��1
V4
t
m
(
�k
(
�1
)
, t
)4

+ ��1
V4
s
m
(
�k
(
�1
)
, s
)4

= ��2
m
(
�k
(
�1
)
, t
)4

+ ��2
m
(
�k
(
�1
)
, s
)4 ≤ C,

2��1
V2
s
V2
t
Δmk(t)

2Δmk(s)
2 ≤ ��1

V4
s
Δmk(t)

4 + ��1
V4
s
Δmk(s)

4

≤ ��2
Δmk(t)

4 + ��2
Δmk(s)

4.

��Δmk(s)
4 = ��

|||m
(
�k
(
�1
)
, t
)
− m

(
�k
(
�2
)
, t
)|||

4

≤ C
|||�k

(
�1
)
− �k

(
�2
)|||

4 ≤ C�4
�
‖‖w2 − w1

‖‖
4
.

��1

(

�
T

0

V2
t
Dk,�

(
�0,w1,w2, t

)2
dt

)2

= �−4��1 �
T

0 �
T

0

V2
t
V2
s
Dk,�

(
�0,w1,w2

)2
Dk,�

(
�0,w1,w2, s

)2
dt ds

≤ C�−4
(

�
T

0

Δ�k(t)
2dt

)2

+ �−4�4
�
‖‖w2 − w1

‖‖
4

≤ C
�4�+2
�

�4
‖‖w2 − w1

‖‖
4�+2

(

�
R

[
sgn(s − 1)|s − 1|� − sgn(s)|s|�

]2
ds

)2

+ C + �−4�4
�
‖‖w2 − w1

‖‖
4

≤ C ‖‖w2 − w1
‖‖
4�+2

+ C �

2−4�

�+
1
2 ‖‖w2 − w1

‖‖
4

≤ C
(
1 + R2−4�

)‖‖w2 − w1
‖‖
4�+2

��1

(

∫
T

0

VtDk,�

(
�0,w1,w2, t

)2
dt

)4
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we use the similar relations like

and obtain the relations

Therefore we obtained (23). 	�  ◻

Lemma 7  There exists constant c∗ > 0 such that

Proof  We follow the same steps as in the proof of Lemma 4. The local relation is 
(below �w = �0 + ���w)

Therefore there exists 𝜀1 > 0 and d > 0 such that 𝜀1‖w‖ < d and all 𝜀 < 𝜀1 we have

��1
Vt1

Vt2
Vt3

Vt4
m
(
�k
(
�1
)
, t1

)
m
(
�k
(
�1
)
, t2

)
m
(
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(
�1
)
, t3

)
m
(
�k
(
�1
)
, t4

)

≤ C

4∑

i=1

��1
V4
ti
m
(
�k
(
�1
)
, ti
)4

= C

4∑

i=1

��i
m
(
�k
(
�1
)
, ti
)4 ≤ C,

K∑

k=1

��1

(

�
T

0

VtDk,�

(
�0,w1,w2, t

)2
dt

)4

≤ C
�8�+4
�

�8
‖‖w2 − w1

‖‖
8�+4

+ C
�8
�

�8
‖‖w2 − w1

‖‖
8

≤ C‖‖w2 − w1
‖‖
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�+
1
2 ‖‖w2 − w1

‖‖
8

≤ C
(
1 + R4

)‖‖w2 − w1
‖‖
4�+2

.

(24)sup
�0∈�

��0
Z�(w)

1∕2 ≤ e−c∗‖w‖
2H

.

F
�
�w, �0
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=

K�
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hk(t)
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�2
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t − �k

�
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��
yk
�
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�
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yk
�
�0, t

��2
dt

=

K�
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hk(t)
2
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��,�

�
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t − �k

�
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yk
�
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dt(1 + o(1))
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K�
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�2
k
��⟨�k,w⟩��

2H
(1 + o(1)).

F
�
𝜗w, 𝜗0

� ≥
K�

k=1

𝜋2
k
��⟨𝜇k,w⟩��

2H
(1 + o(1)) ≥ 1

2

K�

k=1

𝜋2
k
��⟨𝜇k,w⟩��

2H ≥ ĉ‖w‖2H .
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To verify the last inequality with some ĉ > 0 we write

where we denoted e = w∕‖w‖ . We have

If ĉ = 0 , then there exists a vector e∗ such that all scalar products 
⟨�k, e∗⟩ = 0, k = 1,… ,K . As K ≥ 3 and there exists at least three detectors not on 
the same line, the vector e∗ , which is orthogonal to all vectors �k, k = 1,… ,K does 
not exists.

For ‖‖� − �0
‖‖ ≥ d we have

The proof of this inequality is the same as the proof of similar relation in the 
Lemma 4.

Hence there exists c̃ > 0 such that

The end of the proof is the same as in Lemma 4. 	�  ◻

The properties of the normalized likelihood ratio random field Z�(⋅) established in 
the Lemmas 5–7 are sufficient to cite the Theorems 1.10.1 and 1.10.3 in Ibragimov and 
Khasminskii (1981), where the mentioned properties of estimators were established 
under such conditions. 	�  ◻

5 � Change‑point case

Let us consider once more the problem of one source detection with K detectors (see 
Fig. 1). The observations XK =

(
X1,… ,XK

)
 , where Xk =

(
Xk(t), 0 ≤ t ≤ T

)
 and

where Xk(0) = 0 , k = 1,… ,K and the function

The hidden Gaussian processes Yk(⋅), k = 1,… ,K , satisfy the same equations

K�

k=1

�2
k
��⟨�k,w⟩��

2H
=

K�

k=1

�2
k
��⟨�k, e⟩��

2H‖w‖2H ,

ĉ = inf
e∈R2,‖e‖=1

K�

k=1

𝜋2
k
��⟨𝜇k, e⟩��

2H
> 0.

inf
𝜗0∈𝛩

inf
‖𝜗−𝜗0‖≥d

𝜀2F
�
𝜗, 𝜗0

�
> 0.

F
�
𝜗, 𝜗0

� ≥ c̃‖w‖2H .

(25)dXk(t) = ak(t)�
(
t − �k(�)

)
Yk(t)dt + ��k(t)dWt, 0 ≤ t ≤ T ,

�(t) = �{t≥0}.
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As before we suppose that the conditions R are fulfilled. The parameter � ∈ (0, 1) is 
small and the asymptotic is the same: � → 0.

The delay �k(�) = �k∕� = �−1‖‖�k − �0
‖‖ and we have to estimate the position 

𝜗0 =
(
x0, y0

)⊤ by observations XK.
The likelihood ratio function is

The estimators 𝜗̂𝜀 , 𝜗̃𝜀 are defined by the relations (3)–(6).
We need the same notations (5) and

The limit likelihood ratio random field is

Here W+
k
(s), s ≥ 0, k = 1,… ,K and W−

k
(s), s ≥ 0, k = 1,… ,K are independent two-

sided Brownian motions.
The limit random vectors ŵ and w̃ are defined by the same relations

The asymptotically efficient estimators in this problem are defined with the help of 
the following lower bound

We call the estimator �∗
�
 asymptotically efficient if for this estimator we have

dYk(t) = −fk(t)Yk(t)dt + �bk(t)dVk(t), Yk(0) = yk,0, 0 ≤ t ≤ T .

L
(
�,XK

)
= exp

{
K∑

k=1
∫

T

�k(�)

ak(t)mk

(
�k(�), t

)

�2�k(t)
2

dXk(t)

−

K∑

k=1
∫

T

�k(�)

ak(t)
2mk

(
�k(�), t

)2

2�2�k(t)
2

dt

}
, � ∈ �.

�k
(
�0
)
= hk

(
�k
(
�0
))
yk
(
�k
(
�0
))
, �k = �k

(
�0
)
.

Z(w) = exp

�
K�

k=1

�
�kW

+
k

�
⟨�k,w⟩

�
−

�2
k

2
��⟨�k,w⟩��

�
�{�+

k }

+

K�

k=1

�
�kW

−
k

�
−⟨�k,w⟩

�
−

�2
k

2
��⟨�k,w⟩��

�
�{�−

k }

�
, w ∈ R

2.

Z(ŵ) = sup
w∈R2

Z(w), w̃ =
∫
R

2 wZ(w)dw

∫
R

2 Z(w)dw
.

lim
𝜈→0

lim
𝜀→0

sup
‖𝜗−𝜗0‖≤𝜈

𝜀−4�𝜗‖𝜗̄𝜀 − 𝜗‖2 ≥ �𝜗0
‖w̃‖2.

lim
𝜈→0

lim
𝜀→0

sup
‖𝜗−𝜗0‖≤𝜈

𝜀−4�𝜗‖𝜗∗𝜀 − 𝜗‖2 = �𝜗0
‖w̃‖2
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for all �0 ∈ �.

Theorem 3  Suppose that the conditions are fulfilled, then the MLE 𝜗̂𝜀 and BE 𝜗̃𝜀 
are uniformly consistent, have different limit distributions

the moments converge: for any p > 0

and BE are asymptotically efficient.

Proof  Introduce the normalized likelihood ratio

Once more we have to prove three lemmas and then to cite the Theorems 1.10.1 and 
1.10.3 in Ibragimov and Khasminskii (1981).

Lemma 8  The finite-dimensional distributions of the random fields Z�(⋅) converge 
to the finite-dimensional distributions of Z(⋅) and this convergence is uniform on 
compacts � ∈ �.

Proof  Suppose that w ∈ �
−
k
 . Then

and

For ordinary integral we can write

(26)𝜀−2
(
𝜗̂𝜀 − 𝜗0

)
⟹ ŵ, 𝜀−2

(
𝜗̃𝜀 − 𝜗0

)
⟹ w̃,

𝜀−2p�𝜗0

���𝜗̂𝜀 − 𝜗0
���
p

⟶ �𝜗0
‖ŵ‖p, 𝜀−2p�𝜗0

��𝜗̃𝜀 − 𝜗0
��
p
⟶ �𝜗0

‖w̃‖p

Z�(w) =
L
(
�0 + ��2w,XK

)

L
(
�0,X

K
) , w ∈ �� =

(
w ∶ �0 + ��2w ∈ �

)
.

𝜏k
�
𝜗0 + 𝜑𝜀w

�
= 𝜏k

�
𝜗0
�
− 𝜑𝜀⟨𝜇k,w⟩ + O

�
𝜑2
𝜀

�
> 𝜏k

�
𝜗0
�

ln Z𝜀(w)

=

K∑

k=1
∫

T

𝜏k(𝜗0)

hk(t)
[
�{t>𝜏k(𝜗w)}mk

(
𝜏k
(
𝜗w

)
, t
)
− mk

(
𝜏k
(
𝜗w

)
, t
)]

𝜀𝜎k(t)
dW̄k(t)

−

K∑

k=1
∫

T

𝜏k(𝜗0)

hk(t)
2
[
�{t>𝜏k(𝜗w)}mk

(
𝜏k
(
𝜗w

)
, t
)
− mk

(
𝜏k
(
𝜗w

)
, t
)]2

2𝜀2𝜎k(t)
2

dt.
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Hence

The similar calculations for stochastic integral leads to the following relations

∫
T

𝜏k(𝜗0)

hk(t)
2
�
�{t>𝜏k(𝜗w)}mk

�
𝜏k
�
𝜗w

�
, t
�
− mk

�
𝜏k
�
𝜗w

�
, t
��2

𝜀2𝜎k(t)
2

dt

= ∫
𝜏k(𝜗0+𝜑𝜀w)

𝜏k(𝜗0)

hk(t)
2mk

�
𝜏k
�
𝜗w

�
, t
�2

𝜀2𝜎k(t)
2

dt(1 + o(1))

=
hk
�
𝜏k
�
𝜗0
��2

𝜀2𝜎k
�
𝜏k
�
𝜗0
��2 ∫

𝜏k(𝜗0+𝜑𝜀w)

𝜏k(𝜗0)
mk

�
𝜏k
�
𝜗w

�
, t
�2
dt(1 + o(1))

=
hk
�
𝜏k
�
𝜗0
��2

𝜀2𝜎k
�
𝜏k
�
𝜗0
��2 ∫

𝜏k(𝜗0+𝜑𝜀w)

𝜏k(𝜗0)
mk

�
𝜏k
�
𝜗0
�
, t
�2
dt(1 + o(1))

=
hk
�
𝜏k
�
𝜗0
��2

𝜀2𝜎k
�
𝜏k
�
𝜗0
��2 ∫

𝜏k(𝜗0)−𝜑𝜀⟨𝜇k ,w⟩

𝜏k(𝜗0)
yk(t)

2
dt(1 + o(1))

=
hk
�
𝜏k
�
𝜗0
��2

yk
�
𝜏k
�
𝜗0
��2

𝜎k
�
𝜏k
�
𝜗0
��2

𝜑𝜀

𝜀2
��⟨𝜇k,w⟩��(1 + o(1))

⟶ 𝜋k
�
𝜗0
�2 ��⟨𝜇k,w⟩��.

K�

k=1
∫

T

𝜏k(𝜗0)

h
k
(t)2

�
�{t>𝜏k(𝜗w)}mk

�
𝜏
k

�
𝜗
w

�
, t
�
− m

k

�
𝜏
k

�
𝜗
w

�
, t
��2

2𝜀2𝜎
k
(t)2

dt

⟶

K�

k=1

𝜋
k

�
𝜗0

�2 ��⟨𝜇k
,w⟩��.

∫
T

𝜏k(𝜗0)

hk(t)
�
�{t>𝜏k(𝜗w)}mk

�
𝜏k
�
𝜗w

�
, t
�
− mk

�
𝜏k
�
𝜗w

�
, t
��

𝜀𝜎k(t)
dW̄k(t)

= ∫
𝜏k(𝜗0+𝜑𝜀w)

𝜏k(𝜗0)

hk(t)mk

�
𝜏k
�
𝜗w

�
, t
�

𝜀𝜎k(t)
dW̄k(t)t(1 + o(1))

=
hk
�
𝜏k
�
𝜗0

��

𝜀𝜎k
�
𝜏k
�
𝜗0

�� ∫
𝜏k(𝜗0+𝜑𝜀w)

𝜏k(𝜗0)
mk

�
𝜏k
�
𝜗w

�
, t
�
dW̄k(t)(1 + o(1))

=
hk
�
𝜏k
�
𝜗0

��

𝜀𝜎k
�
𝜏k
�
𝜗0

�� ∫
𝜏k(𝜗0+𝜑𝜀w)

𝜏k(𝜗0)
mk

�
𝜏k
�
𝜗0

�
, t
�
dW̄k(t)(1 + o(1))

=
hk
�
𝜏k
�
𝜗0

��

𝜀𝜎k
�
𝜏k
�
𝜗0

�� ∫
𝜏k(𝜗0)−𝜑𝜀⟨𝜇k ,w⟩

𝜏k(𝜗0)
yk(t)dW̄k(t)(1 + o(1))

= 𝜋k

�
𝜗0

� W̄k

�
𝜏k
�
𝜗0

�
− 𝜑𝜀⟨𝜇k,w⟩

�
− W̄k

�
𝜏k
�
𝜗0

��

𝜀
(1 + o(1))

= 𝜋k

�
𝜗0

�
W̃k,𝜀

���⟨𝜇k,w⟩��
�
(1 + o(1)) ⟹ 𝜋k

�
𝜗0

�
W−

k

���⟨𝜇k,w⟩��
�
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and

Therefore we obtained convergence of one-dimensional distributions. The proof 
of the convergence of multidimensional distributions follows the same steps but is 
cumbersome. 	�  ◻

Lemma 9  There exists constant C > 0 such that for any R > 0 and ‖‖w1
‖‖ + ‖‖w2

‖‖ < R 
we have

Proof  Suppose that w1 and w2 are such that 𝜏k(𝜗w1
) < 𝜏k(𝜗w2

) and denote

Using once more (16) we write

Here

K�

k=1
∫

T

𝜏k(𝜗0)

hk(t)
�
�{t>𝜏k(𝜗w)}mk

�
𝜏k
�
𝜗w

�
, t
�
− mk

�
𝜏k
�
𝜗w

�
, t
��

𝜀𝜎k(t)
dW̄k(t)

⟹

K�

k=1

𝜋k
�
𝜗0
�
W−

k

���⟨𝜇k,w⟩��
�
.

(27)sup
�0∈�

��0

|||Z
1∕8
�

(
w2

)
− Z1∕8

�

(
w1

)|||
8 ≤ C

(
1 + R8

)‖‖w2 − w1
‖‖
4
.

ΔMk

(
w1,w2, t

)
= �{

t>𝜏k(𝜗w2
)
}mk

(
𝜏k(𝜗w2

), t
)
− �{

t>𝜏k(𝜗w1
)
}mk

(
𝜏k(𝜗w1

), t
)
.

�𝜗0

|||Z
1∕8
𝜀

(
w2

)
− Z1∕8

𝜀

(
w1

)|||
8

= �𝜗0+𝜑𝜀w1

||VT − 1||
8

≤ C𝜀−16�𝜗w1

(
K∑

k=1
�

T

0

Vth
2
t
ΔMk

(
w1,w2, t

)2
dt

)8

+ C𝜀−8�𝜗w1

(
K∑

k=1
�

T

0

VthtΔMk

(
w1,w2, t

)
dW̄k(t)

)8

≤ C𝜀−16
K∑

k=1

�𝜗w1

(

�
T

0

VtΔMk

(
w1,w2, t

)2
dt

)8

+ C𝜀−8
K∑

k=1

�𝜗w1

(

�
T

0

V2
t
ΔMk

(
w1,w2, t

)2
dt

)4

.

Vt = exp

{
K∑

k=1
∫

t

0

hk(s)

8𝜀
ΔMk

(
w1,w2, s

)
dW̄k(s)

−

K∑

k=1
∫

t

0

hk(s)
2

16𝜀2
ΔMk

(
w1,w2, s

)2
ds

}
.
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We have

Let us denote mk(t) = mk

(
�k
(
�w1

)
, t
)
 , then

Further

and

Therefore for ‖‖w1
‖‖ < R, ‖‖w2

‖‖ < R we obtained

Using the similar arguments it is possible to verify the estimate

∫
T

0

V2
t
ΔMk

(
w1,w2, t

)2
dt = ∫

�k(�w2
)

�k(�w1
)

V2
t
mk

(
�k
(
�w1

)
, t
)2
dt

+ ∫
T

�k(�w2
)

V2
t

[
mk

(
�k
(
�w2

)
, t
)
− mk

(
�k
(
�w1

)
, t
)]2

dt.

��w1
V2
t1
mk

(
t1
)2
V2
t2
mk

(
t2
)2
V2
t3
mk

(
t3
)2
V2
t4
mk

(
t4
)2

≤ C

4∑

i=1

��w1
V8
ti
mk

(
ti
)8

= C

4∑

i=1

��w2
mk

(
ti
)8 ≤ C.

��w1

(

�
�k(�w2

)

�k(�w1
)

V2
t
mk

(
�k
(
�w1

)
, t
)2
dt

)4

= �
�k(�w2

)

�k(�w1
) �

�k(�w2
)

�k(�w1
) �

�k(�w2
)

�k(�w1
) �

�k(�w2
)

�k(�w1
)

4∏

i=1

��w1
V2
ti
mk

(
�k
(
�w1

)
, ti
)2
dti

≤ C
|||�k(�w2

− �k(�w1

|||
4 ≤ C�8‖‖w2 − w1

‖‖
4

��w1

(

�
T

�k(�w2
)

V2
t

[
mk

(
�k
(
�w2

)
, t
)
− mk

(
�k
(
�w1

)
, t
)]2

dt

)4

≤ (
T − �k(�w2

)
)3

�
T

�k(�w2
)

��w1
V8
t

[
mk

(
�k
(
�w2

)
, t
)
− mk

(
�k
(
�w1

)
, t
)]8

dt

= T3 �
T

�k(�w2
)

��w2

[
mk

(
�k
(
�w2

)
, t
)
− mk

(
�k
(
�w1

)
, t
)]8

dt

≤ C
‖‖‖�k

(
�w2

)
− �k

(
�w1

)‖‖‖
8 ≤ C�16‖‖w2 − w1

‖‖
8
.

�−8
K∑

k=1

��w1

(

�
T

0

V2
t
ΔMk

(
w1,w2, t

)2
dt

)4

≤ C‖‖w2 − w1
‖‖
4
+ C�8‖‖w2 − w1

‖‖
8 ≤ C

(
1 + R4

)‖‖w2 − w1
‖‖
4
.
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	�  ◻

Lemma 10  There exists constant c∗ > 0 such that

Proof  Once more we follow the proof of the Lemma 4. First we show that for some 
d > 0 and ‖‖�w − �0

‖‖ ≤ d we have the estimate

with some constant c̄ > 0 . Then for �0 ∈ �

Consider the values �‖w‖ ≤ d and 𝜏k
(
𝜗w

)
> 𝜏k

(
𝜗0
)

Therefore

Once more we have the estimate

�−16
K∑

k=1

��w1

(

�
T

0

VtΔMk

(
w1,w2, t

)2
dt

)8

≤ C‖‖w2 − w1
‖‖
8
+ C�16‖‖w2 − w1

‖‖
16 ≤ C

(
1 + R8

)‖‖w2 − w1
‖‖
8
.

(28)sup
�0∈�

��0
Z�(w)

1∕2 ≤ e−c∗‖w‖.

(29)
K�

k=1
�

T

0

h2
t

𝜀2

�
�{t≥𝜏k(𝜗w)}yk

�
𝜗w, t

�
− �{t≥𝜏k(𝜗0)}yk(t)

�2
dt ≥ c̄‖w‖

(30)inf
‖𝜗−𝜗0‖>d

K�

k=1
�

T

0

h2
t

�
�{t≥𝜏k(𝜗)}yk(𝜗, t) − �{t≥𝜏k(𝜗0)}yk(t)

�2
dt > 0.

Fk

�
�w, �0

�
= �−2 �

T

0

h2
t

�
�{t≥�k(�w)}yk

�
�w, t

�
− �{t≥�k(�0)}yk(t)

�2
dt

≥ C�−2 �
T

0

�
�{t≥�k(�w)}yk

�
�w, t

�
− �{t≥�k(�0)}yk(t)

�2
dt

≥ C�−2 �
�k(�w)

�k(�0)
yk(t)

2dt + C�−2 �
T

�k(�w)

�
yk
�
�w, t

�
− yk(t)

�2
dt

≥ C�−2yk
�
�k
�
�0
��2�

�k
�
�w

�
− �k

�
�0
��
(1 + o(1)) − C�−2���w − �0

��
2

≥ Cyk
�
�k
�
�0
��2��⟨�k,w⟩��(1 + o(1)) − C�2‖w‖2.

K�

k=1

Fk

�
�w, �0

� ≥ C

K�

k=1

yk
�
�k
�
�0
��2��⟨�k,w⟩��(1 + o(1)) − Cd�‖w‖

≥ C

K�

k=1

��⟨�k,w⟩��(1 + o(1)) − Cd�‖w‖.



700	 Y. A. Kutoyants 

1 3

Hence

and we obtain (30).
Suppose that we have equality in (30). Then there exists �∗ such that 

‖‖𝜗∗ − 𝜗0
‖‖ > 0 and

This is possible if and only if �k
(
�∗
)
= �k

(
�0
)
 for all k = 1,… ,K . These equalities 

simultaneously are impossible if there is at least three detectors not on the same line. 
Therefore (30) is valid. 	�  ◻

Now the properties of the MLE and BE follows from the Theorems 1.10.1 and 
1.10.3 in Ibragimov and Khasminskii (1981). 	�  ◻

6 � Discussion

The studied here model of observations (1) is motivated by two different problems. 
One is to detect the position of the source �0 , which emmits K independent Gauss-
ian processes in different directions and the second is to detect a position of object 
�0 which receives K independent Gaussian signals from K reper sources with known 
positions. If the independence of the signals in the second statement of the prob-
lem seems to be natural to suppose that one source can emit K independent signals 
merits to be discussed. For example, suppose that we have a radioactive source and 
the signals are the Gaussian approximation of the flux of the particles emited in dif-
ferent directions. According to the physical law all elementary events (radioactive 
decays) are independent and therefore the corresponding Gaussian processes can 
be considered as independent. Note that the case where the same Gaussian process 
Y = (Y(t), 0 ≤ t ≤ T) is detected by K different sensors

with different delays can be treated using the developped here technics.
We considered the position estimation problem in three different cases corre-

sponding to three different types of regularity. It is supposed that the moment of the 
beginning of emission is known and this corresponds well to the usual situations 
in GPS models. There is another class of problems like identification of explosion, 

K�

k=1

��⟨𝜇k,w⟩�� = ‖w‖
K�

k=1

��⟨𝜇k, e⟩�� ≥ č‖w‖.

K�

k=1

Fk

�
𝜗w, 𝜗0

� ≥ (Cč − Cd𝜀)‖w‖ ≥ c1‖w‖

K∑

k=1
�

T

0

h2
t

[
�{t≥�k(�∗)}yk

(
�∗, t

)
− �{t≥�k(�0)}yk(t)

]2
dt = 0.

dXk(t) = ak(t)𝜓̄
(
t − 𝜏k

(
𝜗0
))
Y(t)dt + 𝜀𝜎k(t)dWk(t), Xk(0) = 0



701

1 3

Localization of source by hidden Gaussian processes

where the position and the moment of explosion are supposed to be unknown. It is 
possible to treat these problems too. The first important question is the question of 
identifiability conditions. In the work Arakelyan and Kutoyants (2019) we gave the 
example of such identifiability condition, but the further study is needed.

Another problem is the computational complexity of the estimation algorithms. 
The calculation of the MLE and BE requires the calculation of the solutions of the 
Kalman–Bucy filtration equations (6)–(8) for all (many) values of � ∈ � . Of course, 
the numerical realization can be difficult problem. There is a possibility to use two-
step procedure developed recently for partially observed continuous time dynamic 
systems Kutoyants (2019a, b).

It is also possible to separate the problem of localization in two. The first problem 
is estimation of arrival times �1,… , �K by K independent Gaussian processes (1) with 
hidden processes (2). Then having K estimators, say, 𝜏1,𝜀,… , 𝜏K,𝜀 we can consider the 
problem of estimation �0 using least squares approach. See details in Chernoyarov and 
Kutoyants (2020) and Arakelyan and Kutoyants (2019). The estimator of �0 obtained 
by this method can be used as preliminary estimator for two step procedure like the 
given in Kutoyants (2019a), Kutoyants and Zhou (2019).
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