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Abstract
We develop a general class of noise-robust estimators based on the existing estima-
tors in the non-noisy high-frequency data literature. The microstructure noise is a 
parametric function of the limit order book. The noise-robust estimators are con-
structed as plug-in versions of their counterparts, where we replace the efficient 
price, which is non-observable, by an estimator based on the raw price and limit 
order book data. We show that the technology can be applied to five leading exam-
ples where, depending on the problem, price possibly includes infinite jump activity 
and sampling times encompass asynchronicity and endogeneity.

Keywords  Functionals of volatility · High-frequency covariance · High-frequency 
data · Limit order book · Parametric market microstructure noise

1  Introduction

It is now widely acknowledged that the availability of high-frequency data has led 
to a more accurate description of financial markets. Over the past decades, empiri-
cal studies have unveiled several aspects of the frictionless efficient price. Accord-
ingly, the assumptions on the latter have been gradually weakened to the extent that 
it is common nowadays to represent it as a general Itô semi-martingale including 
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jumps with infinite activity. Moreover, the sampling times are also often considered 
as asynchronous, random, and even sometimes endogenous, i.e. possibly correlated 
with the efficient price. The accessibility of high-frequency data has also shed light 
on the frictions, or so-called market microstructure noise (MMN), which get promi-
nent as the sampling frequency increases. As a matter of fact, realized volatility (i.e. 
summing the square returns), which is efficient in the absence of frictions, becomes 
badly biased when the frequency increases. This was visible on the signature plot in 
Andersen et al. (2001a). A typical challenge that faces a theoretical statistician today 
is to incorporate jumps, asynchronicity, endogeneity and frictions into the model.

A frequently used set-up is

where �ti is i.i.d. and latent. In two nice and independent papers, Li et al. (2016) and 
Chaker (2017), and subsequently Clinet and Potiron (2019a, b), consider the follow-
ing parametric form for the noise to estimate volatility:

where Qti
 is the information from the limit order book and � is a function known to 

the statistician. A simple and familiar example was introduced in Roll (1984), and 
specified in e.g. Hasbrouck (2002), where

with Iti corresponding to the trade direction, i.e. 1 if the transaction at time ti is buyer 
initiated and −1 if seller initiated, and �0 standing for half of the effective spread. In 
Glosten and Harris (1988), the extension includes the trading volume Vti

 and takes 
on the form

A different model features information about the quoted spread Sti , where

This model can be seen as an updated time-varying Roll model, as the quoted spread 
is nowadays available in the structure of current limit order book markets, whereas it 
was not observed at the time when Roll model was proposed.

There are two regimes related to the parametric model (2), i.e. the null residual 
noise and nonzero residual noise. To estimate volatility, the cited papers rely on a 
plug-in procedure. In a first step, they provide estimators of the parameter �0 and 
establish fast convergence rate which satisfies

(1)
Zti

⏟⏟⏟
observed price

= Xti
⏟⏟⏟

efficient price

+ �ti
⏟⏟⏟
MMN

,

(2)

Zti
⏟⏟⏟

observed price

= Xti
⏟⏟⏟

efficient price

+ �
(
Qti

, �0
)

⏟⏞⏞⏟⏞⏞⏟
parametric noise

+ �ti
⏟⏟⏟

residual noise

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
MMN

,

(3)�
(
Qti

, �0
)
= Iti�0,

(4)�
(
Qti

, �0
)
= Iti�

(1)

0
+ ItiVti

�(2)
0
.

(5)�
(
Qti

, �0
)
= ItiSti�0.
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where N stands for the number of observations and pre-estimate the efficient price 
via

In a second step, one can apply a “usual” estimator of volatility, considering the 
observed price as in fact the pre-estimated efficient price. More specifically, in case 
of absence of residual noise, the cited papers implement realized volatility and 
retrieve efficiency of the method. In the presence of residual noise, they also provide 
residual noise robust estimators.

In this paper, we will assume the null residual noise regime, which we agree 
is quite a strong assumption (at first glance). Indeed, from a theoretical statisti-
cian standpoint, the nonzero residual noise regime, of which the common set-up 
(1) is a particular case, is obviously more challenging. Nonetheless, the original 
papers Li et al. (2016) and Chaker (2017) most likely wanted to select empirically 
variables from the limit order book that fully explain the MMN. Actually, in their 
empirical study on four stocks and one day, Li et  al. (2016) find that the resid-
ual noise of models such as (3) and (4) accounts for 20–30% of the total MMN 
variance, which is quite low and yet not negligible. Chaker (2017) proposes and 
implements on a full year of one stock from the New York Stock Exchange tests 
for the absence of residual noise. She finds rejection rate around 15–25% for (3), 
and 10–30% in the case of (4), here again quite nice results but not indicating the 
absence of residual noise. More recently, implemented on a month with 31 con-
stituents from the CAC 40, Clinet and Potiron (2019b) find that the “best” model 
among several competitors from the financial economics literature is (5), with 
related residual noise accounting for as low as 1% of the MMN variance, and 
results in line with previous findings for the other models. Finally, in an exten-
sive study on 50 stocks randomly selected from the S&P 500 during the period 
2009–2017, Clinet and Potiron (2019a) exhibit (5) as the model explaining the 
most variance of the MMN, with residual noise accounting for (almost) 0% of the 
total MMN variance. Those two empirical studies back up the null residual noise 
regime.

When implementing a non-noise-robust procedure with high frequency data, it is 
often the case that the applied statistician faces a dilemma in using tick-by-tick data 
on the statistical principle that one should not throw away data, or subsampling—
say every five minutes—in respect to the limited theoretical assumptions. We argue 
that the plug-in approach is a cheap method that kills two birds with one stone. On 
the one hand, it provides the theoretical statistician with a simple and transparent 
method for adding MMN in his theory. On the other hand, this will be useful for the 
applied statistician as he/she will be able to use tick-by-tick data when implement-
ing the related estimator. This strategy is actually successfully used in Andersen 
et al. (2019). In particular, our paper enlightens the theoretical aspect of the plug-in 
approach.

(6)N
(
�̂ − �0

)
= O

ℙ
(1),

(7)X̂ti
= Zti − �

(
Qti

, �̂
)
.
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To do so, we describe the general framework as follows. If we define the horizon 
time as T, one typically seeks to estimate the random integrated parameter

where the spot parameter �t is a stochastic process which can correspond to the 
volatility, the high-frequency covariance, functionals of volatility and volatility of 
volatility, employing a given data-based estimator Ξ̃(Xt0

,… ,XtN
) . In the absence of 

noise, Ξ̃ usually enjoys a stable central limit theorem of the form

where 𝜅 > 0 corresponds to the rate of convergence, and MN(AB,AVAR) designates 
a mixed normal distribution of random bias AB and random variance AVAR (due to 
the fact that the parameter itself is random). In addition, for the purpose of practical 
implementation, one typically provides a related studentized central limit theorem, 
i.e. data-based statistics ÃB(Xt0

,… ,XtN
) and ÃVAR(Xt0

,… ,XtN
) such that

Accordingly, when observations are contaminated by the parametric noise, we pro-
pose to exploit the corresponding class of plug-in estimators to estimate the inte-
grated parameter. They are constructed as Ξ̂ = Ξ̃(X̂t0

,… , X̂tN
) , ÂB = ÃB(X̂t0

,… , X̂tN
) 

and ÂVAR = ÃVAR(X̂t0
,… , X̂tN

) . This plug-in approach seems to be traced back to 
the framework of the model with uncertainty zones from Robert and Rosenbaum 
(2010, 2012).

The main contribution of this paper is presented in Sect. 4, where we state that 
under parametric noise the central limit theorems (9) and (10) still hold when we 
substitute the estimators by their related plug-in version in five leading examples of 
the literature. Depending on the problem at hand, price possibly features jumps with 
infinite activity and sampling times include asynchronicity and endogeneity. The 
first example considers the threshold realized volatility inspired by Andersen et al. 
(2001b), Barndorff-Nielsen and Shephard (2002b) and Mancini (2009). Technically, 
we extend the central limit theory of realized volatility under endogenous sampling 
in Li et al. (2014), which includes no jumps to allow for jumps with infinite activity. 
The second example deals with the threshold bipower variation, which was origi-
nally with no threshold in Barndorff-Nielsen and Shephard (2004), and from Corsi 
et  al. (2010) and Vetter (2010). In the third example, we discuss the Hayashi and 
Yoshida (2005) estimator to estimate high-frequency covariance. The fourth exam-
ple is devoted to the local estimator from Jacod and Rosenbaum (2013) which esti-
mates functionals of volatility. Finally, we focus on the estimator of volatility of vol-
atility introduced in Vetter (2015) in the last example.

In all those examples, the only required assumption on �̂  to obtain (9) and (10) is 
the fast convergence (6), which is already obtained in a general setting where price 

(8)Ξ = ∫
T

0

�tdt,

(9)N�
(
Ξ̃ − Ξ

)
→MN(AB,AVAR),

(10)N� Ξ̃ − N−� ÃB − Ξ√
ÃVAR

→N(0, 1).
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process features big jumps in Li et al. (2016), so that our contribution in that respect 
boils down to adding possible small jumps. Moreover, the asymptotic properties in 
both equations remain unchanged, whereas the rate of convergence is slower in the 
i.i.d latent noise case. It means that the parametric noise assumption induces faster 
rates of convergence than the i.i.d condition, but it is fair to say that we play a dif-
ferent game in this paper as plug-in estimators exploit supplementary data available 
from the limit order book.

The rest of this paper is structured as follows. Section 2 introduces the model. 
Section 3 is devoted to the estimation. The five examples are developed in Sect. 4. 
We conclude in Sect. 5. Proofs can be found in Sect. 6 in Electronic supplementary 
material.

2 � Model

Almost all the quantities defined in what follows are multi-dimensional. Accord-
ingly, the notation x(k) refers to the kth component of x. We define the horizon time 
as T > 0 , and the (possibly random) number of observations1 as N. The observation 
times, which satisfy 0 ≤ t

(k)

0
≤ ⋯ ≤ t

(k)

N
≤ T  , are possibly asynchronous, i.e. they 

may differ from one price component to the next (see Sect. 4.3), and endogenous, 
i.e. correlated with Xt (as in Sects.  4.1 and 4.3). When observations are regular and 
synchronous, we have Δit ∶= ti − ti−1 = T∕n ∶= Δ (as in Sects.   4.2, 4.4 and 4.5), 
which implicitly means that N = n and ti are 1-dimensional, although the price pro-
cess can be multi-dimensional.

In view of the empirical findings described in the introduction, it is natural to 
specify (2) as the “pure” parametric noise model via

where the parameter 𝜃0 ∈ Θ ⊂ ℝ
l with Θ a compact set, the impact function � is 

known of class C3 in its second argument, and Qti
∈ ℝ

q includes observable infor-
mation2 at the observation time ti from the limit order book such as the aforemen-
tioned trade type (Roll 1984), trading volume (Glosten and Harris 1988) and quoted 

(11)
Zti

⏟⏟⏟
observed price

= Xti
⏟⏟⏟

efficient price

+ �
(
Qti

, �0
)

⏟⏞⏞⏟⏞⏞⏟
parametric noise

,

1  All the defined quantities are implicitly or explicitly indexed by n (except for the integrated parameter 
which does not depend on n). For example N should be thought and considered as Nn . Consistency and 
convergence in law refer to the behavior as n → ∞ . A full specification of the model also involves the 
stochastic basis B = (Ω,ℙ,F,�) , where F  is a �-field and � = (Ft)t∈[0,T] is a filtration, which will be 
example-specific. We assume that all the processes (including the integrated parameter �t ) are �-adapted 
(either in a continuous or discrete meaning for Qti

 ) and that the observation times ti are �-stopping times. 
Also, when referring to Itô-semimartingale and stable convergence in law, we automatically mean that 
the statement is relative to � . Finally, we assume in (13) that W is also a Brownian motion under the 
larger filtration Ht = Ft ∨ �{Qti

, 0 ≤ i ≤ N}.
2  Note that we do not assume that Qt exists for any t ∈ [0,T] − {t0,… , tN} as it is often the case in the 
i.i.d setting, see, e.g., the framework in Jacod et al. (2009).
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bid-ask spread, but also possibly the duration time between two trades (Almgren and 
Chriss 2001), the quoted depth (Kavajecz 1999), the order flow imbalance (Cont 
et al. 2014), etc. In practice, � could be always chosen as (5), although we do not 
specify this particular model in the paper for generality purposes. Further discus-
sion is available in: Black (1986), Hasbrouck (1993), O’hara (1995), Madhavan 
et  al. (1997), Madhavan (2000), Stoll (2000) and Hasbrouck (2007) among other 
prominent works. One can also look at the review from Diebold and Strasser (2013). 
Finally, on the grounds that the one-lag autocorrelation in mid price returns is often 
found positive empirically, Andersen et  al. (2017) extend the usual martingale-
plus-noise setting to allow for positivity in the one-lag serial autocorrelation. Note 
that the model of (11), without residual noise, is theoretically interesting because it 
allows to adapt the existing methods by plugging in the estimated price in place of 
the existing estimator.

Finally, we assume that

where Q(k)

t
(k)

i

= (Q
(k,1)

t
(k)

i

,… ,Q
(k,jk)

t
(k)

i

) corresponds to the information related to X(k) at time 

t
(k)

i
 . The latent d-dimensional log-price Xt possibly including jumps and its related d2

-dimensional spot volatility ct = �t�
T
t
 are Itô-semimartingales of the form

where Wt is a d-dimensional Brownian motion and W ′
t
 is a d2-dimensional Brown-

ian motion possibly correlated with Wt , the d-dimensional bt and d2-dimensional b̃t 
drifts are locally bounded, �t and the d2-dimensional c̃t = �̃t�̃

T
t
 are locally bounded, 

� is a Poisson random measure on ℝ+ × E where E is an auxiliary Polish space, 
with the related intensity measure, i.e. the nonrandom predictable compensa-
tor, 𝜈(dt, dz) = dt⊗ 𝜆(dz) for some �-finite measure � on ℝ+ . Finally, � = �(�, t, z) 
(respectively �̃  ) is a predictable ℝd-valued ( ℝd×d-valued) function on Ω ×ℝ

+ ×ℝ 
such that locally sup�,t ∣∣ �(�, t, z) ∣∣

r≤ �(z) ( sup�,t ∣∣ �̃(�, t, z) ∣∣̃r≤ �(z) ) for 
some nonnegative bounded �-integrable function � and some3 r ∈ [0, 1) ( ̃r = 2 ). 

(12)max
i,j,k

||||
Q

(k,j)

t
(k)

i

||||
= O

ℙ
(1),

(13)
Xt =X0 + �

t

0

bsds + �
t

0

𝜎sdWs + �
t

0 �
ℝ

𝛿(s, z)�{∣∣𝛿(s,z)∣∣≤1}(𝜇 − 𝜈)(ds, dz)

+ �
t

0 �
ℝ

𝛿(s, z)�{∣∣𝛿(s,z)∣∣>1}𝜇(ds, dz),

(14)
ct =c0 + �

t

0

�bsds + �
t

0

�𝜎sdW
�
s
+ �

t

0 �
ℝ

�𝛿(s, z)�{∣∣�𝛿(s,z)∣∣≤1}(𝜇 − 𝜈)(ds, dz)

+ �
t

0 �
ℝ

�𝛿(s, z)�{∣∣�𝛿(s,z)∣∣>1}𝜇(ds, dz),

3  Here the restriction r < 1 follows from Jacod and Rosenbaum (2013). Indeed, even for the realized 
volatility problem, (16) may not happen in the case r > 1 . Indeed, it yields a different optimal rate of 
convergence as shown in Jacod and Reiss (2014) (of the form N� logN for some 𝜅 > 0 ). Moreover, as 
explained in their Remark 3.4, a CLT is not even achievable in some cases. The case r = 1 is let aside. 
Such bordercase is examined in Vetter (2010) when considering the bipower variation.
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Furthermore, we define the “genuine” drift as b�
t
= bt − ∫ �(t, z)�{∣∣�(t,z)∣∣≤1}�(dz) , the 

continuous part of Xt as

and the jump part as Jt =
∑

s≤t ΔXs . Key to our analysis is the decomposition

3 � Estimation under parametric noise

3.1 � Integrated parameter estimation

The object of interest can be the integrated volatility, etc. In the non-noisy version of 
the problem, the typical scenario is such that the high-frequency data user has a data-
based estimator Ξ̃

(
Xt0

,… ,XtN

)
 of (8), such as the standard realized volatility (RV), i.e. 

RV =
∑N

i=1
ΔiX

2 where ΔiA = Ati
− Ati−1

 , and possibly a related central limit theorem 
and a studentized version of it. In all generality, they, respectively, take the form of

where 𝜅 > 0 corresponds to the rate of convergence, and

where ÃB
(
Xt0

,… ,XtN

)
 and ÃVAR

(
Xt0

,… ,XtN

)
 are also data-based statistics which, 

respectively, correspond to the asymptotic bias and the asymptotic variance estima-
tor. The aim of this section is to equip the high-frequency data user with noise-
robust estimators which are based on Ξ̃.

To estimate the integrated parameter, we first need an estimator of the noise param-
eter �0 defined as �̂  . We assume that �̂  satisfies

The techniques of this paper are estimator independent and only require (18). In 
Sect.   3.2, we provide the form of the estimators from the literature which satisfy 
(18) (see Proposition 1 below). Based on �̂  , the efficient price is naturally estimated 
as

X�
t
= X0 + ∫

t

0

b�
s
ds + ∫

t

0

�sdWs,

(15)Xt = X�
t
+ Jt.

(16)N�
(
Ξ̃ − Ξ

)
→MN(AB,AVAR),

(17)N� Ξ̃ − N−� ÃB − Ξ√
ÃVAR

→N(0, 1),

(18)N
(
�̂ − �0

)
= O

ℙ
(1).

(19)X̂ti
= Zti − �

(
Qti

, �̂
)
.
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This estimator was already used in Li et al. (2016), Chaker (2017) and Clinet and 
Potiron (2019b). The related plug-in estimator is constructed as

For instance, in the case of RV, we obtain that R̂V =
∑N

i=1
ΔiX̂

2 . Similarly, we intro-
duce ÂB = ÃB(X̂t0

,… , X̂tN
) and ÂVAR = ÃVAR(X̂t0

,… , X̂tN
).

We end this section with a succinct remark on the theoretical implications of (18). 
At this point, the reader may notice that the fast rate N−1 in (18), which implies the 
approximation X̂ti

= Xti
+ �i(�̂) with �i(�̂) = �(Qti

, �0) − �(Qti
, �̂) = O

ℙ
(N−1) by 

(3.1), suggests that the perturbation �i(�̂) acts as an additional drift component and 
therefore could be systematically treated as such in all derivations. There is, how-
ever, a fundamental difference between the two quantities, in that drift returns 
ΔiB = ∫ ti

ti−1
bsds are typically adapted, hence Fti

 measurable, whereas �i(�̂) , through 
�̂  , depends not only on the additional observations (Qtj

)j=0,...,N but also on the whole 
trajectory of the price process X, that is FT . This may pose a problem when consid-
ering, for instance, terms of the form Ai−1ΔiM where ΔiM is a martingale increment 
(even for the augmented filtration Ht = Ft ∨ �{Qti

, 0 ≤ i ≤ N} ). Indeed, when 
Ai−1 = Δi−1B , it naturally preserves the martingale structure of Ai−1ΔiM . On the 
other hand, if Ai−1 = �i−1(�̂) , such a structure is broken, and additional arguments 
are necessary in order to retrieve the desired order of the increment Ai−1ΔiM . In this 
simple example, the problem can be circumvented with a Taylor expansion 
�i−1(�̂) ≈ (�̂ − �0)

T���i−1(�0) + ri−1(�̂) , using that now ���i−1(�0) is Hti−1
 measura-

ble, and that ri−1(�̂) is of order N−2.

3.2 � Noise parameter estimation

Several estimators have been proposed by Li et al. (2016), Chaker (2017), Clinet and 
Potiron (2019b) in different settings when we assume a null residual noise �t = 0 . 
The estimator from Chaker (2017) coincides with the minimum mean square error 
(MSE) estimator from Li et al. (2016) when � is linear (which is the related assump-
tion of the former paper). Moreover, the quasi maximum likelihood estimation 
(QMLE) from Clinet and Potiron (2019b) reduces to the MSE, due to the Gaussian 
form of the quasi likelihood function. Accordingly, we review the MSE procedure 
below and give the related limit theory for the noise parameter estimator.

We assume that � ∶= (�(1)
0
,… , �(d)

0
) , where for each component k = 1,… , d we 

have �(k)
0

∶= (�(k,1)
0

,… , �
(k,lk)

0
) , which corresponds to the parameter related to the kth 

component of the observed price. More specifically, we assume the componentwise 
form

Accordingly, we consider the estimation of �(k)
0

 separately and thus we can assume 
that d = 1 in what follows without loss of generality. The estimator �̂(MSE) is given by

(20)Ξ̂ = Ξ̃
(
X̂t0

,… , X̂tN

)
.

(21)Z
(k)
ti

= X
(k)
ti

+ �
(
Q

(k)
ti
, �(k)

0

)
.
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where �i(�) = �(Qti
, �) − �(Qti−1

, �).
When � is linear, the problem boils down to a linear regression. As a result the 

estimator admits the explicit form

where ΔZ ∶=
(
Δ1Z,… ,ΔNZ

)
 , and as soon as the matrix

is such that �T
� is invertible.

We now recall the limit theory associated with �̂(MSE) under the framework of Li 
et  al. (2016) which in particular includes jumps with infinite activity. In the next 
proposition, Condition A assumes the local boundedness of b and � , the summa-
bility of the jump process, and several standard identifiability assumptions of most 
functions which depend on the parameter � and the sequence (Qti

)i∈ℕ . Details can be 
found in Li et al. (2016, p. 35).

Proposition 1  [Theorem 1 from Li et al. (2016)] Assume Condition � from Li et al. 
(2016). Then

4 � Applications of the method

In what follows, we state that the plug-in estimators are noise-robust for five lead-
ing examples taken from the literature, and that the central limit theorems (9) and 
(10) hold under parametric noise. In Example 4.1, we study the threshold realized 
volatility in the case of infinite activity jumps in price and endogeneity in arrival 
times. We go one step further the central limit theory of realized volatility with in 
Li et  al. (2014), which includes no jumps when there is endogeneity in observa-
tion times, to allow for jumps with infinite activity. We first state the central limit 
theorems related to threshold realized volatility, and then the theory associated with 
the plug-in estimators. In Example 4.2, we consider the threshold bipower variation 
under infinite activity jumps and regular observations. In Example 4.3, we develop 
the Hayashi–Yoshida estimator of high-frequency covariance in a no-jump setup, 
and asynchronous and endogenous observation times. In Example 4.4, we consider 
the estimation of functionals of volatility when the price can exhibit jumps with infi-
nite activity and observations are regular. Finally, we address the case of volatility of 

�̂(MSE) =argmin
�∈Θ

QN(Z, �), where

QN(Z, �) =
1

2

N∑

i=1

(
ΔiZ − �i(�)

)2
,

(22)�̂(MSE) =
(
�

T
�
)−1

�
TΔZ,

� ∶=
(
ΔiQ

(j)
)
1≤i≤N,1≤j≤l

N
(
�̂(MSE) − �0

)
= O

ℙ
(1).
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volatility for continuous price and volatility processes and regular observation times 
in Example 4.5.

4.1 � Threshold realized volatility

The parameter is �t = �2
t
 , and the rate of convergence � = 1∕2 if observations are 

not contaminated by the noise. When the price is continuous and observations are 
regular, a popular estimator of Ξ = ∫ T

0
�2
s
ds is RV considered in Andersen et  al. 

(2001a, b), but also in Barndorff-Nielsen and Shephard (2002a, b), Meddahi (2002), 
etc. Jacod and Protter (1998) showed that

When observations are not regular, the AVAR is equal to 2T ∫ T

0
�4
t
dHt , where 

Ht = lim T−1N
∑

ti≤t(ti − ti−1)
2 is the so-called quadratic variation of time (see 

Zhang 2001; Mykland and Zhang 2006), provided that such a quantity exists. When 
observations are endogenous, Li et  al. (2014) show that the limit distribution of 
n1∕2(RV − Ξ) includes an asymptotic bias and that the related AVAR is altered. In 
addition, they prove that the informational content of arrival times can be useful to 
estimate the asymptotic bias and the AVAR.

Our aim is to allow for parametric noise in this endogenous setting, while also 
including jumps in the price process. As far as the authors know, no general the-
ory4 includes general endogeneity and jumps, even when observations are not noisy. 
Accordingly, we first extend the results of Li et al. (2014) when adding jumps. Then, 
we show that the technology of this paper applies in such a general setting, and this 
part essentially boils down to applying the arguments of Li et al. (2016).

Although no theory exists under endogeneity, Theorem 13.2.4 (p. 383) in Jacod 
and Protter (2011) can be used when observations are regular. We consider a simi-
lar threshold RV, originally in the spirit of Mancini (2009, 2011), and defined as 
Ξ̃ =

∑N

i=1

�
ΔiX

�2
�{∣ΔiX∣≤wi}

 , where wi = 𝛼Δit
𝜔̄ , 𝜔̄ ∈ (1∕(2(2 − r)), 1∕2) and 𝛼 > 0 is 

a tuning parameter. In the next theorem, we provide the related central limit theorem 
and show that the condition of our paper holds.

Theorem  2  We assume that inft∈(0,T] 𝜎t > 0 . We further suppose that there exists 
non-random ũt and ṽt such that

n1∕2
(
RV − ∫

T

0

�2
s
ds

)
→ MN

(
0, 2T ∫

T

0

�4
s
ds

)
.

(23)n
∑

0<ti≤t
(
ΔiX

�
)4

→
ℙ �

t

0

�us𝜎
4
s
ds,

4  Remark 6 (p. 36) in Li et al. (2016) suggests that the threshold RV estimator can be used under endo-
geneity, but there is no formal proof and this is limited to the case of jumps with finite activity.
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where ũt�4
t
 , ṽt�3

t
 and ṽ2

t
�4
t
 are integrable, and ṽt locally bounded and bounded away 

from 0. Furthermore, we assume that ti , bt , �t and � are generated by finitely many 
Brownian motions.5 Finally we assume that N∕n →

ℙ F for some random variable F, 
and that nΔit are locally bounded and locally bounded away from 0. Then, stably in 
law as n → ∞ , we have

where vs =
√
Fṽs , us = Fũs and Bt is a standard Brownian motion independent of 

the other quantities.6 Moreover, we have

Remark 3  If observations are regular, then F = 1 , us = 3T  and vs = 0 for all 
s ∈ [0, T] . Therefore, (25) and (26) can be specified as

We provide now jump-robust estimators of AB = (2∕3) ∫ T

0
vs�sdX

�
s
 and 

AVAR = ∫ T

0
(
2

3
us −

4

9
v2
s
)�4

s
ds based on the non-jump-robust estimators provided in 

Li et  al. (2014). Accordingly, we chop the data into B blocks of h observations 
(except for the last block which might include less observations). We set h = ⌊n�⌋ , 
where 1∕2 < 𝛽 < 1 . We can estimate vthi�thi as

and AB and AVAR as

(24)n1∕2
∑

0<ti≤t
(
ΔiX

�
)3

→
ℙ �

t

0

�vs𝜎
3
s
ds,

(25)N1∕2
(
Ξ̃ − Ξ

)
→

2

3 ∫
T

0

vs�sdX
�
s
+ ∫

T

0

√
2

3
us −

4

9
v2
s
�2
s
dBs,

(26)N1∕2
(
Ξ̂ − Ξ

)
→

2

3 ∫
T

0

vs�sdX
�
s
+ ∫

T

0

√
2

3
us −

4

9
v2
s
�2
s
dBs.

(27)n1∕2
(
Ξ̃ − Ξ

)
→ MN

(
0, 2T ∫

T

0

�4
s
ds

)
,

(28)n1∕2
(
Ξ̂ − Ξ

)
→ MN

(
0, 2T ∫

T

0

�4
s
ds

)
.

ṽ�i =
N1∕2

∑hi

j=h(i−1)+1

�
ΔjX

�3
�{∣ΔjX∣≤wj}

∑hi

j=h(i−1)+1

�
ΔjX

�2
�{∣ΔjX∣≤wj}

,

5  i.e. we assume that ti are �-stopping times, where � = (Gt)t∈[0,T] is a sub-filtration of � generated by 
finitely many Brownian motions, and that bt , �t and � are adapted to �.
6  Here and in the other theorems, we mean that Bt is independent of the underlying �-field �.
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Recalling that ÂB and ÂVAR are constructed, respectively, as ÃB and ÃVAR when 
replacing X by X̂ , we provide now the studentized version of the previous central 
limit theorems.

Corollary 4  We have

Remark 5  If observations are regular, there is no asymptotic bias and AVAR can be 
estimated using the plug-in estimator of quarticity obtained in Sect.  4.4. In view 
of Theorem 11 which implies the consistency of the plug-in estimator, we obtain 
directly by the stable convergence obtained in Theorem 2 that (30) holds.

Remark 6  (Estimating volatility under i.i.d noise) Alternative approaches to estimate 
integrated volatility under latent i.i.d noise include and are not limited to: the Quasi-
Maximum Likelihood Estimator (QMLE) from Aït-Sahalia et al. (2005) which was 
later shown to be robust to time-varying volatility in Xiu (2010), the two-scale real-
ized volatility in Zhang et  al. (2005), the multi-scale realized volatility in Zhang 
(2006), the pre-averaging approach in Jacod et al. (2009), realized kernels in Barn-
dorff-Nielsen et  al. (2008) and the spectral approach considered in Altmeyer and 
Bibinger (2015) based on Reiss (2011). Clinet and Potiron (2018) discussed AVAR 
reduction when considering local estimators. In addition, Li et al. (2013) consider 
endogenous arrival times.

4.2 � Threshold bipower variation

Here again �t = �2
t
 . The bipower variation BV =

�

2

∑N

i=2
∣ ΔiX ∣∣ Δi−1X ∣ [more gen-

erally multipower variation from Barndorff-Nielsen and Shephard (2004, 2006)] 
was originally introduced as an alternative measure robust to finite-activity jumps. 
In case of regular observations and no jump, Barndorff-Nielsen et  al. (2006a, b) 
established the central limit theory. See also Kinnebrock and Podolskij (2008) for 

ÃB =

B∑

i=1

2

3
ṽ�i

{
hi∑

j=h(i−1)+1

ΔjX�{∣ΔjX∣≤wj}

}

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
ÃBi

,

ÃVAR =
2N

3

N∑

i=1

(
ΔiX

)4
�{∣ΔiX∣≤wi} −

B∑

i=1

ÃB
2

i
.

(29)N1∕2 Ξ̃ − N−1∕2ÃB − Ξ√
ÃVAR

→ N(0, 1),

(30)N1∕2 Ξ̂ − N−1∕2ÂB − Ξ√
ÂVAR

→ N(0, 1).
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related development. In case of finite-activity jumps, see also Barndorff-Nielsen 
et al. (2006c).

If jumps exhibit infinite activity, Vetter (2010) shows that BV is no longer con-
sistent, but the jump-robust threshold estimator

is consistent, where w = 𝛼Δ𝜔̄ , 𝜔̄ ∈ (0, 1∕2) . Moreover, he also shows the related 
central limit theory. See also Corsi et al. (2010) for related work. Finally, the general 
theory (Theorem 13.2.1 (p. 380)) from Jacod and Protter (2011) can be applied too. 
All those papers have in common that they assume regular observations, and we 
follow the same setting to show that the techniques of this paper can be used in this 
example too. We provide the formal result in what follows.

Theorem 7  We have that

In particular, stably in law as n → ∞,

where Bt is a Brownian motion independent of the other quantities.

In this example, we have that AVAR =
�2

4
(1 +

4

�
−

12

�2
)T ∫ T

0
�4
s
ds , which can be 

estimated by ÂVAR =
�2

4
(1 +

4

�
−

12

�2
)T

̂∫ T

0
�4
s
ds , where the plug-in estimator of 

quarticity ̂∫ T

0
�4
s
ds is defined as a particular case of Sect.   4.4 (i.e. ̂∫ T

0
�4
s
ds corre-

sponds to the estimator given in (39) below with g(x) = x2 ). We also provide the 
related studentized central limit theorem.

Corollary 8  We have

4.3 � Hayashi–Yoshida estimator of high‑frequency covariance

We assume here that Xt is 2-dimensional and that �t = �t�
(1)
t �(2)

t  , where the high-
frequency correlation �t satisfies d⟨W (1),W (2)⟩t = �tdt . The rate of convergence is 
� = 1∕2 in this problem too. We consider that observations are non-synchronous. 
In this framework and assuming that the price is continuous, Hayashi and Yoshida 

Ξ̃ =
�
2

N∑

i=2

∣ ΔiX ∣ �{∣ΔiX∣≤w} ∣ Δi−1X ∣ �{∣Δi−1X∣≤w}

(31)n1∕2
(
Ξ̂ − Ξ̃

)
→

ℙ 0.

(32)n1∕2
(
Ξ̂ − Ξ

)
→

�
2

√(
1 +

4

�
−

12

�2

)
T ∫

T

0

�2
s
dBs,

(33)n1∕2
Ξ̂ − Ξ√
ÂVAR

→N(0, 1).
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(2005) bring forward the so-called Hayashi–Yoshida estimator and establish the 
consistency in case sampling times are independent from the price process. This 
is extended in an endogenous setting in Hayashi and Kusuoka (2008). The related 
central limit theory can be found in Hayashi and Yoshida (2008, 2011) and Poti-
ron and Mykland (2017), where the latter work considers general endogenous 
arrival times. See also the remarkable work from Bibinger and Vetter (2015) and 
Martin and Vetter (2020) in a jumpy setting, and Koike (2014a, b, 2016) which 
incorporates jumps, noise and some kind of endogeneity into the model.

As we want to allow for quite exotic endogenous models, we follow Potiron 
and Mykland (2017). In particular, we assume no jumps in the setup. We describe 
the hitting boundary with time process (HBT) model introduced in the subse-
quent paper in what follows. In that model, eight stochastic processes (four of 
which are actually families of stochastic processes) are of interest, four for each 
asset. For the index k = 1, 2 , we have the price process—X

(k)
t —and three other 

stochastic processes (two of which are actually families of processes)—Y
(k)
t  , d(k)t (s) 

and u(k)t (s)—related to the observation times of that process. Those four stochastic 
processes can be correlated, and we further assume that (Xt, Yt) is a 4-dimensional 
Itô-process. For the process k = 1, 2 , Y (k)

t  stands for the continuous observation 
time process which drives the observation times related to X(k)

t  . The others four 
processes are the down processes d(k)t (s) and the up processes u(k)t (s) . We assume 
that the down process takes only negative values and that the up process takes 
only positive values. A new observation time will be generated whenever one of 
those two processes is hit by the increment of the observation time process. Then, 
the increment of the observation time process will be reset to 0, and the next 
observation time will be produced whenever the up or the down process is hit 
again. Formally, if we let 𝛼 > 0 stand for the tick size, we define the first observa-
tion time as t(k)

0
∶= 0 and recursively t(k)

i
 as

where ΔY (k)

[a,b]
∶= Y

(k)

b
− Y (k)

a
 . We define the Hayashi–Yoshida estimator as

In the asymptotic theory, we let � → 0 . For the sake of Remark 5 (p. 25) in Potiron 
and Mykland (2017), �−1 is of the same order as n1∕2 . We can now show that the 
techniques of this paper hold in this case too.

Theorem 9  As the tick size � → 0 , we have that

In particular, under the assumptions ofPotiron and Mykland (2017), there exist AB 
and a process AVt such that stably in law as the tick size � → 0,

(34)t
(k)

i
∶= inf

{
t > t

(k)

i−1
∶ ΔY

(k)[
t
(k)

i−1
,t
] ∉

[
𝛼d(k)t

(
t − t

(k)

i−1

)
, 𝛼u(k)t

(
t − t

(k)

i−1

)]}
,

(35)
�Ξ ∶=

∑

0<t(1)
i
, t

(2)

j
<T

ΔiX
(1)ΔjX

(2)
�{[

t
(1)

i−1
,t
(1)

i

)
∩
[
t
(2)

j−1
,t
(2)

j

)≠�}.

(36)�−1
(
Ξ̂ − Ξ̃

)
→

ℙ 0.
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where Bt is a Brownian motion independent of the other quantities, AB and AVt are 
defined in Section 4.3 ofPotiron and Mykland (2017).

We define ÃB and ÃVAR following, respectively, (46) and (47) in Potiron and 
Mykland (2017) (Section 5, p. 28). Note that ÃB and ÃVAR are already of the right 
asymptotic order in the sense that �−1ÃB →

ℙ AB and �−2ÃVAR →
ℙ ∫ T

0
AVsds (see 

(48) and (49) in Corollary 4 of the cited paper). We provide now the studentized ver-
sion of (37).

Corollary 10  We have

4.4 � Functionals of volatility local estimator

The spot parameter is �t = g(ct) for a given smooth function g on M+
d
 , the set of all 

non-negative symmetric d × d matrices. The problem was initiated by Barndorff-
Nielsen and Shephard (2002a). See also Barndorff-Nielsen et al. (2006a), Mykland and 
Zhang (2012) (Proposition 2.17, p. 138) and Renault et al. (2017) for related develop-
ments. Here, the rate of convergence is � = 1∕2 again.

Local estimation (Mykland and Zhang 2009, Section 4.1, pp. 1421–1426) can make 
the mentioned estimators efficient. Jacod and Rosenbaum (2013) extended the method 
in several ways. To do that, they first propose an estimator of the spot volatility c̃i , and 
then take a Riemann sum of g(̃ci).

For any matrix a ∈ M
+
d
 , the related aij stands for the (i, j)-component of a. More-

over, for b ∈ ℝ , [b] stands for the floor of b. Several results are of interest in Jacod 
and Rosenbaum (2013). In its most useful form (from our point of view), the estimator 
takes on the form

with

for two sequences of integers k and w = 𝛼Δ𝜔̄ for some 𝛼 > 0 , and

(37)�−1
(
Ξ̂ − Ξ

)
→ AB + ∫

T

0

(
AVs

)1∕2
dBs,

(38)
Ξ̂ − ÂB − Ξ√

ÂVAR

→N(0, 1).

(39)Ξ̃ = Δ

[T∕Δ]−k+1∑

i=1

{
g(̃ci) −

1

2k

d∑

j,q,l,m=1

�2
jq,lm

g(̃ci)
(
c̃
jl

i
c̃
qm

i
+ c̃

jm

i
c̃
ql

i

)}
,

c̃lm
i

=
1

kΔ

k−1�

j=0

Δi+jX
lΔi+jX

m
�{‖Δi+jX‖≤w},
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where we suppose that

for some constants p ≥ 3 , K > 0 . In Eq.  (39), c̃i corresponds to an estimator of the 
spot volatility matrix, the first term is part of the Riemann sum, while the second 
term is required to remove the asymptotic bias of the first term in Ξ̃ , which explodes 
asymptotically. We show that the associated plug-in estimator Ξ̂ enjoys the same 
limit theory as Ξ̃ . More precisely, we have the following result.

Theorem 11  Assume that k2Δ → 0 , k3Δ → ∞ . Let Ξ̃� be the estimator defined as in 
(39) where Xt is replaced by its continuous part X′

t
 . Then, we have the convergence

Moreover, stably in law, we have the convergence

where for x ∈ M
+
d
,

and where B is a standard Brownian motion independent of the other quantities.

In particular, note that the asymptotic variance in the stable convergence can 
be expressed as

so that we naturally define the asymptotic variance estimator as

We easily deduce from Corollary 3.7 p. 1471 in Jacod and Rosenbaum (2013) the 
following studentized version of the above central limit theorem.

Corollary 12  Under the assumptions of the previous theorem, we have the stable 
convergence in law

2p − 1

2(2p − r)
≤ 𝜔̄ <

1

2
,

(40)
����

jg(x)
��� ≤ K

�
1 + ‖x‖p−j

�
, j = 0, 1, 2, 3

(41)n1∕2
(
Ξ̂ − Ξ̃�

)
→

ℙ 0.

(42)n1∕2
(
Ξ̂ − Ξ

)
→ ∫

T

0

√
Th(cs)dBs,

h(x) =

d∑

j,q,l,m=1

�jqg(x)�lmg(x)
(
xjlxqm + xjmxql

)
,

AVAR = T ∫
T

0

h(cs)ds,

ÂVAR = TΔ

[t∕Δ]−k+1∑

i=1

h
(
ĉi
)
.
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Remark 13  (Estimation of functionals of volatility under i.i.d noise) Under i.i.d 
noise, no result with a general function g(ct) is available. Alternative approaches 
include: Jacod et  al. (2010) for even power, Mancino and Sanfelici (2012) and 
also Andersen et al. (2014) in the special case of quarticity, and also Altmeyer and 
Bibinger (2015) when considering the tricity. See also the work from Potiron and 
Mykland (2016) (Section 4.2) for a local maximum-likelihood estimation with noise 
variance vanishing asymptotically.

4.5 � Volatility of volatility

In this section we assume that Xt is 1-dimensional and we are interested in the spot 
parameter �t = �̃2

t
 which corresponds to the so-called volatility of volatility process 

defined in (14). As far as we know, there is no result in the literature including noise 
into the model, but in the non-noisy scenario one can consult Vetter (2015) (Theo-
rems 2.5 and 2.6) and Mykland et al. (2012) (Theorem 7 and Corollary 2). We fol-
low here the former author, and aim to show the robustness of Theorem 2.6 when 
using plug-in estimators. Accordingly, we hereafter assume that both Xt and ct are 
continuous processes, i.e. � = �̃ = 0 in (13)–(14). To our knowledge, the case with 
jumps in Xt and/or ct remains an open question. The rate of convergence is � = 1∕4 . 
Introducing the spot volatility estimator7 for i ∈ {0,… , n − k},

and the spot quarticity estimator

the author defines the volatility of volatility estimator (see (2.5) on p. 2399 in the 
cited work) as

Letting ĉi , q̂i , and Ξ̂ be the corresponding plug-in estimators, we obtain the follow-
ing results.

n1∕2
�
Ξ̂ − Ξ

�

√
ÂVAR

→ N(0, 1).

c̃i ∶=
n

k

k∑

j=1

(
Δi+jX

)2
,

q̃i ∶=
n2

3k

k∑

j=1

(
Δi+jX

)4
,

Ξ̃ ∶=

[t∕Δ]−2k∑

i=0

{
3

2k

(
c̃i+k − c̃i

)2
−

6

k2
q̃i

}
.

7  Note that the definition of c̃i slightly diverges from the previous section.
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Theorem 14  Assume that k = cn1∕2 + o(n1∕4) for some c > 0 . Then stably in law,

where Bt is a Brownian motion independent from the other quantities and

Moreover, if we define

and finally

we can derive the following studentized version of the previous central limit 
theorem.

Corollary 15  Under the assumptions of the previous theorem, we have the stable 
convergence in law, when k has the optimal rate c

√
n for c > 0

5 � Conclusion

This paper develops plug-in estimators to estimate high-frequency quantities under 
parametric noise on five different examples. We do not find any particular difficulty 
when working out the theory of those examples. Another example of application can 
be found in Andersen et al. (2019).
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�
n

k

�
Ξ̂ − Ξ

�
→

√
T ∫

T

0

�sdBs,

�2
s
=

48

c4
�8
s
+

12

c2
�4
s
�̃2
s
+

151

70
�̃4
s
.

G(1) =
T

n

[t∕Δ]−k∑

i=0

q̂2
i
,

G(2) =T

[t∕Δ]−2k∑

i=0

{
3

2k

(
ĉi+k − ĉi

)2
−

6

k2
q̂i

}
q̂i,

G(3) =
Tn

k2

[t∕Δ]−2k∑

i=0

(
ĉi+k − ĉi

)4
,

ÂVAR =
453

280
G(3) −

n

k2
486

35
G(2) −

n2

k4
1038

35
G(1),

n1∕4
Ξ̂ − Ξ√
cÂVAR

→ N(0, 1).
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