Supplementary Material for "Improved empirical likelihood inference and variable selection for generalized linear models with longitudinal nonignorable dropouts"

Lei Wang¹, Wei Ma¹

- (C1) $\{(\boldsymbol{x}_i, \boldsymbol{y}_i, \boldsymbol{r}_i) : i = 1, ..., n\}$ are independent and identically distributed random vectors. The parameter vector $\boldsymbol{\beta}^0$ is an interior point of the parameter space, a compact subset of R^p .
- (C2) $E\|\mathbf{y}_i \boldsymbol{\mu}_i\|^3 < \infty$, the function $g^{-1}(\cdot)$ is bounded and has continuous second derivative, the marginal variance function $v(\cdot)$ is continuous and bounded, and have first derivative.
- (C3) The probability function $\pi_{ij}(\boldsymbol{\Theta}_j)$ satisfies (a) it is twice differentiable with respect to $\boldsymbol{\Theta}_j$; (b) $0 < c_0 < \pi_{ij}(\boldsymbol{\Theta}_j) < 1$ for a positive constant c_0 ; (c) $\partial \pi_{ij}(\boldsymbol{\Theta}_j)/\partial \boldsymbol{\Theta}_j$ is uniformly bounded.
- (C4) The random vectors \boldsymbol{x}_{ij} are bounded in probability for all i and j, the matrices $\boldsymbol{\Sigma}_{\boldsymbol{q}}$ and $\boldsymbol{\Sigma}_{\boldsymbol{h}}$ are nonsingular, $\boldsymbol{\Lambda}_{\boldsymbol{q}}$ and $\boldsymbol{\Lambda}_{\boldsymbol{h}}$ are positive definite.
- matrices Σ_{g} and Σ_{h} are nonsingular, Λ_{g} and Λ_{h} are positive definite. (C5) The $p_{\nu}(\cdot)$ satisfies $\max_{j\in\mathcal{A}}p'_{\nu}(|\beta_{j0}|)=o_{p}(n^{-1/3})$ and $\max_{j\in\mathcal{A}}p''_{\nu}(|\beta_{j0}|)=o(1)$.
- (C6) As $n \to \infty$, $\nu \to 0$, $n^{1/3}\nu \to \infty$, and $\liminf_{n\to 0} \liminf_{\beta\to 0^+} p'_{\nu}(|\beta|)/\nu > 0$.

In the following, we mainly derive the results for $\hat{g}_i(\beta)$ and the similar arguments for $\hat{h}_i(\beta)$ can be obtained.

Lemma 1 Under assumptions (C1)-(C4), we have

$$(1) \quad \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \hat{\mathbf{g}}_{i}(\boldsymbol{\beta}^{0}) \longrightarrow N(0, \boldsymbol{\Sigma}_{\boldsymbol{g}}), \quad (2) \quad \frac{1}{n} \sum_{i=1}^{n} \hat{\mathbf{g}}_{i}(\boldsymbol{\beta}^{0}) \hat{\mathbf{g}}_{i}(\boldsymbol{\beta}^{0})^{T} \stackrel{p}{\longrightarrow} \boldsymbol{\Lambda}_{\boldsymbol{g}};$$

(3)
$$\frac{1}{n} \sum_{i=1}^{n} \frac{\partial \hat{\mathbf{g}}_{i}(\boldsymbol{\beta}^{0})}{\partial \boldsymbol{\beta}} \xrightarrow{p} \boldsymbol{\Delta}_{\boldsymbol{g}}, \qquad (4) \quad \max_{i} \|\hat{\mathbf{g}}_{i}(\boldsymbol{\beta}^{0})\| = o_{p}(n^{1/2}).$$

Proof of Lemma 1. Note that

$$n^{-1/2} \sum_{i=1}^{n} \hat{\mathbf{g}}_{i}(\boldsymbol{\beta}^{0}) = n^{-1/2} \sum_{i=1}^{n} \mathbf{g}_{i}(\boldsymbol{\Theta}_{m}^{0}, \boldsymbol{\beta}^{0}) - \left[n^{-1} \sum_{i=1}^{n} \partial \mathbf{g}_{i}(\boldsymbol{\Theta}_{m}^{0}, \boldsymbol{\beta}^{0}) / \partial \boldsymbol{\Theta}_{m} \right] n^{1/2} (\hat{\boldsymbol{\Theta}}_{m} - \boldsymbol{\Theta}_{m}^{0}) + o_{p}(1)$$

$$= I_{n} + I_{n}^{*}.$$

It can be seen that $I_n \to N(0, \Lambda_q)$ and

$$I_n^* \to N(0, E[\partial \boldsymbol{g}_i(\boldsymbol{\Theta}_m^0, \boldsymbol{\beta}^0)/\partial \boldsymbol{\Theta}_m] \boldsymbol{\Sigma} E[\partial \boldsymbol{g}_i(\boldsymbol{\Theta}_m^0, \boldsymbol{\beta}^0)/\partial \boldsymbol{\Theta}_m]^T)$$

 $^{^{1}\,}$ School of Statistics and Data Science, LPMC & KLMDASR, Nankai University, Tianjin, 300071, China

It is not difficult to verify that $E(I_n + I_n^*) = o_p(1)$. Direct calculation yields $E(I_n I_n^*) = O_p(n^{-1/2})$ and $Cov(I_n, I_n^*) = o_p(1)$. Then it follows

$$\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \hat{\mathbf{g}}_{i}(\boldsymbol{\beta}^{0}) \longrightarrow N(0, \boldsymbol{\Lambda}_{g} + E[\partial \mathbf{g}_{i}(\boldsymbol{\Theta}_{m}^{0}, \boldsymbol{\beta}^{0})/\partial \boldsymbol{\Theta}_{m}] \boldsymbol{\Sigma} E[\partial \mathbf{g}_{i}(\boldsymbol{\Theta}_{m}^{0}, \boldsymbol{\beta}^{0})/\partial \boldsymbol{\Theta}_{m}]^{T}).$$

Lemma 2 Under assumptions (C1)-(C4), we have

$$(1) \quad \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \hat{\boldsymbol{h}}_{i}(\boldsymbol{\beta}^{0}) \longrightarrow N(0, \boldsymbol{\Sigma}_{\boldsymbol{h}}), \quad (2) \quad \frac{1}{n} \sum_{i=1}^{n} \hat{\boldsymbol{h}}_{i}(\boldsymbol{\beta}^{0}) \hat{\boldsymbol{h}}_{i}(\boldsymbol{\beta}^{0})^{T} \stackrel{p}{\longrightarrow} \boldsymbol{\Lambda}_{\boldsymbol{h}};$$

(3)
$$\frac{1}{n} \sum_{i=1}^{n} \frac{\partial \hat{\boldsymbol{h}}_{i}(\boldsymbol{\beta}^{0})}{\partial \boldsymbol{\beta}} \stackrel{p}{\longrightarrow} \boldsymbol{\Delta}_{\boldsymbol{h}}, \qquad (4) \quad \max_{i} \|\hat{\boldsymbol{h}}_{i}(\boldsymbol{\beta}^{0})\| = o_{p}(n^{1/2}).$$

Proof of Lemma 2. Use the similar arguments as in the proof of Lemma 1.

Proof of Theorem 1. Noting that the Lagrange multiplier method leads to the empirical log-likelihood ratio function for β^0

$$\hat{R}_Q(\boldsymbol{\beta}^0) = 2\sum_{i=1}^n \log\{1 + \boldsymbol{\lambda}^T(\boldsymbol{\beta}^0)\hat{\boldsymbol{g}}_i(\boldsymbol{\beta}^0)\},$$

where vector $\rho = \lambda(\beta^0)$ is the solution to

$$\mathcal{D}(\boldsymbol{\lambda}) = \frac{1}{n} \sum_{i=1}^{n} \frac{\hat{\boldsymbol{g}}_{i}(\boldsymbol{\beta}^{0})}{1 + \boldsymbol{\lambda}^{T} \hat{\boldsymbol{g}}_{i}(\boldsymbol{\beta}^{0})} = 0.$$

It can be seen that $\hat{\beta}_Q$ is the solution satisfying the following two equations:

$$T_{1n}(\boldsymbol{\beta}, \boldsymbol{\lambda}) = \frac{1}{n} \sum_{i=1}^{n} \frac{\hat{\boldsymbol{g}}_{i}(\boldsymbol{\beta})}{1 + \boldsymbol{\lambda}^{T} \hat{\boldsymbol{g}}_{i}(\boldsymbol{\beta})} = 0,$$

$$T_{2n}(\boldsymbol{\beta}, \boldsymbol{\lambda}) = \frac{1}{n} \sum_{i=1}^{n} \frac{\{\partial \hat{\boldsymbol{g}}_{i}(\boldsymbol{\beta}) / \partial \boldsymbol{\beta}\}^{T} \boldsymbol{\lambda}}{1 + \boldsymbol{\lambda}^{T} \hat{\boldsymbol{g}}_{i}(\boldsymbol{\beta})} = 0.$$

Note that $T_{1n}(\boldsymbol{\beta}^0,0) = n^{-1} \sum_{i=1}^n \hat{\boldsymbol{g}}_i(\boldsymbol{\beta}^0)$ and $T_{2n}(\boldsymbol{\beta}^0,0) = 0$. Using the similar arguments in the proof of Lemma 1 in Qin and Lawless (1994), we have $\hat{\boldsymbol{\beta}}_Q \to \boldsymbol{\beta}^0$. Applying Taylor expansions to $T_{1n}(\hat{\boldsymbol{\beta}}_Q,\hat{\boldsymbol{\lambda}})$ and $T_{2n}(\hat{\boldsymbol{\beta}}_Q,\hat{\boldsymbol{\lambda}})$ at $(\boldsymbol{\beta}^0,0)$, we get

$$0 = T_{1n}(\boldsymbol{\beta}^{0}, 0) + \frac{\partial T_{1n}(\boldsymbol{\beta}^{0}, 0)}{\partial \boldsymbol{\beta}} (\hat{\boldsymbol{\beta}}_{Q} - \boldsymbol{\beta}^{0}) + \frac{\partial T_{1n}(\boldsymbol{\beta}^{0}, 0)}{\partial \boldsymbol{\lambda}^{T}} \hat{\boldsymbol{\lambda}} + o_{p}(u_{n}),$$

$$0 = T_{2n}(\boldsymbol{\beta}^{0}, 0) + \frac{\partial T_{2n}(\boldsymbol{\beta}^{0}, 0)}{\partial \boldsymbol{\beta}} (\hat{\boldsymbol{\beta}}_{Q} - \boldsymbol{\beta}^{0}) + \frac{\partial T_{2n}(\boldsymbol{\beta}^{0}, 0)}{\partial \boldsymbol{\lambda}^{T}} \hat{\boldsymbol{\lambda}} + o_{p}(u_{n}),$$

where $u_n = ||\hat{\boldsymbol{\beta}}_Q - \boldsymbol{\beta}^0|| + ||\hat{\boldsymbol{\lambda}}||$. Also, the above two equations can be rewritten as

$$\begin{split} \begin{pmatrix} \hat{\boldsymbol{\lambda}} \\ \hat{\boldsymbol{\beta}}_{Q} - \boldsymbol{\beta}^{0} \end{pmatrix} &= \begin{pmatrix} \frac{\partial T_{1n}(\boldsymbol{\beta}, \boldsymbol{\lambda})}{\partial \boldsymbol{\lambda}^{T}} & \frac{\partial T_{1n}(\boldsymbol{\beta}, \boldsymbol{\lambda})}{\partial \boldsymbol{\beta}} \\ \frac{\partial T_{2n}(\boldsymbol{\beta}, \boldsymbol{\lambda})}{\partial \boldsymbol{\lambda}^{T}} & 0 \end{pmatrix}_{(\boldsymbol{\beta}^{0}, 0)}^{-1} \begin{pmatrix} -\frac{1}{n} \sum_{i=1}^{n} \hat{\boldsymbol{g}}_{i}(\boldsymbol{\beta}^{0}) + o_{p}(u_{n}) \\ o_{p}(u_{n}) \end{pmatrix} \\ &= \begin{pmatrix} -\frac{1}{n} \sum_{i=1}^{n} \hat{\boldsymbol{g}}_{i}(\boldsymbol{\beta}^{0}) \hat{\boldsymbol{g}}_{i}(\boldsymbol{\beta}^{0})^{T} & \frac{1}{n} \sum_{i=1}^{n} \frac{\partial \hat{\boldsymbol{g}}_{i}(\boldsymbol{\beta}^{0})}{\partial \boldsymbol{\beta}} \\ \frac{1}{n} \sum_{i=1}^{n} \left\{ \frac{\partial \hat{\boldsymbol{g}}_{i}(\boldsymbol{\beta}^{0})}{\partial \boldsymbol{\beta}} \right\}^{T} & 0 \end{pmatrix}^{-1} \begin{pmatrix} -\frac{1}{n} \sum_{i=1}^{n} \hat{\boldsymbol{g}}_{i}(\boldsymbol{\beta}^{0}) + o_{p}(u_{n}) \\ o_{p}(u_{n}) \end{pmatrix}. \end{split}$$

From this and $T_{1n}(\beta^0, 0) = n^{-1} \sum_{i=1}^n \hat{g}_i(\beta^0) = O_p(n^{-1/2})$, we know that $u_n = O_p(n^{-1/2})$. Then we have

$$\sqrt{n}(\hat{\boldsymbol{\beta}}_Q - \boldsymbol{\beta}^0) = \{\boldsymbol{\Delta}_{\boldsymbol{g}}^T \boldsymbol{\Lambda}_{\boldsymbol{g}}^{-1} \boldsymbol{\Delta}_{\boldsymbol{g}}\}^{-1} \boldsymbol{\Delta}_{\boldsymbol{g}}^T \boldsymbol{\Lambda}_{\boldsymbol{g}}^{-1} \frac{1}{\sqrt{n}} \sum_{i=1}^n \hat{\boldsymbol{g}}_i(\boldsymbol{\beta}^0) + o_p(1).$$

Together with Lemma 1, we can derive that

$$\sqrt{n}(\hat{\boldsymbol{\beta}}_{Q} - \boldsymbol{\beta}^{0}) \longrightarrow N(0, \{\boldsymbol{\Delta}_{\boldsymbol{a}}^{T} \boldsymbol{\Lambda}_{\boldsymbol{a}}^{-1} \boldsymbol{\Delta}_{\boldsymbol{a}} \}^{-1} \boldsymbol{\Delta}_{\boldsymbol{a}}^{T} \boldsymbol{\Lambda}_{\boldsymbol{a}}^{-1} \boldsymbol{\Sigma}_{\boldsymbol{g}} \boldsymbol{\Lambda}_{\boldsymbol{a}}^{-1} \boldsymbol{\Delta}_{\boldsymbol{g}} \{\boldsymbol{\Delta}_{\boldsymbol{a}}^{T} \boldsymbol{\Lambda}_{\boldsymbol{a}}^{-1} \boldsymbol{\Delta}_{\boldsymbol{g}} \}^{-1}).$$

Proof of Theorem 2. Based on the proof of Lemma 1 and applying the same idea in the proof of (2.14) in Owen (1990), we first show that

$$||\lambda|| = O_p(n^{-1/2}).$$

Write $\lambda \equiv \lambda(\beta^0) = \rho u$, where $\rho = ||\lambda||$, $u = \lambda/||\lambda||$ and ||u|| = 1. We have

$$0 = \frac{1}{n} \sum_{i=1}^{n} \frac{\hat{g}_{i}(\beta^{0})}{1 + \lambda^{T}(\hat{g}_{i}(\beta^{0}))}$$

$$= \frac{1}{n} \sum_{i=1}^{n} \frac{\hat{g}_{i}(\beta^{0})}{1 + \rho u^{T} \hat{g}_{i}(\beta^{0})}$$

$$= \frac{1}{n} \sum_{i=1}^{n} \hat{g}_{i}(\beta^{0}) - \frac{1}{n} \sum_{i=1}^{n} \frac{\hat{g}_{i}(\beta^{0}) \hat{g}_{i}(\beta^{0})^{T} u \rho}{1 + \rho u^{T} \hat{g}_{i}(\beta^{0})}.$$

By multiplicating u^T , we obtain

$$\begin{aligned} \left\| \boldsymbol{u}^T \frac{1}{n} \sum_{i=1}^n \hat{\boldsymbol{g}}_i(\boldsymbol{\beta}^0) \right\| &= \frac{1}{n} \sum_{i=1}^n \frac{\boldsymbol{u}^T \hat{\boldsymbol{g}}_i(\boldsymbol{\beta}^0) \hat{\boldsymbol{g}}_i(\boldsymbol{\beta}^0)^T \boldsymbol{u} \rho}{1 + \rho \boldsymbol{u}^T \hat{\boldsymbol{g}}_i(\boldsymbol{\beta}^0)} \\ &\geq \frac{1}{1 + \rho \max_{1 \leq i \leq n} |\hat{\boldsymbol{g}}_i(\boldsymbol{\beta}^0)|} \frac{1}{n} \sum_{i=1}^n \boldsymbol{u}^T \hat{\boldsymbol{g}}_i(\boldsymbol{\beta}^0) \hat{\boldsymbol{g}}_i(\boldsymbol{\beta}^0)^T \boldsymbol{u} \rho, \end{aligned}$$

where the inequality follows from positivity of $1 + \rho \mathbf{u}^T \hat{\mathbf{g}}_i(\boldsymbol{\beta}^0)$. Then

$$\rho \frac{1}{n} \sum_{i=1}^{n} \mathbf{u}^{T} \hat{\mathbf{g}}_{i}(\boldsymbol{\beta}^{0}) \hat{\mathbf{g}}_{i}(\boldsymbol{\beta}^{0})^{T} \mathbf{u} \leq \left\| \mathbf{u}^{T} \frac{1}{n} \sum_{i=1}^{n} \hat{\mathbf{g}}_{i}(\boldsymbol{\beta}^{0}) \right\| [1 + \rho \max_{1 \leq i \leq n} |\hat{\mathbf{g}}_{i}(\boldsymbol{\beta}^{0})|].$$

Note that $\max_{1 \le i \le n} ||\hat{g}_i(\beta^0)|| = o(n^{1/2})$. By WLLN and Lemma 1, we have

$$\rho[\boldsymbol{u}^T \boldsymbol{\Lambda}_{\boldsymbol{g}} \boldsymbol{u} + o_p(1)] \le \left\| \boldsymbol{u}^T \frac{1}{n} \sum_{i=1}^n \hat{\boldsymbol{g}}_i(\boldsymbol{\beta}^0) \right\| + \rho o(n^{1/2}),$$

which leads to $\rho = O_p(n^{-1/2})$, i.e., $||\boldsymbol{\lambda}|| = O_p(n^{-1/2})$. Naturally,

$$\max_{1 \le i \le n} || \boldsymbol{\lambda}^T \hat{\boldsymbol{g}}_i(\boldsymbol{\beta}^0) || \le || \boldsymbol{\lambda} || \max_{1 \le i \le n} || \hat{\boldsymbol{g}}_i(\boldsymbol{\beta}^0) || = O_p(n^{-1/2}) o(n^{1/2}) = o_p(1).$$

Expanding $\mathcal{D}(\lambda)$, we get

$$0 = \mathcal{D}(\lambda) = \frac{1}{n} \sum_{i=1}^{n} \hat{g}_{i}(\beta^{0}) \left\{ 1 - \lambda^{T} \hat{g}_{i}(\beta^{0}) + \frac{[\lambda^{T} \hat{g}_{i}(\beta^{0})]^{2}}{(1 + \xi_{i})^{3}} \right\}$$
$$= \frac{1}{n} \sum_{i=1}^{n} \hat{g}_{i}(\beta^{0}) - \frac{1}{n} \sum_{i=1}^{n} \hat{g}_{i}(\beta^{0}) \hat{g}_{i}(\beta^{0})^{T} \lambda + \frac{1}{n} \sum_{i=1}^{n} \hat{g}_{i}(\beta^{0}) \frac{[\lambda^{T} \hat{g}_{i}(\beta^{0})]^{2}}{(1 + \xi_{i})^{3}},$$

where $\xi_i \in (0, \boldsymbol{\lambda}^T \hat{\boldsymbol{g}}_i(\boldsymbol{\beta}^0))$. Using the fact that $\max_{1 \leq i \leq n} ||\boldsymbol{\lambda}^T \hat{\boldsymbol{g}}_i(\boldsymbol{\beta}^0)|| = o_p(1)$, then $|\xi_i| = o_p(1)$. Noting that

$$\begin{split} \left\| \frac{1}{n} \sum_{i=1}^{n} \hat{g}_{i}(\beta^{0}) \frac{[\boldsymbol{\lambda}^{T} \hat{g}_{i}(\beta^{0})]^{2}}{(1+\xi_{i})^{3}} \right\| \leq & \frac{\max_{1 \leq i \leq n} ||\hat{g}_{i}(\beta^{0})||}{1-\max_{1 \leq i \leq n} |\xi_{i}|} \left\| \boldsymbol{\lambda}^{T} \frac{1}{n} \sum_{i=1}^{n} \hat{g}_{i}(\beta^{0}) \hat{g}_{i}(\beta^{0})^{T} \boldsymbol{\lambda} \right\| \\ = & o(n^{1/2}) O_{p}(n^{-1}) \\ = & o_{p}(n^{-1/2}), \end{split}$$

thus

$$\lambda = \left[\frac{1}{n} \sum_{i=1}^{n} \hat{\mathbf{g}}_i(\boldsymbol{\beta}^0) \hat{\mathbf{g}}_i(\boldsymbol{\beta}^0)^T\right]^{-1} \left[\frac{1}{n} \sum_{i=1}^{n} \hat{\mathbf{g}}_i(\boldsymbol{\beta}^0)\right] + \zeta, \tag{1}$$

where $||\boldsymbol{\zeta}|| = o_p(n^{-1/2})$. A Taylor expansion of $\hat{R}_Q(\boldsymbol{\beta}^0)$ yields

$$\hat{R}_{Q}(\boldsymbol{\beta}^{0}) = 2\sum_{i=1}^{n} \left\{ \boldsymbol{\lambda}^{T} \hat{\boldsymbol{g}}_{i}(\boldsymbol{\beta}^{0}) - \frac{1}{2} [\boldsymbol{\lambda}^{T} \hat{\boldsymbol{g}}_{i}(\boldsymbol{\beta}^{0})]^{2} + \frac{1}{3} \frac{[\boldsymbol{\lambda}^{T} \hat{\boldsymbol{g}}_{i}(\boldsymbol{\beta}^{0})]^{3}}{(1 + \xi_{i})^{3}} \right\}$$

$$= 2\boldsymbol{\lambda}^{T} \sum_{i=1}^{n} \hat{\boldsymbol{g}}_{i}(\boldsymbol{\beta}^{0}) - \sum_{i=1}^{n} \boldsymbol{\lambda}^{T} \hat{\boldsymbol{g}}_{i}(\boldsymbol{\beta}^{0}) \hat{\boldsymbol{g}}_{i}(\boldsymbol{\beta}^{0})^{T} \boldsymbol{\lambda} + \frac{2}{3} \sum_{i=1}^{n} \frac{[\boldsymbol{\lambda}^{T} \hat{\boldsymbol{g}}_{i}(\boldsymbol{\beta}^{0})]^{3}}{(1 + \xi_{i})^{3}}.$$

Similarly,

$$\begin{split} \Big\| \sum_{i=1}^{n} \frac{[\boldsymbol{\lambda}^{T} \hat{\boldsymbol{g}}_{i}(\boldsymbol{\beta}^{0})]^{3}}{(1+\xi_{i})^{3}} \Big\| \leq & \frac{\max_{1 \leq i \leq n} ||\boldsymbol{\lambda}^{T} \hat{\boldsymbol{g}}_{i}(\boldsymbol{\beta}^{0})||}{1 - \max_{1 \leq i \leq n} |\xi_{i}|} \Big\| \boldsymbol{\lambda}^{T} \frac{1}{n} \sum_{i=1}^{n} \hat{\boldsymbol{g}}_{i}(\boldsymbol{\beta}^{0}) \hat{\boldsymbol{g}}_{i}(\boldsymbol{\beta}^{0})^{T} \boldsymbol{\lambda} \Big\| \\ = & o_{p}(1) n O_{p}(n^{-1}) \\ = & o_{p}(1), \end{split}$$

therefore,

$$\hat{R}_Q(\boldsymbol{\beta}^0) = 2\boldsymbol{\lambda}^T \sum_{i=1}^n \hat{\boldsymbol{g}}_i(\boldsymbol{\beta}^0) - \sum_{i=1}^n \boldsymbol{\lambda}^T \hat{\boldsymbol{g}}_i(\boldsymbol{\beta}^0) \hat{\boldsymbol{g}}_i(\boldsymbol{\beta}^0)^T \boldsymbol{\lambda} + o_p(1).$$
 (2)

Substituting (1) in (2), it holds that

$$\hat{R}_{Q}(\boldsymbol{\beta}^{0}) = n \left[\frac{1}{n} \sum_{i=1}^{n} \hat{g}_{i}(\boldsymbol{\beta}^{0})^{T} \right] \left[\frac{1}{n} \sum_{i=1}^{n} \hat{g}_{i}(\boldsymbol{\beta}^{0}) \hat{g}_{i}(\boldsymbol{\beta}^{0})^{T} \right]^{-1} \left[\frac{1}{n} \sum_{i=1}^{n} \hat{g}_{i}(\boldsymbol{\beta}^{0}) \right] - n \boldsymbol{\zeta}^{T} \frac{1}{n} \sum_{i=1}^{n} \hat{g}_{i}(\boldsymbol{\beta}^{0}) \hat{g}_{i}(\boldsymbol{\beta}^{0})^{T} \boldsymbol{\zeta} + o_{p}(1).$$

A simple calculation shows that

$$n\zeta^T \frac{1}{n} \sum_{i=1}^n \hat{g}_i(\beta^0) \hat{g}_i(\beta^0)^T \zeta = no_p(n^{-1/2})o_p(n^{-1/2}) = o_p(1).$$

Therefore,

$$\hat{R}_{Q}(\boldsymbol{\beta}^{0}) = \left[\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \hat{g}_{i}(\boldsymbol{\beta}^{0})^{T}\right] \left[\frac{1}{n} \sum_{i=1}^{n} \hat{g}_{i}(\boldsymbol{\beta}^{0}) \hat{g}_{i}(\boldsymbol{\beta}^{0})^{T}\right]^{-1} \left[\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \hat{g}_{i}(\boldsymbol{\beta}^{0})\right] + o_{p}(1).$$

Together with the proof of Lemma 1, we can conclude that

$$\hat{R}_Q(\boldsymbol{\beta}^0) \longrightarrow \rho_1 w_1 + \rho_2 w_2 + \ldots + \rho_{p \times q} w_{p \times q},$$

where w_l , $l = 1, ..., p \times q$, are independent and follow the standard χ^2 distribution with one degree, the weights ρ_l are eigenvalues of $\Lambda_g^{-1} \Sigma_g$. For the asymptotic theories of $\hat{\beta}_H$, it can be proved in a similar way.

Lemma 3 Assume conditions (C1)-(C6) hold and denote $\mathcal{D}_n = \{\beta : ||\beta - \beta^0|| \leq d_n\}$, $d_n = n^{-1/3}$, then as $n \to \infty$, with probability to 1, $\hat{R}_p(\beta)$ has a minimum in \mathcal{D}_n .

Proof of Lemma 3. Let $\beta = \beta^0 + ud_n$, where ||u|| = 1. For simplicity, we denote $\lambda \equiv \lambda(\beta)$. First, we give a lower bound for $\hat{R}_p(\beta)$ on the surface of the ball. Similar to the proof of Owen (1990), when $||\hat{g}_i(\beta)||^3 < \infty$, we have

$$\boldsymbol{\lambda} = \left[\frac{1}{n} \sum_{i=1}^{n} \hat{\boldsymbol{g}}_{i}(\boldsymbol{\beta}) \hat{\boldsymbol{g}}_{i}(\boldsymbol{\beta})^{T}\right]^{-1} \left[\frac{1}{n} \sum_{i=1}^{n} \hat{\boldsymbol{g}}_{i}(\boldsymbol{\beta})\right] + o(n^{-1/3})$$
$$= O(n^{-1/3}) \ (a.s.),$$

uniformly about $\beta \in \mathcal{D}_n$. By this and the Taylor expansion, similar to the proof of Lemma 1 in Qin and Lawless (1994), we obtain

$$\begin{split} \hat{R}_{p}(\beta) = & 2\sum_{i=1}^{n} \boldsymbol{\lambda}^{T} \hat{g}_{i}(\beta) - \sum_{i=1}^{n} \boldsymbol{\lambda}^{T} \hat{g}_{i}(\beta) \hat{g}_{i}(\beta)^{T} \boldsymbol{\lambda} + n \sum_{j=1}^{p} p_{\nu}(|\beta_{j}|) + o(n^{1/3}) \\ = & n \Big[\frac{1}{n} \sum_{i=1}^{n} \hat{g}_{i}(\beta) \Big]^{T} \Big[\frac{1}{n} \sum_{i=1}^{n} \hat{g}_{i}(\beta) \hat{g}_{i}(\beta)^{T} \Big]^{-1} \Big[\frac{1}{n} \sum_{i=1}^{n} \hat{g}_{i}(\beta) \Big] + n \sum_{j=1}^{p} p_{\nu}(|\beta_{j}|) + o(n^{1/3}) \\ = & n \Big[\frac{1}{n} \sum_{i=1}^{n} \hat{g}_{i}(\beta^{0}) + \frac{1}{n} \sum_{i=1}^{n} \frac{\partial \hat{g}_{i}(\beta^{0})}{\partial \beta} u n^{-1/3} \Big]^{T} \Big[\frac{1}{n} \sum_{i=1}^{n} \hat{g}_{i}(\beta^{0}) \hat{g}_{i}(\beta^{0})^{T} \Big]^{-1} \\ \times \Big[\frac{1}{n} \sum_{i=1}^{n} \hat{g}_{i}(\beta^{0}) + \frac{1}{n} \sum_{i=1}^{n} \frac{\partial \hat{g}_{i}(\beta^{0})}{\partial \beta} u n^{-1/3} \Big] + n \sum_{j=1}^{p} p_{\nu}(|\beta_{j}|) + o(n^{1/3}) \\ = & n \Big\{ O(n^{-1/2}(\log \log n)^{1/2}) + E \Big[\frac{\partial \hat{g}_{i}(\beta^{0})}{\partial \beta} \Big] u n^{-1/3} \Big\}^{T} \Big[\frac{1}{n} \sum_{i=1}^{n} \hat{g}_{i}(\beta^{0}) \hat{g}_{i}(\beta^{0})^{T} \Big]^{-1} \\ \times \Big\{ O(n^{-1/2}(\log \log n)^{1/2}) + E \Big[\frac{\partial \hat{g}_{i}(\beta^{0})}{\partial \beta} \Big] u n^{-1/3} \Big\} \\ + n \sum_{j=1}^{p} p_{\nu}(|\beta_{j0}|) + n \sum_{j=1}^{d} p'_{\nu}(|\beta_{j0}|) \operatorname{sign}(\beta_{j0}) u_{j} d_{n} + n \sum_{j=1}^{d} p''_{\nu}(|\beta_{j0}|) u_{j}^{2} d_{n}^{2} + o(n^{1/3}). \end{split}$$

Note that

$$\left\| \sum_{j=1}^{d} n p_{\nu}'(|\beta_{j0}|) \operatorname{sign}(\beta_{j0}) u_{j} d_{n} \right\| \leq n \sqrt{d} a_{n} d_{n} = O(n a_{n} d_{n}) = o(n^{1/3}),$$

$$n \sum_{j=1}^{d} p_{\nu}''(|\beta_{j0}|) u_{j}^{2} d_{n}^{2} \leq n p b_{n} d_{n}^{2} = o(n^{1/3}).$$

This yields $\hat{R}_p(\boldsymbol{\beta}) \geq (c-\epsilon)n^{1/3} + n\sum_{j=1}^d p_{\nu}(|\beta_{j0}|), \ a.s.$, where $c-\epsilon > 0$ and c is the smallest eigenvalue of $E[\partial \hat{\boldsymbol{g}}_i(\boldsymbol{\beta}^0)/\partial \boldsymbol{\beta}]^T[E\hat{\boldsymbol{g}}_i(\boldsymbol{\beta}^0)\hat{\boldsymbol{g}}_i(\boldsymbol{\beta}^0)^T]^{-1}E[\partial \hat{\boldsymbol{g}}_i(\boldsymbol{\beta}^0)/\partial \boldsymbol{\beta}].$ Similarly,

$$\hat{R}_{p}(\boldsymbol{\beta}^{0}) = n \left[\frac{1}{n} \sum_{i=1}^{n} \hat{\mathbf{g}}_{i}(\boldsymbol{\beta}^{0}) \right]^{T} \left[\frac{1}{n} \sum_{i=1}^{n} \hat{\mathbf{g}}_{i}(\boldsymbol{\beta}^{0}) \hat{\mathbf{g}}_{i}(\boldsymbol{\beta}^{0})^{T} \right]^{-1} \left[\frac{1}{n} \sum_{i=1}^{n} \hat{\mathbf{g}}_{i}(\boldsymbol{\beta}^{0}) \right]$$

$$+ n \sum_{j=1}^{d} p_{\nu}(|\beta_{j0}|) + o(1)$$

$$= O(\log \log n) + n \sum_{j=1}^{d} p_{\nu}(|\beta_{j0}|), \ a.s..$$

Since $\hat{R}_p(\beta)$ is a continuous function about β as β belongs to the ball $||\beta - \beta^0|| \le n^{-1/3}$, $\hat{R}_p(\beta)$ has a minimum value in the interior of this ball, and $\hat{\beta}_Q$

satisfies

$$\frac{\partial \hat{R}_p(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}^T} \Big|_{\boldsymbol{\beta} = \hat{\boldsymbol{\beta}}_Q} = 2 \sum_{i=1}^n \frac{[\partial \hat{\boldsymbol{g}}_i(\boldsymbol{\beta})/\partial \boldsymbol{\beta}]^T \boldsymbol{\lambda}}{1 + \boldsymbol{\lambda}^T \hat{\boldsymbol{g}}_i(\boldsymbol{\beta})} + nb(\boldsymbol{\beta}) = 0,$$

with $b(\boldsymbol{\beta}) = \{p'_{\nu}(|\beta_1|)\operatorname{sign}(\beta_1), p'_{\nu}(|\beta_2|)\operatorname{sign}(\beta_2), \dots, p'_{\nu}(|\beta_p|)\operatorname{sign}(\beta_p)\}^T$. This completes the proof.

Proof of Theorem 3. As Lemma 3 implies that there is a local minimizer $\hat{\beta}_Q$ of $\hat{R}_p(\beta)$ uniformly for $\beta \in \mathcal{D}_n$, then by Taylor expansion, we have

$$\frac{1}{n} \frac{\partial \hat{R}_{p}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}^{T}} = \frac{2}{n} \sum_{i=1}^{n} \frac{[\partial \hat{\boldsymbol{g}}_{i}(\boldsymbol{\beta})/\partial \boldsymbol{\beta}]^{T} \boldsymbol{\lambda}}{1 + \boldsymbol{\lambda}^{T} \hat{\boldsymbol{g}}_{i}(\boldsymbol{\beta})} + b(\boldsymbol{\beta})$$

$$= 2 \left[\boldsymbol{T}_{2n}(\boldsymbol{\beta}^{0}, 0) + \frac{\partial \boldsymbol{T}_{2n}(\boldsymbol{\beta}, 0)}{\partial \boldsymbol{\beta}} (\boldsymbol{\beta} - \boldsymbol{\beta}^{0}) + \frac{\partial \boldsymbol{T}_{2n}(\boldsymbol{\beta}^{0}, 0)}{\partial \boldsymbol{\lambda}} (\boldsymbol{\lambda} - 0) \right] + b(\boldsymbol{\beta}) + o(n^{-1/3}),$$

where $b(\beta)$ is defined the same as in the proof of Lemma 3, and

$$egin{aligned} T_{1n}(oldsymbol{eta},oldsymbol{\lambda}) &= rac{1}{n}\sum_{i=1}^n rac{\hat{g}_i(oldsymbol{eta})}{1+oldsymbol{\lambda}^T\hat{g}_i(oldsymbol{eta})}, \ T_{2n}(oldsymbol{eta},oldsymbol{\lambda}) &= rac{1}{n}\sum_{i=1}^n rac{[\partial\hat{g}_i(oldsymbol{eta})/\partialoldsymbol{eta}]^Toldsymbol{\lambda}}{1+oldsymbol{\lambda}^T\hat{g}_i(oldsymbol{eta})}. \end{aligned}$$

In addition, the last term holds due to condition (C6). Note that $T_{2n}(\boldsymbol{\beta}^0, 0) = 0$ and $\partial T_{2n}(\boldsymbol{\beta}^0, 0)/\partial \boldsymbol{\beta} = 0$. By standard arguments, $\partial T_{2n}(\boldsymbol{\beta}^0, 0)/\partial \boldsymbol{\lambda} = E[\partial \hat{\boldsymbol{g}}_i(\boldsymbol{\beta}^0)/\partial \boldsymbol{\beta}]^T + o_p(1)$. Thus for $j = 1, \dots, p$, we have

$$\frac{\partial \hat{R}_p(\boldsymbol{\beta})}{\partial \beta_i} = n\nu \{ p_{\nu}'(|\beta_j|) \operatorname{sign}(\beta_j) / \nu + O_P(n^{-1/3}/\nu) \}.$$

Under condition (C5) on $p'_{\nu}(\cdot)$, it can be seen that $p'_{\nu}(|\beta_{j}|)\operatorname{sign}(\beta_{j})$ dominates the sign of $\partial \hat{R}_{p}(\beta)/\partial \beta_{j}$ asymptotically for all $j \notin \mathcal{A}$. Therefore, it is sufficient to show that with probability tending to 1, as $n \to \infty$ for any β_{1} satisfying $\beta_{1} - \beta_{10} = O_{P}(n^{-1/3})$ and for some small $\varepsilon_{n} = Cn^{-1/3}$ and $j \notin \mathcal{A}$,

$$\frac{\partial \hat{R}_p(\boldsymbol{\beta})}{\partial \beta_j} > 0, \ \beta_j \in (0, \varepsilon_n) \text{ and } \frac{\partial \hat{R}_p(\boldsymbol{\beta})}{\partial \beta_j} < 0, \ \beta_j \in (-\varepsilon_n, 0).$$

This completes the proof of part (i).

Denote $\Sigma_{\beta} = \operatorname{diag}\{p_{\nu}''(|\beta_{1}|), \ldots, p_{\nu}''(|\beta_{p}|)\}$, $\Sigma^{d} = \operatorname{diag}\{p_{\nu}''(|\beta_{10}|), \ldots, p_{\nu}''(|\beta_{d0}|)\}$, $b^{d}(\beta) = \{p_{\nu}'(|\beta_{10}|)\operatorname{sign}(\beta_{10}), \ldots, p_{\nu}'(|\beta_{d0}|)\operatorname{sign}(\beta_{d0})\}^{T}$. Next, we establish part (ii). Taking derivation of $T_{1n}(\beta, \lambda)$ and $T_{2n}(\beta, \lambda)$ about β and λ at $(\beta, 0)$ respectively, we obtain

$$\left[\frac{\partial \mathbf{T}_{1n}(\boldsymbol{\beta},0)}{\partial \boldsymbol{\beta}}\right]^{T} = \frac{\partial \mathbf{T}_{2n}(\boldsymbol{\beta},0)}{\partial \boldsymbol{\lambda}^{T}} = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{\partial \hat{\mathbf{g}}_{i}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}}\right]^{T},
\frac{\partial \mathbf{T}_{1n}(\boldsymbol{\beta},0)}{\partial \boldsymbol{\lambda}^{T}} = -\frac{1}{n} \sum_{i=1}^{n} \hat{\mathbf{g}}_{i}(\boldsymbol{\beta}) \hat{\mathbf{g}}_{i}(\boldsymbol{\beta})^{T}, \quad \frac{\partial \mathbf{T}_{2n}(\boldsymbol{\beta},0)}{\partial \boldsymbol{\beta}} = 0.$$

Expanding $T_{1n}(\hat{\beta}_Q, \hat{\lambda})$ and $2T_{2n}(\hat{\beta}_Q, \hat{\lambda}) + b(\hat{\beta}_Q)$ about at $(\beta^0, 0)$ yields

$$0 = T_{1n}(\boldsymbol{\beta}^{0}, 0) + \frac{\partial T_{1n}(\boldsymbol{\beta}^{0}, 0)}{\partial \boldsymbol{\beta}} (\hat{\boldsymbol{\beta}}_{Q} - \boldsymbol{\beta}^{0}) + \frac{\partial T_{1n}(\boldsymbol{\beta}^{0}, 0)}{\partial \boldsymbol{\lambda}^{T}} \hat{\boldsymbol{\lambda}} + o_{p}(r_{n}),$$

$$0 = T_{2n}(\boldsymbol{\beta}^{0}, 0) + \frac{\partial T_{2n}(\boldsymbol{\beta}^{0}, 0)}{\partial \boldsymbol{\beta}} (\hat{\boldsymbol{\beta}}_{Q} - \boldsymbol{\beta}^{0}) + \frac{\partial T_{2n}(\boldsymbol{\beta}^{0}, 0)}{\partial \boldsymbol{\lambda}^{T}} \hat{\boldsymbol{\lambda}} + \frac{1}{2} b(\boldsymbol{\beta}^{0})$$

$$+ \frac{1}{2} \boldsymbol{\Sigma}_{\boldsymbol{\beta}_{0}} (\hat{\boldsymbol{\beta}}_{Q} - \boldsymbol{\beta}^{0}) + o_{p}(r_{n}),$$

where $r_n = ||\hat{\beta}_Q - \beta^0|| + ||\hat{\lambda}||$. As $\hat{\beta}_{Q_2} = 0$ with probability tending to 1, we consider the components $\hat{\beta}_{Q_1}$ and $\hat{\lambda}_1$ and immediately derive that

$$\begin{pmatrix} \hat{\boldsymbol{\lambda}}_1 \\ \hat{\boldsymbol{\beta}}_{Q_1} - \boldsymbol{\beta}_1^0 \end{pmatrix} = \!\! \boldsymbol{S}^{-1} \begin{pmatrix} -\boldsymbol{T}_{1n}^{(1)}(\boldsymbol{\beta}_1^0, 0) + o_p(r_n) \\ -\frac{1}{2}b^d(\boldsymbol{\beta}) + o_p(r_n) \end{pmatrix}$$

with

$$\boldsymbol{S} = \begin{pmatrix} \boldsymbol{\varLambda}_{\boldsymbol{g}}^{(11)} \ \boldsymbol{\varDelta}_{\boldsymbol{g}}^{(12)} \\ \boldsymbol{\varDelta}_{\boldsymbol{g}}^{(21)} \ \boldsymbol{\varSigma}^{d} \end{pmatrix}_{(\boldsymbol{\beta}_{\boldsymbol{q}}^{0},0)} \rightarrow \boldsymbol{S} = \begin{pmatrix} \boldsymbol{\varLambda}_{\boldsymbol{g}}^{(11)} \ \boldsymbol{T}_{(12)} \\ \boldsymbol{T}_{21} \ \boldsymbol{\varSigma}^{d} \end{pmatrix},$$

where $T_{1n}^{(1)}(\boldsymbol{\beta}_1^0, 0)$ is the $d \times q$ sub-vector of $T_{1n}(\boldsymbol{\beta}^0, 0)$. More precisely, $T_{1n}(\boldsymbol{\beta}^0, 0)$ has q different parts, and we take the first d sub-vector of each part to combine $T_{1n}^{(1)}(\boldsymbol{\beta}_1^0, 0)$. It can be verified that the corresponding $dq \times dq$ submatrix of $\partial T_{1n}(\boldsymbol{\beta}^0, 0)/\partial \boldsymbol{\lambda}^T$ converges to $\boldsymbol{\Lambda}_{\boldsymbol{g}}^{(11)}$, which is the corresponding $dq \times dq$ submatrix of $\boldsymbol{\Lambda}_{\boldsymbol{g}}$; the corresponding $dq \times d$ submatrix of $\partial T_{1n}(\boldsymbol{\beta}^0, 0)/\partial \boldsymbol{\beta}$ converges to $T_{(12)} = T_{21}^T$, which is the corresponding $dq \times d$ submatrix of $\boldsymbol{\Delta}_{\boldsymbol{g}}$. Note

$$\boldsymbol{T}_{1n}^{(1)}(\boldsymbol{\beta}_{1}^{0},0) = (1_{1\times d},0_{1\times (p-d)},\cdots,1_{1\times d},0_{1\times (p-d)})_{p\times q}n^{-1}\sum_{i=1}^{n}\hat{\boldsymbol{g}}_{i}(\boldsymbol{\beta}^{0}) = O_{p}(n^{-1/2}),$$

which leads to $r_n = O_p(n^{-1/2})$. Therefore,

$$\begin{split} \sqrt{n}(\hat{\boldsymbol{\beta}}_{Q_1} - \boldsymbol{\beta}_1^0) = & (\boldsymbol{\Sigma}^d + \boldsymbol{V}')^{-1} \boldsymbol{\Delta}_{\boldsymbol{g}}^{21} (-\{\boldsymbol{\Lambda}_{\boldsymbol{g}}^{(11)}\}^{-1}) \sqrt{n} \boldsymbol{T}_{1n}^{(1)}(\boldsymbol{\beta}_1^0, 0) \\ & - \frac{1}{2} (\boldsymbol{\Sigma}^d + \boldsymbol{V}')^{-1} \sqrt{n} b^d(\boldsymbol{\beta}) + o_p(1), \end{split}$$

where $\mathbf{V}' = \boldsymbol{\Delta_g^{21}} \{\boldsymbol{\Lambda_g^{(11)}}\}^{-1} \boldsymbol{\Delta_g^{(12)}}$. Furthermore, under condition (C6), for $n \to \infty$, $\nu \to 0$, $a\nu \to 0$ (a is the constant in the SCAD penalty), we have $P(\min_{j=1,2,\dots,d} |\beta_{j0}| > a\nu) \to 1$, which implies $P(|b^d(\boldsymbol{\beta})| = 0) \to 1$. Under condition (C5), we have $b_n = o(1)$ and $P(\boldsymbol{\Sigma}^d = 0) \to 1$, and $\sqrt{n} \boldsymbol{T}_{1n}^{(1)}(\boldsymbol{\beta_1^0}, 0) \to N(0, \boldsymbol{\Sigma_g^{(11)}})$, where $\boldsymbol{\Sigma_g^{(11)}}$ is the corresponding $dq \times dq$ submatrix of $\boldsymbol{\Sigma_g}$. By Slutsky's theorem and the Central Limit theorem, we have the result.

References

Owen, A. (1990). Empirical likelihood confidence regions. The Annals of Statistics, 18, 90–120.

Qin, J. and Lawless, J. (1994). Empirical likelihood and general estimating equations. *The Annals of Statistics*, 22, 300–325.