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Abstract
In this paper, we propose improved statistical inference and variable selection 
methods for generalized linear models based on empirical likelihood approach that 
accommodates both the within-subject correlations and nonignorable dropouts. We 
first apply the generalized method of moments to estimate the parameters in the 
nonignorable dropout propensity based on an instrument. The inverse probability 
weighting is applied to obtain the bias-corrected generalized estimating equations 
(GEEs), and then we borrow the idea of quadratic inference function and hybrid 
GEE to construct the empirical likelihood procedures for longitudinal data with 
nonignorable dropouts, respectively. Two different classes of estimators and their 
confidence regions are derived. Further, the penalized EL method and algorithm for 
variable selection are investigated. The finite-sample performance of the proposed 
estimators is studied through simulation, and an application to HIV-CD4 data set is 
also presented.
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1  Introduction

In research areas such as medicine, population health, economics, social sciences 
and sample surveys, data are often collected from every sampled subject at many 
time points, which are referred to as longitudinal data. Let yi = (yi1, yi2,… , yimi

)T 
be a mi dimensional vector of the ith subject’s response and xi = (xi1,… , ximi

)T be a 
(mi × p)-dimensional matrix of covariates associated with yi , i = 1,… , n , where mi 
is also called as the cluster size for the ith cluster. Assume that the first and second 
moments of yij are modeled by

where � is a p-dimensional parameter vector, g(⋅) is a known link function, 
�ij = E(yij) , � is a dispersion parameter, v(⋅) is a known variance function and aT is 
the transpose of a.

For longitudinal data, it has been recognized that the within-cluster correlation 
structure plays an important role and a major aspect is how to take into account the 
correlation structure to improve estimation efficiency. However, since the underlying 
correlation structure is difficult to describe and specify, a naive and simple way is 
to use a working model, see You et al. (2006) and Xue and Zhu (2007) and refer-
ences therein, which may lose some efficiency when strong correlations exist. To 
overcome this issue, generalized estimating equations (GEEs) proposed by Liang 
and Zeger (1986) is a popular approach through a working correlation matrix to 
incorporate the correlation. Recently, Huang et al. (2007) approximated the covari-
ance matrices with basis functions. Bai et al. (2010) proposed the weighted empiri-
cal likelihood (EL) to incorporate the possible dependence. Fu and Wang (2012) 
introduced a combination of between- and within-subject estimating functions 
based on an exchangeable correlation structure assumption. Li and Pan (2013) and 
Leng and Zhang (2014) constructed estimating functions by the quadratic inference 
function (QIF). Alternatively, Leng et  al. (2010), Zhang and Leng (2011), Zhang 
et al. (2015) and Lv et al. (2017) applied the Cholesky decomposition to obtain the 
within-subject covariance matrix. To get more efficient estimators, Xu et al. (2019) 
proposed a combined multiple likelihood estimating procedure based on three well-
known dynamic covariance models, while Leung et al. (2009) considered a hybrid 
method that combines multiple GEEs based on different working correlation matri-
ces. Moreover, the GLM may include many irrelevant covariates, especially when 
the dimension of covariates is not low. In this case, it is important to find which 
covariates are relevant for prediction, both for better interpretation of the model and 
for better efficiency of the estimator (Cantoni et al. 2005).

In this paper, we consider the situation where xi is always observed, but subjects 
yi may drop out prior to the end of the study. Let ri = (ri1, ri2,… , rimi

)T be the vec-
tor of response indicators, where rij = 1 if yij is observed and rij = 0 if yij,… , yimi

 are 
not observed. Dropout is ignorable if the dropout propensity p(ri|xi, yi) is a function 
of the observed values (Little and Rubin 2002), where p(⋅|⋅) is a generic notation 
for conditional distribution or density. Otherwise, dropout is nonignorable or miss-
ing not at random (MNAR). The majority of existing methods take the framework 

(1)g(�ij) = xT
ij
�, Var(yij) = �v(�ij),
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of the GEE only naturally accommodates missing at random (MAR) or ignorable 
dropout. However, in practice, the dropout is often nonignorable (Wang et al. 2019), 
and developing valid methodologies for statistical analysis with nonignorable drop-
out is always challenging, since some parameters are not identifiable if there is no 
assumption imposed, see Molenberghs and Kenward (2007), Kim and Yu (2011), 
Wang et  al. (2014) and Shao and Wang (2016). One of the two key assumptions 
for identifiability (Wang et  al. 2014) is that xi can be decomposed as two parts 
xi = (ui, zi) , and zi is unrelated to dropout propensity conditioned on (ui, yi) , that is, 
p(ri|xi, yi) = p(ri|ui, yi) . Such a covariate zi is used to create more estimation equa-
tions for estimating the propensity and ensures that the propensity is identifiable, 
and is referred to as a dropout instrument (Wang et  al. 2019). For example, in a 
study of mental health of children in Connecticut (Zahner et al. 1992), researchers 
were interested in evaluating the prevalence of students with abnormal psychopatho-
logical status based on their teachers assessment, which was subject to missingness. 
As indicated by Ibrahim et al. (2001), the teachers response rate may be related to 
her assessment of the student but is unlikely to be related to a separate parent report 
after conditioning on the teachers assessment and fully observed covariates; more-
over, the parent report is likely highly correlated with that of the teacher. In this 
case, the parental assessment constitutes an instrument variable (Miao and Tchet-
gen Tchetgen 2016). The second key assumption on identifiability is that p(ri|ui, yi) 
has a parametric form. Details are given in Sect. 2, where we apply the generalized 
method of moments (GMM; Hansen 1982) to estimate the propensity.

Our contributions of this paper are in three aspects. First, we use a covariate not 
involved in the propensity to deal with the identifiability issue and such a covariate 
is called nonresponse instrument (Wang et  al. 2014; Shao and Wang 2016; Wang 
et al. 2019). Secondly, by constructing the bias-corrected GEEs based on the inverse 
propensity weighting (IPW; Robins et al. 1994) in conjunction with quadratic infer-
ence function (QIF; Qu et al. 2000) and hybrid GEE (Leung et al. 2009) methods, 
we propose two classes of estimators which can incorporate the within-subject cor-
relations under an informative working correlation structure and account for non-
ignorable dropouts. Finally, for variable selection, we propose the penalized EL 
approach by combining the profile EL and the smoothly clipped absolute deviation 
(SCAD; Fan and Li 2001) method together in Sect. 4.

In specific, the proposed QIF procedure is based on the matrix expansion idea, 
which neither assumes the exact knowledge of the true correlation structure nor 
estimates the parameters of the correlation structure. Alternatively, the hybrid GEE 
method combines multiple GEEs based on different working correlation models to 
improve the estimation efficiency of the GEE method in Liang and Zeger (1986). 
The resulting EL ratios are shown to have different asymptotically weighted sum 
Chi-squares, which can be used to construct the corresponding confidence regions. 
Furthermore, it can be seen that penalized EL efficiently selects significant varia-
bles and estimates parameters simultaneously. With a proper choice of the tuning 
parameters, the penalized estimators based on the QIF and hybrid GEE methods are 
consistent and have the oracle property. The penalized EL method can make infer-
ence for the parameters in the selected model without estimating their estimators’ 
covariance. In addition, we propose an algorithm for computing the penalized EL 



626	 L. Wang, W. Ma 

1 3

estimators by the local quadratic approximation. The proposed EL inference proce-
dure is readily implemented by existing R packages.

The rest of this paper is organized as follows. After presenting the parametric 
dropout propensity and instrument approach, we construct the proposed estimators 
based on the QIF and hybrid GEE methods in Section 2 and investigate the statis-
tical properties in Section 3. In Section 4, we introduce the penalized EL estima-
tors and the algorithm for variable selection. We discuss the unbalanced data case 
in Sect. 5. Simulation studies are given in Section 6. Section 7 analyzes the AIDS 
Clinical Trial Group 193A data for illustration. Some discussions can be found in 
Sect. 8. All technical details are provided in the Supplementary Material.

2 � Methodology

2.1 � Nonignorable dropout and bias‑corrected GEE

We first consider the longitudinal data are balanced with the same cluster size, i.e., 
mi = m , while the unbalanced longitudinal data will be investigated in Section  5 
later. As we discussed in Section  1, to address the identifiability problem, xi can 
be decomposed as two parts, i.e., xi = (ui, zi) . Furthermore, for longitudinal yi , it is 
reasonable to assume that the dropout at time point j is unrelated to the future values 
yi(j+1),… , yim (Diggle and Kenward 1994). Thus, we have

where 
⇀

uij = (uT
i1
,… , uT

ij
)T , 

⇀

z ij = (zT
i1
,… , zT

ij
)T and 

⇀

y ij = (yi1,… , yij)
T are denoted as 

the histories uij , zij and yij up to and including cycle j, respectively. The first line in 
(2) indicates that dropout is nonignorable, i.e., the probability of observing yij at 
time j depends on yij regardless of whether yij is observed or not; the second line 
reflects the dropout or monotone missing data pattern. Further, we assume that the 
dropout propensity in (2) has a parametric form,

where Oij = (
⇀

u
T

ij
,
⇀

y
T

ij
)T , �j is unknown parameter, �j is a column vector of 

unknown parameters, � is a known monotone function defined on [0,  1] and 
ri0 is always defined to be 1. Popular choices of � are the logistic function with 
� (t) = {1 + exp(t)}−1 and the probit function with � being the standard normal dis-
tribution function. In applications, we may consider some special cases of (3). For 
example, Tang et al. (2003) considered that

The following assumption between (3) and (4) can also be considered,

(2)Pr(rij = 1|ri(j−1) = 1, xi, yi)= Pr(rij = 1|ri(j−1) = 1,
⇀

uij,
⇀

y ij),

Pr(rij = 1|ri(j−1) = 0, xi, yi)= 0, for j = 1,… ,m,

(3)Pr(rij = 1|ri(j−1) = 1,
⇀

uij,
⇀

y ij) = � (�j + �T
j
Oij), j = 1,… ,m,

(4)Pr(rij = 1|ri(j−1) = 1,
⇀

uij,
⇀

y ij) = � (�j + �jyij), j = 1,… ,m.
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Model (5) is used in our simulation studies.
For j = 1,… ,m , write �j = (�j, �

T
j
)T and define the following estimating 

equations

If �0
j
 is the true value of �j , it can be verified that E{sj(yi, xi, ri,�

0
j
)} = 0. The effi-

cient two-step GMM (Hansen 1982) estimator of �j is

where �̂−1

j
 is the inverse of the matrix n−1

∑n

i=1
sj(yi, xi, ri, �̂

(1)

j
)sj(yi, xi, ri, �̂

(1)

j
)T , 

�̂
(1)

j
= argmin�j s̄j(�j)

T s̄j(�j) and s̄j(�j) = n−1
∑n

i=1
sj(yi, xi, ri,�j). For any 

j = 1,… ,m , let � j = (�T
1
,… ,�T

j
)T be the joint parameters vector up to and includ-

ing cycle j. Define �ij = Pr(rij = 1|xi, yi) = Pr(rij = 1|⇀uij,
⇀

y ij) . Then, under the model 
(3), �ij =

∏j

t=1
Pr{rit = 1�ri(t−1) = 1,

⇀

uit,
⇀

y it} =
∏j

t=1
� (�t + �T

t
Oit) ≜ �ij(� j), 

which can be estimated by

where �̂ j = (�̂
T

1
,… , �̂

T

j
)T are the GMM estimators under the dropout propensity 

model (3). Motivated by Liang and Zeger (1986), the bias-corrected GEE can be 
written as

where Ŵi = diag(ri1∕𝜋̂i1,… , rim∕𝜋̂im) , Vi is the covariance matrix of (yi − �i) , 
�̇i = 𝜕�i∕𝜕� , �i = (�i1,⋯ ,�im)

T . The inverse of covariance matrix V−1
i

 can be 
decomposed as A−1∕2

i
�−1

i
A
−1∕2

i
 , with Ai = diag{Var(yi1),⋯ ,Var(yim)} being a 

(m × m)-dimensional diagonal marginal variance matrix of (yi − �i) and �i being 
an (m × m)-dimensional true correlation matrix. In practice, �i is unknown and a 
working correlation structure, donated by Ri , is utilized. Some common working 
correlation structures include independent structure, compound symmetry (CS) and 
first-order autoregressive (AR(1)). If the working covariance matrix Ri = Im , the 
m × m identity matrix, it assumes working independence structure; when Ri = �i , it 
assumes the true within-subject correlation structure for longitudinal data.

(5)Pr(rij = 1|ri(j−1) = 1,
⇀

uij,
⇀

y ij) = � (�j + �T
j1
uij + �j2yij), j = 1,… ,m.

(6)sj(yi, xi, ri,�j) = ri(j−1)

{
rij

� (�j + �T
j
Oij)

− 1

}(
1,

⇀

u
T

ij
,
⇀

z
T

ij
,
⇀

y
T

i(j−1)

)T

.

(7)�̂j = argmin�j s̄j(�j)
T�̂

−1

j
s̄j(�j),

𝜋ij(�̂ j) =

j∏
t=1

𝛹 (𝛼̂t + �̂T
t
Oit),

(8)
n∑
i=1

�̇T
i
V−1

i
Ŵi(yi − �i) = 0,
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2.2 � EL inference based on QIF and hybrid GEE

Since the working covariance matrix R−1
i

 is unknown in practice, misspecification 
of the working covariance matrix R−1

i
 will lead to less efficient GLM estimators. To 

improve the efficiency of estimation, we borrow the matrix expansion idea of Qu et al. 
(2000) and propose the quadratic inference function (QIF) by assuming that the inverse 
of the working correlation R−1

i
 can be approximated by a linear combination of several 

basis matrices, that is, 

where B1,… ,Bq are (m × m)-dimensional symmetric basic matrices depending on 
the particular choice of R−1

i
 and b1,… , bq are unknown coefficients. For example, if 

a working correlation structure is CS, then R−1
i

= b1B1 + b2B2 , where B1 is an iden-
tity matrix and B2 is a symmetric matrix with 0 on the diagonal and 1 elsewhere. 
The coefficients b0 and b1 are parameters associated with the CS correlation. If R−1

i
 

corresponds to AR(1), R−1
i

= b1B1 + b2B2 + b3B3 , where B1 is an identity matrix, 
B2 is a symmetric matrix with 1 on the sub-diagonal entries and 0 elsewhere, and B3 
is a symmetric matrix with 1 in elements (1, 1) and (m, m), and 0 elsewhere. More 
details can be found in Qu et al. (2000) and Cho and Qu (2015).

Substituting (9) into (8) leads to

Consequently, Eq.  (10) can be approximated as a linear combination of elements, 
ĝi(�) , for i = 1,… , n , where

Note that estimation of the parameters b1,… , bq is not required, since the function 
ĝi(�) does not involve the parameters, and ĝi(�) is an overdetermined equations with 
pq variate function. Thus, we propose to apply the following EL for the inference of 
� under some regular conditions. Let pi represent the probability weight allocated 
to ĝi(�) , i = 1,… , n . The empirical log-likelihood ratio function for � based on the 
QIF approach is defined as

By using the Lagrange multiplier method, R̂Q(�) can be represented as

(9)R−1
i

=

q∑
j=1

bjBj,

(10)
n∑
i=1

�̇T
i
A
−1∕2

i
(b1B1 +⋯ + bqBq)A

−1∕2

i
Ŵi(yi − �i) = 0.

(11)ĝi(�) =

⎛⎜⎜⎝

�̇T
i
A
−1∕2

i
B1A

−1∕2

i
Ŵi(yi − �i)

⋮

�̇T
i
A
−1∕2

i
BqA

−1∕2

i
Ŵi(yi − �i)

⎞⎟⎟⎠
.

R̂Q(�) = −2 sup

{
n∑
i=1

log(npi) ∶ pi ≥ 0,

n∑
i=1

pi = 1,

n∑
i=1

piĝi(�) = 0

}
.
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where �T is the root of the following equation:

The maximum EL estimator based on ĝi(�) , denoted as �̂Q , can be obtained as 
below:

Alternatively, Liang and Zeger (1986) assumed that the matrix Vi can be expressed 
in terms of a working correlation matrix R(�) as Vi = A

1∕2

i
R(�)A

1∕2

i
 , where � is 

some unknown nuisance parameter. Thus, one can obtain the following GEE,

Note that, if the working correlation R(�) is misspecified, the resulting estimator of 
the parameters � based on (12) is still consistent, but it may not be efficient. In order 
to improve the efficiency, motivated by Leung et  al. (2009), we propose a hybrid 
method that combines multiple GEEs based on different and linearly independent 
choices of R(�) , say Rl(�) , l = 1,⋯ , L . Let

and pi represent the probability weight allocated to ĥi(�) , i = 1,… , n . The empirical 
log-likelihood ratio function for � based on the hybrid GEE approach is defined as

By using the Lagrange multiplier method, R̂H(�) can be represented as

where �T is the root of the following equation:

R̂Q(�) = 2

n∑
i=1

log{1 + �T ĝi(�)},

1

n

n∑
i=1

ĝi(�)

1 + �T ĝi(�)
= 0.

�̂Q = argmin
�
{R̂Q(�)}.

(12)
n∑
i=1

�̇T
i
A
−1∕2

i
R−1(𝛼)A

−1∕2

i
Ŵi(yi − �i) = 0.

(13)ĥi(�) =

⎛⎜⎜⎝

�̇T
i
A
−1∕2

i
{R1(𝛼)}−1A

−1∕2

i
Ŵi(yi − �i)

⋮

�̇T
i
A
−1∕2

i
{RL(𝛼)}−1A

−1∕2

i
Ŵi(yi − �i)

⎞⎟⎟⎠
,

R̂H(�) = −2 sup

{
n∑
i=1

log(npi) ∶ pi ≥ 0,

n∑
i=1

pi = 1,

n∑
i=1

piĥi(�) = 0

}
.

R̂H(�) = 2

n∑
i=1

log{1 + �T ĥi(�)},

1

n

n∑
i=1

ĥi(�)

1 + �T ĥi(�)
= 0.
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The maximum EL estimator based on ĥi(�) , denoted as �̂H , can be obtained as 
below:

In practice, a few popular choices of R−1(�) can be applied, and we use the CS 
andAR(1) in the simulations.

3 � Asymptotic theories

Assume �0 and �0
m

 are the true values of � and �m , respectively. 
Note that, ĝi(�) = gi(�̂m, �) and ĥi(�) = hi(�̂m, �) . Subsequently, 
define �g = E[�gi(�

0
m
, �0)∕��] , �g = E{gi(�

0
m
, �0)[gi(�

0
m
, �0)]T} , 

� g = {�T
g
�−1

g
�g}

−1�T
g
�−1

g
, �h = E[�hi(�

0
m
, �0)∕��] , 

�h = E{hi(�
0
m
, �0)[hi(�

0
m
, �0)]T} and � h = {�T

h
�−1

h
�h}

−1�T
h
�−1

h
.

Theorem  1  Suppose that �0
j
 is the unique solution to E{sj(yi, xi, ri,�j)} = 0 

and models (1–2) hold, �j = E{sj(yi, xi, ri,�
0
j
)sj(yi, xi, ri,�

0
j
)T} is positive defi-

nite and the matrix � j = E[�sj(yi, xi, ri,�
0
j
)∕��j] is of full rank. As n → ∞ , √

n(�̂j − �0
j
) → N(0, (� T

j
�j� j)

−1) and 
√
n(�̂m −�m) → N(0,�) in distributions. 

Under the conditions (C1–C4) in the Supplementary Material, as n → ∞ , we have

where �g = �g + E[�gi(�
0
m
, �0)∕��m]�ET [�gi(�

0
m
, �0)∕��m] and 

�h = �h + E[�hi(�
0
m
, �0)∕��m]�ET [�hi(�

0
m
, �0)∕��m].

Remark 1  If �ij is known, it can be verified that E[�gi(�
0
m
, �0)∕��m] = 0 and 

E[�hi(�
0
m
, �0)∕��m] = 0 , and the asymptotic covariance matrices of �̂Q and �̂H 

can be simplified as {�T
g
�−1

g
�g}

−1 and {�T
h
�−1

h
�h}

−1 , respectively. When there is no 
missing data, it means �ij = 1 and the estimating equations are the same as the equa-
tions in Li and Pan (2013) and Leung et al. (2009), respectively. In addition, Theo-
rem 1 can be used to construct normal-approximation-based confidence regions.

Next, we will study the asymptotic properties of R̂Q(�
0) and R̂H(�

0) . Compared 
to the standard empirical log-likelihood ratio without missing data, the main dif-
ference is that the ĝi(�

0) and ĥi(�
0) , i = 1,… , n , are not independent and identi-

cally distributed. Hence, the asymptotic distributions of R̂Q(�
0) and R̂H(�

0) may 
not be standard Chi-squares. Actually, we will show that R̂Q(�

0) and R̂H(�
0) are 

asymptotically two different weighted sum Chi-squares.

Theorem 2  Under the regularity conditions in Theorem 1, as n → ∞ , we have

�̂H = argmin
�
{R̂H(�)}.

√
n(�̂Q − �0)⟶N(0,� g�g�

T
g
),

√
n(�̂H − �0)⟶N(0,� h�h�

T
h
),
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where wl and �s are independent and follow the standard �2 distribution with one 
degree, the weights �l and �s are eigenvalues of �−1

g
�g and �−1

h
�h , respectively, 

l = 1,… , pq and s = 1,… , pL.

Remark 2  When there is no missing data, according to Li and Pan (2013), it can be 
shown that the Wilks theorem holds. However, compared to the standard empirical 
log-likelihood ratio without missing data, the main difference is that the proposed 
ĝi(�

0) and ĥi(�
0) are not independent and identically distributed. As a result, the 

asymptotic distributions of R̂Q(�
0) and R̂H(�

0) may not be the standard Chi-square 
and the Wilks’s theorem breaks down. To be specific, Lemmas 1 and 2 in the Sup-
plementary Material reveal the reasons why Wilks’s theorem does not hold. On the 
other hand, when there is no missing data, we have �g = �g and �h = �h due to 
the fact that E[�gi(�

0
m
, �0)∕��m] = 0 and E[�hi(�

0
m
, �0)∕��m] = 0 , such that both 

�−1
g
�g and �−1

h
�h equal to the identity matrix, which makes the Wilks’s theorem 

hold. This is the same as the result of Li and Pan (2013). Moreover, Theorem 2 can 
be used to test the hypothesis H0 : � = �0 and construct the confidence region for �0.

Let rQ(�
0) = (pq)∕tr{�−1

g
�g} and rH(�

0) = (pL)∕tr{�−1
h
�h} be the adjustment 

factors. Along the lines of Rao and Scott (1981), we have the following corollary.

Corollary 1  Under the conditions of Theorem 1, as n → ∞ , we obtain

To construct the confidence regions of � , we propose to obtain the estimators �̂−1

g
 , 

�̂
−1

h
 , �̂g and �̂h of �−1

g
 , �−1

h
 , �g and �h by the plug-in method, and then obtain the con-

sistent estimators 𝜌̂1,… , 𝜌̂pq and 𝜚̂1,… , 𝜚̂pL of �1,… , �pq and �1,… , �pL , respectively. 
Let cQ

�
 and cH

�
 be the 1 − � quantiles of 𝜌̂1w1 +…+ 𝜌̂pqwpq and 𝜚̂1w1 +…+ 𝜚̂pLwpL 

for 0 < 𝛼 < 1 , respectively. According to Theorem  2, the approximate 100(1 − �)% 
confidence regions for � based on the QIF and hybrid GEE methods are given by

Alternatively, based on Corollary 1, the 100(1 − �)% confidence regions can also be 
obtained by

where rQ(�̂) = (pq)∕tr(�̂
−1

g
�̂g) and rH(�̂) = (pL)∕tr(�̂

−1

h
�̂h).

R̂Q(�
0) ⟶ 𝜌1w1 + 𝜌2w2 +…+ 𝜌psqwpq,

R̂H(�
0) ⟶ 𝜚1𝜛1 + 𝜚2𝜛2 +…+ 𝜚pL𝜛pL,

R̂Q(�
0)rQ(�

0) ⟶ 𝜒2
pq
, R̂H(�

0)rH(�
0) ⟶ 𝜒2

pL
.

CI
Q

1
(𝛼) = {� ∶ R̂Q(�) < cQ

𝛼
}, CIH

1
(𝛼) = {� ∶ R̂H(�) < cH

𝛼
}.

CI
Q

2
(𝛼) = {� ∶ rQ(�̂)R̂Q(�) < 𝜒2

pq,1−𝛼
}, CIH

2
(𝛼) = {� ∶ rH(�̂)R̂H(�) < 𝜒2

pL,1−𝛼
}
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4 � Variable selection

When the dimension of covariate xij is high, in order to build robust models and 
identify relevant predictors to the response variable, variable selection in the 
GLM should be considered. For this purpose, we propose the penalized empiri-
cal likelihood (PEL) by combining the profile EL method and the smoothly 
clipped absolute deviation (SCAD) together. The PEL estimator is defined to be 
the minimizer of the following objective function, which is still denoted as �̂ for 
simplicity.

where �̂i(�) = ĝi(�) or ĥi(�) , p�(t) is a penalty function with tuning parameter � . We 
use the SCAD penalty, which is defined in terms of its first derivative and is sym-
metric around the origin. For t > 0 , its first derivative is

where a > 2 and 𝜈 > 0 are tuning parameters. We choose a = 3.7 suggested by Fan 
and Li (2001).

Let A be the set of nonzero components of true parameter vector �0 and its 
cardinality as d = |A| . Without loss of generality, one can partition the parameter 
vector as � = (�T

1
, �T

2
)T , where �1 ∈ Rd and �2 ∈ Rp−d . Hence, the true parameter 

�0 = (�0T
1
, 0T )T , and we write �̂Q = (�̂

T

Q1
, �̂

T

Q2
)T and �̂H = (�̂

T

H1
, �̂

T

H2
)T as the result-

ing penalized estimators based on the QIF and hybrid GEE methods, respectively. 
The following theorem shows the selection consistency and asymptotic efficiency 
of the proposed PEL estimators �̂Q and �̂H.

Theorem 3  Under the regularity conditions in Theorem 1, we further assume con-
ditions (C5)-(C6) hold. As n → ∞ , the estimators �̂Q and �̂H satisfies

	 (i)	 (Selection consistency): With probability tending to 1, �̂Q2
= 0 and �̂H2

= 0;
	 (ii)	 (Asymptotic efficiency):

where �(11)
g

 and �
(11)

h
 are dq × dq and dL × dL submatrices of �g 

and �h , �(12)
g

 and �
(12)

h
 are dq × d and dL × d submatrices of � g 

and � h , �
(11)
g

 and �(11)

h
 are dq × dq and dL × dL submatrices of �g 

and �h , � (11)
g

= [{�(12)
g

}T{�(11)
g

}−1{�(12)
g

}]−1{�(12)
g

}T{�(11)
g

}−1 , 
� h = [{�

(12)

h
}T{�

(11)

h
}−1{�

(12)

h
}]−1{�

(12)

h
}T{�

(11)

h
}−1 . More details can be 

seen in the Supplementary Material.

R̂p(�) =2

n∑
i=1

log{1 + �T �̂i(�)} + n

p∑
j=1

p𝜈(|𝛽j|),

p�
𝜈
(t) = 𝜈{I(t ≤ 𝜈) +

(a𝜈 − t)+

(a − 1)𝜈
I(t > 𝜈)},

√
n(�̂Q1

− �0
1
) ⟶ N(0,� (11)

g
�(11)

g
{� (11)

g
}T ),

√
n(�̂H1

− �0
1
) ⟶ N(0,�

(11)

h
�

(11)

h
{�

(11)

h
}T ),
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For the proposed method with SCAD penalty, we apply the local quadratic 
approximation (LQA) to the penalty function as discussed in Fan and Li (2001). 
That is,

To iterate on � directly, we adopt an approximate algorithm by using the full model 
expression. Suppose that we are given an initial �(0) , the solution of the estimating 
equations 

∑n

i=1
�̂i(�) = 0 . Then, the optimization of the PEL function can be carried 

out using a modified Newton-Raphson algorithm. That is to say, for k = 0, 1, 2,… , 
we generate an iterative sequence as

where U�(�) = ��,�� and

with

We can stop the iteration when solutions converge to a satisfying precision. If 𝛽j is 
very close to zero, say |𝛽j| < 𝜁 (a prespecified value), we set 𝛽j = 0 and apply the 
algorithm in Owen (2001) to compute �̂.

To choose the optimal value for the tuning parameter, we combine our variable 
selection method with three information criteria: BIC of Schwarz (1978), BICC of 
Wang et al. (2009) and EBIC of Chen and Chen (2008). Three BIC-type criteria are 
defined as follows:

where �� = �Q or �H is the estimate of � based on the QIF or hybrid GEE methods 
with � being the tuning parameter, and df� is the number of nonzero coefficients in 
�� .

p�(|�j|) ≈ p�(|�j0|) + p�
�
(|�j0|)∕|�j0|(|�j|2 − |�j0|2), for |�j| ≈ |�j0|.

� (k+1) = �(k) + {Z1(�
(k)) +��,�(k) }−1{Z2(�

(k)) − U�(�
(k))},

��,� = diag{p�
�
(|�1|)∕|�1|,… , p�

�
(|�p|)∕|�p|},

Z1(�) =
�T2n(�, 0)

��

{
�T1n(�, 0)

��

}−1
�T1n(�, 0)

��
,

Z2(�) =
�T2n(�, 0)

��

{
�T1n(�, 0)

��

}−1

T1n(�, 0),

𝜕T1n(�, 0)

𝜕�
=
𝜕T2n(�, 0)

𝜕�
=

1

n

n∑
i=1

𝜕�̂i(�)

𝜕�
,
𝜕T1n(�, 0)

𝜕�T
= −

1

n

n∑
i=1

�̂i(�)�̂i(�)
T ,

T1n(�,�) =
1

n

n∑
i=1

�̂i(�)

1 + �T �̂i(�)
, T2n(�,�) =

1

n

n∑
i=1

{𝜕�̂i(�)∕𝜕�}
T�

1 + �T �̂i(�)
.

BIC(𝜈) = −2R̂p(�𝜈) + log(n)df𝜈 ,

BICC(𝜈) = −2R̂p(�𝜈) +max{1, log log(p)} log(n)df𝜈 ,

EBIC(𝜈) = −2R̂p(�𝜈) + [log(n) + 2 log(p)]df𝜈 ,
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5 � Implementation with unbalanced data

The above methods are presented with balanced data, that is, mi = m . In practice, longi-
tudinal data may not be measured with the same cluster size, and could be unbalanced 
due to experimental constraints. To configure the proposed methods for unbalanced 
data, we apply the transformation matrix to each cluster. As in Zhou and Qu (2012), 
we create the largest cluster with a size m, which contains time points for all possi-
ble measurements, and assume that fully observed clusters contain m observations. We 
define the m × mi transformation matrix Ti for the ith cluster by removing the columns 
of the m × m identity matrix, where the removed columns correspond to unmeasured 
data/time points for the ith subject. Through the transformation, ĝi(�) is replaced by

where y∗
i
= Tiyi , 𝝁∗

i
= Ti𝝁i, 𝝁̇

∗
i
= Ti𝝁̇i , A

∗
i
= TiAiT

T
i
 . It can be seen that the com-

ponents in y∗
i
 are the same as in yi for responses for j ≤ mi but are 0 for j > mi , and 

similarly for �∗
i
 and �̇∗

i
 , which do not affect the estimation of � . Correspondingly, 

ĥi(�) is replaced by

Therefore, for unbalanced data with dropout, parameter estimation and variable 
selection also can be implemented using our proposed methods in Sections 3–4. We 
can show that the asymptotic results of Theorems 1–3 still hold for unequal cluster 
sizes using the similar way in the proofs of the theorems.

6 � Simulation studies

6.1 � The QIF and hybrid GEE‑based estimators

In the first simulation, we consider

where xij1 ∼ N(1, 1) , xij2 ∼ N(0, 1) and Cov(xij1, xij2) = � , the random errors 
�i = (�i1, �i2, �i3, �i4)

T are generated from normal distributions N(0,�) . Here, 
we consider the AR(1) errors with �jj� = 4�|j−j�| and CS errors with �jj� = 4� for 
j ≠ j and �jj = 4 for j, j� = 1,… , 4 . In addition, two correlation structures are 
considered: (i) �i are strongly correlated, i.e., � = 0.7 ; (ii) �i are moderately cor-
related, i.e., � = 0.4 . Set the true value (�1, �2) = (1, 2) . The missing indicators 
ri = (ri1, ri2, ri3, ri4)

T are generated from the following nonignorable dropout choice:

ĝ∗
i
(�) =

⎛⎜⎜⎝

(�̇∗
i
)T (A∗

i
)−1∕2B1(A

∗
i
)−1∕2Ŵi(y

∗
i
− �∗

i
)

⋮

(�̇∗
i
)T (A∗

i
)−1∕2Bq(A

∗
i
)−1∕2Ŵi(y

∗
i
− �∗

i
)

⎞⎟⎟⎠
,

ĥ
∗

i
(�) =

⎛⎜⎜⎝

(�̇∗
i
)T (A∗

i
)−1∕2{R1(𝛼)}−1(A∗

i
)−1∕2Ŵi(y

∗
i
− �∗

i
)

⋮

(�̇∗
i
)T (A∗

i
)−1∕2{RL(𝛼)}−1(A∗

i
)−1∕2Ŵi(y

∗
i
− �∗

i
)

⎞⎟⎟⎠
.

(14)yij = �1xij1 + �2xij2 + �ij,
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with �j = −1.2 , �j1 = 0.2j and �j2 = −0.4 + 0.1(j − 1) . For j = 1,… , 4 , the coef-
ficients were chosen so that the unconditional dropout percentages for four time 
points under different scenarios are about 25%, 44%, 61% and 75%. In addition, 
we consider two skewed distributions for the errors �i , i.e., �ij = Exp(1) − 1 and �
(1,1)-1 with AR(1) covariance matrix �jj� = 4�|j−j�| , by using R packages simstudy 
and copula.

To evaluate the estimation efficiency of the proposed approach, we compute the 
simulated relative bias and variance of the estimators based on the following six 
GLM estimators of � . 

(a)	 the proposed QIF estimator based on ĝi(�) in (11) and the hybrid GEE estimator 
based on ĥi(�) in (13) with nonignorable dropout propensity 𝜋ij(�̂ j) in Ŵi and 
the GMM estimator �̂ j obtained by (7). Here, R−1

i
 in the QIF estimator are based 

on two common working correlation choices: AR(1) and CS, which are denoted 
as QIFAR(1) and QIFCS ; two different choices of {R1(�),R2(�)} =(AR(1), CS) 
with � = 0.4 and 0.7 are used in the hybrid GEE method, which are denoted as 
Hybrid0.4 and Hybrid0.7.

(b)	 the naive MNAR estimator based on (8) with an independent working correlation 
structure, i.e., Vi = Im , which is denoted as MNARIND.

(c)	 the MAR estimator based on (8) with ignorable dropout 𝜋ij(𝛶̂j) = 𝜋ij(
⇀

x ij, 𝛶̂j) in 
Ŵi . Here, the ignorable dropout propensity Pr(rij = 1|ri(j−1) = 1, xij) is imposed 
by a parametric linear logistic regression and the GMM estimator 𝛶̂j is obtained 
similarly by (7);

(d)	 the complete case (CC) estimator based on (8) with Ŵi = diag{ri1,… , rim};
(e)	 the full sample (FULL) estimator based on (8) with Ŵi = Im when there is no 

missing data, which is used as a gold standard.

In the estimators (c–e), the true values of Vi are used to obtain the best results. 
To apply the propose method, we use the working propensity model (5) and 
� (⋅) = [1 + exp(⋅)]−1 . It can be seen that uij = xij1 and the instrument variable 
zij = xij2 . We further examine the confidence regions of two dimensional � in terms 
of the coverage probability (CP). In particular, the EL confidence regions based on 
the proposed methods are obtained by CIQ

2
(�) and CIH

2
(�) in Section 3, the EL con-

fidence region based on the estimator (c) is obtained similarly by CIQ
2
(�) with the 

ignorable dropout propensity, and the EL confidence regions based on the estimators 
(d–e) are obtained by CI(𝛼) = {� ∶ R̂(�) < 𝜒2

1−𝛼
(p)} with ĝi(�) in (11) replaced by 

the corresponding estimating equations under the CC and FULL methods, respec-
tively. According to Qin and Lawless (1994), only the full sample method can pro-
duce correct EL confidence regions. Simulation results are presented in Tables 1, 2, 
3 and 4, and a few conclusions can be drawn from the simulation results. 

(1)	 The naive MNAR estimator, the proposed estimators based on QIF and hybrid 
GEE methods are unbiased. On the other hand, the CC estimators are biased 

Pr(rij = 1|ri(j−1) = 1,
⇀

uij,
⇀

y ij) = 1∕{1 + exp(�j + �j1xij1 + �j2yij)},
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due to the fact that missing is not completely at random; the estimators based 
on ignorable dropout also have large biases. When the covariates are strongly 
correlated ( � = 0.9 ), the biases of the CC and MAR estimates become larger. 
Moreover, it also shows robustness of the proposed estimators which are less 
sensitivity to the error distributions �i and correlation structures �.

Table 1   Relative biases, standard deviations (in parentheses) and coverage probabilities in the first simu-
lation under normal errors with AR(1) structure

(�, �) Methods n = 200 n = 500

�1 �2 CP �1 �2 CP

(0.9, 0.4) CC 0.257(0.103) −0.155(0.136) 0.416 0.255(0.070) −0.153(0.089) 0.048
MAR 0.268(0.128) −0.151(0.155) 0.520 0.269(0.086) −0.150(0.101) 0.120
FULL 0.001(0.075) −0.002(0.093) 0.955 0.001(0.051) 0.001(0.059) 0.948
MNARIND 0.053(0.228) −0.047(0.270) 0.935 0.023(0.151) −0.008(0.173) 0.947
QIFAR(1) 0.057(0.167) −0.027(0.188) 0.931 0.025(0.117) −0.010(0.131) 0.942
QIFCS 0.042(0.181) −0.020(0.202) 0.948 0.016(0.123) −0.005(0.135) 0.950
Hybrid0.4 0.037(0.172) −0.015(0.200) 0.951 0.016(0.118) −0.005(0.131) 0.957
Hybrid0.7 0.021(0.202) −0.008(0.226) 0.952 0.008(0.133) 0.001(0.141) 0.958

(0.9, 0.7) CC 0.185(0.121) −0.111(0.134) 0.663 0.184(0.071) −0.111(0.085) 0.326
MAR 0.226(0.144) −0.120(0.151) 0.682 0.231(0.088) −0.121(0.097) 0.312
FULL 0.001(0.077) −0.002(0.083) 0.953 0.001(0.048) 0.001(0.053) 0.954
MNARIND 0.047(0.246) −0.012(0.259) 0.942 −0.003(0.140) 0.006(0.167) 0.951
QIFAR(1) 0.054(0.164) −0.021(0.183) 0.945 0.014(0.105) −0.005(0.117) 0.960
QIFCS 0.040(0.183) −0.017(0.203) 0.948 0.001(0.122) 0.002(0.135) 0.952
Hybrid0.4 0.043(0.180) −0.016(0.196) 0.949 0.006(0.112) 0.001(0.123) 0.958
Hybrid0.7 0.028(0.175) −0.007(0.188) 0.947 0.003(0.115) 0.002(0.126) 0.952

(0.6, 0.4) CC 0.144(0.088) −0.078(0.115) 0.636 0.151(0.055) −0.083(0.072) 0.252
MAR 0.163(0.111) −0.078(0.130) 0.699 0.170(0.072) −0.085(0.081) 0.340
FULL 0.001(0.059) 0.001(0.069) 0.957 0.001(0.038) 0.001(0.045) 0.960
MNARIND 0.012(0.142) 0.002(0.174) 0.934 0.010(0.094) −0.011(0.108) 0.951
QIFAR(1) 0.026(0.124) −0.006(0.145) 0.920 0.016(0.079) −0.009(0.090) 0.948
QIFCS 0.017(0.129) −0.001(0.156) 0.947 0.010(0.084) −0.006(0.096) 0.930
Hybrid0.4 0.013(0.123) 0.001(0.145) 0.947 0.010(0.081) −0.006(0.094) 0.946
Hybrid0.7 0.005(0.144) 0.004(0.160) 0.940 0.010(0.094) −0.006(0.100) 0.958

(0.6, 0.7) CC 0.076(0.083) −0.052(0.096) 0.855 0.077(0.052) −0.048(0.059) 0.702
MAR 0.113(0.107) −0.060(0.113) 0.836 0.117(0.064) −0.057(0.070) 0.592
FULL 0.001(0.049) −0.002(0.054) 0.950 0.001(0.032) 0.001(0.034) 0.961
MNARIND 0.018(0.138) 0.013(0.159) 0.937 0.009(0.091) −0.009(0.106) 0.951
QIFAR(1) 0.030(0.118) −0.013(0.130) 0.913 0.015(0.076) −0.005(0.090) 0.944
QIFCS 0.016(0.122) −0.006(0.143) 0.925 0.013(0.080) −0.003(0.091) 0.944
Hybrid0.4 0.021(0.117) −0.009(0.131) 0.922 0.012(0.078) −0.003(0.086) 0.946
Hybrid0.7 0.014(0.122) −0.006(0.131) 0.939 0.009(0.077) −0.002(0.080) 0.944
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(2)	 Compared with the naive MNAR estimator, the proposed four estimators have 
smaller variances. Among the two QIF estimators, it can be seen that the esti-
mates QIFAR(1) have smaller or comparable variances than these based on QIFCS ; 
Among the two hybrid GEE estimators, the estimates based on Hybrid0.4 have 
smaller variances when � is small and Hybrid0.7 performs better when � is large. 
The within-subject correlations involved with the quantile regression are sign 

Table 2   Relative biases, standard deviations (in parentheses) and coverage probabilities in the first simu-
lation under normal errors with CS structure

(�, �) Methods n = 200 n = 500

�1 �2 CP �1 �2 CP

(0.9, 0.4) CC 0.266(0.115) −0.107(0.149) 0.453 0.257(0.073) −0.155(0.093) 0.056
MAR 0.300(0.139) −0.162(0.167) 0.489 0.294(0.086) −0.157(0.101) 0.118
FULL 0.005(0.082) −0.003(0.098) 0.953 0.001(0.052) 0.001(0.059) 0.960
MNARIND 0.038(0.219) −0.017(0.260) 0.933 −0.013(0.156) 0.013(0.179) 0.947
QIFAR(1) 0.058(0.169) −0.028(0.201) 0.939 0.025(0.113) −0.011(0.134) 0.952
QIFCS 0.044(0.175) −0.019(0.204) 0.944 0.015(0.117) −0.005(0.134) 0.952
Hybrid0.4 0.034(0.181) −0.012(0.210) 0.950 0.015(0.112) −0.003(0.132) 0.958
Hybrid0.7 0.019(0.202) −0.005(0.229) 0.958 0.007(0.129) 0.003(0.148) 0.957

(0.9, 0.7) CC 0.188(0.134) −0.123(0.149) 0.686 0.185(0.080) −0.119(0.090) 0.368
MAR 0.246(0.158) −0.127(0.165) 0.695 0.248(0.095) −0.124(0.102) 0.382
FULL 0.001(0.081) 0.001(0.087) 0.946 0.001(0.050) 0.001(0.053) 0.956
MNARIND 0.058(0.280) −0.032(0.321) 0.943 0.019(0.157) −0.017(0.193) 0.946
QIFAR(1) 0.065(0.166) −0.031(0.189) 0.941 0.033(0.106) −0.010(0.118) 0.955
QIFCS 0.041(0.175) −0.018(0.199) 0.937 0.021(0.113) −0.005(0.129) 0.950
Hybrid0.4 0.047(0.171) −0.021(0.198) 0.945 0.025(0.113) −0.009(0.124) 0.949
Hybrid0.7 0.033(0.184) −0.012(0.207) 0.951 0.017(0.113) −0.004(0.125) 0.953

(0.6, 0.4) CC 0.132(0.091) −0.075(0.115) 0.710 0.128(0.057) −0.075(0.070) 0.404
MAR 0.166(0.112) −0.079(0.132) 0.684 0.163(0.070) −0.078(0.082) 0.376
FULL −0.001(0.061) 0.001(0.071) 0.945 −0.005(0.038) 0.001(0.044) 0.960
MNARIND 0.013(0.155) 0.006(0.177) 0.924 0.006(0.094) −0.013(0.113) 0.945
QIFAR(1) 0.025(0.128) −0.008(0.146) 0.913 0.011(0.077) −0.005(0.090) 0.946
QIFCS 0.013(0.128) −0.002(0.145) 0.935 0.001(0.082) 0.001(0.094) 0.942
Hybrid0.4 0.011(0.127) −0.001(0.146) 0.944 0.001(0.082) 0.001(0.095) 0.946
Hybrid0.7 0.002(0.146) 0.004(0.154) 0.949 −0.001(0.088) 0.001(0.098) 0.952

(0.6, 0.7) CC 0.062(0.078) −0.048(0.089) 0.842 0.065(0.058) −0.052(0.064) 0.760
MAR 0.110(0.099) −0.050(0.107) 0.839 0.117(0.069) −0.054(0.074) 0.734
FULL −0.002(0.043) 0.001(0.049) 0.951 0.003(0.033) −0.001(0.035) 0.950
MNARIND 0.007(0.178) −0.002(0.188) 0.913 0.015(0.102) −0.008(0.119) 0.928
QIFAR(1) 0.033(0.102) −0.010(0.116) 0.898 0.025(0.076) −0.010(0.083) 0.932
QIFCS 0.016(0.111) −0.002(0.125) 0.917 0.016(0.082) −0.004(0.091) 0.914
Hybrid0.4 0.024(0.105) −0.006(0.120) 0.936 0.019(0.082) −0.006(0.087) 0.918
Hybrid0.7 0.020(0.109) −0.002(0.119) 0.950 0.014(0.081) −0.004(0.086) 0.928
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correlations such that the true correlation structure is a toeplitz with (m − 1) 
number of parameters. Among the two common working correlation choices, the 
AR(1) structure best approximates the true correlation structure. These findings 
are consistent with our theoretical result that the choice of correlation matrix 
does not affect the consistence, but will affect the efficiency. Moreover, the vari-

Table 3   Relative biases, standard deviations (in parentheses) and coverage probabilities in the first simu-
lation under errors �ij = Exp(1) − 1 with AR(1) structure

(�, �) Methods n = 200 n = 500

�1 �2 CP �1 �2 CP

(0.9, 0.4) CC 0.211(0.123) −0.130(0.158) 0.602 0.207(0.079) −0.129(0.107) 0.258
MAR 0.235(0.158) −0.130(0.183) 0.676 0.232(0.094) −0.130(0.116) 0.296
FULL 0.000(0.080) 0.001(0.095) 0.950 0.000(0.048) 0.000(0.060) 0.952
MNARIND 0.081(0.217) −0.035(0.247) 0.950 0.027(0.145) −0.010(0.146) 0.952
QIFAR(1) 0.039(0.157) −0.015(0.182) 0.960 0.011(0.101) −0.004(0.113) 0.958
QIFCS 0.066(0.183) −0.029(0.216) 0.948 0.026(0.131) −0.010(0.137) 0.932
Hybrid0.4 0.052(0.178) −0.021(0.211) 0.962 0.024(0.133) −0.007(0.123) 0.948
Hybrid0.7 0.022(0.192) −0.008(0.210) 0.956 0.014(0.127) −0.005(0.134) 0.960

(0.9, 0.7) CC 0.159(0.137) −0.100(0.158) 0.776 0.158(0.083) −0.102(0.102) 0.532
MAR 0.215(0.179) −0.113(0.196) 0.758 0.213(0.103) −0.114(0.116) 0.518
FULL 0.002(0.079) −0.001(0.083) 0.948 −0.004(0.048) 0.001(0.053) 0.944
MNARIND 0.039(0.194) −0.017(0.248) 0.952 0.008(0.113) −0.003(0.124) 0.951
QIFAR(1) 0.018(0.151) −0.006(0.163) 0.962 0.000(0.086) −0.002(0.097) 0.958
QIFCS 0.034(0.170) −0.011(0.183) 0.954 0.004(0.093) −0.003(0.105) 0.958
Hybrid0.4 0.029(0.165) −0.011(0.181) 0.957 0.005(0.094) −0.003(0.104) 0.952
Hybrid0.7 0.012(0.163) −0.004(0.179) 0.958 0.000(0.094) −0.001(0.100) 0.954

(0.6, 0.4) CC 0.131(0.101) −0.076(0.132) 0.742 0.123(0.064) −0.070(0.082) 0.497
MAR 0.156(0.131) −0.077(0.159) 0.774 0.149(0.084) −0.073(0.099) 0.526
FULL 0.003(0.058) 0.000(0.072) 0.960 −0.001(0.038) 0.000(0.047) 0.950
MNARIND 0.024(0.136) 0.004(0.143) 0.954 0.007(0.093) 0.001(0.106) 0.954
QIFAR(1) 0.014(0.108) −0.004(0.128) 0.936 0.004(0.069) 0.003(0.080) 0.950
QIFCS 0.025(0.115) −0.004(0.133) 0.908 0.009(0.078) 0.001(0.088) 0.952
Hybrid0.4 0.021(0.118) −0.001(0.134) 0.952 0.006(0.075) 0.002(0.084) 0.931
Hybrid0.7 0.015(0.127) 0.000(0.142) 0.940 0.003(0.081) 0.003(0.085) 0.929

(0.6, 0.7) CC 0.064(0.093) −0.048(0.116) 0.854 0.068(0.062) −0.047(0.073) 0.778
MAR 0.106(0.126) −0.057(0.145) 0.838 0.111(0.081) −0.054(0.090) 0.712
FULL −0.001(0.051) 0.000(0.057) 0.954 0.001(0.034) −0.001(0.035) 0.938
MNARIND 0.007(0.124) −0.001(0.132) 0.952 0.002(0.074) 0.002(0.084) 0.958
QIFAR(1) 0.003(0.090) 0.001(0.105) 0.958 0.005(0.062) −0.001(0.067) 0.958
QIFCS 0.007(0.101) −0.003(0.120) 0.936 0.005(0.068) 0.001(0.073) 0.962
Hybrid0.4 0.007(0.098) −0.002(0.111) 0.948 0.006(0.066) 0.001(0.070) 0.946
Hybrid0.7 0.002(0.096) 0.001(0.111) 0.944 0.004(0.065) 0.001(0.068) 0.946
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ances become smaller when the mean response rate or the sample size is larger, 
and become larger when � increases.

(3)	 The coverage probabilities based on the proposed estimators are close to the 
nominal level, and are quite comparable to the FULL method assuming no miss-
ing data. It can be seen that the coverage probabilities based on the MAR and 

Table 4   Relative biases, standard deviations (in parentheses) and coverage probabilities in the first simu-
lation under errors �ij = � (1, 1) − 1 with AR(1) structure

(�, �) Methods n = 200 n = 500

�1 �2 CP �1 �2 CP

(0.9, 0.4) CC 0.226(0.130) −0.139(0.173) 0.598 0.235(0.086) −0.143(0.115) 0.186
MAR 0.273(0.169) −0.150(0.200) 0.641 0.280(0.103) −0.153(0.128) 0.216
FULL −0.004(0.084) 0.002(0.099) 0.938 0.001(0.055) 0.001(0.069) 0.927
MNARIND 0.065(0.190) −0.025(0.224) 0.948 0.021(0.120) −0.007(0.133) 0.957
QIFAR(1) 0.038(0.171) −0.017(0.202) 0.928 0.020(0.127) −0.009(0.148) 0.962
QIFCS 0.051(0.190) −0.023(0.213) 0.950 0.022(0.120) −0.008(0.139) 0.967
Hybrid0.4 0.044(0.184) −0.019(0.213) 0.935 0.022(0.117) −0.008(0.132) 0.962
Hybrid0.7 0.027(0.205) −0.011(0.239) 0.946 0.016(0.131) −0.005(0.151) 0.950

(0.9, 0.7) CC 0.176(0.145) −0.107(0.178) 0.755 0.172(0.097) −0.107(0.112) 0.511
MAR 0.254(0.193) −0.127(0.216) 0.745 0.253(0.125) −0.127(0.136) 0.457
FULL 0.001(0.088) 0.001(0.097) 0.946 0.001(0.058) −0.001(0.061) 0.932
MNARIND 0.035(0.201) −0.015(0.246) 0.947 0.006(0.112) −0.002(0.129) 0.952
QIFAR(1) 0.016(0.156) −0.005(0.176) 0.936 0.007(0.094) −0.002(0.105) 0.948
QIFCS 0.024(0.165) −0.007(0.181) 0.946 0.009(0.098) −0.001(0.105) 0.953
Hybrid0.4 0.029(0.163) −0.009(0.179) 0.950 0.008(0.098) −0.002(0.106) 0.950
Hybrid0.7 0.011(0.153) −0.001(0.172) 0.946 0.001(0.094) 0.002(0.102) 0.948

(0.6, 0.4) CC 0.147(0.105) −0.081(0.129) 0.701 0.136(0.063) −0.077(0.085) 0.471
MAR 0.187(0.144) −0.089(0.158) 0.701 0.180(0.080) −0.084(0.098) 0.416
FULL 0.005(0.064) −0.002(0.071) 0.946 0.001(0.040) 0.000(0.050) 0.938
MNARIND 0.023(0.133) −0.003(0.147) 0.947 0.003(0.071) −0.001(0.081) 0.953
QIFAR(1) 0.017(0.112) −0.003(0.123) 0.921 0.006(0.063) −0.001(0.077) 0.949
QIFCS 0.022(0.117) −0.003(0.121) 0.939 0.007(0.066) −0.001(0.078) 0.951
Hybrid0.4 0.021(0.127) −0.003(0.125) 0.945 0.010(0.082) −0.001(0.082) 0.951
Hybrid0.7 0.012(0.137) −0.002(0.134) 0.941 0.007(0.071) −0.001(0.082) 0.964

(0.6, 0.7) CC 0.074(0.111) −0.048(0.128) 0.842 0.074(0.065) −0.050(0.072) 0.758
MAR 0.126(0.145) −0.056(0.158) 0.843 0.130(0.087) −0.059(0.092) 0.678
FULL 0.001(0.062) 0.000(0.067) 0.933 0.000(0.036) −0.001(0.040) 0.944
MNARIND 0.011(0.119) −0.002(0.137) 0.942 −0.002(0.076) 0.000(0.084) 0.951
QIFAR(1) 0.006(0.099) 0.001(0.110) 0.933 0.001(0.061) 0.001(0.067) 0.940
QIFCS 0.006(0.101) 0.001(0.114) 0.935 0.001(0.063) 0.002(0.068) 0.940
Hybrid0.4 0.009(0.101) 0.001(0.111) 0.947 0.001(0.063) 0.002(0.067) 0.957
Hybrid0.7 0.004(0.104) 0.003(0.111) 0.928 0.001(0.061) 0.002(0.066) 0.959
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CC methods have undercoverage. The poor performance is due to the large bias 
and the fact that the corresponding asymptotic distribution of R̂(�0) is not �2

2
.

(4)	 When n = 500 , the proposed four estimators have similar performance.

In the second simulation, we consider the similar settings as in the first simula-
tion, but investigate the performance of the proposed estimators when the propensity 
is misspecified. In specific, we consider

with the same �j , �j1 and �j2 as in the first simulation. In this case, however, the work-
ing model was misspecified so that we can see the robustness of the proposed esti-
mators. For j = 1, ..., 4 , the coefficients were chosen so that the unconditional drop-
out percentages for four time points are about 32%, 54%, 69% and 80%.

Tables 5-6 report the simulation results, and we have the similar results as in the 
first simulation. The proposed estimators have negligible biases, even the working 
dropout propensity model is wrong. In conclusion, the above two simulations sug-
gest that the proposed estimators not only have good point estimates, but also are 
robust against propensity model specifications and common error distributions.

6.2 � Variable selection

In the third simulation, we assess the finite sample performance of variable selection 
based on the proposed estimators with SCAD penalty in terms of model complexity 
(sparsity), model error and model selection accuracy. We consider

where xi = (xi1,… , xi4)
T is a (4 × p)-dimensional matrix of covariates, xi1,… , xi4 

are from a p-dimensional normal distribution having mean (1,… , 1)T and covari-
ance matrix �  with � jj = 1 and � jj� = 0.6 for 1 ≤ j < j′ ≤ p . The true value of 
� = (3, 1.5, 2, 0,… , 0) and �i are from the same normal errors as in Section 5.1 with 
� = 0.7 . The missing indicators ri = (ri1, ri2, ri3, ri4)

T are generated from

where uij = (xij3,… , xijp)
T , �j = −0.8 + 0.2(j − 1) , �T

j1
= (−0.1, 0.1,… ,−0.1, 0.1,…) 

and �j2 = −0.4 + 0.1(j − 1) for j = 1, 2, 3, 4.
Our penalized EL method is combined with three information criteria: BIC, 

BICC and EBIC, for selecting the tuning parameter � . Table 7 reports the results for 
n = 200 , 500 and p = 10 , 20, 50. We obtain the mean square errors (MSE) defined 
by MSE(�̂) = (�̂ − �)T (�̂ − �). Columns “C” and “IC” are measures of model 
complexity, with “C” representing the average number of nonzero coefficients cor-
rectly estimated to be nonzero, and “IC” representing the average number of zero 

Pr(rij = 1|ri(j−1) = 1,
⇀

uij,
⇀

y ij) = 1∕{1 + exp(�j + �j1 sin(xij1) + �j2yij)},

yi = xi� + �i, i = 1, 2,… , n,

Pr(rij = 1|ri(j−1) = 1,
⇀

uij,
⇀

y ij) = 1∕{1 + exp(�j + �T
j1
uij + �j2yij)},



641

1 3

GLMs with nonignorable dropouts

coefficients incorrectly estimated to be nonzero. The simulated results of the oracle 
model (i.e., the model using the true predictors) are also reported.

From Table  7, it can be seen that: (1) the proposed variable selection meth-
ods can select all three true predictors and the average numbers of zero coeffi-
cients incorrectly estimated to be nonzero are close to zero in most of cases. (2) 

Table 5   Relative biases, standard deviations (in parentheses) and coverage probabilities in the second 
simulation under normal errors with AR(1) structure

(�, �) Methods n = 200 n = 500

�1 �2 CP �1 �2 CP

(0.9, 0.4) CC 0.225(0.105) −0.147(0.131) 0.477 0.223(0.067) −0.144(0.091) 0.078
MAR 0.234(0.121) −0.147(0.150) 0.546 0.230(0.078) −0.144(0.102) 0.150
FULL 0.001(0.079) 0.001(0.093) 0.941 −0.002(0.051) 0.001(0.062) 0.954
MNARIND 0.019(0.183) 0.021(0.230) 0.943 0.009(0.121) −0.002(0.150) 0.951
QIFAR(1) 0.035(0.147) −0.022(0.183) 0.956 0.009(0.101) −0.005(0.125) 0.948
QIFCS 0.022(0.159) −0.014(0.194) 0.942 0.001(0.107) 0.001(0.130) 0.954
Hybrid0.4 0.019(0.151) −0.012(0.189) 0.953 0.002(0.102) 0.001(0.125) 0.956
Hybrid0.7 0.001(0.176) −0.003(0.202) 0.957 −0.008(0.116) 0.005(0.135) 0.958

(0.9, 0.7) CC 0.170(0.108) −0.109(0.128) 0.699 0.166(0.073) −0.105(0.087) 0.342
MAR 0.199(0.125) −0.119(0.141) 0.684 0.193(0.084) −0.115(0.095) 0.318
FULL 0.002(0.076) −0.002(0.083) 0.950 −0.002(0.051) 0.001(0.053) 0.948
MNARIND 0.043(0.172) −0.037(0.210) 0.945 −0.005(0.125) 0.004(0.145) 0.953
QIFAR(1) 0.036(0.144) −0.021(0.168) 0.944 0.004(0.102) −0.002(0.119) 0.956
QIFCS 0.019(0.157) −0.011(0.184) 0.947 −0.002(0.105) 0.002(0.123) 0.954
Hybrid0.4 0.022(0.155) −0.015(0.181) 0.941 −0.001(0.105) 0.001(0.121) 0.952
Hybrid0.7 0.011(0.154) −0.008(0.178) 0.955 −0.006(0.103) 0.003(0.120) 0.950

(0.6, 0.4) CC 0.119(0.082) −0.072(0.109) 0.711 0.120(0.050) −0.073(0.068) 0.372
MAR 0.126(0.095) −0.079(0.123) 0.735 0.126(0.058) −0.079(0.075) 0.422
FULL −0.003(0.059) 0.002(0.073) 0.958 0.001(0.039) 0.001(0.047) 0.952
MNARIND

−0.005(0.144) 0.008(0.154) 0.932 −0.007(0.080) −0.001(0.097) 0.941
QIFAR(1) 0.011(0.106) −0.007(0.136) 0.927 0.002(0.069) −0.002(0.085) 0.938
QIFCS 0.001(0.110) 0.001(0.144) 0.931 −0.002(0.071) −0.001(0.087) 0.936
Hybrid0.4 −0.003(0.108) 0.001(0.138) 0.943 −0.004(0.069) 0.002(0.086) 0.944
Hybrid0.7 −0.009(0.122) 0.003(0.147) 0.940 −0.008(0.079) 0.003(0.092) 0.942

(0.6, 0.7) CC 0.063(0.076) −0.043(0.089) 0.843 0.063(0.048) −0.046(0.055) 0.696
MAR 0.078(0.087) −0.050(0.098) 0.830 0.077(0.053) −0.054(0.061) 0.668
FULL 0.001(0.050) 0.001(0.054) 0.943 0.001(0.031) −0.002(0.034) 0.932
MNARIND 0.007(0.123) −0.002(0.151) 0.934 0.009(0.094) −0.004(0.104) 0.945
QIFAR(1) 0.016(0.099) −0.007(0.117) 0.908 −0.001(0.064) −0.003(0.072) 0.940
QIFCS 0.005(0.114) −0.002(0.131) 0.927 −0.009(0.076) 0.001(0.087) 0.954
Hybrid0.4 0.010(0.108) −0.004(0.122) 0.934 −0.005(0.070) −0.003(0.076) 0.942
Hybrid0.7 0.001(0.106) 0.001(0.121) 0.945 − 0.007(0.067) − 0.001(0.074) 0.948
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The simulated MSEs of the proposed methods based on BIC, BICC and EBIC 
are close to that of oracle EL, especially for larger sample sizes. (3) In terms of 
MSEs and ICs, it is interesting to note that the BIC and BICC have similar per-
formance and the EBIC has the best performance in most of cases. These findings 
imply that the model selection results based on the proposed approaches are sat-
isfactory and the selected models are very close to the true model. (4) Based on 

Table 6   Relative biases, standard deviations (in parentheses) and coverage probabilities in the second 
simulation under normal errors with CS structure

(�, �) Methods n = 200 n = 500

�1 �2 CP �1 �2 CP

(0.9, 0.4) CC 0.227(0.107) − 0.144(0.140) 0.529 0.225(0.068) − 0.144(0.088) 0.110
MAR 0.231(0.125) − 0.143(0.157) 0.556 0.233(0.077) − 0.144(0.097) 0.124
FULL − 0.001(0.081) 0.002(0.094) 0.948 0.001(0.051) 0.001(0.062) 0.944
MNARIND 0.004(0.210) − 0.008(0.271) 0.943 0.010(0.144) − 0.002(0.160) 0.955

QIFAR(1) 0.023(0.155) − 0.014(0.188) 0.939 0.009(0.098) − 0.005(0.122) 0.952
QIFCS 0.012(0.163) − 0.006(0.201) 0.945 0.001(0.104) 0.001(0.127) 0.950
Hybrid0.4 0.007(0.160) − 0.003(0.195) 0.957 0.002(0.099) 0.001(0.120) 0.958
Hybrid0.7 − 0.013(0.185) 0.006(0.210) 0.957 − 0.006(0.113) 0.004(0.128) 0.960

(0.9, 0.7) CC 0.176(0.106) − 0.109(0.131) 0.717 0.171(0.069) − 0.107(0.080) 0.332
MAR 0.206(0.124) − 0.120(0.148) 0.696 0.198(0.079) − 0.117(0.089) 0.356
FULL 0.003(0.072) 0.001(0.080) 0.957 0.003(0.045) − 0.001(0.051) 0.958
MNARIND 0.018(0.248) − 0.015(0.276) 0.953 0.019(0.186) − 0.010(0.201) 0.955

QIFAR(1) 0.037(0.139) − 0.021(0.168) 0.937 0.013(0.098) − 0.009(0.114) 0.958

QIFCS 0.021(0.158) − 0.012(0.188) 0.949 0.009(0.100) − 0.007(0.118) 0.952

Hybrid0.4 0.026(0.155) − 0.014(0.188) 0.937 0.012(0.094) − 0.008(0.113) 0.954

Hybrid0.7 0.021(0.157) − 0.011(0.185) 0.949 0.003(0.096) − 0.002(0.111) 0.956
(0.6, 0.4) CC 0.112(0.083) − 0.073(0.114) 0.733 0.114(0.052) − 0.070(0.072) 0.474

MAR 0.131(0.096) − 0.080(0.125) 0.719 0.132(0.059) − 0.077(0.078) 0.454
FULL 0.001(0.058) − 0.002(0.073) 0.952 0.002(0.037) 0.001(0.045) 0.944
MNARIND 0.008(0.134) − 0.010(0.148) 0.939 0.005(0.093) − 0.004(0.115) 0.951

QIFAR(1) 0.014(0.111) − 0.010(0.138) 0.916 0.014(0.065) − 0.006(0.085) 0.946

QIFCS 0.005(0.109) − 0.003(0.140) 0.928 0.006(0.068) − 0.002(0.089) 0.940

Hybrid0.4 0.006(0.108) − 0.003(0.140) 0.944 0.003(0.071) 0.001(0.090) 0.954

Hybrid0.7 0.001(0.126) 0.001(0.146) 0.951 0.001(0.081) 0.001(0.093) 0.946

(0.6, 0.7) CC 0.057(0.081) − 0.045(0.093) 0.864 0.059(0.049) − 0.047(0.058) 0.720
MAR 0.079(0.095) − 0.049(0.104) 0.869 0.082(0.058) − 0.052(0.063) 0.688
FULL − 0.002(0.050) 0.001(0.054) 0.939 − 0.002(0.034) 0.001(0.035) 0.950
MNARIND 0.010(0.142) 0.001(0.162) 0.943 − 0.002(0.100) − 0.008(0.110) 0.954

QIFAR(1) 0.020(0.105) − 0.008(0.125) 0.911 0.004(0.066) − 0.006(0.074) 0.946

QIFCS 0.009(0.112) 0.001(0.130) 0.930 − 0.002(0.069) − 0.001(0.078) 0.952

Hybrid0.4 0.013(0.107) − 0.004(0.125) 0.933 − 0.001(0.069) − 0.004(0.076) 0.954

Hybrid0.7 0.006(0.107) − 0.001(0.121) 0.940 − 0.001(0.071) − 0.003(0.077) 0.932
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Table 7   Mean square errors 
(MSE) and variable selection 
results

p Methods Criteria n = 200 n = 500

MSE C IC MSE C IC

10 QIFAR(1) BIC 0.086 3 0.229 0.042 3 0.065
BICC 0.082 3 0.178 0.041 3 0.053
EBIC 0.072 3 0.072 0.042 3 0.016

QIFCS BIC 0.084 3 0.269 0.030 3 0.081
BICC 0.081 3 0.231 0.027 3 0.059
EBIC 0.075 3 0.145 0.025 3 0.037

Hybrid0.4 BIC 0.072 3 0.387 0.021 3 0.052
BICC 0.067 3 0.306 0.019 3 0.040
EBIC 0.047 3 0.080 0.018 3 0.021

Hybrid0.7 BIC 0.070 3 0.380 0.019 3 0.035
BICC 0.065 3 0.307 0.018 3 0.030
EBIC 0.046 3 0.086 0.017 3 0.010

20 QIFAR(1) BIC 0.145 3 0.447 0.127 3 0.153
BICC 0.141 3 0.402 0.126 3 0.118
EBIC 0.131 3 0.259 0.129 3 0.082

QIFCS BIC 0.187 3 0.934 0.080 3 0.225
BICC 0.181 3 0.892 0.078 3 0.210
EBIC 0.175 3 0.824 0.075 3 0.148

Hybrid0.4 BIC 0.116 3 0.785 0.031 3 0.128
BICC 0.109 3 0.700 0.030 3 0.118
EBIC 0.084 3 0.379 0.027 3 0.051

Hybrid0.7 BIC 0.120 3 0.862 0.024 3 0.097
BICC 0.109 3 0.713 0.023 3 0.077
EBIC 0.082 3 0.308 0.021 3 0.041

50 QIFAR(1) BIC 0.385 3 1.213 0.186 3 0.463
BICC 0.327 3 1.144 0.185 3 0.391
EBIC 0.313 3 1.002 0.185 3 0.247

QIFCS BIC 0.422 3 1.735 0.169 3 0.549
BICC 0.419 3 1.528 0.167 3 0.445
EBIC 0.418 3 1.431 0.163 3 0.402

Hybrid0.4 BIC 0.274 3 1.398 0.077 3 0.369
BICC 0.275 3 1.315 0.077 3 0.352
EBIC 0.267 3 1.240 0.078 3 0.327

Hybrid0.7 BIC 0.347 3 1.234 0.071 3 0.284
BICC 0.340 3 1.128 0.067 3 0.223
EBIC 0.323 3 1.066 0.065 3 0.241

Oracle 0.012 3 0 0.005 3 0



644	 L. Wang, W. Ma 

1 3

these results, in practice, we recommend to use the information criteria EBIC for 
selecting �.

7 � Application to HIV‑CD4 data

For illustration, we apply the proposed estimators to a longitudinal data from the 
AIDS Clinical Trial Group 193A, which was a study of HIV-AIDS patients with 
advanced immune suppression. In this study, the patients were taken the daily regi-
men containing 600 mg of zidovudine plus 2.25 mg of zalcitabine. The data set can 
be accessed at http://www.hsph.harva​rd.edu/fitzm​aur/ala/cd4.txt.

For the HIV clinical trial, the CD4 cell count is of prime interest which decreases 
as HIV progresses. In this study, the CD4 counts were collected from 316 patients 
before the treatments were applied (baseline measurements), and we use their 
records in the analysis. After the treatments were applied, the CD4 count was sched-
uled to be collected from each patient in every 8 weeks. We consider the first four 
follow-up times, 8, 16, 24, 32, as four time points j = 1, 2, 3, 4 , and use the CD4 
counts in four time intervals, (4, 12], (12, 20], (20, 28], (28, 36], as the study vari-
able yij for j = 1, 2, 3, 4 , because the realized follow-up time points might be a little 
different from the scheduled time points. A few patients had more than one meas-
urement in one time interval, in which case we use the last record in that interval as 
yij at time point j. Some patients returned to the study after they dropped out of the 
study. For simplicity, the measurements after they dropped out of the study are not 
used in the analysis. There are two continuous covariates: age ( xij1 ) and follow-up 
time ( xij2 ) and the dropout rates are 31.5%, 42.4%, 55.4% and 65.3%, respectively.

Previous experiences from doctors indicate that, at time point j, the HIV infected 
patients with low CD4 counts nearby time point j are more likely to drop out. That 
is, dropout at time point j is related with yij and and it can be nonignorable. Thus, we 
use the working propensity model (5) and � (⋅) = [1 + exp(⋅)]−1 . Also, the follow-
up times are treated as covariates uij may affect the dropout. The ages are always 
observed and thus can be used as instruments zij . The purpose of this study is to 
examine whether the CD4 counts of young patients are more likely to decrease.

The estimates are reported in Table 8. It can be seen that: (1) All estimates of �1 
are statistically significant negative, which is reasonable since we have known that 
the number of CD4 counts of these patients keeps decreasing as time goes on and 
the trends become worse for those with lower CD4 counts. (2) The estimates of �2 

Table 8   Estimates for the 
HIV-CD4 data based on QIF 
and hybrid GEE methods

R
−1
i

MNAR CC

�0 �1 �2 �0 �1 �2

QIFAR(1) 0.310 − 0.280 0.912 0.498 − 0.222 0.838
QIFCS 0.209 − 0.269 0.934 0.442 − 0.220 0.852
Hybrid0.4 0.278 − 0.279 0.922 0.420 − 0.228 0.865
Hybrid0.7 0.212 − 0.274 0.939 0.355 − 0.216 0.878

http://www.hsph.harvard.edu/fitzmaur/ala/cd4.txt
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are statistically significant positive, which indicates that patients with earlier ages 
infected by the HIV are more likely to have lower CD4 counts. (3) The proposed 
four estimates based on MNAR and CC assumptions are different in most of cases. 
Therefore, the ignorable dropout assumption is questionable.

8 � Summary

Handling longitudinal data with nonignorable dropout is a challenging problem, 
mainly due to the issue of identifiability of the nonresponse propensity and how 
to incorporate the within-subject correlations. We use a parametric propensity 
model and the GMM approach making use of a nonresponse instrument to identify 
unknown parameters in the propensity. The inverse probability weighting is applied 
to construct the unbiased GEE, and then the matrix expansion idea of QIF and 
hybrid GEE methods are used to approximate the working correlation. Two classes 
of improved estimators and confidence regions for GLM are derived based on EL 
method. Further, the penalized EL method and algorithm for variable selection are 
investigated.

Some interesting issues still merit further research. Firstly, the proposed method 
relies on the assumption that the dropout propensity models is correct and an instru-
ment exists. However, it is hard to check this assumption in the presence of non-
ignorable missing data. Hence, propensity model selection or model averaging 
methods should be considered. In addition, note that in the real data set, we use age 
as instrument, because when the CD4 counts are included in the dropout propensity, 
it is reasonable to believe that age does not add more information to the missing 
mechanism. In some other applications, some baseline measurements prior to the 
treatments and categorical covariates such as age group, gender, race and educa-
tion level are related to the study variable yi , but one or several of them may be 
unrelated with the propensity when yi and other covariates are conditioned, which 
may be considered as an instrument. To make sure an instrument exists, these base-
line measurements and categorical covariates should be included in xi . Secondly, 
the efficiency of proposed GMM estimators �̂j may be improved. When yi is uni-
variate, several different approaches of determining the optimal estimating equations 
were proposed by Ai et al. (2018) to achieve the semiparametric efficiency bound. 
Zhao et al. (2017) also proposed the maximum likelihood estimation, semiparamet-
ric likelihood estimation and EL-based IPW approaches to estimate the unknown 
parameters in the propensity. Thirdly, we focus on parametric propensity models (2), 
while an extension of our approach to semiparametric dropout propensity models 
described in Kim and Yu (2011) and Shao and Wang (2016). The nonparametric 
component in the propensity can be profiled using a kernel-type estimator. It is also 
of interest to investigate the composite quantile regression (Zou and Yuan 2008) 
procedure to achieve robustness and estimation consistency. Some further research 
will be conducted.
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