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Abstract
We consider hypothesis testing for high-dimensional covariance structures in which 
the covariance matrix is a (i) scaled identity matrix, (ii) diagonal matrix, or (iii) 
intraclass covariance matrix. Our purpose is to systematically establish a nonpara-
metric approach for testing the high-dimensional covariance structures (i)–(iii). We 
produce a new common test statistic for each covariance structure and show that the 
test statistic is an unbiased estimator of its corresponding test parameter. We prove 
that the test statistic establishes the asymptotic normality. We propose a new test 
procedure for (i)–(iii) and evaluate its asymptotic size and power theoretically when 
both the dimension and sample size increase. We investigate the performance of the 
proposed test procedure in simulations. As an application of testing the covariance 
structures, we give a test procedure to identify an eigenvector. Finally, we demon-
strate the proposed test procedure by using a microarray data set.

Keywords  Cross-data-matrix methodology · Diagonal structure · HDLSS · 
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Electronic supplementary material  The online version of this article (https​://doi.org/10.1007/s1046​
3-020-00760​-5) contains supplementary material, which is available to authorized users.

 *	 Makoto Aoshima 
	 aoshima@math.tsukuba.ac.jp

	 Aki Ishii 
	 a.ishii@rs.tus.ac.jp

	 Kazuyoshi Yata 
	 yata@math.tsukuba.ac.jp

1	 Department of Information Sciences, Tokyo University of Science, 2641 Yamazaki, Noda‑shi, 
Chiba 278‑8510, Japan

2	 Institute of Mathematics, University of Tsukuba, 1‑1‑1 Tennodai, Tsukuba, Ibaraki 305‑8571, 
Japan

http://crossmark.crossref.org/dialog/?doi=10.1007/s10463-020-00760-5&domain=pdf
https://doi.org/10.1007/s10463-020-00760-5
https://doi.org/10.1007/s10463-020-00760-5


600	 A. Ishii et al.

1 3

1  Introduction

Suppose we take samples, xj = (x1j,… , xpj)
T , j = 1,… , n , of size n (≥ 4) , which are 

independent and identically distributed (i.i.d.) as a p (≥ 2)-variate distribution. We 
assume that xj has an unknown mean vector � and unknown (positive-semidefinite) 
covariance matrix � . We introduce the spectral decomposition � = H�HT , where 
� = diag (�1,… , �p) is a diagonal matrix of eigenvalues of � , �1 ≥ ⋯ ≥ �p ≥ 0 , 
and H = (h1,… , hp) is an orthogonal matrix of the corresponding eigenvectors. Let 
xj = H�

1∕2zj + � , where zj = (z1j,… , zpj)
T is a random vector having zero mean 

and identity covariance matrix. Let � = tr (�)∕p . Let �ij be the (i, j)th element of � 
for i, j = 1,… , p . We assume that �jj ∈ (0,∞) as p → ∞ for all j. For a function, 
f (⋅) , “ f (p) ∈ (0,∞) as p → ∞ ” implies that lim infp→∞ f (p) > 0 and 
lim supp→∞ f (p) < ∞ . Then, it holds that � ∈ (0,∞) as p → ∞ . Let 
� =

∑p

i≠j
�ij∕{�p(p − 1)} . Note that

and � ∈ [−(p − 1)−1, 1] , where 1p = (1,… , 1)T . We denote the identity matrix of 
dimension p by Ip.

In this paper, we consider testing

where �∗ is a candidate (positive-semidefinite) covariance matrix. For �∗ we mainly 
consider the following covariance structures: (i) scaled identity matrix, (ii) diagonal 
matrix, and (iii) intraclass covariance matrix. Let

 Ledoit and Wolf (2002) derived test procedures for

and

when p∕n → c > 0 and xj is Gaussian. Schott (2005) and Bao et al. (2015) derived 
test procedures for

when p∕n → c > 0 and xj is Gaussian. Srivastava et al. (2011) considered test pro-
cedures for (3)–(5) when n∕p → 0 under an assumption that is stronger than (A-ii) 
given in Sect. 2. On the other hand, Srivastava and Reid (2012) derived a test proce-
dure for

(1)
1
T
p
�1p

p
= �{1 + �(p − 1)}

(2)H0 ∶ � = �∗ versus H1 ∶ � ≠ �∗,

� S = �Ip, � D = diag (�11,… , �pp) and � IC = �{(1 − �)Ip + �1p1
T
p
}.

(3)H0 ∶ � = Ip versus H1 ∶ � ≠ Ip

(4)H0 ∶ � = � S versus H1 ∶ � ≠ � S

(5)H0 ∶ � = � D versus H1 ∶ � ≠ � D
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when n∕p → 0 and xj is Gaussian. Meanwhile, Zhong et  al. (2017) considered a 
high-dimensional regression model and testing (6) for the covariance matrix associ-
ated with error vectors when the error vectors are Gaussian. However, it is known 
that those test statistics do not always give a preferable performance unless xj is 
Gaussian. As for a nonparametric approach, Chen et al. (2010) considered test sta-
tistics based on a U-statistic for (3) and (4). In the current paper, we take a dif-
ferent nonparametric approach and produce new test statistics for (2). We utilize 
the extended cross-data-matrix (ECDM) method developed by Yata and Aoshima 
(2013) which is an extension of the cross-data-matrix methodology created by Yata 
and Aoshima (2010). The ECDM method is a nonparametric method to produce an 
unbiased estimator for a function of � at a low computational cost even for ultra 
high-dimensional data. In addition, the ECDM method possesses a high versatility 
in high-dimensional data analysis. See Yata and Aoshima (2016) for the details. In 
this paper, we consider test statistics, for (2), derived by the ECDM method.

When �∗ = � S , �∗ = � D or �∗ = � IC , the eigenstructures are identified; how-
ever, they involve unknown parameters. Hence, we consider testing the high-
dimensional covariance structures by using the following model: Let Aj be a p × p 
known idempotent matrix with rank rj (≥ 1) for j = 1,… , q , such that 

∑q

j=1
rj = p 

and 
∑q

j=1
Aj = Ip , where r1 ≤ ⋯ ≤ rq when q ≥ 2 . Note that tr (Aj) = rj , A

2
j
= Aj 

and AjAj� = O for all j (≠ j�) . Let �j (≥ 0) be an unknown scalar such that 
tr (�Aj) = rj�j for all j. We assume that �∗ has the following structure:

One can summarize as follows: 

(1)	 A1 = Ip , �1 = � , r1 = p and q = 1 when �∗ = � S;
(2)	 Aj = diag (0,… , 0, 1, 0,… , 0) whose j-th diagonal element is 1, �j = �jj , rj = 1 

for all j and q = p when �∗ = � D;
(3)	 A1 = 1p1

T
p
∕p , A2 = Ip − 1p1

T
p
∕p , �1 = �{1 + (p − 1)�} , �2 = �(1 − �) , r1 = 1 , 

r2 = p − 1 and q = 2 when �∗ = � IC.

In this paper, we consider constructing new test procedures for (2), including (3), 
(4), (5), and (6). In Sect. 2, we produce a test statistic when �∗ is known such as 
�∗ = Ip . We show that the test statistic is an unbiased estimator of its test param-
eter even in a high-dimensional setting. In Sect. 3, we produce a test statistic for 
the structure (7). We propose a new test procedure based on the test statistic and 
evaluate its asymptotic size and power theoretically when both p and n increase. 
In Sect. 4, we apply the new test procedure to testing (4)–(6). In Sects. 5 and 6, 
we investigate the performance of the proposed test procedure in simulations and 
actual data analyses. We also give a test procedure to identify an eigenvector in 
Appendix B of the online supplementary material.

(6)H0 ∶ � = � IC versus H1 ∶ � ≠ � IC

(7)�∗ = �1A1 +⋯ + �qAq.
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Remark 1  We consider the following model: Let �1 and �2 be unknown nonnegative 
scalars, and � = (�ij) be a known symmetric matrix. We assume

Then, (8) implies (7) because the eigenstructure of � can be identified. Note that 
(8) includes the case that �∗ = � IC . In other examples, (8) includes the case of a 
moving-average model of order 1 (MA(1)) since �ij = 1 when |i − j| = 1 ; otherwise, 
�ij = 0 for MA(1). Also, (8) includes the case of an autoregressive model of order 1 
(AR(1)) when the autoregressive parameter � is known since �ii = 0 and �ij = �|i−j| 
when i ≠ j for AR(1). Thus one can apply hypothesis testing under (7) to test some 
covariance structures for time series models.

2 � A test procedure for (2) when 6∗ is known

In this section, we propose a test procedure for (2) when �∗ is known and evaluate its 
asymptotic size and power theoretically. Let

where ‖ ⋅ ‖F is the Frobenius norm. Note that Δ = 0 under H0 and Δ > 0 under H1 . 
We regard Δ as a test parameter and construct a test procedure for (2) by using an 
estimator of Δ.

2.1 � Unbiased estimator of 1

We first give an unbiased estimator of Δ by using the ECDM method. Let n(1) = ⌈n∕2⌉ 
and n(2) = n − n(1) , where ⌈x⌉ denotes the smallest integer ≥ x . Let

for k = 3,… , 2n − 1 , where ⌊x⌋ denotes the largest integer ≤ x . Let #S denote the 
number of elements in a set S . Note that #Vn(l)(k) = n(l) , l = 1, 2 , Vn(1)(k) ∩ Vn(2)(k) = ∅ 
and Vn(1)(k) ∪ Vn(2)(k) = {1,… , n} for k = 3,… , 2n − 1 . Also, note that i ∈ Vn(1)(i+j) 
and j ∈ Vn(2)(i+j) for i < j (≤ n) . Let

for k = 3,… , 2n − 1 . Let

(8)�∗ = �1Ip + �2�.

Δ = ‖� − �∗‖2F = tr {(� − �∗)
2},

Vn(1)(k) =

�
{⌊k∕2⌋ − n(1) + 1,… , ⌊k∕2⌋} if ⌊k∕2⌋ ≥ n(1),

{1,… , ⌊k∕2⌋} ∪ {⌊k∕2⌋ + n(2) + 1,… , n} otherwise ;

Vn(2)(k) =

�
{⌊k∕2⌋ + 1,… , ⌊k∕2⌋ + n(2)} if ⌊k∕2⌋ ≤ n(1),

{1,… , ⌊k∕2⌋ − n(1)} ∪ {⌊k∕2⌋ + 1,… , n} otherwise

x(1)(k) = n−1
(1)

∑
j∈Vn(1)(k)

xj and x(2)(k) = n−1
(2)

∑
j∈Vn(2)(k)

xj
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for all i < j . We note that E(yij(l)) = 0 , E(yij(l)yTij(l)) = � for l = 1, 2, and

For example, Yata and Aoshima (2013) gave an estimator of tr (�2) as

by the ECDM method. Then, it holds that E(Wn) = tr (�2).

Remark 2  One can save the computational cost of Wn by using previously calcu-
lated x(i)(k), k = 3,… , 2n − 1; i = 1, 2 . The computational cost of Wn is of the order, 
O(n2p).

We provide in Appendix C of the online supplementary material a program in 
R-code to calculate the yij(l).

Now, we can give an unbiased estimator of Δ as

by the ECDM method. Note that E(Δ̂n) = Δ . Here, we write that

Since one can avoid calculating p × p matrices in (12), the computational cost of Δ̂n 
by (12) is much lower than that by (11) when n = o(p).

2.2 � Asymptotic properties of 1̂
n

We assume the following model:

where � = (�1,… , �d) is a p × d matrix for some d > 0 such that ��T = � , and 
wj = (w1j,… ,wdj)

T , j = 1,… , n , are i.i.d. random vectors having E(wj) = 0 and 
Var (wj) = Id . Let Var (w2

sj
) = Ms for s = 1,… , d . We assume that lim supp→∞ 

Ms < ∞ for all s. Similar to Bai and Saranadasa (1996), Chen and Qin (2010) and 
Aoshima and Yata (2015), we assume that 

	(A-i)	 E(w2
sj
w2
tj
) = E(w2

sj
)E(w2

tj
) = 1 and E(wsjwtjwujwvj) = 0 for all s ≠ t, u, v.

(9)yij(1) =
n
1∕2

(1)
(xi − x(1)(i+j))

(n(1) − 1)1∕2
and yij(2) =

n
1∕2

(2)
(xj − x(2)(i+j))

(n(2) − 1)1∕2

yij(1) and yij(2) are independent for all 1 ≤ i < j ≤ n.

(10)Wn =
2

n(n − 1)

n∑
i<j

(yT
ij(1)

yij(2))
2

(11)�Δn = 2

n∑
i<j

tr
{
(yij(1)y

T
ij(1)

− �∗)(yij(2)y
T
ij(2)

− �∗)
}

n(n − 1)

(12)�Δn = Wn + tr (�2
∗
) − 2

n∑
i<j

(
yT
ij(1)

�∗yij(1) + yT
ij(2)

�∗yij(2)
)

n(n − 1)
.

xj = �wj + �,
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We make the following assumption instead of (A-i) as necessary: 

	(A-ii)	 E(w�1
s1j
w
�2
s2j
⋯w

�v
svj
) = E(w

�1
s1j
)E(w

�2
s2j
)⋯E(w

�v
svj
) for all s1 ≠ s2 ≠ ⋯ ≠ sv ∈ [1, d] 

and �i ∈ [1, 4] , i = 1,… , v , where v ≤ 8 and 
∑v

i=1
�i ≤ 8.

Note that (A-ii) implies (A-i). When xj is Gaussian and � = H�
1∕2 , it holds that 

wj = zj and zj is distributed as Np(0, Ip) , so that (A-ii) is naturally satisfied.
For � we assume the following condition as necessary: 

	(C-i)	 tr (�4)

tr (�2)2
→ 0 as p → ∞.

Note that (C-i) is equivalent to “ �1∕tr (�
2)1∕2 → 0 as p → ∞ ”. Aoshima and 

Yata (2018) called (C-i) the “non-strongly spiked eigenvalue (NSSE) model”. 
When � = � S or � D , (C-i) holds. On the other hand, when � = � IC with 
lim infp→∞ 𝜌 > 0 , (C-i) does not hold since it follows that

from the facts that �1 = �{1 + (p − 1)�} and tr (�2) = O(p2) . Aoshima and Yata 
(2018) called (13) the “strongly spiked eigenvalue (SSE) model”. For instance, let us 
consider a spiked model as

where aj s, cj s and �j s are positive (fixed) constants, and g is a positive (fixed) inte-
ger. For (14), it is a NSSE model when 𝛼1 < 1∕2 and a SSE model when �1 ≥ 1∕2 . 
In Sect. 3.3, we consider a test procedure for SSE model (13).

Let

We consider the divergence condition as

which is equivalent to m → ∞ . Note that “ m → ∞ ” includes the cases when 
n∕p = o(1) and p∕n → c ∈ [0,∞) . In this paper, we mainly consider the case when 
n∕p = o(1) such as p = O(nc) with c > 1 and n = O(log p) . However, we emphasize 
that our proposed test procedures can handle cases not only when n∕p = o(1) but 
also when p∕n → c ∈ [0,∞) . Let

We assume one of the following assumptions as necessary: 

	(C-ii)	 K
1∕2

Δ
→ 0 as m → ∞ ;     (C-iii)   lim sup

m→∞

Δ

K1∕2
< ∞.

Note that (C-iii) holds under H0 in (2). For Δ̂n in (11), we have the following 
results.

(13)lim inf
p→∞

{
𝜆1

tr (�2)1∕2

}
> 0

(14)�j = ajp
�j (j = 1,… , g) and �j = cj (j = g + 1,… , p),

m = min{p, n}.

p → ∞ and n → ∞,

K = 4 tr (�2)2∕n2 and K∗ = 4 tr (�2
∗
)2∕n2.
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Lemma 1  Assume (A-i). Then, it holds that as m → ∞

Furthermore, under (C-i) and (C-iii), it holds that as m → ∞

From Lemma 1 we obtain the following result under (C-ii).

Theorem 1  Assume (A-i) and (C-ii). Then, it holds that as m → ∞

On the other hand, we obtain the following result under (C-iii).

Theorem 2  Assume (A-ii), (C-i), and (C-iii). Then, it holds that as m → ∞

where “ ⇒ ” denotes the convergence in distribution and N(0, 1) denotes a random 
variable distributed as the standard normal distribution.

Remark 3  We note that K1∕2 is the main term in the standard deviation of Δ̂n . The 
condition (C-ii) means that the intrinsic information about � − �∗ is larger than the 
noise. Thus, if the difference between � and �∗ is quite large enough to claim (C-ii), 
Δ̂n has the consistency in Theorem 1. On the other hand, the condition (C-iii) means 
that the noise is as large as the intrinsic information or more. Thus, if the difference 
is not large enough to claim (C-ii), Δ̂n has the asymptotic normality in Theorem 2.

2.3 � A test procedure based on 1̂
n

Note that tr (�2) = tr (�2
∗
) under H0 in (2). Let

From Theorem 2 we propose a test procedure for (2) by

where z� is a constant such that P{N(0, 1) > z𝛼} = 𝛼 with � ∈ (0, 1∕2) . Then, we 
have the following result.

Theorem  3  Assume (A-ii) and (C-i). For test procedure (16), we have that as 
m → ∞

Var (Δ̂n) = K{1 + o(1)} + O

(
tr (�4)1∕2Δ

n
+

tr (�4)

n2

)
.

Var (Δ̂n) = K{1 + o(1)}.

Δ̂n∕Δ = 1 + oP(1).

Δ̂n − Δ

K1∕2
⇒ N(0, 1),

(15)Tn =
nΔ̂n

2 tr (�2
∗
)
.

(16)rejecting H0 ⟺ Tn > z𝛼 ,
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where Φ(⋅) denotes the c.d.f. of N(0, 1).

We note that Theorem  3 holds not only when n∕p = o(1) but also when 
p∕n → c ∈ [0,∞) . When (C-ii) is met, we have the following result.

Corollary 1  Assume (A-i). Assume also (C-ii) under H1 in (2). For test procedure 
(16), we have that as m → ∞

From Corollary 1, if the difference between � and �∗ is large enough to claim 
(C-ii), the power tends to 1. In the next section, we apply the test procedure (16) 
to testing the identity structure in (3).

2.4 � A test of the identity structure in (3)

We consider the case when �∗ = Ip . Note that Δ = tr (�2) + p − 2 tr (�) when 
�∗ = Ip . From (15) we write that when �∗ = Ip,

where �Δn(Ip) = Wn + p − 2
∑n

i<j
(‖yij(1)‖2 + ‖yij(2)‖2)∕{n(n − 1)}. Here, ‖ ⋅ ‖ denotes 

the Euclidean norm.

Proposition 1  The condition (C-iii) with �∗ = Ip implies (C-i).

Thus, from Theorem 3 and Corollary 1, we have the following result.

Corollary 2  For the test procedure (16) with Tn = Tn(Ip) for (3) 

	 (i)	 (17) holds as m → ∞ under (A-ii),
	 (ii)	 (18) holds as m → ∞ under (A-i) and (C-ii) with �∗ = Ip.

Remark 4  For (3) Chen et al. (2010) gave a test procedure based on the following 
U-statistic:

where

(17)Size = � + o(1) and Power = Φ

(
Δ

K1∕2
− z�

K
1∕2
∗

K1∕2

)
+ o(1)

(18)Power → 1.

Tn =
nΔ̂n(Ip)

2p
(= Tn(Ip), say),

Δ̂CZZ = An − 2

(
n∑
j=1

xT
j
xj

n
−

n∑
j≠j�

xT
j
xj�

n(n − 1)

)
+ p,
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Note that E(An) = tr (�2) and E(Δ̂CZZ) = tr (�2) + p − 2 tr (�) . The test procedure 
by Δ̂CZZ is asymptotically equivalent to (16) with �∗ = Ip . It should be noted that the 
test of the identity structure is obtained as an example of the test procedure (16).

3 � Test procedure for (2) under the structure (7)

In this section, we construct an unbiased estimator of Δ under the structure (7) and pro-
pose a test procedure by using the unbiased estimator.

3.1 � Test procedure

Hereafter, we assume the structure (7) for �∗ . Then, we note that

so that tr (�2) ≥ tr (�2
∗
). Also, note that { tr (�Aj)}

2∕rj = rj�
2
j
 for all j. Then, we 

give an estimator of tr (�2
∗
) as

by the ECDM method. Note that E(Un) = tr (�2
∗
) . Let

where Wn is given by (10). Then, it holds that E(Δ̃n) = Δ . Here, we write that

where

An =

n∑
j≠j�

(xT
j
xj� )

2

n(n − 1)
− 2

n∑
j≠j�≠j��

xT
j�
xjx

T
j
xj��

n(n − 1)(n − 2)

+

n∑
j≠j�≠l≠l�

xT
j
xj�x

T
l
xl�

n(n − 1)(n − 2)(n − 3)
.

tr (�2
∗
) =

q∑
j=1

rj�
2
j
and Δ = tr (�2) − tr (�2

∗
),

(19)Un = 2

q∑
s=1

n∑
i<j

yT
ij(1)

Asyij(1)y
T
ij(2)

Asyij(2)

rsn(n − 1)

Δ̃n = Wn − Un,

(20)

Un = Bn(1) − tr (�2
∗
)

+ 2

n∑
i<j

yT
ij(1)

�∗yij(1) + yT
ij(2)

�∗yij(2)

n(n − 1)
,

Bn(t) = 2

n∑
i<j

q∑
s=t

(yT
ij(1)

Asyij(1) − 𝜅srs)(y
T
ij(2)

Asyij(2) − 𝜅srs)

rsn(n − 1)
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for t = 1,… , q . By combining (12) and (20), we have that

Note that E{Bn(t)} = 0 for all t. Let us consider an asymptotic variance of Δ̃n . Let q⋆ 
be the maximum integer such that

If r1 = ⋯ = rq = 1 , we set q⋆ = q . We set Bn(q⋆ + 1) = 0 when q⋆ = q . If rj ≥ 2 for 
all j, we set q⋆ = 0 . Let

for all i, j, l, s. Then, from (11), it follows that

We have the following result.

Proposition 2  Assume (A-i). Under H0 in (2), it holds that as m → ∞

where Ψ = tr (�2
∗
)2 −

∑q⋆
s=1

𝜅4
s
 when q⋆ ≥ 1 and Ψ = tr (�2

∗
)2 when q⋆ = 0.

Since Bn(q⋆ + 1) is a redundant term, we can regard the term “ 4Ψ∕n2 ” as an 
asymptotic variance of Δ̃n under H0 in (2). We note that

in view of (19). We give an estimator of Ψ by

in view of r1 = ⋯ = rq⋆ = 1 when q⋆ ≥ 1 . Note that P(Ψ̃n ≥ 0) = 1 . Let

(21)Δ̃n = Δ̂n − Bn(1).

r1 = ⋯ = rq⋆ = 1 < rq⋆+1 ≤ ⋯ ≤ rq.

Yij(l),s = yij(l)y
T
ij(l)

As − �sAs

�Δn =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

2

n�
i<j

�
q�

s≠s�

tr (Yij(1),sYij(2),s� )

n(n − 1)
+

q�
s=q⋆+1

tr (Yij(1),sYij(2),s)

n(n − 1)

�

−Bn(q⋆ + 1) (q⋆ < q),

2

n�
i<j

q�
s≠s�

tr (Yij(1),sYij(2),s� )

n(n − 1)
(q⋆ = q).

Var {�Δn + Bn(q⋆ + 1)} =
4Ψ

n2
{1 + o(1)} + O

(
tr (�4

∗
)

n2

)
,

E

(
2

n∑
i<j

yT
ij(1)

Asyij(1)y
T
ij(2)

Asyij(2)

rsn(n − 1)

)
= rs𝜅

2
s

�Ψn =

⎧⎪⎨⎪⎩
U2

n
−

q⋆�
s=1

�
2

n�
i<j

yT
ij(1)

Asyij(1)y
T
ij(2)

Asyij(2)

n(n − 1)

�2

(q⋆ ≥ 1),

U2
n

(q⋆ = 0)
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Then, for (2) with (7), we propose a test procedure by

In Sects. 3.2 and 3.3, we investigate the test procedure (23) under the NSSE model 
(C-i) and SSE model (13), respectively.

3.2 � The test procedure (23) under the NSSE model

We consider the test procedure (23) under the NSSE model (C-i). For Bn(t) , we have 
the following result.

Lemma 2  Assume (A-i). It holds that as m → ∞

for t ≤ q.

Then, under (A-i) and 

	(C-iv)	
q�

j,j�=1

tr (�Aj�Aj� )
2 + (

∑d

s=1
�
T
s
Aj�s�

T
s
Aj��s)

2

rjrj� tr (�
2
∗
)2

→ 0 as p → ∞,

it follows from Chebyshev’s inequality that as m → ∞

Note that tr (�2) ≥ tr (�2
∗
) . From (21) and Theorem 2, under (A-ii), (C-i), (C-iii), 

and (C-iv), it holds that as m → ∞

We have the following result.

Lemma 3  Assume (A-i) and (C-iv). It holds that Ψ̃n∕tr (�
2
∗
)2 = 1 + oP(1) as m → ∞.

From (24) and Lemma 3, we have the following results.

Theorem 4  Assume (A-ii), (C-i), and (C-iv). For the test procedure (23), we have 
(17) as m → ∞.

(22)T̃n =
nΔ̃n

2Ψ̃
1∕2
n

.

(23)rejecting H0 ⟺
�Tn > z𝛼 .

Var {Bn(t)} = O

�
q�

j,j�=t

tr (�Aj�Aj� )
2 + (

∑d

s=1
�
T
s
Aj�s�

T
s
Aj��s)

2

rjrj�n
2

�

Bn(1) = oP(K
1∕2
∗

).

(24)Δ̃n − Δ

K1∕2
=

Δ̂n − Δ

K1∕2
+ oP(1) ⇒ N(0, 1).
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Corollary 3  Assume (A-i). Assume also (C-ii) under H1 in (2). For the test by (23), 
we have (18) as m → ∞.

3.3 � The test procedure (23) under the SSE model

For the SSE model (13), we focus on the following model:

Note that (25) is one of the SSE models. When � = � IC and lim infp→∞ 𝜌 > 0 , (25) 
is met. When 𝛼1 > max{𝛼2, 1∕2} in spiked model (14), (25) is met. We call (25) the 
“uni-SSE (USSE) model”. See Ishii et al. (2016, 2019) for several statistical infer-
ences under the USSE model.

We consider the test procedure (23) under the USSE model (25). One may suppose 
r1 = 1 . We assume the following condition: 

	(C-v)	
�1

tr (�2)1∕2
→ 1 as p → ∞.

Note that (25) holds under (C-v) from the fact that �1 ≥ �1 = tr (�A1) . Let 
A(1) = Ip − A1 , �1 = A1�A(1) and �2 = A(1)�A(1) . Note that (C-v) is equivalent to

from the facts that tr (�2) = �2
1
+ tr (�2

2
) + 2‖�1‖2F and ‖�1‖2F ≤ �1 tr (�

2
2
)1∕2 . As 

for �2 , we assume the following model: 

	(C-i’)	
tr (�4

2
)

tr (�2
2
)2

→ 0 as p → ∞.

Note that (C-i’) holds when � = � IC and lim supp→∞ 𝜌 < 1 because 
�2 = �(1 − �)(Ip − 1p1

T
p
∕p) and tr (�4

2
)∕tr (�2

2
)2 = 1∕tr (Ip − 1p1

T
p
∕p) = 1∕(p − 1) 

when � = � IC . Here, we write that

Let

 Note that

when � = �∗ . Then, we have the following results.

(25)
�1

tr (�2)1∕2
→ 1 as p → ∞.

tr (�2
2
)1∕2∕�1 → 0 as p → ∞

�Δn = 2

n∑
i<j

(
q∑

s≠s�

tr (Yij(1),sYij(2),s� )

n(n − 1)
+

q∑
s=2

tr (Yij(1),sYij(2),s)

n(n − 1)

)
− Bn(2).

Υ = 2�2
1
tr (�2

2
) + tr (�2

2
)2 + 2‖�1‖4F + 4‖�1‖2F tr (�2

2
) and

L = 4Υ∕n2.

Υ = 2�2
1

q∑
s=2

rs�
2
s
+

( q∑
s=2

rs�
2
s

)2

= tr (�2
∗
)2 − �4

1
(= Ψ1, say)
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Lemma 4  Assume (A-i). It holds that as m → ∞

Furthermore, under (C-i’) and

	(C-iii’) 	 lim sup
m→∞

Δ

L1∕2
< ∞,

it holds that as m → ∞

Lemma 5  Assume (A-ii), (C-i’), and (C-v). Assume also (C-iii’). It holds that as 
m → ∞

See Appendix A of the online supplementary material for the details of the 
asymptotic normality in Lemma 5.

We note that 
∑q

j,j�=2
(
∑d

s=1
�
T
s
Aj�s�

T
s
Aj��s)

2 ≤ {
∑d

s=1
(�T

s
A(1)�s)

2}2 ≤ tr {(�A(1))
2}2

= tr (�2

2
)2 and

∑q

j,j�=2
tr (�Aj�Aj� )

2 ≤ tr (�2

2
)2 . Then, from Lemma 2, under (A-i) 

and (C-v), it holds that as m → ∞

Thus, from Lemma 5, we have the following result.

Theorem 5  Assume (A-ii), (C-i’), (C-iii’), and (C-v). It holds that as m → ∞

For Ψ̃n , we have the following result.

Lemma 6  Assume (A-i) and (C-v). It holds that Ψ̃n∕Ψ1 = 1 + oP(1) as m → ∞.

From Theorem 5 and Lemma 6, we have the following results.

Theorem 6  Assume (A-ii), (C-i’), and (C-v). For the test procedure (23), we have 
that as m → ∞

Var {Δ̃n + Bn(2)} = L{1 + o(1)} + O

(
Δ tr (�4)1∕4{ tr (�4)1∕4 + �1}

n

)

+ O

(
tr (�4

2
)1∕2{�2

1
+ tr (�4

2
)1∕2}

n2

)
.

Var {Δ̃n + Bn(2)} = L{1 + o(1)}.

Δ̃n + Bn(2) − Δ

L1∕2
⇒ N(0, 1).

(26)Var {Bn(2)} = o(L).

Δ̃n − Δ

L1∕2
⇒ N(0, 1).



612	 A. Ishii et al.

1 3

where L∗ = 4Ψ1∕n
2.

Corollary 4  Assume (A-i) and (C-v). Assume also

	(C-ii’)	L
1∕2

Δ
→ 0 as m → ∞

under H1 in (2). For the test procedure (23), we have (18) as m → ∞.

4 � Applications of the test procedure (23) to testing (4)–(6)

In this section, we apply the test procedure (23) to testing (4)–(6).

4.1 � The scaled identity structure (4)

We consider the case when �∗ = � S . Note that Δ = tr (�2) − p�2 , q⋆ = 0 , and 
q = 1 , so that Ψ1∕2 = tr (�2

∗
) = p�2 and Ψ̃1∕2

n = Un . From (22) we write that

where

Note that E(Un( S )) = p�2.

Proposition 3  The condition (C-iii) implies (C-i) when �∗ = � S.

We note that (C-iv) holds under (C-iii) when �∗ = � S because 
tr (�2) = O{ tr (�2

S
)} under (C-iii) and

when �∗ = � S . From Theorem 4 and Corollary 3, we have the following result.

Corollary 5  For the test procedure (23) with T̃n = T̃n( S ) for (4) 

	 (i)	 (17) holds as m → ∞ under (A-ii),
	 (ii)	 (18) holds as m → ∞ under (A-i) and (C-ii) with �∗ = � S.

(27)Size = � + o(1) and Power = Φ

(
Δ

L1∕2
− z�

L
1∕2
∗

L1∕2

)
+ o(1)

T̃n =
nWn

2Un( S )

− n∕2 (= T̃n( S ), say),

Un( S ) = 2

n�
i<j

‖yij(1)‖2‖yij(2)‖2
pn(n − 1)

.

(28)
q�

j,j�=1

tr (�Aj�Aj� )
2 + (

∑d

s=1
�
T
s
Aj�s�

T
s
Aj��s)

2

rjrj�
= O{ tr (�2)2∕p2}
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Remark 5  For (4) Chen et al. (2010) gave the following test statistic:

where An is defined in Remark 4. Under H0 in (4), they showed that as m → ∞

under a similar condition of (A-ii). Although the test procedure by Chen et al. (2010) 
is asymptotically equivalent to (23) with T̃n = T̃n( S ) , the latter is more applicable to 
the sequential analysis ensuring prespecified accuracy. See Yata et al. (2018) for the 
details.

4.2 � The diagonal structure (5)

We consider the case when �∗ = � D . Note that Δ = tr (�2) −
∑p

j=1
�2
jj
(= Δ D , say) 

and q⋆ = p . Also, note that Ψ = tr (�2
D
)2 −

∑p

j=1
�4
jj
 . Let yij(l) = (y1ij(l),… , ypij(l))

T 
for all i, j, l. From (22) we write that

where Δ̃n( D ) = Wn − Un( D ) and

with

Proposition 4  The condition (C-iii) implies (C-i) and (C-iv) when �∗ = � D.

From Theorem 4 and Corollary 3, we have the following result.

Corollary 6  For the test procedure (23) with T̃n = T̃n( D ) for (5) 

	 (i)	 (17) holds as m → ∞ under (A-ii),
	 (ii)	 (18) holds as m → ∞ under (A-i) and (C-ii) with �∗ = � D.

Remark 6  For (5) Srivastava et al. (2011) gave the following test statistic:

(29)
TCZZ =

npAn

2
�
n−1

∑n

i=1
xT
i
xi − {n(n − 1)}−1

∑n

i≠j
xT
i
xj

�2
−

n

2
,

TCZZ ⇒ N(0, 1)

T̃n =
nΔ̃n( D )

2Ψ̃
1∕2

n( D )

(= T̃n( D ), say),

�Ψn( D ) = U2
n( D )

−

p∑
s=1

(
2

n∑
i<j

y2
sij(1)

y2
sij(2)

n(n − 1)

)2

Un( D ) = 2

n∑
i<j

p∑
s=1

y2
sij(1)

y2
sij(2)

n(n − 1)
.
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where Sn is the sample covariance matrix, sj is the j-th diagonal element of Sn and 
cn = (n − 1)2∕{(n − 2)(n + 1)} . Under H0 in (5), they showed that as m → ∞

under the assumptions that zij s are i.i.d., E(z8
ij
) s are uniformly bounded and some 

regularity conditions. Note that cn{ tr (S2n) − tr (Sn)
2∕(n − 1)} − cn

∑p

j=1
s2
j
(= Δ̂S, say) is an 

estimator of Δ D . It should be noted that Δ̂S is heavily biased unless xj is Gaussian. In 
addition, one cannot claim Var (�ΔS∕Δ D ) < ∞ unless E(z8

ij
) s are uniformly bounded. 

Contrary to that, the proposed estimator, Δ̃n( D ) , is robust against the Gaussian 
assumption and one can claim that E(Δ̃n( D )) = Δ D without any assumptions. See 
Sect. 5 for numerical comparisons.

4.3 � The intraclass covariance structure (6)

We consider the case when �∗ = � IC . Note that q⋆ = 1 and q = 2 . Let 
A1( IC ) = 1p1

T
p
∕p , A2( IC ) = Ip − A1( IC ) , �1( IC ) = �{1 + (p − 1)�} , �2( IC ) = �(1 − �)

,

Note that tr (�2) = tr [{�(A1( IC ) + A2( IC ))}
2] and tr {(�A1( IC ))

2} = �2
1( IC )

 from 
(1). Then, we write that

Note that (C-i’) holds when � = � IC because

when � = � IC . Here, we consider the following condition: 

	(C-v’)	�
p

tr (�2
2( IC )

)1∕2
→ ∞ as p → ∞ and lim supp→∞ 𝜌 < 1.

Note that (C-v’) implies (C-v) with �∗ = � IC from the fact that �1( IC ) ≥ �p� when 
�∗ = � IC . Also, note that the first condition of (C-v’) is met when � = � IC and 
�p1∕2 → ∞ as p → ∞ . From (22) we write that

(30)
TS =

(n − 1)[cn{ tr (S
2
n
) − tr (Sn)

2∕(n − 1)} − cn
∑p

j=1
s2
j
]

2

��
cn

∑p

j=1
s2
j

�2

−
∑p

j=1
s4
j

,

TS ⇒ N(0, 1)

�1( IC ) = A1( IC )�A2( IC ) and �2( IC ) = A2( IC )�A2( IC ).

Δ = 2‖�1( IC )‖2F + tr (�2
2( IC )

) − (p − 1)�2
2( IC )

(= Δ IC , say) and

Υ = 2�2
1( IC )

tr (�2
2( IC )

) + tr (�2
2( IC )

)2 + 2‖�1( IC )‖4F + 4‖�1( IC )‖2F tr (�2
2( IC )

).

tr (�4
2( IC )

)

tr (�2
2( IC )

)2
=

tr (A4
2( IC )

)

tr (A2
2( IC )

)2
=

1

tr (A2( IC ))
=

1

p − 1
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where Δ̃n( IC ) = Wn − Un( IC ) and

with

Note that E(Δ̃n( IC )) = Δ IC . From Theorem 6 and Corollary 4, we have the following 
result.

Corollary 7  For the test procedure (23) with T̃n = T̃n( IC ) for (6) 

	 (i)	 (27) holds as m → ∞ under (A-ii), (C-i’) with �∗ = � IC and (C-v’),
	 (ii)	 (18) holds as m → ∞ under (A-i), (C-ii’) with �∗ = � IC and (C-v’).

Remark 7  For (6) Srivastava and Reid (2012) gave the following test statistic:

where 𝛿1( SR ) = tr (A1( IC )SnA2( IC )Sn) − 𝜅̂1( SR )𝜅̂2( SR )∕(n − 1) and 
𝛿2( SR ) = tr {(A2( IC )Sn)

2} − 𝜅̂2
2( SR )

∕(n − 1) with 𝜅̂1( SR ) = tr (A1( IC )Sn) and 
𝜅̂2( SR ) = tr (A2( IC )Sn) . Under H0 in (6), they showed that as m → ∞

T̃n =
nΔ̃n( IC )

2Ψ̃
1∕2

n( IC )

(= T̃n( IC ), say),

�Ψn( IC ) = U2
n( IC )

−

(
2

n∑
i<j

yT
ij(1)

A1( IC )yij(1)y
T
ij(2)

A1( IC )yij(2)

n(n − 1)

)2

= U2
n( IC )

−

(
2

n∑
i<j

(yT
ij(1)

1p)
2(yT

ij(2)
1p)

2

p2n(n − 1)

)2

Un( IC ) = 2

n�
i<j

yT
ij(1)

A1( IC )yij(1)y
T
ij(2)

A1( IC )yij(2)

n(n − 1)

+ 2

n�
i<j

yT
ij(1)

A2( IC )yij(1)y
T
ij(2)

A2( IC )yij(2)

(p − 1)n(n − 1)

= 2

n�
i<j

(yT
ij(1)

1p)
2(yT

ij(2)
1p)

2

p2n(n − 1)

+ 2

n�
i<j

{‖yij(1)‖2 − (yT
ij(1)

1p)
2∕p}{‖yij(2)‖2 − (yT

ij(2)
1p)

2∕p}

(p − 1)n(n − 1)
.

(31)TSR =
n − 1√

2

⎛⎜⎜⎜⎝

𝛿1(SR)�
2𝜅̂1( SR )𝛿2( SR )

+
𝛿2( SR ) − 𝜅̂2

2( SR )

2𝛿2( SR )

⎞⎟⎟⎟⎠
,
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under the assumption that xj is Gaussian and some regularity conditions. It should 
be noted that the test procedure by T SR cannot ensure accuracy unless xj is Gauss-
ian. However, the test procedure (23) with T̃n( IC ) can ensure the accuracy even in 
non-Gaussian situations. See Sect. 5 for numerical comparisons.

5 � Simulation studies

In this section, we check the performance of the proposed test procedure in 
simulations.

Throughout this section, we set � = 0.05 , n = 2⌈p1∕2⌉ , and p = 2s for 
s = 7,… , 12 . We handled the following three cases:

(i) xj is Np(0,�);
(ii) zsj = (vsj − 10)∕201∕2 (s = 1,… , p) in which vsj s are i.i.d. as the chi-squared 

distribution with 10 degrees of freedom; and
(iii) (z1j,… , zpj)

T s are i.i.d. as p-variate t-distribution, tp(Ip, �) , with mean zero, 
covariance matrix Ip , and degrees of freedom � = 20.

Note that (A-ii) holds for (i) and (ii). However, neither (A-i) nor (A-ii) holds for 
(iii).

5.1 � The scaled identity structure (4)

For (4), we compared the performance of test procedure (23) between T CZZ 
in (29) and T̃n( S ) . We considered � = Ip for H0 . As for H1 , we considered 
� = diag (1,… , 1, 2,… , 2) of which the last ⌈p2∕3⌉ elements were 2 and the remain-
ing elements were 1, so that lim infp→∞ Δ∕p2∕3 > 0 . Thus, from Corollary 5, (18) 
holds because tr (�2) = O(p) under H1 . For each case in (i) to (iii), we checked the 
performance by 2000 replications. We defined Pr = 1 ( or 0) when H0 was falsely 
rejected (or not) for r = 1,… , 2000 , and calculated 𝛼̄ =

∑2000

r=1
Pr∕2000 to estimate 

the size. We also defined Pr = 1 ( or 0) when H1 was falsely rejected (or not) for 
r = 1,… , 2000 , and calculated 1 − 𝛽 = 1 −

∑2000

r=1
Pr∕2000 to estimate the power. 

Note that their standard deviations are less than 0.011.
In Fig. 1, we plotted 𝛼̄ in the left panel and 1 − 𝛽  in the right panel for (i)–(iii). 

We observed that T̃n(S) and T CZZ give similar and preferable performances both for 
the size and power in (i)–(iii). This is because the asymptotic alternative distribution 
of T̃n(S) is equivalent to that of T CZZ . See Sect. 3 in Chen et al. (2010) for the asymp-
totic distribution of T CZZ.

5.2 � The diagonal structure (5)

For (5), we compared the performance of the test procedure (23) between 
T S in (30) and T̃n( D ) . We considered � = Ip for H0 . As for H1 , we considered 

T SR ⇒ N(0, 1)
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� = (0.2|i−j|1∕3) , so that lim infp→∞ Δ∕p > 0 . Thus, from Corollary 6, (18) holds 
because tr (�2) = O(p) under H1 . Similar to Sect.  5.1, we checked the perfor-
mance by 2000 replications and estimated the size and power.

In Fig. 2, we plotted 𝛼̄ in the left panel and 1 − 𝛽  in the right panel for (i)–(iii). 
We observed that T̃n(D) gives preferable performances both for the size and power 

Fig. 1   The performance of the test procedures given by TCZZ and T̃n(S) in (i)–(iii). The value of 𝛼̄ is 
denoted by the dashed line in the left panels. The value of 1 − 𝛽  is denoted by the dashed line in the right 
panels together with the asymptotic power (17) which is in the solid line
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in (i)–(iii). On the other hand, T S gave poor performances because of huge bias in 
high dimension.

Fig. 2   The performance of the test procedures given by TS and T̃n(D) in (i)–(iii). The value of 𝛼̄ is denoted 
by the dashed line in the left panels. The value of 1 − 𝛽  is denoted by the dashed line in the right panels 
together with the asymptotic power (17) which is in the solid line
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5.3 � The intraclass covariance structure (6)

For (6), we compared the performance of the test procedure (23) between T SR 
in (31) and T̃n(IC) . We considered � = 0.5Ip + 0.51p1

T
p
 for H0 . As for H1 , we 

considered

where �1 = 0.5Ip−2 + 0.51p−21
T
p−2

 and O(p−2,2) denotes the (p − 2) × 2 zero matrix. 
Similar to Sect. 5.1, we checked the performance by 2000 replications and estimated 
the size and power.

In Fig.  3, we plotted � in the left panel and 1 − � in the right panel for (i)–(iii). 
We observed that T̃n(IC) gives preferable performances both for the size and power in 
(i)–(iii). On the other side, T SR gave poor performances for (ii) and (iii) because T SR 
assumes that xj is Gaussian.

6 � Data analysis

In this section, we demonstrate the test procedure (23) by using gene expression data. 
Since the SSE model often appears when we analyze a microarray data set, we consid-
ered testing (6). First, we compared the performance between T SR in (31) and T̃n(IC) . 
It should be noted that high correlation among components of � is one of the reasons 
why a microarray data set has the SSE model. Actually, we can find several gene clus-
ters in a high-dimensional space and genes in a cluster are usually highly correlated 
with each other. See Aoshima and Yata (2018, 2019) for the details.

We used microarray data sets of colon cancer with 2000(= p) genes. The data sets 
consist of two classes: �1 ∶ tumor (40 samples) and �2 ∶ normal colon (22 samples). 
See Alon et al. (1999) for the details. The data sets are available at Jeffery’s web page 
(URL: http://www.bioin​f.ucd.ie/peopl​e/ian/). In order to determine whether the data 
sets belong to the NSSE model or the SSE model, we calculated �1∕tr (�

2)1∕2 . We esti-
mated tr (�2) by Wn in (10) and �1 by using the noise-reduction methodology given by 
Yata and Aoshima (2012). Then, we obtained that the estimates of �1∕tr (�

2)1∕2 were 
0.732 for �1 and 0.839 for �2 . We confirmed that each class fits the SSE model in (13). 
Since the data sets fit the SSE model, we considered �∗ = � IC as a candidate covari-
ance structure.

We tested (6) at a significance level 0.05. Then, H0 was rejected by T̃n(IC) for �1 and 
�2 . The results are summarized in Table 1.

Next, we considered testing the following structure:

We used the same data sets and applied the test procedure (B.2) in Appendix B of 
the online supplementary material to the data sets. We tested (32) at a significance 
level 0.05. The value of the test statistic, T̃n(V) , for (32) is −0.154 for �1 and 0.98 
for �2 . Thus, H0 was accepted both for �1 and �2 . From this data analysis we can 

� =

(
�1 O(p−2,2)

O(2,p−2) I2

)
,

(32)H0 ∶ �A1( IC ) = �1( IC )A1( IC ) versus H1 ∶ �A1( IC ) ≠ �1( IC )A1( IC ).

http://www.bioinf.ucd.ie/people/ian/
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Fig. 3   The performance of the test procedures by TSR and T̃n(IC) in (i)–(iii). The value of � is denoted 
by the dashed line in the left panels. The value of 1 − � is denoted by the dashed line in the right panels 
together with the asymptotic power (27) which is in the solid line

Table 1   Test of the intraclass covariance structure (6) by T SR and T̃n(IC) . We used two data sets of colon 
cancer with 2000(= p) genes in Alon et al. (1999). We set � = 0.05 , so that z0.05 = 1.64

T SR T̃n(IC)

�1 ∶ tumor ( n = 40) 13.75 1858
�2 ∶ normal colon ( n = 22) 8.11 827.9
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conclude both for �1 and �2 that 1p∕p1∕2 is an eigenvector of � . Remember that H0 
in (6) was rejected both for �1 and �2 . We can conclude that �A2( IC ) ≠ �2( IC )A2( IC ).

7 � Conclusion

In this paper, we considered testing covariance structures systematically. By using 
the ECDM method, we constructed a common test procedure for a (1) scaled iden-
tity matrix, (2) diagonal matrix, or (3) intraclass covariance matrix in a nonparamet-
ric approach. We emphasize that its test statistic can be calculated at a low compu-
tational cost. Any eigenstructure of a covariance matrix is classified into the SSE 
model or the NSSE model given by Aoshima and Yata (2018). We showed that the 
proposed test procedure can establish its asymptotic normality under both of the 
above models. We evaluated the asymptotic size and power of the test procedure 
theoretically and numerically. In conclusion, we recommend using the test proce-
dure (23).

8 � Supplementary Material

We give details of the asymptotic normality in Lemma 5, an additional test proce-
dure, an R-code to calculate yij(l) s and proofs of the theoretical results in the online 
supplementary material.
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