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Abstract
In this paper, a model averaging approach is developed for the linear regression 
models with response missing at random. It is shown that the proposed method is 
asymptotically optimal in the sense of achieving the lowest possible squared error. A 
Monte Carlo study is conducted to investigate the finite sample performance of our 
proposal by comparing with some related methods, and the simulation results favor 
the proposed method. Moreover, a real data analysis is given to illustrate the practi-
cal application of our proposal.

Keywords  Missing responses · Missing at random · Model averaging · Asymptotic 
optimality

1  Introduction

Due to the complication of reality, the true model, from which data were gener-
ated, is hard to be known. Thus, in most cases, one may not be able to guess the 
true model. As pointed out by the maxim formulated by G. E. P. Box “All models 
are wrong, but some are useful,” see, e.g., Claeskens and Hjort (2008). From this 
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perspective, model selection seems to be an inappropriate strategy since it selects 
one model and thus loses the useful information contained in the others. As dis-
cussed in Yuan and Yang (2005) and Zhang et  al. (2012), unlike mode selection, 
model averaging incorporates the information contained in each candidate model by 
combining parameter estimates across the set of candidate models with appropriate 
weights and thus produces results that are more robust and potentially with smaller 
risk than that obtained by model selection. Over the past decade, model averaging 
has received a substantial amount of attention. Various model averaging procedures 
have been proposed. See, e.g., Buckland et al. (1997), Yang (2001), Yuan and Yang 
(2005), Hansen (2007), Wan et al. (2010), Hansen and Racine (2012), Liu and Okui 
(2013), Zhang et al. (2013), Zhang et al. (2016) among others. However, these meth-
ods are proposed with data observed completely and cannot be applied to the case of 
missing data directly. Therefore, in this paper, we consider model averaging in the 
presence of missing data.

Missing data occur commonly in market research surveys, socioeconomic inves-
tigations, medical studies and other scientific experiments. There are three miss-
ing data mechanisms: missing completely at random (MCAR), missing at random 
(MAR) and not missing at random (NMAR) (Little and Rubin 2002). If the miss-
ingness does not depend on any variables, then the mechanism is called MCAR. 
If the missingness depends on observable variables, but not on missing variables, 
then the mechanism is called MAR. The mechanism is called NMAR if the miss-
ingness depends on the missing variables. MCAR is the simplest but also the most 
unrealistic. MAR is more complex and more reasonable in practice than MCAR. 
Although MAR is less natural than NMAR, it has been found to yield more accu-
rate predictions of the missing values than methods based on NMAR mechanism in 
some empirical settings (Claeskens and Hjort 2008). Also, MAR can be explained 
reasonably in practice (Little and Rubin 2002). In the literature, most of research 
has focused on the case of MAR. In this article, we consider model averaging with 
MAR.

As far as we know, there is little work on the development of model averaging meth-
ods in the presence of missing data. Schomaker et  al. (2010) considered two model 
average estimation approaches under the case where the covariates are missing at ran-
dom, while the response values are fully observed. Their first approach modified the 
exponential AIC weight of Buckland et al. (1997) based on the weighted AIC (Hens 
et al. 2006) and then utilized the modified weights to combine estimates from different 
candidate models. The weighted AIC is a modification of the traditional AIC and is 
based on reweighting the complete observations by their inverse selection probabili-
ties. Their second approach filled in the unobserved values by existing imputation tech-
niques and then, based on the resultant complete data, averaged over estimates from 
different candidate models with conventional model average weights. Unfortunately, 
Schomaker et  al. (2010) did not analyze the theoretical properties of their proposed 
model average estimates. A possible reason is that each candidate model is a parametric 
specification of the true model, and thus, the model average estimates under imputation 
could be too complicate to analyze. Later, Zhang (2013) considered a simpler situa-
tion where each candidate model is a linear regression model and the covariates are 
missing with missing mechanism MCAR. Under this simpler situation, Zhang (2013) 
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used Mallows model averaging (MMA) of Hansen (2007) by combining least squared 
estimates, derived by CC method, from different candidate models. And they showed 
that the resultant model average estimator is asymptotically optimal in the sense that 
its squared loss is asymptotically identical to that of the infeasible best possible model 
average estimator. Based on the focused information criterion (FIC) of Hjort and 
Claeskens (2003), Sun et al. (2014) developed a model average estimation scheme for 
linear regression models with responses missing at random under the local misspeci-
fication framework. The data generating process considered in their article is a linear 
regression model

where Y is a scalar response, X = (X1,X2,… ,Xp) is the covariable vector, � is the 
vector of unknown parameters and � is the random error of the model. In their arti-
cle, � is separated into two parts, 𝛽 = (𝛽⊤, 𝛽⊤)⊤ , where ⊤ represents transpose. 𝛽  
is a p̈ × 1 vector corresponding to the covariates which are surely included in the 
true model, while 𝛽  is a (p − p̈) × 1 vector corresponding to the covariates which 
may be potentially included in the true model. Every candidate model is a linear 
model using all the covariates corresponding to 𝛽  and a subset of the covariates cor-
responding to 𝛽  . They considered a local misspecification framework in which the 
true value of � is 𝛽0 = (𝛽⊤

0
, 𝜂⊤∕

√
n)⊤ where � is a (p − p̈) × 1 vector. According to 

(1), it is easy to see that the largest model, including all the covariates, is actually the 
true model. Moreover, according to �0 , we know that all the candidate models get 
closer to the largest model as the sample size increases. Apparently, the local mis-
specification framework requires a great deal of knowledge about the true model and 
thus is somehow unrealistic due to the complex practice. Besides, this framework, 
introduced by Hjort and Claeskens (2003), is designed for facilitating the analysis of 
an estimator’s asymptotic behavior, but not for prediction.

In this article, we consider model averaging for linear regression models with 
responses missing at random without the local misspecification framework. It is shown 
that our proposal is asymptotically optimal under certain conditions. The asymptotic 
optimality is an important theoretical property of model average estimators and has 
been studied widely in the field of model averaging. To the best of our knowledge, the 
current paper is the first work to develop model averaging approaches with missing 
responses without the local misspecification framework.

The presentation of this paper goes as follows. In Sect. 2, we describe the model 
framework and develop our model averaging procedure. In Sect. 3, we present asymp-
totic optimality of our proposed method. A simulation study is conducted in Sect. 4, 
and a real data analysis is given in Sect. 5. A discussion is made in Sect. 6, and all the 
technical details are given in “Appendix.”

(1)Y = X� + �,
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2 � Model framework and estimation procedure

2.1 � Model framework

Let {Yi, Xi}
n
i=1

 be a random sample from (Y , X) where Y is a scalar response and X is 
the vector of covariates. Consider the following data generating process

A collection of linear regression models is considered. The number of these linear 
regression models is Mn . Under the mth model, we have

where Xij(m) is the j(m)th element of Xi and �j(m) is the corresponding regression 
coefficient. In this article, we consider the case where some Y-values in a sample of 
size n are missing and all X-values are observed completely; that is, the data consist 
of incomplete observations {(Xi, Yi, �i) ∶ i = 1, 2,… , n} generated from model (2), 
where �i = 1 if Yi is observed, �i = 0 otherwise. Throughout this paper, we assume 
that Y is missing at random; that is,

and further, we assume that the selection probability function �(X) is bounded away 
from zero. Our goal is to find an asymptotically optimal model average estimator for 
the conditional mean 𝜇 = (𝜇1,𝜇2,… ,𝜇n)

⊤ with responses missing at random.

2.2 � Estimation procedure

First of all, we illustrate that � can be estimated by the existing heteroscedasticity-
robust Cp (HRCp ) approach of Liu and Okui (2013) which is developed without 
missing data. We first consider the case where the selection probability function 
�(X) is known and postpone the discussion of estimation of �(X) at the end of this 
section. Under this case, the dataset {(Z�,i, Xi) ∶ i = 1, 2,… , n} is complete where 
Z�,i = {�(Xi)}

−1�iYi, i = 1, 2,… , n . By (2) and the MAR assumption, we have

And by (3), under the mth model, we have

These results indicate that � can be estimated by applying HRCp method on 
{(Z�,i, Xi) ∶ i = 1, 2,… , n} because HRCp method is a model averaging method 

(2)Yi = �i + ei, �i = E(Yi|Xi), E(ei|Xi) = 0, Var(ei|Xi) = �2.

(3)Yi =

km∑

j=1

Xij(m)�j(m) + ei,

(4)P(� = 1|Y , X) = P(� = 1|X) ∶= �(X),

(5)
Z�,i = �i + e�,i, �i = E(Z�,i|Xi), E(e�,i|Xi) = 0,

Var(e�,i|Xi) = �2
�,i
, �2

�,i
=
[
{�(Xi)}

−1 − 1
]
�2
i
+ {�(Xi)}

−1�2.

(6)Z�,i =

km∑

j=1

Xij(m)�j(m) + e�,i.



539

1 3

Model averaging for linear models

developed for linear regression models with heteroscedastic errors in the absence of 
missing data.

In what follows, we present the details of applying HRCp approach to get a 
model average estimator of � . Let Z𝜋 = (Z𝜋,1, Z𝜋,2,… , Z𝜋,n)

⊤ , X(m) be an n × km 
matrix with ijth element Xij(m) and e𝜋 = (e𝜋,1, e𝜋,2,… , e𝜋,n)

⊤ . It is assumed that 
X(m) is of full column rank. The matrix form of (6) is Z� = X(m)�(m) + e� , where 
�(m) is the vector of regression coefficients. Accordingly, the least squares estima-
tor of �(m) is 𝜃̂(𝜋,m) = (X⊤

(m)
X(m))

−1
X
⊤

(m)
Z𝜋 . And the corresponding estimator of � is

The corresponding model average estimator of � is

where P(�) =
∑Mn

m=1
�mP(m) and 𝜔 = (𝜔1,𝜔2,… ,𝜔Mn

)⊤ is a weight vector in

Taking advantage of HRCp approach, we get the following model averaging 
criterion:

where ê𝜋,i is a preliminary estimate of e�,i and Pii(�) is the ith diagonal element of 
P(�) . As what Liu and Okui (2013) recommended, we take ê𝜋 = (ê𝜋,1, ê𝜋,2,… , ê𝜋,n)

⊤ 
as

where In is an n × n identity matrix, (X⊤

u
Xu)

− denotes a g-inverse of X⊤

u
Xu , ku 

is the rank of Xu , Xu is the matrix whose ith row is the ith observation of Xu for 
i = 1, 2,… , n , and Xu is the random vector consisting of the covariates that have 
been used in the candidate models.

At last, we discuss the estimation of the selection probability function �(X) . 
We assume a parametric model 𝜋̃(X;𝛼) for �(X) with � being the unknown model 
parameter vector. Denote 𝛼̂n as the maximum likelihood estimate (MLE) of � . 
And then write 𝜋̂(Xi) = 𝜋̃(Xi;𝛼̂n) for i = 1, 2,… , n . In what follows, a Greek letter 
subscripted by 𝜋̂ represents that it is derived by replacing {�(Xi) ∶ i = 1, 2,… , n} 
in its corresponding estimator with {𝜋̂(Xi) ∶ i = 1, 2,… , n} , respectively. 
For example, Z𝜋̂ is derived by replacing {�(Xi) ∶ i = 1, 2,… , n} in Z� with 
{𝜋̂(Xi) ∶ i = 1, 2,… , n} , respectively. With {𝜋̂(Xi) ∶ i = 1, 2,… , n} , C�(�) in (10) 
becomes

(7)𝜇̂(𝜋,m) = X(m)𝜃̂(𝜋,m) = P(m)Z𝜋 , P(m) = X(m)(X
⊤

(m)
X(m))

−1
X
⊤

(m)
.

(8)𝜇̂𝜋(𝜔) =

Mn∑

m=1

𝜔m𝜇̂(𝜋,m) =

Mn∑

m=1

𝜔mP(m)Z𝜋 = P(𝜔)Z𝜋 ,

(9)Hn =

{
� ∈ [0, 1]Mn ∶

Mn∑

m=1

�m = 1

}
.

(10)C𝜋(𝜔) = ‖Z𝜋 − 𝜇̂𝜋(𝜔)‖2 + 2

n�

i=1

ê2
𝜋,i
Pii(𝜔),

(11)ê𝜋 =

√
n

n − ku
(In − Pu)Z𝜋 , Pu = Xu(X

⊤

u
Xu)

−
X
⊤

u
,
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Let 𝜔̂c be the minimizer of C𝜋̂(𝜔) among Hn ; that is,

Then the corresponding model average estimator of � is 𝜇̂𝜋̂(𝜔̂c).

3 � Theoretical properties

In this section, we present the theoretical results of this paper which demonstrate 
the asymptotic optimality of 𝜇̂𝜋̂(𝜔̂c) . For ease of expression, let us first introduce 
some notations. Let Ax be the support sets of X and Θ� be the parameter space of 
� . Let �(𝛼) = E[𝛿 log 𝜋̃(X;𝛼) + (1 − 𝛿) log{1 − 𝜋̃(X;𝛼)}] . Define the loss function 
and the risk function of 𝜇̂𝜋(𝜔) as

respectively, where ‖ ⋅ ‖ is the Euclidean norm and X is the matrix whose ith row is 
Xi . Let �� = inf�∈Hn

R�(�) and �0
m
 be a Mn × 1 vector whose mth element is one, 

while the other elements are zeros. The asymptotic optimality of 𝜇̂𝜋̂(𝜔̂c) requires the 
following conditions where all the limiting processes discussed here and throughout 
the paper are with respect to n → ∞ . 

	(C1)	 Θ� is bounded and closed. �(�) has a unique maximum at �0 in Θ� , and �0 is an 
inner point of Θ� . 𝜋̃(X;𝛼) is twice continuously differentiable with respect to 
� . E

[
𝜕𝜋̃(X;𝛼)

𝜕𝛼

𝜕𝜋̃(X;𝛼)

𝜕𝛼T
|𝛼=𝛼0

]
 is positive definite. Besides, 𝜋̃(X;𝛼) is bounded away 

from 0. Interchange of difference and integration of 𝜋̃(X;𝛼) is valid for first and 
second derivatives with respect to � . For all � ’s in a neighborhood of �0 , 
max1≤i≤n ‖

𝜕𝜋̃(Xi;𝛼)

𝜕𝛼
‖ = Op(1).

	(C2)	 For  some in teger  1 ≤ G < ∞ ,  max1≤i≤n E(e
4G
i
|Xi) ≤ Ce,a . s .  and 

max1≤i≤n |�i| ≤ C�, a.s., where C� and Ce are two constants.
	(C3)	 For the integer G in (C2), Mn�

−2G
�

∑Mn

m=1

�
R�

�
�o
m

��G a.s.
⟶0.

	(C4)	 max1≤m≤Mn
max1≤i≤n P(m),ii = O

(
n−1∕2

)
,a.s. where P(m),ii is the ith diagonal ele-

ment of P(m).
	(C5)	 n−1k2

u
= O(1) , where ku is the rank of Xu.

	(C6)	 n�−2
�

a.s.
⟶0.

The following theorem states the asymptotic optimality of 𝜇̂𝜋̂(𝜔̂c).

Theorem 1  If Conditions (C1)–(C6) are satisfied, then

(12)C𝜋̂(𝜔) = ‖Z𝜋̂ − 𝜇̂𝜋̂(𝜔)‖2 + 2

n�

i=1

ê2
𝜋̂,i
Pii(𝜔).

(13)𝜔̂c = arg min
𝜔∈Hn

C𝜋̂(𝜔).

(14)L𝜋(𝜔) = ‖𝜇 − 𝜇̂𝜋(𝜔)‖2, R𝜋(𝜔) = E{L𝜋(𝜔)�X},
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Theorem 1 states that the selected weight vector, 𝜔̂c , yields a squared error that is 
asymptotically identical to that of the infeasible optimal weight vector. This implies 
the asymptotic optimality of 𝜇̂𝜋̂(𝜔̂c).

Remark 1  In Condition (C1), the part before the last sentence is required for the 
consistency and asymptotic normality of the MLE 𝛼̂n and is obtained based on 
White (1982). The last sentence in Condition (C1) imposes some restrictions on 
𝜕𝜋̃(X;𝛼)∕𝜕𝛼 and is satisfied when the other part of Condition (C1) holds and Ax is 
bounded and closed.

Remark 2  Clearly, Condition (C2) is satisfied when ei ∼ N(0, �2) and E(Y|X) is 
bounded. Condition (C3) is actually Assumption 2.3 of Liu and Okui (2013) for the 
fully observed dataset {(Z�,i, Xi) ∶ i = 1, 2,… , n} . Such a condition is commonly 
used in the model averaging literature such as Wan et al. (2010), Zhang et al. (2013) 
and Gao et al. (2019). In particular, Wan et al. (2010) has explained Condition (C3) 
in detail and provided two explicit examples that Condition (C3) holds. Condition 
(C3) indicates that Mn is allowed to be fixed or go to infinity.

Remark 3  Condition (C4) is the same as Assumption 2.4 of Liu and Okui (2013). 
This condition imposes some restrictions on the element of X(m) . As what Liu and 
Okui (2013) pointed out, Condition (C4) excludes peculiar models, such as a model 
that contains a dummy variable on some single observation. Condition (C6) is simi-
lar to the third part of (A7) in Zhang et al. (2014) and Condition C.3 in Zhang et al. 
(2016). It can be shown that Condition (C6) holds if Condition (C3) holds and there 
exists an m ∈ {1, 2,… ,Mn} such that n{R�

(
�o
m

)
}−1 = O(1),   a.s.. In fact, Condition 

(C6) holds under Example 1 given in Wan et al. (2010).

Remark 4  Condition (C5) forbids the rank of Xu to grow faster than n1∕2 . Similar 
conditions can be found in the existing literature, such as condition (12) in Wan et al. 
(2010) and condition (9) in Gao et al. (2019). Apparently, according to the definition 
of Xu given below (11), Condition (C5) indirectly requires that

which indicates that the number of covariates used in each candidate models should 
be moderate. Moreover, a large max1≤m≤Mn

km always means a large Mn which gives 
rise to a heavy computation burden of our proposal. Fortunately, several dimen-
sion reduction methods, such as Ding and Wang (2011) and Wang and Li (2018), 
have been developed with missing response at random. Therefore, we suggest using 
one of these dimension reduction methods before implementing our proposal if 
max1≤m≤Mn

km is large. The theoretical properties as well as the finite sample per-
formance related to this suggestion are not analyzed here since they are outside the 

(15)
L𝜋̂(𝜔̂c)

inf𝜔∈Hn
L𝜋̂(𝜔)

p
⟶1.

max
1≤m≤Mn

nk2
m
= O(1),
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scope of this article. However, they are worthy of investigation, no doubt, and we 
leave them for future study.

4 � A Monte Carlo study

In this section, a Monte Carlo study with two designs was conducted to investigate 
the finite sample performance of our proposed method. And for a better analysis, 
we also considered three intuitive methods as our proposal’s competitors. The first 
one is the classical MMA approach of Hansen (2007) with CC analysis which just 
ignores all the individuals with missingness. And we termed this method as CC-
MMA. The second one is the classical adaptive regression by mixing (ARM) 
method of Yang (2001) with CC analysis and is termed as CC-ARM. In order to 
implement CC-ARM, we need to specify a probability density function for ei in (2). 
And we used the true probability density function of ei in our simulation studies. 
Besides, CC-ARM needs to randomly permute the order of the observations several 
times. And we set the number of permutations for CC-ARM to be 100. The last one 
is the MMA approach with missing data replaced by imputed values and is termed 
as IM-MMA. If Yi is missing, then its imputed value is given by

where Xui is the ith row of Xu defined below (11), � is an n × n diagonal matrix 
whose ith diagonal element is �i and Y = (Y1, Y2,… , Yn)

⊤ . Besides, we considered 
the infeasible complete data-based MMA approach as the “gold standard” to see 
how much loss of efficiency there is for a method in the presence of missing data. 
And we termed this method as CD-MMA. For easy of illustration, we termed our 
proposal as M-HRCp . The details and results of the Monte Carlo study are given 
below.

Design 1  In this design, we considered the case where the number of candidate 
models, Mn , is fixed. The data generating process was

for i = 1, 2,… , n , where Xi1 = 1 is the intercept, while {Xi2,Xi3,Xi4} are independ-
ent standard normal random variables, 𝜃 = (0.3, 0.6, 0.3, 0.3)⊤ , ei is the random error 
generated from N(0, �2) and the parameter �2 was determined by the population R2 . 
Following Hansen (2007), the population R2 is defined as

The parameter �2 was chosen to let the population R2 vary on a grid between 0.1 and 
0.9. The selection probability function was

Xui(X
⊤

u
�Xu)

−
X
⊤

u
�Y,

Yi = �i + ei, �i = Xi1�1 + X2
i2
�2 + Xi3�3 + Xi4�4,

(16)R2 =
var(Yi) − var(ei)

var(Yi)
=

2�2
2
+ �2

3
+ �2

4

2�2
2
+ �2

3
+ �2

4
+ �2

.
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where Φ(⋅) is the cumulative distribution function of the standard normal distribu-
tion. The following two settings of 𝛼 = (𝛼1, 𝛼2)

⊤ were taken into consideration,

The corresponding average missing rates are approximated 30% and 50%, respec-
tively. All the candidate models include the intercept term and were constructed by 
varying combinations of {X2,X3,X4} . As a result, Mn = 23 . The sample size were 
taken to be n = 100 and n = 200 , respectively. The parametric model 𝜋̃(X;𝛼) used in 
our proposal was taken to be (17). Following Hansen (2007), we used the following 
mean squared error (MSE) to assess the finite sample performances of estimators:

where �(d) is the conditional mean in the dth trial, {𝜇̂(𝜔)}(d) is the model average 
estimator of �(d) and D is the number of simulation trials. For better comparison, we 
reported the ratios of the MSEs that are computed with the MSE of the infeasible 
CD-MMA approach as the denominator. The number of simulation trials was 1000.

Figure 1 plots the MSE ratio against the population R2 for a variety of combina-
tions of sample sizes and missing rates. The dotted, dashed, dash dotted and solid 
lines correspond to the curves of CC-MMA, CC-ARM, IM-MMA and M-HRCp , 
respectively. Figure 1 shows that our proposal, M-HRCp , achieves a lower MSE ratio 
than CC-MMA and IM-MMA for all the combinations of sample sizes, missing 
rates and the population R2 considered. This is consistent with our expectation since 

(17)�(Xi) = Φ(Xi1�1 + Xi2�2),

Case 1 ∶ 𝛼 = (0.6, 0.5)⊤, Case 2 ∶ 𝛼 = (0, 0.5)⊤.

1

D

D�

d=1

‖{𝜇̂(𝜔)}(d) − 𝜇(d)‖2,
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Fig. 1   The dotted, dashed, dash dotted and solid lines are the MSE ratio curves of CC-MMA, CC-ARM, 
IM-MMA and the proposed M-HRCp , respectively. Mn is fixed
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the asymptotically optimality of the classical MMA approach fails when CC analy-
sis or IM-MMA is used. Comparing to CC-ARM, our proposed M-HRCp has a bet-
ter performance in the majority of the combinations of sample sizes, missing rates 
and the population R2 considered, especially when R2 is moderate or large.

Following a referee’s suggestion, we took the strategy taken by Zhang et  al. 
(2016) to numerically demonstrate Theorem 1. Concretely, we calculated the means 
of

based on 1000 replications under different sample sizes with R2 = 0.5 . And the 
mean curves are displayed in Fig. 2.

As shown in Fig. 2, the mean of LR decreases and approaches to 1 as the sam-
ple size increases for the two missing rates considered. Such a result confirms the 
asymptotic optimality of 𝜇̂𝜋̂(𝜔̂c) stated in Theorem 1.

Design 2  In this design, we considered the case where Mn is allowed to grow with n. 
The data generating process was

where �i and ei are the same as that in Design 1, X̃ij ’s are independent standard nor-
mal random variables, J = 103 and c = 0.25 . The population R2 is now equal to

(18)LR =
L𝜋̂(𝜔̂c)

inf𝜔∈Hn
L𝜋̂(𝜔)

,

Ỹi = 𝜇i + 𝜇̃i + ei, 𝜇̃i = c ⋅

J∑

j=1

j−2X̃ij,
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Fig. 2   Assessing the asymptotic optimality of 𝜇̂𝜋̂(𝜔̂c) . Mn is fixed
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And the parameter �2 was also chosen to let R2 vary on a grid between 0.1 and 0.9. 
The selection probability function as well as its parametric model assumption was 
the same as that in Design 1. The candidate models are strictly nested with the mth 
linear regression model using the first m covariates in {Xi1,… ,Xi4, X̃i1, X̃i2,… , X̃iJ} . 
And the number of candidate models, Mn , was set to be the nearest integer from 
1.5n1∕2 . The sample size was considered to be n = 100, 200, 400 and 800, so that 
Mn = 15, 21, 30 and 42, respectively. The results are shown in Fig. 3.

The results displayed in Fig. 3 show a similar pattern to that in Fig. 1. Figure 3 
shows that our proposed M-HRCp performs better than CC-MMA and IM-MMA for 
all the combinations of sample sizes and missing rates considered. Moreover, the 
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Fig. 3   The dotted, dashed, dash dotted and solid lines are the MSE ratio curves of CC-MMA, CC-ARM, 
IM-MMA and the proposed M-HRCp , respectively. Mn grows with n 
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performance of our proposal is better than that of CC-ARM in most of the cases. 
What else can be seen is that the superiority of our proposal over its competitors 
gets more prominent as the sample size or the missing rate increases.

For the purpose of assessing the result stated in Theorem 1 when Mn diverges 
to infinity, we also calculated the means of LR in (18) based on 1000 replications 
under different sample sizes with R2 = 0.5 . The results are shown in Fig. 4. It is seen 
that the mean of LR decreases and gets closer to 1 as n increases for the two missing 
rates considered. This numerically confirms Theorem 1.

5 � Real data analysis

In this section, a real data analysis is conducted to analyze the practical perfor-
mance of our proposal. We analyzed the PM2.5 data taken at Beijing Olympic 
Sports Center in July 2015. This dataset can be obtained from the Machine Learn-
ing Repository at the University of California Irvine (https​://archi​ve.ics.uci.edu/ml/
datas​ets/Beiji​ng+Multi​-Site+Air-Quali​ty+Data). We took the PM2.5 concentration 
as the response variable Y and the following attributes as covariates: PM10 concen-
tration ( X1 ), CO concentration ( X2 ), dew point temperature ( X3 ), temperature ( X4 ), 
SO2 concentration ( X5 ), NO2 concentration ( X6 ), O3 concentration ( X7 ), precipita-
tion ( X8 ), wind speed ( X9 ) and pressure ( X10 ). The original data contain 744 sam-
ple points of which 35 are missing either in response or covariates. For the con-
sideration of simplicity and the fact that 35 is much smaller than 744, we removed 
these 35 sample points. Besides, in order to eliminate the influence of the scale, we 
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Fig. 4   Assessing the asymptotic optimality of 𝜇̂𝜋̂(𝜔̂c) . Mn grows with n 

https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data
https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data
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centralized and standardized each covariate by its sample mean and sample standard 
error, respectively.

Note that the number of all possible candidate linear models is 210 − 1 which is 
large and thus time-consuming. To reduce the computation burden, we considered 
the forward/backward (FW/BW) procedure descried in Jiang et al. (2015) to gener-
ate a sequence of candidate linear models. We randomly chose n1 sample points as 
training data and then took the remaining sample points as test data. Note that the 
sample points we used are observed completely. Therefore, in order to apply our 
proposal, we selected some sample points from training data and treated their obser-
vations in Y as missing values. Such a selection was conducted according to the fol-
lowing MAR assumption:

where X = (X1,X2,… ,X10) . The corresponding average missing rates are approxi-
mated 50% . Similar to Zhu et  al. (2019), we took the following normalized mean 
squared prediction error (NMSPE) as our performance metric:

where 𝜇̂i(𝜔̂) is obtained by a monitored method, while 𝜇̂i(𝜔̂cd) is obtained by the 
“gold standard” CD-MMA method. We considered n1 to be 200, 400 and 600. Con-
sidering the simulation results presented in Sect. 4, in this section, we only took CC-
MMA and CC-ARM as our proposal’s competitors. The parametric model 𝜋̃(X;𝛼) 
used in our proposal was taken to be the true model. And the probability density 
function of ei used in CC-ARM was taken to be a normal density function. Besides, 
the number of permutations for CC-ARM was set to be 100. The results are shown 
in Table 1.

P(� = 1|Y , X) = Φ(0.5X1 + 0.5X2 + 0.5X3),

NMSPE =

∑n

i=n1+1

�
Yi − 𝜇̂i(𝜔̂)

�2

∑n

i=n1+1

�
Yi − 𝜇̂i(𝜔̂cd)

�2
,

Table 1   Mean, median and 
standard deviation (SD) 
of NMSPE based on 500 
replications

Method M-HRCp CC-MMA CC-ARM

n
1
= 200

 Mean 1.2094 1.3138 1.2215
 Median 1.157 1.2249 1.1893
 SD 0.2509 0.3618 0.2035
n
1
= 400

 Mean 1.1354 1.3175 1.2825
 Median 1.1007 1.2784 1.2547
 SD 0.1461 0.2065 0.1706
n
1
= 600

 Mean 1.1115 1.3164 1.2929
 Median 1.0882 1.2744 1.2602
 SD 0.1352 0.2271 0.2099
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Table 1 shows the mean, median and standard deviation (SD) of NMSPE based 
on 500 replications. From this table, we can see that our proposed M-HRCp achieves 
a lower mean as well as a lower median of NMSPE than its competitors for all con-
sidered sample sizes. Moreover, both mean and median of NMSPE of our proposal 
get closer to 1 as n1 increases, while this is not the case for CC-MMA and CC-ARM. 
The results indicate that our proposal is preferable than the two intuitive methods, 
CC-MMA and CC-ARM, for handling the problem considered in this paper.

6 � Discussion

In this paper, a model average method is proposed for linear models with responses 
missing at random. It is shown that our proposed method is asymptotically optimal 
in the sense of achieving the lowest possible squared error. The simulation results 
favor our method comparing with three intuitive methods: CC-MMA, CC-ARM and 
IM-MMA.

We have focused on the linear regression model in this article. Apparently, 
extending the idea of our proposal to more complex models is meaningful and thus 
warrants future researches. Note that the ARM method of Yang (2001) is capable 
of combining estimates from different models. And these models can be linear 
regression models, generalized linear regression models, additive models and so on. 
Therefore, using the idea of the ARM method may be a successful way to generalize 
the application of our proposal to more complex models. However, it is a very chal-
lenging research topic and needs further investigation.

In this paper, the missing data mechanism is assumed to be MAR. As we men-
tioned in Sect. 1, NMAR is a more natural and more complex missing data mecha-
nism than MAR. To the best of our knowledge, there is no work in the field of model 
averaging with data not missing at random. It is an interesting but challenging topic 
to develop mode averaging method for linear models with responses not missing at 
random in the future.

It should be pointed out that our proposal requires the parametric model 𝜋̃(X;𝛼) 
to be correctly specified. This arouses the interest of a referee in the question of how 
the misspecification of the selection probability function affects the performance of 
our proposal. To address this question, we have investigated the performance of our 
proposal with 𝜋̃(X;𝛼) being misspecified through a simulation study. Specific details 
of this simulation study are available upon request from the authors. The simulation 
results indicate that our proposal still performs well if 𝜋̃(X;𝛼) deviates slightly from 
the true model, while its power fails if 𝜋̃(X;𝛼) deviates greatly from the true mode. 
This, to some extent, gives the readers some senses of the aforementioned question 
from an empirical standpoint. Addressing the aforementioned question from a theo-
retical standpoint is clearly very difficult and needs further investigation. However, 
we think it is more meaningful to put our effort into developing a model average 
method that is robust against the misspecification of the selection probability func-
tion. Here, “robust” means that the model average method is asymptotically optimal 
even if 𝜋̃(X;𝛼) is misspecified.
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Appendix

We use c to denote a generic positive constant that could take different values in 
different occasions. Before presenting the proof of Theorem 1, let us first present a 
lemma which is required for the proof of Theorem 1.

Lemma 1  Provided that Conditions (C1) and (C2) hold, we have

Proof of Lemma 1  According to the definition of Z� given at the beginning of Sec-
tion 2.2 and Cauchy–Schwarz inequality, we obtain

By (C2), it is easy to see that n−1𝜇⊤𝜇 = Op(1) . And by the law of larger numbers, 
n−1e⊤e = Op(1) . These results imply that (19) holds if the following holds:

In what follows, we present the proof of (20) which completes the proof of Lemma 
1.

Recalling that 𝜋̂(X) = 𝜋̃(X;𝛼̂n) , we apply Taylor expansion to {𝜋̂(Xi)}
−1 around 

the true value �0 and then obtain

where the last inequality is due to (C1) and Cauchy–Schwarz inequality, and �(n,Xi)
 is 

a vector between 𝛼̂n and �0 . Since 𝛼̂n is MLE, by (C1) and a standard argument we 
have 

√
n‖𝛼̂n − 𝛼0‖ = Op(1) . Because of the consistency of 𝛼̂n and (C1), we have 

max1≤i≤n ‖
𝜕𝜋̃(Xi;𝛼)

𝜕𝛼
�𝛼=𝛼n,Xi‖ = Op(1) . These results imply (20). 	�  ◻

(19)‖Z𝜋̂ − Z𝜋‖2 = Op(1).

‖Z𝜋̂ − Z𝜋‖2 =
n�

i=1

�
𝛿i

𝜋̂(Xi)
−

𝛿i

𝜋(Xi)

�2

⋅ Y2
i
≤

n�

i=1

�
1

𝜋̂(Xi)
−

1

𝜋(Xi)

�2

⋅ (𝜇i + ei)
2

≤

�√
n ⋅ max

1≤i≤n

����
1

𝜋̂(Xi)
−

1

𝜋(Xi)

����
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⋅ c ⋅
�
1

n
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1

n
e⊤e

�
.

(20)
√
n ⋅ max

1≤i≤n

����
1

𝜋̂(Xi)
−

1

𝜋(Xi)

����
= Op(1).

√
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1
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⋅
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⋅
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Proof of Theorem 1  Let P̄(𝜔) be an n × n diagonal matrix whose ith diagonal element 
is Pii(�) , the ith diagonal element of P(�) in (8). Recalling C𝜋̂(𝜔) in (12), after some 
careful calculations, we have C𝜋̂(𝜔) = L𝜋̂(𝜔) + 2an(𝜔) + ‖Z𝜋̂ − 𝜇‖2 where

Thus, by (13), it is readily seen that

Accordingly, from the proof of Theorem 1′ in Wan et al. (2010), Theorem 1 is valid 
if the following holds:

where R�(�) is the risk function defined in (14). By (8), (14) and Cauchy–Schwarz 
inequality, we have

Accordingly, to prove (22), it suffices to prove

Let p̃ = sup𝜔∈Hn
max1≤i≤n Pii(𝜔) . Then it is easy to verify that

by (C4). By (8), (11) and Cauchy–Schwarz inequality, we have

(21)an(𝜔) = (Z𝜋̂ − Z𝜋)
⊤{𝜇 − 𝜇̂𝜋̂(𝜔)} + e⊤

𝜋
{𝜇 − 𝜇̂𝜋̂(𝜔)} + ê⊤

𝜋̂
P̄(𝜔)ê𝜋̂ .

𝜔̂c = arg min
𝜔∈Hn

{L𝜋̂(𝜔) + 2an(𝜔)}.

(22)sup
𝜔∈Hn

||||
L𝜋̂(𝜔)

R𝜋(𝜔)
− 1

||||
= op(1),
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||||
an(�)

R�(�)

||||
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����
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where A(�) = In − P(�) and �� is an n × n diagonal matrix whose ith diagonal 
element is �2

�,i
 in (5). This together with (21), (C5), Lemma 1, (26) and Cauchy–

Schwarz inequality proves that (23) holds if (24), (25) and the following hold:

Under Conditions (C1)–(C5), it can be shown that the assumptions of Theorem 2.2 
of Liu and Okui (2013) are satisfied for the dataset {(Z�,i, Xi) ∶ i = 1, 2,… , n} . 
Therefore, according to the proof of Theorem 2.2 of Liu and Okui (2013), we know 
that (24) and (27)–(29) are satisfied. In what follows, we present the proofs of (25), 
(30) and (31) which complete the proof of Theorem 1.
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(29)sup
𝜔∈Hn

|ê⊤
𝜋
P̄(𝜔)ê𝜋 − tr{�𝜋P(𝜔)}|

R𝜋(𝜔)
= op(1),

(30)sup
�∈Hn

‖P(�)e�‖
R�(�)

= op(1),

(31)sup
𝜔∈Hn

p̃ ⋅ ‖Z𝜋‖
R𝜋(𝜔)

= op(1).
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By (5), (C1), (C2), (C6), (26), Lemma 1, the law of larger numbers and Cauchy–
Schwarz inequality, we have

These results indicate (25), (30) and (31). 	�  ◻
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