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Abstract
With nonignorable nonresponse, an effective method to construct valid estimators 
of population parameters is to use a covariate vector called instrument that can be 
excluded from the nonresponse propensity, but are associated with the response even 
when other covariates are conditioned. The existing work in this approach assumes 
such an instrument is given, which is frequently not the case in applications. In this 
paper, we investigate how to search for an instrument from a given set of covari-
ates, based on a pseudo likelihood approach assuming a parametric distribution of 
response conditioned on covariates and a totally unspecified nonresponse propensity. 
We propose a method and show that it produces a consistent instrument selection as 
the sample size tends to infinity, under some regularity conditions. The proposed 
method is examined in a simulation study and illustrated in a real data example.

Keywords  Nonignorable nonresponse · Nonresponse instrument · Pseudo-
likelihood · Variable selection

1  Introduction

Nonresponse with an appreciable rate is common in many applications such as clini-
cal trials and sample surveys. Let Y be a response or outcome of interest that may 
have nonresponse, X be a covariate vector that is always observed, and R be the 
indicator equaling 1 if Y is observed and 0 if Y is missing. When the propensity 
P(R = 1|Y ,X) is equal to P(R = 1|X) not depending on Y, the nonresponse is called 
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ignorable and there is a rich literature on methodology of handling ignorable non-
response (Little and Rubin 2002). However, in many applications, P(R = 1|Y ,X) 
depends on both X and Y, in which cases nonresponse is referred to as nonignorable 
and estimation of population parameters is much more challenging than that in the 
case of ignorable nonresponse.

Throughout we use p(⋅|⋅) or p(⋅) as a generic notation for the conditional or 
unconditional probability density with respect to an appropriate measure (discrete, 
continuous, or mixed). With nonignorable nonresponse, when both p(Y|X) and 
P(R = 1|Y ,X) are parametric, maximum-likelihood methods have been developed 
(Greenlees et al. 1982; Baker and Laird 1988). When both p(Y|X) and P(R = 1|Y ,X) 
are nonparametric, Robins and Ritov (1997) showed that the population may not 
be identifiable. Hence, efforts have been made to develop semiparametric methods, 
assuming one of p(Y|X) and P(R = 1|Y ,X) has a parametric form and the other one 
is nonparametric. Qin et  al. (2002) and Wang et  al. (2014) imposed a parametric 
model on P(R = 1|Y ,X) , but allowed p(Y|X) to be nonparametric. Following Tang 
et al. (2003), Zhao and Shao (2015), and Chen et al. (2018), in this paper, we focus 
on a nonparametric P(R = 1|Y ,X) and a parametric model:

where � is an unknown parameter vector and f (Y|X;�) is known when � is known.
In their semiparametric approach, Zhao and Shao (2015) utilized a covariate vec-

tor Z called nonresponse instrument or simply instrument, to guarantee the identifi-
ability of population parameters, so that consistent estimators can be obtained. More 
precisely, an instrument Z is a sub-vector of X, i.e., X = (U, Z) , such that Z satisfies 
the following two conditions:

If we know which components of X satisfy (2)-(3), then parameters in p(Y|X) can 
be estimated using pseudo-likelihoods (Zhao and Shao 2015) and parametric model 
selection regarding (1) can also be performed (Fang and Shao 2016). Note that even 
if both p(Y|X) and P(R = 1|Y ,X) are parametric, there is still an identifiability issue 
and the use of an instrument satisfying (2)-(3) may be needed. See, for example, 
Wang et al. (2014) and Miao et al. (2016).

In applications, however, an instrument satisfying (2)-(3) is not given and we 
must search for an instrument using observed data. The purpose of this paper is to 
propose and study a method for instrument search from the given covariate vec-
tor X, assuming that an instrument satisfying (2)-(3) exists. After an introduction 
of a pseudo-likelihood method in Sect. 2, we propose a pseudo-likelihood-based 
maximum ratio criterion to select an instrument. Although our method requires 
a model such as (1), we can combine our method with model selection regarding 
(1) in Fang and Shao (2016) to select instrument and model together. In Sect. 3, 
we establish that, with probability tending to 1 as the sample size N → ∞ , while 
the dimension of X remains fixed, our selected instrument equals an instrument 

(1)p(Y|X) = f (Y|X;�),

(2)P(R = 1|Y ,X) = P(R = 1|Y ,U),

(3)p(Y|X) = p(Y|U, Z) depends on Z.
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satisfying (2)-(3). To complement theoretical work, we carry out some simula-
tions in Sect. 4 to examine finite sample properties. For illustration, we apply the 
proposed method to a real data set in Sect. 5. All technical details are given in an 
Appendix.

2 � Method

We use the notation in Sect. 1, i.e., Y is a response subject to nonresponse, R is 
the indicator of observing Y, and X is a covariate vector with no missing values. 
Under assumption (1), our goal is to estimate � in (1) based on a random sample 
{(yi, xi, ri), i = 1,… ,N} from (Y, X, R), where yi is observed if and only if ri = 1 . 
When asymptotic properties are studied, we consider N → ∞ , while the dimen-
sion of X remains fixed.

Note that (2) implies that:

If we know which components of X formed Z satisfying (2)-(3), then we can esti-
mate � by �̂  that maximizes the following pseudo-likelihood based on data with 
ri = 1:

(Tang et al. 2003; Zhao and Shao 2015), where F̂ is the empirical cumulative dis-
tribution function of Z, p̂(u|z) is a consistent estimator of p(u|z) using observed 
xi = (ui, zi) and an available method in the literature, either parametrically or nonpar-
ametrically, e.g., Lipsitz and Ibrahim (1996), Ibrahim et al. (1999), Zhao and Shao 
(2015), and Chen et al. (2018). Note that condition (3) ensures that the likelihood 
function in (4) is a non-constant function of � . According to Zhao and Shao (2015), 
as long as there is a non-binary Z satisfying (2)-(3), �̂  is consistent and asymptoti-
cally normal as N → ∞.

Note that Z satisfying (2) guarantees the validity of pseudo-likelihood (4), 
whereas Z satisfying (3) ensures that likelihood (4) depends on � , so that we can 
estimate � by maximizing (4).

We now consider how to search for an instrument Z satisfying (2)-(3) from X 
based on the sample data. For a given candidate Z, a sub-vector of X, our idea 
is to check whether Z can be an instrument by comparing two estimators of the 
condition distribution F1(z) = P(Z ≤ z|R = 1) , where z is a possible value for Z 
and, for two vectors a and b, a ≤ b means that all components of a are less than 
or equal to the corresponding components of b. One estimator is the empirical 
cumulative distribution function:

p(Z|Y ,U,R = 1) = p(Z|Y ,U) =
p(Y|U,Z)p(U,Z)

∫ p(Y|U, z)p(U, z)dz
.

(4)
∏

i≤N, ri=1
p(zi|yi, ui) =

∏
i≤N, ri=1

f (yi|ui, zi;�)p̂(ui|zi)dF̂(zi)
∫ f (yi|ui, z;�)p̂(ui|z)dF̂(z)
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which does not depend on any model or instrument and, hence, is always consistent, 
where I(⋅) is the indicator function. The other estimator is based on the pseudo like-
lihood (4) and �̂  . Under condition (2):

where the approximation is valid because of the law of large numbers. Also:

where F is the distribution function of Z and the approximation is valid if (1)-(2) 
hold and �̂  and p̂(u|z) are consistent. Hence, using (5) and (6), we estimate F1(z) by:

If Z is an instrument, then F̃1(z) in (7) should be close to the empirical cumulative 
distribution F̂1(z) ; otherwise, the two estimators may not be close to each other.

Following Fang and Shao (2016), a natural idea is to select Z based on the follow-
ing expected distance between F̃1(z) and F̂1(z):

where VC means “validation criterion”. We may search all possible Z and take the 
one with the smallest VC value as our estimated instrument Ẑ.

However, there are two serious issues. First, to find an instrument from a 
q-dimensional X, we need to consider all possible 2q − 1 non-empty sub-vectors of X 
as candidates. Even if we do not consider high-dimensional X, a search over 2q − 1 
candidates is still computationally infeasible when q is not very small. Also, if the 
dimension of Z is not very small, the estimation of F1(z) is quite a challenge itself. 

F̂1(z) =

N∑
i=1

riI(zi ≤ z)

/ N∑
i=1

ri,

(5)

F1(z) =E{I(Z ≤ z)|R = 1}

=E[E{I(Z ≤ z)|Y ,U,R = 1}|R = 1]

=E[E{I(Z ≤ z)|Y ,U}|R = 1]

≈

N∑
i=1

riE
{
I(Z ≤ z)|yi, ui

}/ N∑
i=1

ri,

(6)

E
�
I(Z ≤ z)�yi, ui

�
= � I(t ≤ z)p(t�yi, ui)dt

=
∫ I(t ≤ z)p(yi�ui, t)p(ui�t)dF(t)

∫ p(yi�ui, t)p(ui�t)dF(t)

≈

∑N

j=1
f (yi�ui, zj;�̂)p̂(ui�zj)I(zj ≤ z)

∑N

j=1
f (yi�ui, zj;�̂)p̂(ui�zj)

,

(7)F̃1(z) =

N�
i=1

ri

∑N

j=1
f (yi�ui, zj;�̂)p̂(ui�zj)I(zj ≤ z)

∑N

j=1
f (yi�ui, zj;�̂)p̂(ui�zj)

� N�
i=1

ri.

(8)VC =
1

N

N∑
i=1

|||F̃1(zi) − F̂1(zi)
|||,
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The second issue is that validation criterion (8) can check whether the candidate Z 
satisfies (2), but cannot check whether Z satisfies (3). More precisely, if Z satisfies 
both (2) and (3), i.e., Z is an instrument, then VC → 0 in probability as N → ∞ , 
because both F̃1 and F̂1 are consistent for F1 ; if Z does not satisfy (2), then F̃1 does 
not converge to F1 and, hence, VC does not converge to 0; however, if Z satisfies (2) 
but not (3), then approximation (6) is still good because f (yi|ui, zj;�̂) = f (yi|ui;�̂) can 
be canceled from the numerator and denominator on the right-hand side of (6) and, 
thus, VC still converges in probability to 0 even if �̂  is not consistent. As discussed 
after deriving pseudo-likelihood (4), we need a Z satisfying both (2) and (3).

To address these two issues, we proposed a whole new two-step instrument 
search procedure as follows.

In the first step, we prepare a candidate instrument set including only one- or 
two-dimensional covariates and calculate their VC values. As discussed in Zhao and 
Shao (2015), a single binary covariate alone cannot be used as an instrument, since 
it does not provide enough information to identify all population parameters, except 
for some special situations. Thus, other than the non-binary covariates, we combine 
each binary covariate with another single covariate (binary or not) to form a vector 
of candidates, (Z1, ..., Zp) , where p may be different from the original dimension of 
X. For example, if X = (X1, ...,Xq) is q-dimensional, Xq is binary and all X1, ...,Xq−1 
are non-binary, then p = 2q − 2 , Zj = Xj , j = 1, ..., q − 1 ( q − 1 single covariates), 
and Zj = (Zj−q+1,Xq) , j = q, ..., p ( q − 1 combined covariates). See Sect.  5 for an 
example. We assume that:

 There may be other ways to avoid selecting a binary covariate as instrument, e.g., if 
Xq is the only binary covariate, we may set (Z1, ..., Zp) = (X1, ...,Xq−1) to exclude Xq , 
in which case p = q − 1.

For each Zk , k = 1, ..., p , let Uk be the sub-vector of X with components not in k. 
For the kth split of X into (Uk, Zk) , let uki and zki be observed Uk and Zk , respectively, 
�̂k be the maximizer of (4) with ui = uki , zi = zki , and p̂(ui|zi) = p̂(uki|zki) , and let 
F̃1k(z) be defined by the right-hand side of (7) with �̂ = �̂k , ui = uki , zi = zki , and 
p̂(ui|zi) = p̂(uki|zki) . To validate whether Zk is a correct instrument, we calculate:

In the second step, we try to find all Zk satisfying (2) and then put them together 
as a sub-vector of our searched instrument Ẑ . This step is based on the following 
fact. Let S = {1 ≤ k ≤ p,Zk satisfies (2)} and ZS be the sub-vector containing all Zk ’s 
with k ∈ S . Then, ZS satisfies (2), because each of its component satisfies (2). Also, 
assumption (9) together with the definition of S implies that there is at least one 
k ∈ S , such that Zk satisfies (3); consequently, ZS including this Zk also satisfies (3). 
Hence, ZS is an instrument satisfying both (2) and (3), although we may not know 
which Zk in ZS satisfying (3).

(9)(Z1, ..., Zp) contains at least one Zk satisfying (2) − (3).

(10)VC(k) =
1

N

N∑
i=1

||F̃1k(zki) − F̂1(zki)
||.
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It remains to find out how we identify the set S. Since a Zk with a small VC(k) 
is likely to be in ZS , a simple method is to estimate S by �S𝜏 = {k ∶ VC(k) < 𝜏} , 
where 𝜏 > 0 is a pre-specified threshold. In application, however, it may be diffi-
cult to find a � to split {VC(k), k = 1,… , p} accurately because of the variability 
in VC(k) . Instead, we propose the following method similar to that in Huang et al. 
(2014) for feature screening. Let {l1, ..., lp} be a permutation of {1,… , p} , such that 
VC(l1) ≤ VC(l2) ≤ ⋯ ≤ VC(lp) . Then, our estimator of S is Ŝ = {l1, ..., ld̂} , where:

This is based on the following facts as N → ∞ : 

(a)	 When k ∈ S , VC(k) → 0 in probability at the rate N−1∕2 . When k ∉ S , VC(k) → 
a positive quantity in probability.

(b)	 If the dimension of S is d ≤ p − 1 , then VC(lj)∕VC(lj+1) converges to a posi-
tive constant in probability either when j + 1 ≤ d or when j ≥ d + 1 , but 
VC(ld)∕VC(ld+1) → 0 in probability.

(c)	 If the dimension of S is p, then VC(lp) − VC(l1) ≤ (logN)1∕2VC(l1) with prob-
ability tending to 1 as N → ∞.

Our selected instrument is then Ẑ = Z
Ŝ
 and the corresponding U is Û containing 

components not in Ẑ , i.e., X = (Û, Ẑ).
To end this section, we make the following two remarks.

Remark 1  Although the validation criterion defined in (8) is the same as the VC 
defined in Fang and Shao (2016), the proposed method is essentially different 
from the method in Fang and Shao (2016). First, Fang and Shao (2016) focuses on 
model selection regarding (1) with a given correct instrument Z, while the proposed 
method focuses on instrument search for a Z. Second, Fang and Shao (2016) con-
siders all 2q − 1 non-empty sub-vectors of X as candidates, which is computation-
ally infeasible as long as q is not very small. The proposed method only needs to 
consider p candidates, where p is typically linear or quadratic in q. Third, Fang and 
Shao (2016) estimates distribution function of a Z with possibly large dimension, 
which could be a difficult task, whereas the proposed method only needs to estimate 
low-dimensional distribution function, since the candidate Zk in the first step is uni-
variate or bivariate.

Remark 2  The factor logN in (11) can be replaced by any sequence aN satisfying 
aN∕N

1∕2
→ 0 as N → ∞ . This is a common phenomenon in model/variable selec-

tion. We choose logN , because it is used in the well-known BIC and it performs 
well in our simulation studies.

(11)�d =

⎧
⎪⎪⎨⎪⎪⎩

arg min
1≤j≤p−1 VC(lj)∕VC(lj+1) if

VC(lp) − VC(l1)

VC(l1)
> (logN)1∕2,

p if
VC(lp) − VC(l1)

VC(l1)
≤ (logN)1∕2.



525

1 3

Instrument search for nonignorable nonresponse

3 � Asymptotic theory

We now establish some asymptotic properties of the validation criterion and Ẑ . First, 
we study the asymptotic properties of �̂k . When Zk is a correct instrument satisfying 
(2)-(3), as shown in Zhao and Shao (2015), �̂k is consistent for � and asymptotically 
normal under some regularity conditions. When Zk does not necessarily satisfy (2), 
i.e., Zk may be in the propensity model, we have the following result to show the 
property of �̂k under a misspecified instrument.

Theorem 1  Assume the following regularity conditions.

(C1)	� The estimator �̂k = p̂(uki|zki) of �k = p(uki|zki) used in (10) is constructed 
using observed covariate data and either a correctly specified parametric 
model on �k or a nonparametric kernel method, so that �̂k is consistent and 
asymptotically normal.

(C2)	� Let

and Ik(�k, �k) = E[R log p(Zk|Y ,Uk)∕p(Zk|Y ,Uk;�k, �k,F)] , where F is the true distri-
bution of Zk . For �̃k in a neighborhood of �k , Ik(�, �̃k) has a unique minimum over �.

(C3)	� Write Hk(W;�k, �k,F)=R log p(Zk|Y ,Uk;�k, �k,F) , where W=(Y ,X,R) and 
wi = (yi, xi, ri) . For some 𝜖1 > 0 and 𝜖2 > 0 , as N → ∞ : 

and E{Hk(W;�k, �̂k, F̂) − Hk(W;�k, �k,F)} → 0 in probability.

(C4)	� Assumption (1) holds and f (Y|X;�) is twice continuously differentiable with 
respect to � on a bounded and closed set � in the Euclidean space of a fixed 
dimension, and the matrix E{−�2Hk(W;�, �k0,F)∕����

T |�=�∗
k
} is positive 

definite, where the expectation is with respect to the true distribution of W 
and �∗

k
 is an interior point of � that minimizes Ik(�, �k).

 Then, �̂k is consistent for �∗
k
 and asymptotically normal as N → ∞.

Condition (C1) means that a consistent and asymptotically normal estimator �̂k is 
required. If a correct parametric model for �k is not possible, then we have to apply 
a nonparametric method such as kernel (Zhao and Shao 2015; Chen et al. 2018). If 
the dimension of X is not low, then dimension reduction needs to be applied (Chen 
et al. 2018).

Define:

p(Zk|Y ,Uk;�k, �k,F) =
f (Y|Uk, Zk;�k)�k(Uk|Zk)dF(Zk)
∫ f (Y|Uk, z;�k)�k(Uk|z)dF(z)

sup
||�𝜂k−𝜂k ||<𝜖1
||G−F||<𝜖2

||||||
1

N

N∑
i=1

Hk(wi;𝜃k, �𝜂k,G) − E{Hk(W;𝜃k, �𝜂k,G)}

||||||
→ 0,
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and

Since �̂k → �∗
k
 and �̂k → �k in probability, F̂1k(zk) also converges to F1k(zk) in prob-

ability as N → ∞ . Then, VC(k) defined in (10) converges in probability to �k . If Zk 
is a correct instrument satisfying (2)-(3), then �k = 0 . Note that, if Zk satisfies (2) 
but not (3), i.e., Zk could be excluded from both p(Y|X) and P(R = 1|Y ,X) , condition 
(C2) in Theorem 1 is not satisfied and �∗

k
 is not identifiable. Hence, �̂k is not a con-

sistent estimator of �∗
k
 . Fortunately, in this case, f (Y|Uk, Zk;�

∗
k
) = f (Y|Uk;�

∗
k
) , and 

it can also be canceled from the numerator and denominator on the right-hand side 
of (12), which shows that �k = 0 and VC(k) still converges to �k although �̂k is not 
consistent when Zk satisfies (2) but not (3). Hence, if we assume that 𝛥k > 0 unless 
Zk satisfies (2), then the covariates included in the propensity model could be distin-
guished and the union of rest covariates could be selected as an instrument.

Theorem 2  Let S = {1 ≤ k ≤ p,Zk satisfies (2)} , ZS be the sub-vector containing all 
Zk’s with k ∈ S , d̂ be given by (11), Ŝ be the index set contains indices of d̂ smallest 
VC(k)’s, and Ẑ = Z

Ŝ
 be the vector containing all Zk’s with k ∈ Ŝ . Assume (1), (9), 

(C1)–(C4) in Theorem 1, and 𝛥k > 0 unless Zk satisfies (2). Then P(Ŝ = S) → 1 and 
P(Ẑ = ZS) → 1 as N → ∞ while p remains fixed; that is, with probability tending to 
1, Ẑ is the vector of all covariates satisfying (2). Furthermore, with probability tend-
ing to 1, Ẑ satisfies (3).

Once Z = Ẑ is selected to be an instrument, the rest of components in X forms 
Û , which is the most compact U in the propensity P(R = 1|Y ,U) . After instrument 
selection, � in model (1) can be estimated by maximizing the pseudo-likelihood (4) 
with Z = Ẑ and U = Û . For inference on � , we recommend the bootstrap, since the 
form of asymptotic covariance matrix of �̂  is complicated.

Although our proposed method requires a model such as (1), we can combine our 
method with the model selection method regarding (1) in Fang and Shao (2016) to 
select instrument and model together. Specifically, we can consider several candidate 
models fl(Y|X, �l) , l = 1, ..., L . For each candidate model l, the instrument search 
procedure can be carried as described in Sect. 2 by treating fl(Y|X, �l) as the model. 
Based on fl(Y|X, �l) and the selected instrument Ẑl , we calculate the penalized vali-
dation criterion (PVC) in Fang and Shao (2016), which is the same as VC(k) in (10) 
plus a penalty term that converges to 0 as N → ∞ . Assume that �k defined in (13) 
is positive when model fl(Y|X, �l) is wrong. Then, the PVC does not converges to 
0 when fl(Y|X, �l) is wrong. Thus, if we select the model with smallest PVC value, 
then the combined instrument search and model selection procedure finds a correct 
model and a correct instrument. We illustrate this combined method in Sect. 5.

In theory, Theorems 1–2 ensure that estimation and inference based on selected 
variables and pseudo-likelihood are asymptotically valid. Although our limited 

(12)F1k(zk) = EY ,U|R=1

{∫ f (Y|Uk, Zk;�
∗
k
)�k(Uk|Zk)I(Zk ≤ zk)dF(Zk)

∫ f (Y|Uk, Zk;�
∗
k
)�k(Uk|Zk)dF(Zk)

}

(13)�k = E|F1k(Z) − F1(Z)|.
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simulation results show that the finite sample bias of �̂  is negligible, there may be 
“winner’s curse” bias in some applications, pointed early by Pötscher (1991) and 
Zhang (1992) and more recently by Leeb and Pötscher (2006) and Bachoc et  al. 
(2019). One way to mitigate winner’s curse bias is to use an additional independent 
dataset for variable selection, but it is costly. Alternatively, one may split the data set 
into two parts, one for variable selection and the other for inference afterwards. This 
deserves further research.

4 � Simulation

In this section, we study the finite-sample performance of the proposed method in 
terms of the rate that we select instrument, and the performance of estimators of � and 
E(Y) based on the pseudo-likelihood and the selected instrument. All the results are 
based on 1000 simulation replications and three sample sizes N = 100, 200, 500.

4.1 � Simulation study 1

In the first simulation study, we consider a three-dimensional covariate vector 
X = (X1,X2,X3) with no redundant covariate in p(Y|X). We consider independent Xj’s, 
Xj ∼ chi-square with one degree of freedom, j = 1, 2, 3 , and f (Y|X;�) to be the den-
sity of N(�0 + �1X1 + �2X2 + �3X3, �

2) , where � = (�0, �1, �2, �3, �
2) = (5, 2, 2, 2, 3) . 

For the nonresponse propensity, we consider the following three cases:

The unconditional response rates for these three cases are 68%, 63% and 52%, 
respectively. Since all covariates are continuous, the candidate instrument set in the 
first step is just (X1,X2,X3) , but the final selected instrument Ẑ = Z

Ŝ
 has 23 − 1 = 7 

possible results. To estimate p(U|Z) in the pseudo-likelihood (4), we apply the non-
parametric kernel method (Zhao and Shao 2015; Chen et al. 2018).

Table 1 reports the number of times of selecting each possible instrument by the 
proposed search procedure. It can be seen that the proposed method can select the 
instrument ZS with empirical probability much higher than those for other candi-
dates. When the sample size is 200 or larger, the probability of correctly selecting ZS 
nearly equals 1.

Besides instrument selection, we also consider the estimation of � and E(Y) using 
different instruments and the pseudo-likelihood (4). Table  2 reports the empirical 
means and standard derivations of estimators when N = 200 . With missing data, the 
only data-adaptive estimators are those based on Ẑ , and the rest estimators based on 
a fixed choice of instrument are entered for comparison. In Case 1, the vector of all 
instruments is the whole covariate vector, i.e., ZS = (X1,X2,X3) ; but any non-empty 
sub-vector of X is also a correct instrument satisfying (2)-(3). In Case 2, the vector 

1. P(R=1|Y ,X) =[
1+exp {−Y + 8}

]−1
, U = ∅, ZS = X;

2. P(R=1|Y ,X) =[
1+exp

{
−Y(4X1 − 1)

}]−1
, U = X1, ZS = (X2,X3);

3. P(R=1|Y ,X) =[
1+exp

{
−1.2Y(8X1X2 − 1)

}]−1
, U = (X1,X2), ZS = X3.
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of all instruments is ZS = (X2,X3) ; and either X2 or X3 is a correct one-dimensional 
instrument. In Case 3, only ZS = X3 is the correct instrument. Table  2 shows the 
results when a correct instrument or our proposed Ẑ is used. It can be seen that esti-
mators are almost unbiased, but the use of true ZS produces the most efficient esti-
mators, and estimators based on the proposed Ẑ are almost the same as those based 
on ZS . On the other hand, when we use a wrong instrument (for example, in Case 2, 
X1 , (X1,X2) , (X1,X3) , and (X1,X2,X3) are wrong instruments), some estimators are 
seriously biased. The last row for each case of Table 2 reports the results for estima-
tors when there are no missing data, which provides a standard of the best we can 
do.

4.2 � Simulation study 2

In the second simulation study, we consider the situation where p(Y|X) involves 
some redundant covariates and X = (X1,… ,X10) is 10-dimensional. Here, Y and 
(X1,X2,X3) are generated the same as those in simulation study 1 in Sect. 4.1, and 
X4,… ,X10 are generated independently from the standard normal distribution and 
are redundant, i.e., p(Y|X) = p(X1,X2,X3) . In this experiment, we consider the fol-
lowing three models for (1):

where M1 is a correct model, M2 is a wrong model, and M3 is correct but overfitted. 
The best model, i.e., the most compact correct model, is M1 with �4 = ⋯ = �10 = 0 . 
Therefore, in this experiment, besides instrument search, we also consider model 
selection as discussed in Remark 2 in the end of Sect. 2.

M1 ∶ Y|X ∼ N
(
�0 + �1X1 +⋯ + �10X10, �

2
)
,

M2 ∶ Y|X ∼ N
(
�0 + �1X

2
1
+⋯ + �10X

2
10
, �2

)
,

M3 ∶ Y|X ∼ N
(
�0 + �1X1 +⋯ + �10X10 + �1X

2
1
+⋯ + �10X

2
10
, �2

)
,

Table 1   Number of times validation criterion (11) selects each instrument in 1000 simulations

Case Z
S

 N Selected instrument by (11)

X1 X2 X3 (X1,X2) (X1,X3) (X2,X3) (X1,X2,X3)

1 (X1,X2,X3) 100 7 7 9 8 6 4 959
200 4 7 6 5 3 4 971
500 3 2 2 3 3 4 983

2 (X2,X3) 100 0 15 19 0 0 965 1
200 0 10 8 0 0 982 0
500 0 0 0 0 0 1000 0

3 X3 100 2 3 701 0 53 57 184
200 0 0 939 0 11 9 41
500 0 0 1000 0 0 0 0
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For the propensity, we consider the three cases in Sect.  4.1, and an additional 
case,

4. P(R = 1|Y ,X) = [
1 + exp

{
−Y(X4 + 0.5)

}]−1
,U = X4, Z = (X1,X2,X3).

The unconditional response rate for Case 4 is 69%. The reason which we 
consider the additional Case 4 is that it is the case where p(Y|X) is a func-
tion of X∗ = (X1,X2,X3) and U = X4 is not in X∗ , whereas in all Cases 1-3, 
U ⊂ X∗ = (X1,X2,X3).

Table 3 reports the frequencies in 1000 simulations of correctly selecting the com-
bination of (U, ZS) and M1 using the proposed procedure in Sect. 2. It can be seen that, 
in Cases 1–2 and 4, all correct selection probabilities are higher than 90% and some are 

Table 2   Mean and standard deviation (in parentheses) of estimators using different Zs when N = 200 
based on 1000 simulations

Case Z used Parameter

�0 = 5 �1 = 2 �2 = 2 �3 = 2 �2 = 3 E(Y) = 11

1 X1 5.00 (0.39) 2.00 (0.13) 2.01 (0.14) 2.01 (0.14) 2.91 (0.49) 11.01 (0.40)
X2 4.99 (0.40) 2.01 (0.15) 2.01 (0.12) 2.01 (0.15) 2.93 (0.49) 11.00 (0.40)
X3 5.01 (0.38) 2.00 (0.14) 2.01 (0.15) 2.00 (0.12) 2.91 (0.49) 11.01 (0.41)
(X1,X2) 5.00 (0.33) 2.00 (0.11) 2.00 (0.11) 2.00 (0.12) 2.93 (0.43) 10.99 (0.38)
(X1,X3) 5.01 (0.33) 2.00 (0.11) 2.01 (0.12) 2.00 (0.11) 2.91 (0.43) 11.00 (0.38)
(X2,X3) 5.01 (0.32) 2.00 (0.11) 2.00 (0.11) 2.00 (0.11) 2.92 (0.43) 10.99 (0.39)
(X1,X2,X3) 5.01 (0.30) 2.00 (0.10) 2.00 (0.10) 2.00 (0.10) 2.91 (0.40) 10.99 (0.37)

Ẑ 5.01 (0.30) 2.00 (0.10) 2.00 (0.10) 2.00 (0.10) 2.91 (0.40) 10.99 (0.37)

No missing 4.99 (0.19) 2.00 (0.09) 2.00 (0.09) 2.00 (0.09) 2.93 (0.30) 10.98 (0.36)
2 X1 3.36 (0.40) 2.48 (0.18) 2.00 (0.14) 2.00 (0.14) 3.84 (0.65)  9.84 (0.50)

X2 4.99 (0.44) 2.01 (0.16) 2.00 (0.16) 2.02 (0.19) 2.90 (0.54) 11.01 (0.42)
X3 5.00 (0.43) 2.00 (0.16) 2.01 (0.18) 2.01 (0.16) 2.91 (0.53) 11.01 (0.42)
(X1,X2) 4.10 (0.34) 2.23 (0.13) 2.13 (0.14) 2.00 (0.14) 3.29 (0.48) 10.44 (0.44)
(X1,X3) 4.10 (0.34) 2.23 (0.13) 2.00 (0.13) 2.13 (0.14) 3.29 (0.48) 10.44 (0.44)
(X2,X3) 5.00 (0.35) 2.00 (0.13) 2.00 (0.13) 2.00 (0.13) 2.91 (0.44) 10.99 (0.39)
(X1,X2,X3) 4.43 (0.34) 2.15 (0.14) 2.07 (0.13) 2.07 (0.13) 3.13 (0.43) 10.68 (0.42)

Ẑ 5.00 (0.35) 2.00 (0.13) 2.00 (0.14) 2.00 (0.13) 2.91 (0.44) 10.99 (0.39)

No missing 4.99 (0.19) 2.00 (0.09) 2.00 (0.09) 2.00 (0.09) 2.93 (0.30) 10.98 (0.36)
3 X1 3.39 (0.49) 2.39 (0.17) 2.20 (0.17) 2.00 (0.17) 3.59 (0.65)  9.95 (0.50)

X2 3.37 (0.53) 2.20 (0.18) 2.40 (0.17) 2.00 (0.18) 3.60 (0.68)  9.94 (0.51)
X3 4.99 (0.53) 2.00 (0.17) 2.02 (0.18) 2.01 (0.18) 2.90 (0.59) 11.00 (0.43)
(X1,X2) 3.46 (0.42) 2.31 (0.14) 2.31 (0.14) 1.99 (0.16) 3.43 (0.57) 10.05 (0.47)
(X1,X3) 4.11 (0.42) 2.18 (0.14) 2.12 (0.14) 2.09 (0.16) 3.18 (0.51) 10.48 (0.44)
(X2,X3) 4.10 (0.41) 2.11 (0.14) 2.19 (0.13) 2.09 (0.16) 3.19 (0.52) 10.47 (0.44)
(X1,X2,X3) 3.89 (0.38) 2.21 (0.13) 2.21 (0.13) 2.08 (0.16) 3.22 (0.50) 10.36 (0.45)

Ẑ 4.96 (0.57) 2.01 (0.17) 2.02 (0.18) 2.02 (0.18) 2.91 (0.59) 10.98 (0.45)

No missing 4.99 (0.19) 2.00 (0.09) 2.00 (0.09) 2.00 (0.09) 2.93 (0.30) 10.98 (0.36)
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close to 1 when N = 200 and 500, and are between 70% and 90% when N = 100 . Case 
3 is the most difficult situation for instrument search, since Z∗ is one-dimensional and 
X is 10-dimensional; the correct selection probabilities are too low when N = 100 , but 
are adequate when N = 200 , and are close to 1 when N = 500.

5 � Real data example

To illustrate our proposed instrument selection method, we consider a real data set 
from the National Health and Nutrition Examination Survey (NHANES) conducted in 
2005 by the United States Centers for Disease Control and Prevention, which was also 
analyzed in Fang and Shao (2016) from model selection perspective. In this data set, 
Y is the body fat percentage, which is measured by dualenergy X-ray absorptiometry 
and denoted as dxa. The covariates are age, gender, and body mass index (bmi), i.e., 
X = (bmi, age, gender) . As in Fang and Shao (2016), we consider N = 1591 middle-
aged and elderly people, from whom 393 (24.7%) have missing dxa.

We combine our instrument search method and the model selection method in Fang 
and Shao (2016) to select instrument and model (1) together as discussed in Remark 2 
in the end of Sect. 2. Following Fang and Shao (2016), we consider the following four 
candidate models:

M1 ∶ Y|X ∼ N(�0 + �1bmi + �2age + �3gender, �
2);

M2 ∶ Y|X ∼ N(�0 + �1bmi + �2age + �3gender + �4age × gender, �2);

M3 ∶ log Y|X ∼ N(�0 + �1 log(bmi) + �2age + �3gender, �
2);

M4 ∶ log Y|X ∼ N(�0 + �1 log(bmi) + �2age + �3gender+�4age × gender, �2)

Table 3   Frequency of correctly 
selecting the combination 
of (U,Z

S
) and M1 in 1000 

replications at each step in 
simulation study 2

Step 1: correctly selecting the combination of (U,Z
S
) under model 

M1

Step 2: correctly selecting the combination of (U,Z
S
) and M1

Case U Z N Step 1 Step 2

1 ∅ (X1,X2,X3) 100 913 901
200 928 928
500 939 939

2 X1 (X2,X3) 100 959 864
200 982 943
500 1000 1000

3 (X1,X2) X3 100 392 340
200 868 807
500 998 990

4 X4 (X1,X2,X3) 100 832 758
200 985 962
500 999 999
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Since gender is a binary covariate, as we discussed in Sect. 2, we need to combine 
gender with either age or bmi to prepare the candidate instrument set in the first step. 
Then, we have the following p = 4 candidates of instrument: Z1 = age , Z2 = bmi , 
Z3 = (age, gender) , and Z4 = (bmi, gender) . Noted that the final selected Ẑ could be 
the union of these candidates. In this dataset, bmi, age, and gender are almost inde-
pendent (see also Fang and Shao (2016)), so that the estimation of p(U|Z) has little 
effect.

For each candidate model Mj, j = 1, 2, 3, 4 , the proposed instrument search pro-
cedure is applied. Table 4 reports the VC(k) value in (10) for each candidate instru-
ment and each model Mj . Based on (11), Ẑ = age is selected as instrument under 
models M1 and M2 , and Ẑ = (age, gender) under models M3 and M4 . Then, we obtain 
the PVC value defined in (12) of Fang and Shao (2016) using the selected Ẑ under 
each model (Table 3). The smallest PVC value corresponds to model M1 . As we dis-
cussed in Sect. 3, the PVC values corresponding to wrong models do not converge 
to 0. Thus, M1 is selected with instrument Ẑ = age and Û = (bmi, gender). Using 
pseudo-likelihood in (4) with the selected model M1 and instrument Ẑ = age, the 
estimated parameters are given in the last part of Table 4.

Acknowledgements  We thank an associate editor and two referees for their helpful comments. Jun Shao’s 
research was partially supported by the National Scientific Foundation of China (11831008) and the U.S. 
National Science Foundation grants DMS-1612873 and DMS-1914411. Fang Fang’s research was par-
tially supported by the National Scientific Foundation of China (11831008, 11601156, and 11771146).

Appendix: Proofs

Proof of Theorem 1:  As f (Y|X;�) is continuous with respect to � on a bounded and 
closed set � , for a given �̃k , Ik(�k, �̃k) must attain a minimum in � . Condition C2, 
which is similar to Assumption A3 in White (1982), guarantees that there exists a 

Table 4   Instrument and model selection and estimation results in NHANES dataset

VC(k) are given by (10) in Sect. 2
PVC are given by (12) in Fang and Shao (2016)

Model

M1 M2 M3 M4

VC(1) with Z1 = age 0.0020 0.0020 0.0020 0.0024
VC(2) with Z2 = bmi 0.0068 0.0067 0.0100 0.0100
VC(3) with Z3 = (age, gender) 0.0081 0.0073 0.0025 0.0024
VC(4) with Z4 = (bmi, gender) 0.0180 0.0178 0.0094 0.0094

Selected Ẑ using (11) age age (age, gender) (age, gender)

PVC value using Ẑ as instrument 0.0065 0.0071 0.0070 0.0074

Final model fitting after M1 and Ẑ = age are selected
Parameter �0 : intercept �1 : bmi �2 : age �3 : gender
Estimate (SE) 7.61 (4.90) 0.75 (0.09) −11.62 (0.87) 0.21 (0.08)
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unique maximizer of E[R log p(Zk|Y ,Uk;�k, �̃k,F)] when �̃k is in a neighborhood of 
�k . Therefore, �∗

k
 is identifiable under a misspecified instrument. Under condition C3, 

following the proof of Theorem 2 in Zhao and Shao (2015), �̂k converges to �∗
k
 in 

probability as N → ∞.
For each combination of X = (Uk, Zk) , maximizing (4) is the same as maximizing 

lk(�k, �̂k, F̂) , where:

Under condition C4, the asymptotic normality of �̂k follows from Taylor’s expan-
sion, �lk(�, �̂k, F̂)∕��|�=�̂k = 0 , the theory of V-statistics, and the proof of Theorem 3 
in Zhao and Shao (2015). 	�  ◻

Proof of Theorem 2:  The result of Theorem 2 follows from statements (a)–(c) after 
formula (11).

First, we prove (a) after formula (11). When Zk is a correct instrument satisfying 
(2)-(3), we consider VC(k) = ∫ |F̃1k(zk) − F̂1(zk)|dF̂(zk) . Write r =

∑N

i=1
ri , and:

By (6) and central limit theorem, gk0 = E[RI(Zk ≤ zk)] + op(N
−1∕2) and 

g(�k,F) = E[RE{I(Zk ≤ zk)|Y ,U}] + op(N
−1∕2) . Note that, by the argu-

ments of (5), E[RI(Zk ≤ zk)] = E[RE{I(Zk ≤ zk)|Y ,U}] . Therefore, 
gk(�k, �k,F) = gk0 + op(N

−1∕2) . Meanwhile, F̃1k(zk) = Ngk(�̂k, �̂k, F̂)∕r , 
F̂1(zk) = Ngk0∕r and N1∕2{F̃1k(zk) − F̂1(zk)} = NQNk(zk) , where 
QNk(zk) = N1∕2{gk(�̂k, �̂k, F̂) − gk0} . Theorem  1 shows that �̂k and �̂k are both 
consistent and asymptotically normal. Therefore, following the proof of Theo-
rem 2 in Fang and Shao (2016), QNk(zk) converges weakly to a zero-mean Gauss-
ian process. Since r∕N =

∑N

i=1
ri∕N converges to P(R = 1) almost surely, 

N−1∕2 ∫ |F̃1k(zk) − F̂1(zk)|dF̂(zk) = ∫ |QNk(zk)|dF̂(zk)∕(r∕N) converges in distribu-
tion and is Op(1) . Therefore, VC(k) → 0 in probability at the rate N−1∕2 when k ∈ S . 
When k ∉ S , VC(k) → �k , which is assumed to be positive.

Next, if d ≤ p − 1 , then VC(lp) → 𝛥lp
> 0 and VC(l1) → 0 in probability as 

N → ∞ . Since (logN)1∕2VC(l1) → 0 in probability as N → ∞ , 
VC(lp) − VC(l1) > (logN)1∕2VC(l1) with probability tending to 1. Hence, with prob-
ability tending to 1, d̂ = argmin1≤j≤p−1 VC(lj)∕VC(lj+1) . By the proved (a) after for-
mula (11), VC(lj)∕VC(lj+1) converges to a positive constant in probability when 
j ≥ d + 1 and VC(ld)∕VC(ld+1) → 0 in probability. Following the fact that 
N

−
1

2 ∫ |F̃1k(zk)−F̂1(zk)|dF̂(zk)=∫ |QNk(zk)|dF̂(zk)∕(r∕N) converges in distribution 

lk(�k, �k,F)

=
1

N

N∑
i=1

ri{log p(yi|uki, zki;�k) − log∫ p(yi|uki, Zk;�k)p(uki|Zk;�k)dF(Zk)}.

gk0 =
1

N

N∑
i=1

riI(Zk ≤ zk),

gk(�k, �k,F) =
1

N

N∑
i=1

ri
∫ f (Y|Uk, Zk;�k)�k(Uk|Zk)I(Zk ≤ zk)dF(Zk)

∫ f (Y|Uk, Zk;�k)�k(Uk|Zk)dF(Zk)
.
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when k ∈ S and is not degenerate, VC(lj)∕VC(lj+1) converges to a positive constant 
in probability when j + 1 ≤ d . This proves (b) after formula (11).

If d = p , then ZS = X . Hence, VC(k) → 0 in probability at the rate N−1∕2 as 
N → ∞ for k = 1,… , p . Since (logN)1∕2VC(l1) → 0 at a rate slower than N−1∕2 , 
(logN)1∕2VC(l1) > VC(lp) − VC(l1) in probability as N → ∞ . This proves (c) after 
formula (11) and the fact that P(d̂ = p) → 1 . 	� ◻
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