Instrument search in pseudo-likelihood approach for nonignorable nonresponse

Ji Chen ${ }^{1} \cdot$ Jun Shao ${ }^{2,3} \cdot$ Fang Fang 2

Received: 7 May 2019 / Revised: 2 December 2019 / Published online: 13 June 2020
© The Institute of Statistical Mathematics, Tokyo 2020

Abstract

With nonignorable nonresponse, an effective method to construct valid estimators of population parameters is to use a covariate vector called instrument that can be excluded from the nonresponse propensity, but are associated with the response even when other covariates are conditioned. The existing work in this approach assumes such an instrument is given, which is frequently not the case in applications. In this paper, we investigate how to search for an instrument from a given set of covariates, based on a pseudo likelihood approach assuming a parametric distribution of response conditioned on covariates and a totally unspecified nonresponse propensity. We propose a method and show that it produces a consistent instrument selection as the sample size tends to infinity, under some regularity conditions. The proposed method is examined in a simulation study and illustrated in a real data example.

Keywords Nonignorable nonresponse • Nonresponse instrument • Pseudolikelihood • Variable selection

1 Introduction

Nonresponse with an appreciable rate is common in many applications such as clinical trials and sample surveys. Let Y be a response or outcome of interest that may have nonresponse, X be a covariate vector that is always observed, and R be the indicator equaling 1 if Y is observed and 0 if Y is missing. When the propensity $P(R=1 \mid Y, X)$ is equal to $P(R=1 \mid X)$ not depending on Y, the nonresponse is called

[^0]ignorable and there is a rich literature on methodology of handling ignorable nonresponse (Little and Rubin 2002). However, in many applications, $P(R=1 \mid Y, X)$ depends on both X and Y, in which cases nonresponse is referred to as nonignorable and estimation of population parameters is much more challenging than that in the case of ignorable nonresponse.

Throughout we use $p(\cdot \mid \cdot)$ or $p(\cdot)$ as a generic notation for the conditional or unconditional probability density with respect to an appropriate measure (discrete, continuous, or mixed). With nonignorable nonresponse, when both $p(Y \mid X)$ and $P(R=1 \mid Y, X)$ are parametric, maximum-likelihood methods have been developed (Greenlees et al. 1982; Baker and Laird 1988). When both $p(Y \mid X)$ and $P(R=1 \mid Y, X)$ are nonparametric, Robins and Ritov (1997) showed that the population may not be identifiable. Hence, efforts have been made to develop semiparametric methods, assuming one of $p(Y \mid X)$ and $P(R=1 \mid Y, X)$ has a parametric form and the other one is nonparametric. Qin et al. (2002) and Wang et al. (2014) imposed a parametric model on $P(R=1 \mid Y, X)$, but allowed $p(Y \mid X)$ to be nonparametric. Following Tang et al. (2003), Zhao and Shao (2015), and Chen et al. (2018), in this paper, we focus on a nonparametric $P(R=1 \mid Y, X)$ and a parametric model:

$$
\begin{equation*}
p(Y \mid X)=f(Y \mid X ; \theta) \tag{1}
\end{equation*}
$$

where θ is an unknown parameter vector and $f(Y \mid X ; \theta)$ is known when θ is known.
In their semiparametric approach, Zhao and Shao (2015) utilized a covariate vector Z called nonresponse instrument or simply instrument, to guarantee the identifiability of population parameters, so that consistent estimators can be obtained. More precisely, an instrument Z is a sub-vector of X, i.e., $X=(U, Z)$, such that Z satisfies the following two conditions:

$$
\begin{gather*}
P(R=1 \mid Y, X)=P(R=1 \mid Y, U) \tag{2}\\
p(Y \mid X)=p(Y \mid U, Z) \text { depends on } Z \tag{3}
\end{gather*}
$$

If we know which components of X satisfy (2)-(3), then parameters in $p(Y \mid X)$ can be estimated using pseudo-likelihoods (Zhao and Shao 2015) and parametric model selection regarding (1) can also be performed (Fang and Shao 2016). Note that even if both $p(Y \mid X)$ and $P(R=1 \mid Y, X)$ are parametric, there is still an identifiability issue and the use of an instrument satisfying (2)-(3) may be needed. See, for example, Wang et al. (2014) and Miao et al. (2016).

In applications, however, an instrument satisfying (2)-(3) is not given and we must search for an instrument using observed data. The purpose of this paper is to propose and study a method for instrument search from the given covariate vector X, assuming that an instrument satisfying (2)-(3) exists. After an introduction of a pseudo-likelihood method in Sect. 2, we propose a pseudo-likelihood-based maximum ratio criterion to select an instrument. Although our method requires a model such as (1), we can combine our method with model selection regarding (1) in Fang and Shao (2016) to select instrument and model together. In Sect. 3, we establish that, with probability tending to 1 as the sample size $N \rightarrow \infty$, while the dimension of X remains fixed, our selected instrument equals an instrument
satisfying (2)-(3). To complement theoretical work, we carry out some simulations in Sect. 4 to examine finite sample properties. For illustration, we apply the proposed method to a real data set in Sect. 5. All technical details are given in an Appendix.

2 Method

We use the notation in Sect. 1, i.e., Y is a response subject to nonresponse, R is the indicator of observing Y, and X is a covariate vector with no missing values. Under assumption (1), our goal is to estimate θ in (1) based on a random sample $\left\{\left(y_{i}, x_{i}, r_{i}\right), i=1, \ldots, N\right\}$ from (Y, X, R), where y_{i} is observed if and only if $r_{i}=1$. When asymptotic properties are studied, we consider $N \rightarrow \infty$, while the dimension of X remains fixed.

Note that (2) implies that:

$$
p(Z \mid Y, U, R=1)=p(Z \mid Y, U)=\frac{p(Y \mid U, Z) p(U, Z)}{\int p(Y \mid U, z) p(U, z) d z}
$$

If we know which components of X formed Z satisfying (2)-(3), then we can estimate θ by $\hat{\theta}$ that maximizes the following pseudo-likelihood based on data with $r_{i}=1$:

$$
\begin{equation*}
\prod_{i \leq N, r_{i}=1} p\left(z_{i} \mid y_{i}, u_{i}\right)=\prod_{i \leq N, r_{i}=1} \frac{f\left(y_{i} \mid u_{i}, z_{i} ; \theta\right) \widehat{p}\left(u_{i} \mid z_{i}\right) d \widehat{F}\left(z_{i}\right)}{\int f\left(y_{i} \mid u_{i}, z ; \theta\right) \widehat{p}\left(u_{i} \mid z\right) d \widehat{F}(z)} \tag{4}
\end{equation*}
$$

(Tang et al. 2003; Zhao and Shao 2015), where \widehat{F} is the empirical cumulative distribution function of $Z, \widehat{p}(u \mid z)$ is a consistent estimator of $p(u \mid z)$ using observed $x_{i}=\left(u_{i}, z_{i}\right)$ and an available method in the literature, either parametrically or nonparametrically, e.g., Lipsitz and Ibrahim (1996), Ibrahim et al. (1999), Zhao and Shao (2015), and Chen et al. (2018). Note that condition (3) ensures that the likelihood function in (4) is a non-constant function of θ. According to Zhao and Shao (2015), as long as there is a non-binary Z satisfying (2)-(3), $\hat{\theta}$ is consistent and asymptotically normal as $N \rightarrow \infty$.

Note that Z satisfying (2) guarantees the validity of pseudo-likelihood (4), whereas Z satisfying (3) ensures that likelihood (4) depends on θ, so that we can estimate θ by maximizing (4).

We now consider how to search for an instrument Z satisfying (2)-(3) from X based on the sample data. For a given candidate Z, a sub-vector of X, our idea is to check whether Z can be an instrument by comparing two estimators of the condition distribution $F_{1}(z)=P(Z \leq z \mid R=1)$, where z is a possible value for Z and, for two vectors a and $b, a \leq b$ means that all components of a are less than or equal to the corresponding components of b. One estimator is the empirical cumulative distribution function:

$$
\widehat{F}_{1}(z)=\sum_{i=1}^{N} r_{i} I\left(z_{i} \leq z\right) / \sum_{i=1}^{N} r_{i},
$$

which does not depend on any model or instrument and, hence, is always consistent, where $I(\cdot)$ is the indicator function. The other estimator is based on the pseudo likelihood (4) and $\hat{\theta}$. Under condition (2):

$$
\begin{align*}
F_{1}(z) & =E\{I(Z \leq z) \mid R=1\} \\
& =E[E\{I(Z \leq z) \mid Y, U, R=1\} \mid R=1] \\
& =E[E\{I(Z \leq z) \mid Y, U\} \mid R=1] \tag{5}\\
& \approx \sum_{i=1}^{N} r_{i} E\left\{I(Z \leq z) \mid y_{i}, u_{i}\right\} / \sum_{i=1}^{N} r_{i},
\end{align*}
$$

where the approximation is valid because of the law of large numbers. Also:

$$
\begin{align*}
E\left\{I(Z \leq z) \mid y_{i}, u_{i}\right\} & =\int I(t \leq z) p\left(t \mid y_{i}, u_{i}\right) d t \\
& =\frac{\int I(t \leq z) p\left(y_{i} \mid u_{i}, t\right) p\left(u_{i} \mid t\right) d F(t)}{\int p\left(y_{i} \mid u_{i}, t\right) p\left(u_{i} \mid t\right) d F(t)} \tag{6}\\
& \approx \frac{\sum_{j=1}^{N} f\left(y_{i} \mid u_{i}, z_{j} ; \hat{\theta}\right) \hat{p}\left(u_{i} \mid z_{j}\right) I\left(z_{j} \leq z\right)}{\sum_{j=1}^{N} f\left(y_{i} \mid u_{i}, z_{j} ; \hat{\theta}\right) \hat{p}\left(u_{i} \mid z_{j}\right)}
\end{align*}
$$

where F is the distribution function of Z and the approximation is valid if (1)-(2) hold and $\hat{\theta}$ and $\hat{p}(u \mid z)$ are consistent. Hence, using (5) and (6), we estimate $F_{1}(z)$ by:

$$
\begin{equation*}
\widetilde{F}_{1}(z)=\sum_{i=1}^{N} r_{i} \frac{\sum_{j=1}^{N} f\left(y_{i} \mid u_{i}, z_{j} ; \hat{\theta}\right) \hat{p}\left(u_{i} \mid z_{j}\right) I\left(z_{j} \leq z\right)}{\sum_{j=1}^{N} f\left(y_{i} \mid u_{i}, z_{j} ; \hat{\theta} \hat{p}\left(u_{i} \mid z_{j}\right)\right.} / \sum_{i=1}^{N} r_{i} . \tag{7}
\end{equation*}
$$

If Z is an instrument, then $\widetilde{F}_{1}(z)$ in (7) should be close to the empirical cumulative distribution $\widehat{F}_{1}(z)$; otherwise, the two estimators may not be close to each other.

Following Fang and Shao (2016), a natural idea is to select Z based on the following expected distance between $\widetilde{F}_{1}(z)$ and $\widehat{F}_{1}(z)$:

$$
\begin{equation*}
\mathrm{VC}=\frac{1}{N} \sum_{i=1}^{N}\left|\widetilde{F}_{1}\left(z_{i}\right)-\widehat{F}_{1}\left(z_{i}\right)\right| \tag{8}
\end{equation*}
$$

where VC means "validation criterion". We may search all possible Z and take the one with the smallest VC value as our estimated instrument \hat{Z}.

However, there are two serious issues. First, to find an instrument from a q-dimensional X, we need to consider all possible $2^{q}-1$ non-empty sub-vectors of X as candidates. Even if we do not consider high-dimensional X, a search over $2^{q}-1$ candidates is still computationally infeasible when q is not very small. Also, if the dimension of Z is not very small, the estimation of $F_{1}(z)$ is quite a challenge itself.

The second issue is that validation criterion (8) can check whether the candidate Z satisfies (2), but cannot check whether Z satisfies (3). More precisely, if Z satisfies both (2) and (3), i.e., Z is an instrument, then VC $\rightarrow 0$ in probability as $N \rightarrow \infty$, because both \widetilde{F}_{1} and \widehat{F}_{1} are consistent for F_{1}; if Z does not satisfy (2), then \widetilde{F}_{1} does not converge to F_{1} and, hence, VC does not converge to 0 ; however, if Z satisfies (2) but not (3), then approximation (6) is still good because $f\left(y_{i} \mid u_{i}, z_{j} ; \hat{\theta}\right)=f\left(y_{i} \mid u_{i} ; \hat{\theta}\right)$ can be canceled from the numerator and denominator on the right-hand side of (6) and, thus, VC still converges in probability to 0 even if $\hat{\theta}$ is not consistent. As discussed after deriving pseudo-likelihood (4), we need a Z satisfying both (2) and (3).

To address these two issues, we proposed a whole new two-step instrument search procedure as follows.

In the first step, we prepare a candidate instrument set including only one- or two-dimensional covariates and calculate their VC values. As discussed in Zhao and Shao (2015), a single binary covariate alone cannot be used as an instrument, since it does not provide enough information to identify all population parameters, except for some special situations. Thus, other than the non-binary covariates, we combine each binary covariate with another single covariate (binary or not) to form a vector of candidates, $\left(Z_{1}, \ldots, Z_{p}\right)$, where p may be different from the original dimension of X. For example, if $X=\left(X_{1}, \ldots, X_{q}\right)$ is q-dimensional, X_{q} is binary and all X_{1}, \ldots, X_{q-1} are non-binary, then $p=2 q-2, Z_{j}=X_{j}, j=1, \ldots, q-1(q-1$ single covariates $)$, and $Z_{j}=\left(Z_{j-q+1}, X_{q}\right), j=q, \ldots, p(q-1$ combined covariates). See Sect. 5 for an example. We assume that:

$$
\begin{equation*}
\left(Z_{1}, \ldots, Z_{p}\right) \text { contains at least one } Z_{k} \text { satisfying (2) - (3). } \tag{9}
\end{equation*}
$$

There may be other ways to avoid selecting a binary covariate as instrument, e.g., if X_{q} is the only binary covariate, we may set $\left(Z_{1}, \ldots, Z_{p}\right)=\left(X_{1}, \ldots, X_{q-1}\right)$ to exclude X_{q}, in which case $p=q-1$.

For each $Z_{k}, k=1, \ldots, p$, let U_{k} be the sub-vector of X with components not in k. For the k th split of X into $\left(U_{k}, Z_{k}\right)$, let $u_{k i}$ and $z_{k i}$ be observed U_{k} and Z_{k}, respectively, $\hat{\theta}_{k}$ be the maximizer of (4) with $u_{i}=u_{k i}, z_{i}=z_{k i}$, and $\hat{p}\left(u_{i} \mid z_{i}\right)=\hat{p}\left(u_{k i} \mid z_{k i}\right)$, and let $\widetilde{F}_{1 k}(z)$ be defined by the right-hand side of (7) with $\hat{\theta}=\hat{\theta}_{k}, u_{i}=u_{k i}, z_{i}=z_{k i}$, and $\hat{p}\left(u_{i} \mid z_{i}\right)=\widehat{p}\left(u_{k i} \mid z_{k i}\right)$. To validate whether Z_{k} is a correct instrument, we calculate:

$$
\begin{equation*}
\mathrm{VC}(k)=\frac{1}{N} \sum_{i=1}^{N}\left|\widetilde{F}_{1 k}\left(z_{k i}\right)-\widehat{F}_{1}\left(z_{k i}\right)\right| . \tag{10}
\end{equation*}
$$

In the second step, we try to find all Z_{k} satisfying (2) and then put them together as a sub-vector of our searched instrument \widehat{Z}. This step is based on the following fact. Let $S=\left\{1 \leq k \leq p, Z_{k}\right.$ satisfies (2) $\}$ and Z_{S} be the sub-vector containing all Z_{k} 's with $k \in S$. Then, Z_{S} satisfies (2), because each of its component satisfies (2). Also, assumption (9) together with the definition of S implies that there is at least one $k \in S$, such that Z_{k} satisfies (3); consequently, Z_{S} including this Z_{k} also satisfies (3). Hence, Z_{S} is an instrument satisfying both (2) and (3), although we may not know which Z_{k} in Z_{S} satisfying (3).

It remains to find out how we identify the set S. Since a Z_{k} with a small $\operatorname{VC}(k)$ is likely to be in Z_{S}, a simple method is to estimate S by $\widehat{S}_{\tau}=\{k: \operatorname{VC}(k)<\tau\}$, where $\tau>0$ is a pre-specified threshold. In application, however, it may be difficult to find a τ to split $\{\operatorname{VC}(k), k=1, \ldots, p\}$ accurately because of the variability in $\mathrm{VC}(k)$. Instead, we propose the following method similar to that in Huang et al. (2014) for feature screening. Let $\left\{l_{1}, \ldots, l_{p}\right\}$ be a permutation of $\{1, \ldots, p\}$, such that $\mathrm{VC}\left(l_{1}\right) \leq \operatorname{VC}\left(l_{2}\right) \leq \cdots \leq \operatorname{VC}\left(l_{p}\right)$. Then, our estimator of S is $\widehat{S}=\left\{l_{1}, \ldots, l_{\hat{d}}\right\}$, where:

$$
\widehat{d}= \begin{cases}\arg \min _{1 \leq j \leq p-1} \mathrm{VC}\left(l_{j}\right) / \mathrm{VC}\left(l_{j+1}\right) & \text { if } \frac{\mathrm{VC}\left(l_{p}\right)-\mathrm{VC}\left(l_{1}\right)}{\mathrm{VC}\left(l_{1}\right)}>(\log N)^{1 / 2} \tag{11}\\ p & \text { if } \frac{\mathrm{VC}\left(l_{p}\right)-\mathrm{VC}\left(l_{1}\right)}{\mathrm{VC}\left(l_{1}\right)} \leq(\log N)^{1 / 2}\end{cases}
$$

This is based on the following facts as $N \rightarrow \infty$:
(a) When $k \in S, \mathrm{VC}(k) \rightarrow 0$ in probability at the rate $N^{-1 / 2}$. When $k \notin S, \mathrm{VC}(k) \rightarrow$ a positive quantity in probability.
(b) If the dimension of S is $d \leq p-1$, then $\operatorname{VC}\left(l_{j}\right) / \mathrm{VC}\left(l_{j+1}\right)$ converges to a positive constant in probability either when $j+1 \leq d$ or when $j \geq d+1$, but $\mathrm{VC}\left(l_{d}\right) / \mathrm{VC}\left(l_{d+1}\right) \rightarrow 0$ in probability.
(c) If the dimension of S is p, then $\mathrm{VC}\left(l_{p}\right)-\mathrm{VC}\left(l_{1}\right) \leq(\log N)^{1 / 2} \mathrm{VC}\left(l_{1}\right)$ with probability tending to 1 as $N \rightarrow \infty$.

Our selected instrument is then $\widehat{Z}=Z_{\widehat{S}}$ and the corresponding U is \hat{U} containing components not in \widehat{Z}, i.e., $X=(\hat{U}, \widehat{Z})$.

To end this section, we make the following two remarks.

Remark 1 Although the validation criterion defined in (8) is the same as the VC defined in Fang and Shao (2016), the proposed method is essentially different from the method in Fang and Shao (2016). First, Fang and Shao (2016) focuses on model selection regarding (1) with a given correct instrument Z, while the proposed method focuses on instrument search for a Z. Second, Fang and Shao (2016) considers all $2^{q}-1$ non-empty sub-vectors of X as candidates, which is computationally infeasible as long as q is not very small. The proposed method only needs to consider p candidates, where p is typically linear or quadratic in q. Third, Fang and Shao (2016) estimates distribution function of a Z with possibly large dimension, which could be a difficult task, whereas the proposed method only needs to estimate low-dimensional distribution function, since the candidate Z_{k} in the first step is univariate or bivariate.

Remark 2 The factor $\log N$ in (11) can be replaced by any sequence a_{N} satisfying $a_{N} / N^{1 / 2} \rightarrow 0$ as $N \rightarrow \infty$. This is a common phenomenon in model/variable selection. We choose $\log N$, because it is used in the well-known BIC and it performs well in our simulation studies.

3 Asymptotic theory

We now establish some asymptotic properties of the validation criterion and \hat{Z}. First, we study the asymptotic properties of $\widehat{\theta}_{k}$. When Z_{k} is a correct instrument satisfying (2)-(3), as shown in Zhao and Shao (2015), $\hat{\theta}_{k}$ is consistent for θ and asymptotically normal under some regularity conditions. When Z_{k} does not necessarily satisfy (2), i.e., Z_{k} may be in the propensity model, we have the following result to show the property of $\hat{\theta}_{k}$ under a misspecified instrument.

Theorem 1 Assume the following regularity conditions.
(C1) The estimator $\hat{\eta}_{k}=\hat{p}\left(u_{k i} \mid z_{k i}\right)$ of $\eta_{k}=p\left(u_{k i} \mid z_{k i}\right)$ used in (10) is constructed using observed covariate data and either a correctly specified parametric model on η_{k} or a nonparametric kernel method, so that $\hat{\eta}_{k}$ is consistent and asymptotically normal.
(C2) Let

$$
p\left(Z_{k} \mid Y, U_{k} ; \theta_{k}, \eta_{k}, F\right)=\frac{f\left(Y \mid U_{k}, Z_{k} ; \theta_{k}\right) \eta_{k}\left(U_{k} \mid Z_{k}\right) d F\left(Z_{k}\right)}{\int f\left(Y \mid U_{k}, z ; \theta_{k}\right) \eta_{k}\left(U_{k} \mid z\right) d F(z)}
$$

and $I_{k}\left(\theta_{k}, \eta_{k}\right)=E\left[R \log p\left(Z_{k} \mid Y, U_{k}\right) / p\left(Z_{k} \mid Y, U_{k} ; \theta_{k}, \eta_{k}, F\right)\right]$, where F is the true distribution of Z_{k}. For $\tilde{\eta}_{k}$ in a neighborhood of $\eta_{k}, I_{k}\left(\theta, \widetilde{\eta}_{k}\right)$ has a unique minimum over θ.
(C3) Write $H_{k}\left(W ; \theta_{k}, \eta_{k}, F\right)=R \log p\left(Z_{k} \mid Y, U_{k} ; \theta_{k}, \eta_{k}, F\right)$, where $W=(Y, X, R)$ and $w_{i}=\left(y_{i}, x_{i}, r_{i}\right)$. For some $\epsilon_{1}>0$ and $\epsilon_{2}>0$, as $N \rightarrow \infty$:

$$
\sup _{\substack{\left\|\tilde{\eta}_{n}-\eta_{k}\right\|<\epsilon_{1} \\\|G-F\|<c_{2}}}\left|\frac{1}{N} \sum_{i=1}^{N} H_{k}\left(w_{i} ; \theta_{k}, \widetilde{\eta}_{k}, G\right)-E\left\{H_{k}\left(W ; \theta_{k}, \widetilde{\eta}_{k}, G\right)\right\}\right| \rightarrow 0,
$$

and $E\left\{H_{k}\left(W ; \theta_{k}, \widehat{\eta_{k}}, \widehat{F}\right)-H_{k}\left(W ; \theta_{k}, \eta_{k}, F\right)\right\} \rightarrow 0$ in probability.
(C4) Assumption (1) holds and $f(Y \mid X ; \theta)$ is twice continuously differentiable with respect to θ on a bounded and closed set Θ in the Euclidean space of a fixed dimension, and the matrix $E\left\{-\partial^{2} H_{k}\left(W ; \theta, \eta_{k 0}, F\right) /\left.\partial \theta \partial \theta^{T}\right|_{\theta=\theta_{k}^{*}}\right\}$ is positive definite, where the expectation is with respect to the true distribution of W and θ_{k}^{*} is an interior point of Θ that minimizes $I_{k}\left(\theta, \eta_{k}\right)$.

Then, $\hat{\theta}_{k}$ is consistent for θ_{k}^{*} and asymptotically normal as $N \rightarrow \infty$.
Condition (C1) means that a consistent and asymptotically normal estimator $\widehat{\eta_{k}}$ is required. If a correct parametric model for η_{k} is not possible, then we have to apply a nonparametric method such as kernel (Zhao and Shao 2015; Chen et al. 2018). If the dimension of X is not low, then dimension reduction needs to be applied (Chen et al. 2018).

Define:

$$
\begin{equation*}
F_{1 k}\left(z_{k}\right)=E_{Y, U \mid R=1}\left\{\frac{\int f\left(Y \mid U_{k}, Z_{k} ; \theta_{k}^{*}\right) \eta_{k}\left(U_{k} \mid Z_{k}\right) I\left(Z_{k} \leq z_{k}\right) d F\left(Z_{k}\right)}{\int f\left(Y \mid U_{k}, Z_{k} ; \theta_{k}^{*}\right) \eta_{k}\left(U_{k} \mid Z_{k}\right) d F\left(Z_{k}\right)}\right\} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta_{k}=E\left|F_{1 k}(Z)-F_{1}(Z)\right| . \tag{13}
\end{equation*}
$$

Since $\hat{\theta}_{k} \rightarrow \theta_{k}^{*}$ and $\hat{\eta}_{k} \rightarrow \eta_{k}$ in probability, $\widehat{F}_{1 k}\left(z_{k}\right)$ also converges to $F_{1 k}\left(z_{k}\right)$ in probability as $N \rightarrow \infty$. Then, $\operatorname{VC}(k)$ defined in (10) converges in probability to Δ_{k}. If Z_{k} is a correct instrument satisfying (2)-(3), then $\Delta_{k}=0$. Note that, if Z_{k} satisfies (2) but not (3), i.e., Z_{k} could be excluded from both $p(Y \mid X)$ and $P(R=1 \mid Y, X)$, condition (C2) in Theorem 1 is not satisfied and θ_{k}^{*} is not identifiable. Hence, $\widehat{\theta}_{k}$ is not a consistent estimator of θ_{k}^{*}. Fortunately, in this case, $f\left(Y \mid U_{k}, Z_{k} ; \theta_{k}^{*}\right)=f\left(Y \mid U_{k} ; \theta_{k}^{*}\right)$, and it can also be canceled from the numerator and denominator on the right-hand side of (12), which shows that $\Delta_{k}=0$ and $\mathrm{VC}(k)$ still converges to Δ_{k} although $\widehat{\theta}_{k}$ is not consistent when Z_{k} satisfies (2) but not (3). Hence, if we assume that $\Delta_{k}>0$ unless Z_{k} satisfies (2), then the covariates included in the propensity model could be distinguished and the union of rest covariates could be selected as an instrument.

Theorem 2 Let $S=\left\{1 \leq k \leq p, Z_{k}\right.$ satisfies (2) $\}, Z_{S}$ be the sub-vector containing all Z_{k} 's with $k \in S, \hat{d}$ be given by (11), \widehat{S} be the index set contains indices of \widehat{d} smallest $\mathrm{VC}(k)$'s, and $\widehat{Z}=Z_{\widehat{S}}$ be the vector containing all Z_{k} 's with $k \in \widehat{S}$. Assume (1), (9), (C1)-(C4) in Theorem 1, and $\Delta_{k}>0$ unless Z_{k} satisfies (2). Then $P(\widehat{S}=S) \rightarrow 1$ and $P\left(\widehat{Z}=Z_{S}\right) \rightarrow 1$ as $N \rightarrow \infty$ while p remains fixed; that is, with probability tending to $1, \widehat{Z}$ is the vector of all covariates satisfying (2). Furthermore, with probability tending to $1, \widehat{Z}$ satisfies (3).

Once $Z=\widehat{Z}$ is selected to be an instrument, the rest of components in X forms \widehat{U}, which is the most compact U in the propensity $P(R=1 \mid Y, U)$. After instrument selection, θ in model (1) can be estimated by maximizing the pseudo-likelihood (4) with $Z=\widehat{Z}$ and $U=\widehat{U}$. For inference on θ, we recommend the bootstrap, since the form of asymptotic covariance matrix of $\widehat{\theta}$ is complicated.

Although our proposed method requires a model such as (1), we can combine our method with the model selection method regarding (1) in Fang and Shao (2016) to select instrument and model together. Specifically, we can consider several candidate models $f_{l}\left(Y \mid X, \theta_{l}\right), l=1, \ldots, L$. For each candidate model l, the instrument search procedure can be carried as described in Sect. 2 by treating $f_{l}\left(Y \mid X, \theta_{l}\right)$ as the model. Based on $f_{l}\left(Y \mid X, \theta_{l}\right)$ and the selected instrument \widehat{Z}_{l}, we calculate the penalized validation criterion (PVC) in Fang and Shao (2016), which is the same as $\operatorname{VC}(k)$ in (10) plus a penalty term that converges to 0 as $N \rightarrow \infty$. Assume that Δ_{k} defined in (13) is positive when model $f_{l}\left(Y \mid X, \theta_{l}\right)$ is wrong. Then, the PVC does not converges to 0 when $f_{l}\left(Y \mid X, \theta_{l}\right)$ is wrong. Thus, if we select the model with smallest PVC value, then the combined instrument search and model selection procedure finds a correct model and a correct instrument. We illustrate this combined method in Sect. 5.

In theory, Theorems 1-2 ensure that estimation and inference based on selected variables and pseudo-likelihood are asymptotically valid. Although our limited
simulation results show that the finite sample bias of $\hat{\theta}$ is negligible, there may be "winner's curse" bias in some applications, pointed early by Pötscher (1991) and Zhang (1992) and more recently by Leeb and Pötscher (2006) and Bachoc et al. (2019). One way to mitigate winner's curse bias is to use an additional independent dataset for variable selection, but it is costly. Alternatively, one may split the data set into two parts, one for variable selection and the other for inference afterwards. This deserves further research.

4 Simulation

In this section, we study the finite-sample performance of the proposed method in terms of the rate that we select instrument, and the performance of estimators of θ and $E(Y)$ based on the pseudo-likelihood and the selected instrument. All the results are based on 1000 simulation replications and three sample sizes $N=100,200,500$.

4.1 Simulation study 1

In the first simulation study, we consider a three-dimensional covariate vector $X=\left(X_{1}, X_{2}, X_{3}\right)$ with no redundant covariate in $p(Y \mid X)$. We consider independent X_{j}^{\prime} s, $X_{j} \sim$ chi-square with one degree of freedom, $j=1,2,3$, and $f(Y \mid X ; \theta)$ to be the density of $N\left(\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}, \sigma^{2}\right)$, where $\theta=\left(\beta_{0}, \beta_{1}, \beta_{2}, \beta_{3}, \sigma^{2}\right)=(5,2,2,2,3)$. For the nonresponse propensity, we consider the following three cases:

1. $P(R=1 \mid Y, X)=[1+\exp \{-Y+8\}]^{-1}, \quad U=\varnothing, Z_{S}=X$;
2. $P(R=1 \mid Y, X)=\left[1+\exp \left\{-Y\left(4 X_{1}-1\right)\right\}\right]^{-1}, \quad U=X_{1}, Z_{S}=\left(X_{2}, X_{3}\right)$;
3. $P(R=1 \mid Y, X)=\left[1+\exp \left\{-1.2 Y\left(8 X_{1} X_{2}-1\right)\right\}\right]^{-1}, U=\left(X_{1}, X_{2}\right), Z_{S}=X_{3}$.

The unconditional response rates for these three cases are $68 \%, 63 \%$ and 52%, respectively. Since all covariates are continuous, the candidate instrument set in the first step is just $\left(X_{1}, X_{2}, X_{3}\right)$, but the final selected instrument $\widehat{Z}=Z_{\hat{S}}$ has $2^{3}-1=7$ possible results. To estimate $p(U l Z)$ in the pseudo-likelihood (4), we apply the nonparametric kernel method (Zhao and Shao 2015; Chen et al. 2018).

Table 1 reports the number of times of selecting each possible instrument by the proposed search procedure. It can be seen that the proposed method can select the instrument Z_{S} with empirical probability much higher than those for other candidates. When the sample size is 200 or larger, the probability of correctly selecting Z_{S} nearly equals 1 .

Besides instrument selection, we also consider the estimation of θ and $E(Y)$ using different instruments and the pseudo-likelihood (4). Table 2 reports the empirical means and standard derivations of estimators when $N=200$. With missing data, the only data-adaptive estimators are those based on \widehat{Z}, and the rest estimators based on a fixed choice of instrument are entered for comparison. In Case 1, the vector of all instruments is the whole covariate vector, i.e., $Z_{S}=\left(X_{1}, X_{2}, X_{3}\right)$; but any non-empty sub-vector of X is also a correct instrument satisfying (2)-(3). In Case 2, the vector

Table 1 Number of times validation criterion (11) selects each instrument in 1000 simulations

Case	Z_{S}	N	Selected instrument by (11)						
			X_{1}	X_{2}	X_{3}	$\left(X_{1}, X_{2}\right)$	$\left(X_{1}, X_{3}\right)$	$\left(X_{2}, X_{3}\right)$	$\left(X_{1}, X_{2}, X_{3}\right)$
1	$\left(X_{1}, X_{2}, X_{3}\right)$	100	7	7	9	8	6	4	959
		200	4	7	6	5	3	4	971
		500	3	2	2	3	3	4	983
2	$\left(X_{2}, X_{3}\right)$	100	0	15	19	0	0	965	1
		200	0	10	8	0	0	982	0
		500	0	0	0	0	0	1000	0
	X_{3}	100	2	3	701	0	53	57	184
		200	0	0	939	0	11	9	41
		500	0	0	1000	0	0	0	0

of all instruments is $Z_{S}=\left(X_{2}, X_{3}\right)$; and either X_{2} or X_{3} is a correct one-dimensional instrument. In Case 3 , only $Z_{S}=X_{3}$ is the correct instrument. Table 2 shows the results when a correct instrument or our proposed \widehat{Z} is used. It can be seen that estimators are almost unbiased, but the use of true Z_{S} produces the most efficient estimators, and estimators based on the proposed \widehat{Z} are almost the same as those based on Z_{S}. On the other hand, when we use a wrong instrument (for example, in Case 2, $X_{1},\left(X_{1}, X_{2}\right),\left(X_{1}, X_{3}\right)$, and (X_{1}, X_{2}, X_{3}) are wrong instruments), some estimators are seriously biased. The last row for each case of Table 2 reports the results for estimators when there are no missing data, which provides a standard of the best we can do.

4.2 Simulation study 2

In the second simulation study, we consider the situation where $p(Y \mid X)$ involves some redundant covariates and $X=\left(X_{1}, \ldots, X_{10}\right)$ is 10 -dimensional. Here, Y and $\left(X_{1}, X_{2}, X_{3}\right)$ are generated the same as those in simulation study 1 in Sect. 4.1, and X_{4}, \ldots, X_{10} are generated independently from the standard normal distribution and are redundant, i.e., $p(Y \mid X)=p\left(X_{1}, X_{2}, X_{3}\right)$. In this experiment, we consider the following three models for (1):

$$
\begin{aligned}
& M_{1}: Y \mid X \sim N\left(\beta_{0}+\beta_{1} X_{1}+\cdots+\beta_{10} X_{10}, \sigma^{2}\right) \\
& M_{2}: Y \mid X \sim N\left(\beta_{0}+\gamma_{1} X_{1}^{2}+\cdots+\gamma_{10} X_{10}^{2}, \sigma^{2}\right) \\
& M_{3}: Y \mid X \sim N\left(\beta_{0}+\beta_{1} X_{1}+\cdots+\beta_{10} X_{10}+\gamma_{1} X_{1}^{2}+\cdots+\gamma_{10} X_{10}^{2}, \sigma^{2}\right)
\end{aligned}
$$

where M_{1} is a correct model, M_{2} is a wrong model, and M_{3} is correct but overfitted. The best model, i.e., the most compact correct model, is M_{1} with $\beta_{4}=\cdots=\beta_{10}=0$. Therefore, in this experiment, besides instrument search, we also consider model selection as discussed in Remark 2 in the end of Sect. 2.

Table 2 Mean and standard deviation (in parentheses) of estimators using different Zs when $N=200$ based on 1000 simulations

Case	Z used	Parameter					
		$\beta_{0}=5$	$\beta_{1}=2$	$\beta_{2}=2$	$\beta_{3}=2$	$\sigma^{2}=3$	$E(Y)=11$
1	X_{1}	5.00 (0.39)	2.00 (0.13)	2.01 (0.14)	2.01 (0.14)	2.91 (0.49)	11.01 (0.40)
	X_{2}	4.99 (0.40)	2.01 (0.15)	2.01 (0.12)	2.01 (0.15)	2.93 (0.49)	11.00 (0.40)
	X_{3}	5.01 (0.38)	2.00 (0.14)	2.01 (0.15)	2.00 (0.12)	2.91 (0.49)	11.01 (0.41)
	$\left(X_{1}, X_{2}\right)$	5.00 (0.33)	2.00 (0.11)	2.00 (0.11)	2.00 (0.12)	2.93 (0.43)	10.99 (0.38)
	$\left(X_{1}, X_{3}\right)$	5.01 (0.33)	2.00 (0.11)	2.01 (0.12)	2.00 (0.11)	2.91 (0.43)	11.00 (0.38)
	$\left(X_{2}, X_{3}\right)$	5.01 (0.32)	2.00 (0.11)	2.00 (0.11)	2.00 (0.11)	2.92 (0.43)	10.99 (0.39)
	(X_{1}, X_{2}, X_{3})	5.01 (0.30)	2.00 (0.10)	2.00 (0.10)	2.00 (0.10)	2.91 (0.40)	10.99 (0.37)
	\widehat{Z}	5.01 (0.30)	2.00 (0.10)	2.00 (0.10)	2.00 (0.10)	2.91 (0.40)	10.99 (0.37)
	No missing	4.99 (0.19)	2.00 (0.09)	2.00 (0.09)	2.00 (0.09)	2.93 (0.30)	10.98 (0.36)
2	X_{1}	3.36 (0.40)	2.48 (0.18)	2.00 (0.14)	2.00 (0.14)	3.84 (0.65)	9.84 (0.50)
	X_{2}	4.99 (0.44)	2.01 (0.16)	2.00 (0.16)	2.02 (0.19)	2.90 (0.54)	11.01 (0.42)
	X_{3}	5.00 (0.43)	2.00 (0.16)	2.01 (0.18)	2.01 (0.16)	2.91 (0.53)	11.01 (0.42)
	$\left(X_{1}, X_{2}\right)$	4.10 (0.34)	2.23 (0.13)	2.13 (0.14)	2.00 (0.14)	3.29 (0.48)	10.44 (0.44)
	$\left(X_{1}, X_{3}\right)$	4.10 (0.34)	2.23 (0.13)	2.00 (0.13)	2.13 (0.14)	3.29 (0.48)	10.44 (0.44)
	$\left(X_{2}, X_{3}\right)$	5.00 (0.35)	2.00 (0.13)	2.00 (0.13)	2.00 (0.13)	2.91 (0.44)	10.99 (0.39)
	$\left(X_{1}, X_{2}, X_{3}\right)$	4.43 (0.34)	2.15 (0.14)	2.07 (0.13)	2.07 (0.13)	3.13 (0.43)	10.68 (0.42)
	\widehat{Z}	5.00 (0.35)	2.00 (0.13)	2.00 (0.14)	2.00 (0.13)	2.91 (0.44)	10.99 (0.39)
	No missing	4.99 (0.19)	2.00 (0.09)	2.00 (0.09)	2.00 (0.09)	2.93 (0.30)	10.98 (0.36)
3	X_{1}	3.39 (0.49)	2.39 (0.17)	2.20 (0.17)	2.00 (0.17)	3.59 (0.65)	9.95 (0.50)
	X_{2}	3.37 (0.53)	2.20 (0.18)	2.40 (0.17)	2.00 (0.18)	3.60 (0.68)	9.94 (0.51)
	X_{3}	4.99 (0.53)	2.00 (0.17)	2.02 (0.18)	2.01 (0.18)	2.90 (0.59)	11.00 (0.43)
	$\left(X_{1}, X_{2}\right)$	3.46 (0.42)	2.31 (0.14)	2.31 (0.14)	1.99 (0.16)	3.43 (0.57)	10.05 (0.47)
	$\left(X_{1}, X_{3}\right)$	4.11 (0.42)	2.18 (0.14)	2.12 (0.14)	2.09 (0.16)	3.18 (0.51)	10.48 (0.44)
	$\left(X_{2}, X_{3}\right)$	4.10 (0.41)	2.11 (0.14)	2.19 (0.13)	2.09 (0.16)	3.19 (0.52)	10.47 (0.44)
	(X_{1}, X_{2}, X_{3})	3.89 (0.38)	2.21 (0.13)	2.21 (0.13)	2.08 (0.16)	3.22 (0.50)	10.36 (0.45)
	\widehat{Z}	4.96 (0.57)	2.01 (0.17)	2.02 (0.18)	2.02 (0.18)	2.91 (0.59)	10.98 (0.45)
	No missing	4.99 (0.19)	2.00 (0.09)	2.00 (0.09)	2.00 (0.09)	2.93 (0.30)	10.98 (0.36)

For the propensity, we consider the three cases in Sect. 4.1, and an additional case,

$$
\text { 4. } P(R=1 \mid Y, X)=\left[1+\exp \left\{-Y\left(X_{4}+0.5\right)\right\}\right]^{-1}, U=X_{4}, Z=\left(X_{1}, X_{2}, X_{3}\right) \text {. }
$$

The unconditional response rate for Case 4 is 69%. The reason which we consider the additional Case 4 is that it is the case where $p(Y \mid X)$ is a function of $X_{*}=\left(X_{1}, X_{2}, X_{3}\right)$ and $U=X_{4}$ is not in X_{*}, whereas in all Cases 1-3, $U \subset X_{*}=\left(X_{1}, X_{2}, X_{3}\right)$.

Table 3 reports the frequencies in 1000 simulations of correctly selecting the combination of $\left(U, Z_{S}\right)$ and M_{1} using the proposed procedure in Sect. 2. It can be seen that, in Cases 1-2 and 4, all correct selection probabilities are higher than 90% and some are

Table 3 Frequency of correctly selecting the combination of $\left(U, Z_{S}\right)$ and M_{1} in 1000 replications at each step in simulation study 2

Case	U	Z	N	Step 1	Step 2
1	\varnothing	$\left(X_{1}, X_{2}, X_{3}\right)$	100	913	901
			200	928	928
			500	939	939
2	X_{1}	$\left(X_{2}, X_{3}\right)$	100	959	864
			200	982	943
			500	1000	1000
3	$\left(X_{1}, X_{2}\right)$	X_{3}	100	392	340
			200	868	807
			500	998	990
4	X_{4}	$\left(X_{1}, X_{2}, X_{3}\right)$	100	832	758
			200	985	962
			500	999	999

Step 1: correctly selecting the combination of $\left(U, Z_{S}\right)$ under model M_{1}
Step 2: correctly selecting the combination of $\left(U, Z_{S}\right)$ and M_{1}
close to 1 when $N=200$ and 500 , and are between 70% and 90% when $N=100$. Case 3 is the most difficult situation for instrument search, since Z_{*} is one-dimensional and X is 10 -dimensional; the correct selection probabilities are too low when $N=100$, but are adequate when $N=200$, and are close to 1 when $N=500$.

5 Real data example

To illustrate our proposed instrument selection method, we consider a real data set from the National Health and Nutrition Examination Survey (NHANES) conducted in 2005 by the United States Centers for Disease Control and Prevention, which was also analyzed in Fang and Shao (2016) from model selection perspective. In this data set, Y is the body fat percentage, which is measured by dualenergy X-ray absorptiometry and denoted as dxa. The covariates are age, gender, and body mass index (bmi), i.e., $X=$ (bmi, age, gender). As in Fang and Shao (2016), we consider $N=1591$ middleaged and elderly people, from whom 393 (24.7\%) have missing dxa.

We combine our instrument search method and the model selection method in Fang and Shao (2016) to select instrument and model (1) together as discussed in Remark 2 in the end of Sect. 2. Following Fang and Shao (2016), we consider the following four candidate models:

$$
\begin{aligned}
& M_{1}: Y \mid X \sim N\left(\beta_{0}+\beta_{1} \text { bmi }+\beta_{2} \text { age }+\beta_{3} \text { gender, } \sigma^{2}\right) \\
& M_{2}: Y \mid X \sim N\left(\beta_{0}+\beta_{1} \text { bmi }+\beta_{2} \text { age }+\beta_{3} \text { gender }+\beta_{4} \text { age } \times \text { gender, } \sigma^{2}\right) \\
& M_{3}: \log Y \mid X \sim N\left(\beta_{0}+\beta_{1} \log (\mathrm{bmi})+\beta_{2} \text { age }+\beta_{3} \text { gender, } \sigma^{2}\right) \\
& M_{4}: \log Y \mid X \sim N\left(\beta_{0}+\beta_{1} \log (\mathrm{bmi})+\beta_{2} \text { age }+\beta_{3} \text { gender }+\beta_{4} \text { age } \times \text { gender, } \sigma^{2}\right)
\end{aligned}
$$

Since gender is a binary covariate, as we discussed in Sect. 2, we need to combine gender with either age or bmi to prepare the candidate instrument set in the first step. Then, we have the following $p=4$ candidates of instrument: $Z_{1}=$ age, $Z_{2}=\mathrm{bmi}$, $Z_{3}=$ (age, gender), and $Z_{4}=$ (bmi, gender). Noted that the final selected \hat{Z} could be the union of these candidates. In this dataset, bmi, age, and gender are almost independent (see also Fang and Shao (2016)), so that the estimation of $p(U I Z)$ has little effect.

For each candidate model $M_{j}, j=1,2,3,4$, the proposed instrument search procedure is applied. Table 4 reports the $\operatorname{VC}(k)$ value in (10) for each candidate instrument and each model M_{i}. Based on (11), $\widehat{Z}=$ age is selected as instrument under models M_{1} and M_{2}, and $\widehat{Z}=$ (age, gender) under models M_{3} and M_{4}. Then, we obtain the PVC value defined in (12) of Fang and Shao (2016) using the selected \widehat{Z} under each model (Table 3). The smallest PVC value corresponds to model M_{1}. As we discussed in Sect. 3, the PVC values corresponding to wrong models do not converge to 0 . Thus, M_{1} is selected with instrument $\widehat{Z}=$ age and $\hat{U}=$ (bmi, gender). Using pseudo-likelihood in (4) with the selected model M_{1} and instrument $\widehat{Z}=$ age, the estimated parameters are given in the last part of Table 4.

Acknowledgements We thank an associate editor and two referees for their helpful comments. Jun Shao's research was partially supported by the National Scientific Foundation of China (11831008) and the U.S. National Science Foundation grants DMS-1612873 and DMS-1914411. Fang Fang's research was partially supported by the National Scientific Foundation of China (11831008, 11601156, and 11771146).

Appendix: Proofs

Proof of Theorem 1: As $f(Y \mid X ; \theta)$ is continuous with respect to θ on a bounded and closed set Θ, for a given $\widetilde{\eta}_{k}, I_{k}\left(\theta_{k}, \widetilde{\eta}_{k}\right)$ must attain a minimum in Θ. Condition C 2 , which is similar to Assumption A3 in White (1982), guarantees that there exists a

Table 4 Instrument and model selection and estimation results in NHANES dataset

	Model						
	M_{1}	M_{2}	M_{3}	M_{4}			
$\mathrm{VC}(1)$ with $Z_{1}=$ age	0.0020	0.0020	0.0020	0.0024			
$\mathrm{VC}(2)$ with $Z_{2}=$ bmi	0.0068	0.0067	0.0100	0.0100			
$\mathrm{VC}(3)$ with $Z_{3}=($ age, gender $)$	0.0081	0.0073	0.0025	0.0024			
$\mathrm{VC}(4)$ with $Z_{4}=($ bmi, gender $)$	0.0180	0.0178	0.0094	0.0094			
Selected \hat{Z} using (11)	age	age	(age, gender)	(age, gender)			
PVC value using \hat{Z} as instrument	0.0065	0.0071	0.0070	0.0074			
Final model fitting after M_{1} and $\hat{Z}=$ age are selected							
Parameter	$\beta_{0}:$ intercept	$\beta_{1}:$ bmi	$\beta_{2}:$ age	$\beta_{3}:$ gender			
Estimate (SE)	$7.61(4.90)$	$0.75(0.09)$	$-11.62(0.87)$	$0.21(0.08)$			

$\mathrm{VC}(k)$ are given by (10) in Sect. 2
PVC are given by (12) in Fang and Shao (2016)
unique maximizer of $E\left[R \log p\left(Z_{k} \mid Y, U_{k} ; \theta_{k}, \tilde{\eta}_{k}, F\right)\right]$ when $\tilde{\eta}_{k}$ is in a neighborhood of η_{k}. Therefore, θ_{k}^{*} is identifiable under a misspecified instrument. Under condition C3, following the proof of Theorem 2 in Zhao and Shao (2015), $\hat{\theta}_{k}$ converges to θ_{k}^{*} in probability as $N \rightarrow \infty$.

For each combination of $X=\left(U_{k}, Z_{k}\right)$, maximizing (4) is the same as maximizing $l_{k}\left(\theta_{k}, \widehat{\eta}_{k}, \widehat{F}\right)$, where:

$$
\begin{aligned}
& l_{k}\left(\theta_{k}, \eta_{k}, F\right) \\
= & \frac{1}{N} \sum_{i=1}^{N} r_{i}\left\{\log p\left(y_{i} \mid u_{k i}, z_{k i} ; \theta_{k}\right)-\log \int p\left(y_{i} \mid u_{k i}, Z_{k} ; \theta_{k}\right) p\left(u_{k i} \mid Z_{k} ; \eta_{k}\right) d F\left(Z_{k}\right)\right\} .
\end{aligned}
$$

Under condition C 4 , the asymptotic normality of $\widehat{\theta}_{k}$ follows from Taylor's expansion, $\partial l_{k}\left(\theta, \widehat{\eta}_{k}, \widehat{F}\right) /\left.\partial \theta\right|_{\theta=\hat{\theta}_{k}}=0$, the theory of V-statistics, and the proof of Theorem 3 in Zhao and Shao (2015).

Proof of Theorem 2: The result of Theorem 2 follows from statements (a)-(c) after formula (11).

First, we prove (a) after formula (11). When Z_{k} is a correct instrument satisfying (2)-(3), we consider $\operatorname{VC}(k)=\int\left|\widetilde{F}_{1 k}\left(z_{k}\right)-\widehat{F}_{1}\left(z_{k}\right)\right| d \widehat{F}\left(z_{k}\right)$. Write $r=\sum_{i=1}^{N} r_{i}$, and:

$$
\begin{aligned}
& g_{k 0}=\frac{1}{N} \sum_{i=1}^{N} r_{i} I\left(Z_{k} \leq z_{k}\right) \\
& g_{k}\left(\theta_{k}, \eta_{k}, F\right)=\frac{1}{N} \sum_{i=1}^{N} r_{i} \frac{\int f\left(Y \mid U_{k}, Z_{k} ; \theta_{k}\right) \eta_{k}\left(U_{k} \mid Z_{k}\right) I\left(Z_{k} \leq z_{k}\right) d F\left(Z_{k}\right)}{\int f\left(Y \mid U_{k}, Z_{k} ; \theta_{k}\right) \eta_{k}\left(U_{k} \mid Z_{k}\right) d F\left(Z_{k}\right)} .
\end{aligned}
$$

By (6) and central limit theorem, $g_{k 0}=E\left[R I\left(Z_{k} \leq z_{k}\right)\right]+o_{p}\left(N^{-1 / 2}\right)$ and $g\left(\theta_{k}, F\right)=E\left[R E\left\{I\left(Z_{k} \leq z_{k}\right) \mid Y, U\right\}\right]+o_{p}\left(N^{-1 / 2}\right)$. Note that, by the arguments of (5), $E\left[R I\left(Z_{k} \leq z_{k}\right)\right]=E\left[R E\left\{I\left(Z_{k} \leq z_{k}\right) \mid Y, U\right\}\right]$. Therefore, $g_{k}\left(\theta_{k}, \eta_{k}, F\right)=g_{k 0}+o_{p}\left(N^{-1 / 2}\right) . \quad$ Meanwhile, $\quad \widetilde{F}_{1 k}\left(z_{k}\right)=N g_{k}\left(\widehat{\theta}_{k}, \widehat{\eta}_{k}, \widehat{F}\right) / r$, $\widehat{F}_{1}\left(z_{k}\right)=N g_{k 0} / r \quad$ and $\quad N^{1 / 2}\left\{\widetilde{F}_{1 k}\left(z_{k}\right)-\widehat{F}_{1}\left(z_{k}\right)\right\}=N Q_{N k}\left(z_{k}\right)$, where $Q_{N k}\left(z_{k}\right)=N^{1 / 2}\left\{g_{k}\left(\hat{\theta}_{k}, \hat{\eta}_{k}, \widehat{F}\right)-g_{k 0}\right\}$. Theorem 1 shows that $\hat{\theta}_{k}$ and $\hat{\eta}_{k}$ are both consistent and asymptotically normal. Therefore, following the proof of Theorem 2 in Fang and Shao (2016), $Q_{N k}\left(z_{k}\right)$ converges weakly to a zero-mean Gaussian process. Since $r / N=\sum_{i=1}^{N} r_{i} / N$ converges to $P(R=1)$ almost surely, $N^{-1 / 2} \int\left|\widetilde{F}_{1 k}\left(z_{k}\right)-\widehat{F}_{1}\left(z_{k}\right)\right| d \widehat{F}\left(z_{k}\right)=\int\left|Q_{N k}\left(z_{k}\right)\right| d \widehat{\widehat{F}}\left(z_{k}\right) /(r / N)$ converges in distribution and is $O_{p}(1)$. Therefore, $\operatorname{VC}(k) \rightarrow 0$ in probability at the rate $N^{-1 / 2}$ when $k \in S$. When $k \notin S, \mathrm{VC}(k) \rightarrow \Delta_{k}$, which is assumed to be positive.

Next, if $d \leq p-1$, then $\mathrm{VC}\left(l_{p}\right) \rightarrow \Delta_{l_{p}}>0$ and $\mathrm{VC}\left(l_{1}\right) \rightarrow 0$ in probability as $N \rightarrow \infty$. Since $\quad(\log N)^{1 / 2} \mathrm{VC}\left(l_{1}\right) \rightarrow 0 \quad$ in probability as $N \rightarrow \infty$, $\mathrm{VC}\left(l_{p}\right)-\mathrm{VC}\left(l_{1}\right)>(\log N)^{1 / 2} \mathrm{VC}\left(l_{1}\right)$ with probability tending to 1 . Hence, with probability tending to $1, \widehat{d}=\arg \min _{1 \leq j \leq p-1} \mathrm{VC}\left(l_{j}\right) / \mathrm{VC}\left(l_{j+1}\right)$. By the proved (a) after formula (11), $\mathrm{VC}\left(l_{j}\right) / \mathrm{VC}\left(l_{j+1}\right)$ converges to a positive constant in probability when $j \geq d+1$ and $\mathrm{VC}\left(l_{d}\right) / \mathrm{VC}\left(l_{d+1}\right) \rightarrow 0$ in probability. Following the fact that $N^{-\frac{1}{2}} \int\left|\widetilde{F}_{1 k}\left(z_{k}\right)-\widehat{F}_{1}\left(z_{k}\right)\right| d \widehat{F}\left(z_{k}\right)=\int\left|Q_{N k}\left(z_{k}\right)\right| d \widehat{F}\left(z_{k}\right) /(r / N)$ converges in distribution
when $k \in S$ and is not degenerate, $\mathrm{VC}\left(l_{j}\right) / \mathrm{VC}\left(l_{j+1}\right)$ converges to a positive constant in probability when $j+1 \leq d$. This proves (b) after formula (11).

If $d=p$, then $Z_{S}=X$. Hence, $\operatorname{VC}(k) \rightarrow 0$ in probability at the rate $N^{-1 / 2}$ as $N \rightarrow \infty$ for $k=1, \ldots, p$. Since $(\log N)^{1 / 2} \mathrm{VC}\left(l_{1}\right) \rightarrow 0$ at a rate slower than $N^{-1 / 2}$, $(\log N)^{1 / 2} \mathrm{VC}\left(l_{1}\right)>\mathrm{VC}\left(l_{p}\right)-\mathrm{VC}\left(l_{1}\right)$ in probability as $N \rightarrow \infty$. This proves (c) after formula (11) and the fact that $P(\hat{d}=p) \rightarrow 1$.

References

Bachoc, F., Leeb, H., Pötscher, B. M. (2019). Valid confidence intervals for post-model-selection predictors. The Annals of Statistics, 47(3), 1475-1504.
Baker, S. G., Laird, N. M. (1988). Regression analysis for categorical variables with outcome subject to nonignorable nonresponse. Journal of the American Statistical Association, 83(401), 62-69.
Chen, J., Xie, B., Shao, J. (2018). Pseudo likelihood and dimension reduction for data with nonignorable nonresponse. Statistical Theory and Related Fields, 2(2), 196-205.
Fang, F., Shao, J. (2016). Model selection with nonignorable nonresponse. Biometrika, 103(4), 861-874.
Greenlees, J. S., Reece, W. S., Zieschang, K. D. (1982). Imputation of missing values when the probability of response depends on the variable being imputed. Journal of the American Statistical Association, 77(378), 251-261.
Huang, D., Li, R., Wang, H. (2014). Feature screening for ultrahigh dimensional categorical data with applications. Journal of Business and Economic Statistics, 32(2), 237-244.
Ibrahim, J. G., Lipsitz, S. R., Chen, M.-H. (1999). Missing covariates in generalized linear models when the missing data mechanism is non-ignorable. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 61(1), 173-190.
Leeb, H., Pötscher, B. M. (2006). Can one estimate the conditional distribution of post-model-selection estimators? The Annals of Statistics, 34(5), 2554-2591.
Lipsitz, S. R., Ibrahim, J. G. (1996). A conditional model for incomplete covariates in parametric regression models. Biometrika, 83(4), 916-922.
Little, R. J., Rubin, D. B. (2002). Statistical analysis with missing data 2nd ed. New York: Wiley.
Miao, W., Ding, P., Geng, Z. (2016). Identifiability of normal and normal mixture models with nonignorable missing data. Journal of the American Statistical Association, 111(516), 1673-1683.
Pötscher, B. M. (1991). Effects of model selection on inference. Econometric Theory, 7(2), 163-185.
Qin, J., Leung, D., Shao, J. (2002). Estimation with survey data under nonignorable nonresponse or informative sampling. Journal of the American Statistical Association, 97(457), 193-200.
Robins, J., Ritov, Y. (1997). Toward a curse of dimensionality appropriate (coda) asymptotic theory for semi-parametric models. Statistics in Medicine, 16(3), 285-319.
Tang, G., Little, R. J., Raghunathan, T. E. (2003). Analysis of multivariate missing data with nonignorable nonresponse. Biometrika, 90(4), 747-764.
Wang, S., Shao, J., Kim, J. K. (2014). An instrumental variable approach for identification and estimation with nonignorable nonresponse. Statistica Sinica, 24(3), 1097-1116.
White, H. (1982). Maximum likelihood estimation of misspecified models. Econometrica, 50(1), 1-25.
Zhang, P. (1992). Inference after variable selection in linear regression models. Biometrika, 79(4), 741-746.
Zhao, J., Shao, J. (2015). Semiparametric pseudo-likelihoods in generalized linear models with nonignorable missing data. Journal of the American Statistical Association, 110(512), 1577-1590.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: Fang Fang
 ffang@sfs.ecnu.edu.cn
 1 School of Statistics, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
 2 KLATASDS-MOE, School of Statistic, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China

 3 Department of Statistics, University of Wisconsin-Madison, 1300 University Ave., Madison, WI 53706, USA

