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Abstract
Single-index varying-coefficient models include many types of popular semipara-
metric models, i.e., single-index models, partially linear models, varying coefficient 
models, and so on. In this paper, a two-stage efficient variable selection procedure is 
proposed to select important nonparametric and parametric components and obtain 
estimators simultaneously. We also find that the proposed procedure can separate 
predictors into varying-coefficient and constant-coefficient predictors automatically. 
Theoretically, it has the selection and estimation consistency properties. Simulation 
studies and a real data application are conducted to evaluate and illustrate the pro-
posed methods.

Keywords Efficient estimating equation · Group LASSO · Single-index varying-
coefficient model · Variable selection

1 Introduction

Consider a single-index varying-coefficient model of the form

where X ∈ Rp and Z ∈ Rq are vectors of covariates, Y is the response variable, � 
is a p × 1 vector of unknown parameters with ‖�‖ = 1 and its first component 
being positive for the sake of identifiability ( ‖ ⋅ ‖ denotes the Euclidean metric), 

(1)Y = g⊤(X⊤𝛽)Z + 𝜀,
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g(⋅) = (g1(⋅),… , gq(⋅))
⊤ is a q × 1 vector of unknown functions and � is a random 

error with E(�|X, Z) = 0 and Var(𝜀|X, Z) = 𝜎2 < ∞ . Model (1) includes many 
important statistical models such as the linear regression model, varying-coefficient 
model and single-index model. More details refer to Xue and Wang (2012) and Lai 
et al. (2016).

In this work, we are interested in estimating parametric coefficients � and func-
tions g(⋅) , where � and g(⋅) are sparse in the sense that some of their elements are 
zero, and some gk(⋅) ’s may be nonzero constants. Sparsity plays a crucial role 
in high dimensional analysis, as it can improve interpretability and the accuracy 
of prediction. In addition, separation of the varying and constant effects have 
important implications, for example, in gene-environment interaction studies 
(Wu et al. 2014, 2015, 2018). Many studies have investigated statistical inference 
for single-index varying-coefficient models, such as Xue and Wang (2012), Xue 
and Pang (2013), Huang and Zhang (2013), and so on. However, these methods 
give nonzero estimates to all coefficients. Various penalization methods that can 
automatically select relevant parameters and simultaneously estimate them have 
been developed. Examples include LASSO (Tibshirani 1996), SCAD (Fan and 
Li 2001), bridge (Huang et al. 2008), and so on. Most recently, variable selection 
using penalty functions for nonparametric or semiparametric models has been 
developed, see Ma and Du (2012) and Huang et al. (2012) for example.

The aforementioned works motivate us to develop a penalization-based 
approach for variable selection and identification in the single-index varying coef-
ficient model. There are two related studies on this topic: Feng and Xue (2015) 
and Song et  al. (2016). However, the nonparametric parts in both studies are 
approximated by the B-spline basis functions. As Fan and Zhang (2008) notes, 
varying coefficient models, as they stand, are locally linear models. It is more rea-
sonable to use the kernel smoothing method for estimation. In this paper, we pro-
pose a two-stage efficient variable selection procedure based on the local linear 
smooth technique and efficient estimating equation for the single-index varying 
coefficient model. It is noted that our approach is different from Lai et al. (2014), 
which focuses on the partially linear single-index models and performs variable 
selection only on parameters without identification of the nonparametric function.

The rest of this paper is organized as follows. A two-stage efficient variable 
selection procedure is developed and its theoretical properties are carefully stud-
ied in Sect. 2. Numerical studies are reported in Sect. 3. The article is concluded 
with a brief discussion in Sect. 4. All technical details are delayed to “Appendix.”

2  A two‑stage efficient variable selection procedure

In practice, we often face problems with high dimensions. In order to enhance the 
predictability and interpretability of the model, sparse modeling assumes that many 
covariates in the studied model are not relevant. This motivates us to apply penalty 
methods to simultaneously estimate parameters and select the relevant ones.
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In the following, our goal is to not only select the significant variables in X and Z but 
also identify which components of g(⋅) are constants or varying coefficients, through 
the following two stages.

• Stage 1 For a given � , construct the local least squares penalized loss function to 
select the important components in Z, and meanwhile, identify constant coeffi-
cients and varying coefficients in the components of g(⋅) . Here � can be obtained 
by approaches in Xue and Wang (2012), Xue and Pang (2013), Huang and Zhang 
(2013), or Lai et al. (2016), which are all 

√
n consistent. In our numerical studies, 

we adopt Lai et al. (2016)’s estimate.
• Stage 2 Construct the penalized efficient estimating equations for parametric com-

ponents based on the estimated ĝ𝜆(⋅) and ĝ�
𝜆
(⋅) from Stage 1. Select the relevant sin-

gle-index variables of X and obtain their estimated coefficients.

There is no need to iterate for the proposed two-stage approach. The existing studies 
have shown that the techniques in each stage have satisfactory convergence proper-
ties. In the following, we first study the variable selection procedure for nonparametric 
components.

2.1  Stage 1: variable selection for nonparametric components

For model (1), it is easy to see that for a given � , we can employ the local linear regres-
sion technique (Fan and Gijbels 1996) to estimate g(⋅) and g�(⋅) . The local linear esti-
mators for g(t) and g�(t) are defined as ĝ(t) = â and ĝ�(t) = b̂ , where â and b̂ minimize 
the sum of weighted squares

with respect to a and b, Kh(⋅) = h−1K(⋅∕h) , K(⋅) is a kernel function, and h is the 
bandwidth. Let tj = X⊤

j
𝛽 , G = (g(t1),… , g(tn)) and G� = (g�(t1),… , g�(tn)) . Then, 

ĜM = (Ĝ⊤, hĜ�⊤)⊤ is a natural estimator for GM = (G⊤, hG�⊤)⊤ , which can be 
obtained by minimizing the following global least squares function

with respect to GML = (G⊤
a
, hG⊤

b
)⊤ , where Ga = (a(t1),… , a(tn)) ∈ Rq×n and 

Gb = (b(t1),… , b(tn)) ∈ Rq×n.
Denote ck = (ak(t1), ak(t2),… , ak(tn))

⊤ and dk = (bk(t1), bk(t2),… , bk(tn))
⊤ , which 

correspond to the kth column of Ga and Gb , respectively. Inspired by Wang and Xia 
(2009), we propose the following penalized estimator

n∑
i=1

[
Yi − {a + b(X⊤

i
𝛽 − t)}⊤Zi

]2
Kh(X

⊤
i
𝛽 − t),

(2)Q(GML) =

n∑
j=1

n∑
i=1

[
Yi − a⊤(tj)Zi − (hb(tj))

⊤Zi

(
X⊤
i
𝛽 − tj

h

)]2

Kh(X
⊤

i
𝛽 − tj)

ĜM𝜆
= (Ĝ⊤

𝜆
, hĜ�⊤

𝜆
)⊤ = argmin

GML∈R
2q×n

Q𝜆(GML),
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where

The tuning parameters �1k and �2k, k = 1,… , q are discussed later in Sect. 2.3.
To solve the above minimization problem, we describe here an easy implemen-

tation based on the idea of the local quadratic approximation (Fan and Li 2001). 
Our implementation is based on an iterative algorithm with ĜM from (2) (i.e., the 
unpenalized estimator) as the initial value. The objective function (3) can be locally 
approximated by

where ĉ(m)
𝜆k

 and d̂(m)
𝜆k

 are obtained in the mth iteration. Let 𝜂(t) = (a(t)⊤, hb(t)⊤)⊤ and 
Z̃i(t) = (Z⊤

i
,
ti−t

h
Z⊤
i
)⊤ . For any t, we can define the (m + 1) th iteration estimator by

where D(m) = diag (
𝜆11

‖ĉ(m)
𝜆1

‖ ,… ,
𝜆1q

‖ĉ(m)
𝜆q

‖ ,
𝜆21

‖d̂(m)
𝜆1

‖ ,… ,
𝜆2q

‖d̂(m)
𝜆q

‖ ) is a 2q × 2q diagonal matrix. 

In practice, we see that the absolute values of some coefficients get smaller and 
smaller with iterations. The coefficients are regarded as zero if the absolute values 
are less than a certain threshold ( 10−3 in our numerical studies).

Next we establish the consistency of the nonparametric component selection. 
Assume that the number of significant variables in Z is q0, q0 ≤ q . Furthermore, 
some components of g(⋅) may be nonzero constants. Assume that the number of var-
ying coefficient components is d0 . Then the number of nonzero components of g�(t) 
is d0 , d0 ≤ q0 . Without loss of generality, assume that the last (q − q0) rows of G and 
G′ are zero, the first d0 components are varying coefficients and the following 
(q0 − d0) components are nonzero constants. Denote the subscript set of nonzero 
components as �∗

g
= {1,… , q0} , and the subscript set of nonzero varying coeffi-

cients as �∗
g�
= {1,… , d0} . Let �n = max{�1j, 1 ≤ j ≤ q0} , ��

n
= max{�2j, 1 ≤ j ≤ q0} , 

�n = min{�1j, q0 + 1 ≤ j ≤ q} , ��
n
= min{�2j, q0 + 1 ≤ j ≤ q} , and �n = min{�2j, d0 + 1 ≤ j ≤ q0} .  

The following theorem shows the selection consistency for the nonparametric part. 
Suppose that � lies in a small neighbor of �0 : �n = {� ∶ ‖� − �0‖ ≤ Cn−1∕2} (at the 
usual parametric rate), where C is a positive constant. Some standard assumptions 
are imposed, which are similar to those in Wang and Xia (2009).

• C1 The density function f(t) of X⊤𝛽 is bounded away from zero and infinity 
on � = {t ∶ t = X⊤𝛽,X ∈ �X , 𝛽 ∈ �n} , where �X is the compact support of X. 
Moreover, f(t) has continuous derivatives up to order two on �.

• C2 The coefficients gj(⋅), j = 1,… , q , are both twice continuously differentiable.

(3)Q�(GML) = Q(GML) +

q�
k=1

�1k‖ck‖ +
q�

k=1

�2k‖dk‖.

Q(GML) +

n�
j=1

q�
k=1

𝜆1ka
2
k
(tj)

‖ĉ(m)
𝜆k

‖ +

n�
j=1

q�
k=1

𝜆2kb
2
k
(tj)

‖d̂(m)
𝜆k

‖ ,

(4)�̂�
(m+1)

𝜆
(t) =

[
n∑
i=1

Z̃i(t)Z̃
⊤

i
(t)Kh(ti − t) + D(m)

]−1[ n∑
i=1

YiZ̃i(t)Kh(ti − t)

]
.
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• C3 The kernel K is a bounded and symmetric probability density function, 
satisfying 

• C4 For any s > 2 , E|Y|2s < ∞ , E|Zj|2s < ∞, j = 1,… , q with Z = (Z1,… , Zq)
⊤.

• C5. The function D1(t) = E[ZZ⊤|t] is nonsingular and twice continuously dif-
ferentiable with bounded derivatives. Function E(‖Z‖4�t) is also bounded.

Theorem  1 Under conditions C1–C5, if h = Op(n
−1∕5) , n−11∕10�n → 0 , 

n−11∕10��
n
→ 0 , n−11∕10�n → ∞ , n−11∕10��

n
→ ∞ , and n−9∕10�n → ∞ , we have

 (i) P
�
supt∈T ‖ĝ𝜆j(t)‖ = 0

�
→ 1 for any q0 < j ≤ q,

 (ii) P
�
supt∈T ‖ĝ�𝜆j(t)‖ = 0

�
→ 1 for any d0 < j ≤ q.

By Theorem  1, the irrelevant predictors’ coefficients are shrunken to zero 
consistently over the entire index support uniformly. Let �∗

GM
= {�∗

g
, q0 + �

∗
g�
} . 

Next, we study the asymptotic normality for the estimators of the nonzero com-
ponents 𝜂0�∗

GM

= (g1(t),… , gq0 (t), hg
�
1
(t),… , hg�

d0
(t))⊤ of g(t) and g�(t) . Define 

Z∗ = (Z1,… , Zq0 )
⊤ and Z∗∗ = (Z1,… , Zd0 )

⊤.

Theorem 2 Suppose that the conditions of Theorem 1 hold. Then

where �2 = ∫ u2K(u)du, �2 = ∫ u2K2(u)du, �2 = ∫ K2(u)du,

Remark 1 From Theorem 1, the sparsity of g�(t) indicates that (ĝd0+1(t),… , ĝq0 (t))
⊤ 

is a constant vector. Through the variable selection procedure, we can separate the 
predictors into the constant coefficient ones and those with varying coefficients. Fur-
thermore, as soon as we identify the constant coefficients, the interested model turns 
to the single-index varying-coefficient partially linear model, and some methods can 
be generalized to obtain root-n consistent estimators.

�
∞

−∞

u2K(u)du ≠ 0, �
∞

−∞

|u|iK(u)du < ∞, i = 1, 2,… .

√
nh

�
�̂�𝜆�∗

GM

(t) − 𝜂0�∗
GM

(t) −
h2

2
𝛴∗−1

1
(t)

�
E(Z∗Z∗⊤�t)g��

�∗
g

(t)𝜇2f (t)

0

��

D

⟶N(0, 𝜎2𝛴∗−1
1

(t)V∗
1
𝛴∗−1

1
(t)),

V∗
1
=

(
f (t)E(Z∗Z∗⊤|t)𝜅2 0

0 f (t)E(Z∗∗Z∗∗⊤|t)𝜈2
)
,

𝛴∗
1
(t) =

(
f (t)E(Z∗Z∗⊤|t) 0

0 f (t)E(Z∗∗Z∗∗⊤|t)𝜇2

)
.
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2.2  Stage 2: efficient variable selection for single‑index parameters

In this section, we develop a penalized efficient estimating equation method for vari-
able selection and parametric estimation. Note that in the first stage, we select the 
important nonparametric components, which reduces the dimension of Z from q to 
q0 . Let ĝ∗

𝜆
(t) = (ĝ𝜆1(t),… , ĝ𝜆q0 (t))

⊤ be the penalized estimator of the nonzero com-
ponents of g∗(t) , g∗(t) = (g1(t),… , gq0 (t))

⊤ , and let ĝ�∗
𝜆
(t) = (ĝ�

𝜆1
(t),… , ĝ�

𝜆d0
(t),

0⊤
q0−d0

)⊤ be the penalized estimators of g�∗(t) , where g�∗(t) = (g�
1
(t),… , g�

d0
(t), 0⊤

q0−d0
)⊤.

Note that ‖�‖ = 1 and the first component of � is positive. Let 𝛽 = (𝛽1,… , 𝛽p)
⊤ 

and 𝛽(1) = (𝛽2,… , 𝛽p)
⊤ . Then we have �(�(1)) = ((1 − ‖�(1)‖2)1∕2, 𝛽2,… , 𝛽p)

⊤ . 
The true parameter vector �(1)

0
 must satisfy the constraint ‖𝛽(1)

0
‖ < 1 . Thus, � is 

infinitely differentiable in a neighborhood of �(1)
0

 , and the Jacobian matrix is 
J𝛽(1) = 𝜕𝛽∕𝜕𝛽(1) = (b1,… , bp)

⊤ , where bs(1 < s ≤ p) is a (p − 1)-dimensional unit 
vector with the sth component 1, and b1 = −(1 − ‖�(1)‖2)−1∕2�(1) . With the result 
from Stage 1, we construct the penalized efficient estimating equation for �(1) as

where

with 
∑n

i=1
S̃
eff

𝛽
(Yi,Xi, Z

∗
i
) = 0 being the semiparametric efficient estimating equation 

proposed in Lai et al. (2016). Here q𝜆n (|𝛽(1)|) = (q𝜆n(|𝛽2|),… , q𝜆n(|𝛽p|))⊤ , q�n = p�
�n

 , 
sgn(𝛽(1)) = (sgn(𝛽2),… , sgn(𝛽p))

⊤ , and p�n(⋅) is the SCAD penalty function with �n 
being a tuning parameter, defined as p�

𝜆
(w) = 𝜆

{
I(w ≤ 𝜆) +

(a𝜆−w)+

(a−1)𝜆
I(w > 𝜆)

}
, with 

a > 2,w > 0 and p�(0) = 0 . Denote U𝜆n
(𝛽(1)) = (U𝜆n2

(𝛽(1)),⋯ ,U𝜆np
(𝛽(1)))⊤.

Since U�n
(�(1)) is not continuous, there may not be an exact solution. We intro-

duce a zero-crossing penalized estimating equation defined in Johnson et  al. 
(2008) to accommodate discrete estimating functions. Let 𝛽(1)

𝜆n
 be a zero-crossing 

to penalized estimating equation, if for j = 2,… , p,

where ej is the jth canonical unit vector. To study properties of sparsity and asymp-
totic normality, the following conditions are needed.

• C6 The function D∗
2
(t) = E[g�∗⊤(t)Z∗J⊤

𝛽
(1)

0

XZ∗⊤|t] are twice continuously differ-

entiable with bounded derivatives,

(5)U𝜆n
(𝛽(1)) =

n∑
i=1

S̃
eff

𝛽
(Yi,Xi, Z

∗
i
) − nq𝜆n(|𝛽(1)|)sgn(𝛽(1)),

S̃
eff

𝛽
(Yi,Xi, Z

∗
i
) = {Yi − Z∗⊤

i
ĝ∗
𝜆
(X⊤

i
𝛽)}

{
ĝ�∗⊤
𝜆

(X⊤
i
𝛽)Z∗

i
J⊤
𝛽(1)

Xi

−Ê[ĝ�∗⊤
𝜆

(X⊤
i
𝛽)Z∗

i
J⊤
𝛽(1)

XiZ
∗⊤
i
|X⊤

i
𝛽]
{
Ê[Z∗

i
Z∗⊤
i
|X⊤

i
𝛽]
}−1

Z∗
i

}

lim
𝜖→0+

n−1U𝜆nj
(𝛽

(1)

𝜆n
+ 𝜖ej)U𝜆nj

(𝛽
(1)

𝜆n
− 𝜖ej) ≤ 0,
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• C7 The matrix 𝛴2 = E

[
g�∗⊤(X⊤𝛽0)Z

∗J⊤
𝛽
(1)

0

X − D∗
2
(X⊤𝛽0)D

∗−1
1

(X⊤𝛽0)Z
∗

]⊗2

 is 

positive definite, where D∗
1
(t) = E[Z∗Z∗⊤|t].

Without loss of generality, we define ��(1) = {2,… , p} and the true nonzero com-
ponents index �

∗
�
= �

∗
�(1)

∪ {1} , where �
∗
�(1)

= {2,… , p0} . Rewrite 
U𝜆n

(𝛽(1)) = (U⊤
𝜆n�

∗

𝛽(1)

(𝛽(1)),U⊤
𝜆n[�𝛽(1)

−�∗

𝛽(1)
]
(𝛽(1)))⊤ and 𝛽(1) = (𝛽

(1)⊤

�
∗

𝛽(1)

, 𝛽
(1)⊤

[�
𝛽(1)

−�∗

𝛽(1)
]
)⊤.

Theorem  3 Suppose that conditions C1–C7 hold, if nh4 → ∞, nh6 → 0 , �n → 0 
and 

√
n�n → ∞ , then the following results hold:

 (i) There exists a zero-crossing 𝛽(1)
𝜆n

 to U�n
(�(1)) that satisfies 𝛽(1)

𝜆n
= 𝛽

(1)

0
+ Op(n

−1∕2).
  Furthermore, there exists a zero-crossing estimator 𝛽(1)

𝜆n
= (𝛽

(1)⊤

𝜆n�
∗

𝛽(1)

, �⊤)⊤ of 

U�n
(�(1)) satisfies U𝜆n�

∗

𝛽(1)
(𝛽

(1)

𝜆n
) = 0.

 (ii) For any root-n consistent zero-crossing estimator of U�n
(�(1)) , denoted by 

𝛽
(1)

𝜆n
= (𝛽𝜆n2,… , 𝛽𝜆np)

⊤ , as n → ∞ , with probability tending to 1, 𝛽𝜆nk = 0 , 
k = p0 + 1,… , p . Moreover, let 𝛽(1)∗

𝜆n
= (𝛽𝜆n2,… , 𝛽𝜆np0 )

⊤ , 𝛽(1)∗
0

= (𝛽02,… , 𝛽0p0 )
⊤ 

and X∗ = (X1,… ,Xp0
)⊤ , then

where

Corollary 1 Under the conditions of Theorem  3, if q�n(|�j|) = q�
�n
(|�j|) = 0 for 

�j ≠ 0,

Remark 2 From Corollary 1, we can select the relevant predictors and estimate the 
coefficients simultaneously. Particularly, if the true model has q0 = d0 , then the 
asymptotic variance of 𝛽∗

𝜆n
 achieves the semiparametric efficiency bound. If d0 < q0 , 

the true model turns to the single-index varying-coefficient partially linear model. In 
order to get the efficient estimator, the efficient score vector should be redefined.

�
𝛴∗

3
+ 𝛴∗

4

�√
n
�
𝛽
(1)∗

𝜆n
− 𝛽

(1)∗

0
+
�
𝛴∗

3
+ 𝛴∗

4

�−1
B∗
n

�
D

⟶N(0,𝛴∗
5
),

𝛴∗
3
= E

[
g�∗⊤(X⊤𝛽0)Z

∗J⊤
𝛽
(1)∗

0

X∗ − D̃∗
2
(X⊤𝛽0)D

∗−1
1

(X⊤𝛽0)Z
∗

]⊗2

,

D̃∗
2
(X⊤𝛽0) = E[g�∗⊤(X⊤𝛽0)Z

∗J⊤
𝛽
∗(1)

0

X∗Z∗⊤|X⊤𝛽0],

B∗
n
= (q𝜆n(|𝛽02|)sgn(𝛽02),… , q𝜆n (|𝛽0p0 |)sgn(𝛽0p0))⊤,

𝛴∗
4
= diag (q�

𝜆n
(|𝛽02|)sgn(𝛽02),… , q�

𝜆n
(|𝛽0p0 |)sgn(𝛽0p0 )), 𝛴∗

5
= 𝜎2𝛴∗

3
.

√
n(𝛽∗

𝜆n
− 𝛽∗

0
)

D

⟶N(0, 𝜎2J
𝛽
(1)∗

0

𝛴∗−1
3

J⊤
𝛽
(1)∗

0

).
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2.3  Tuning parameters selection

From Theorems  1–3, as long as n−11∕10�n → 0 , n−11∕10��
n
→ 0 , n−11∕10�n → ∞ , 

n−11∕10��
n
→ ∞ , and n−9∕10�n → ∞ , the true model can be consistently selected 

and the optimal convergence rate is achieved. In simulations and real applica-
tions, the tuning parameters �1k, �2k, 1 ≤ k ≤ q and �n need to be selected. Follow-
ing the idea of Wang and Xia (2009), the BIC type criterions are adopted.

For �1k and �2k, 1 ≤ k ≤ q , let

where ĉ⊤
k
 and d̂⊤

k
 are the kth row of the unpenalized estimates Ĝ and Ĝ′ , respectively. 

Thus, the selection of the sequences {�1k, 1 ≤ k ≤ q} and {�2k, 1 ≤ k ≤ q} becomes 
to select �10 and �20 . Similar to Wang and Xia (2009), we choose �10 and �20 by con-
structing the BIC-type criterion

where

𝛽  is the unpenalized initial estimator, 0 ≤ df�1 ≤ q, 0 ≤ df�2 ≤ df�1 are the numbers 
of nonzero coefficients identified in ĜM𝜆

 with � = (�1, �2) . The tuning parameters 
can be obtained by minimizing BIC� . Similar to the proof of Theorem 3 in Wang 
and Xia (2009), we can prove that the proposed BIC-type criterion can identify the 
true model consistently.

On the other hand, to select the tuning parameter �n for 𝛽𝜆n , we construct the 
BIC-type criterion as follows

where 𝛽(1) is the full model initial estimator and �̂�2 is the estimator of �2 . Therefore, 
similar to the proof of Theorem 4 in Wang and Leng (2007), we can conclude that 
this BIC-type criterion can identify the true model consistently.

𝜆1k =
𝜆10

n−1∕2‖ĉk‖
and 𝜆2k =

𝜆20

n−1∕2‖d̂k‖
,

BIC� = log(RSS�) + df�1

log(nh)

nh
+ df�2

log(nh3)

nh3
,

RSS𝜆 =
1

n2

n∑
j=1

n∑
i=1

{Yi − Z⊤
i
ĝ𝜆(X

⊤
j
𝛽) − Z⊤

i
ĝ�
𝜆
(X⊤

j
𝛽)(X⊤

i
𝛽 − X⊤

j
𝛽)}2Kh(X

⊤
i
𝛽 − X⊤

j
𝛽),

BIC𝜆n
= (𝛽

(1)

𝜆n
− 𝛽(1))⊤�̂�−1

2
(𝛽

(1)

𝜆n
− 𝛽(1)) + df𝜆n

log n

n
,
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3  Numerical examples

3.1  Simulations

To illustrate the finite sample performance of the proposed method, we consider 
two examples. The Epanechnikov kernel K(t) = 0.75(1 − t2)+ is used. Moreover, 
since root-n consistency of the proposed estimators does not require unders-
moothing of nonparametric functions, the optimal bandwidth can be selected to 
be the optimal one for the estimation of nonparametric functions. We use fivefold 
cross-validation to choose bandwidths for estimators. The tuning parameters are 
determined by two BIC-type criterions proposed in Sect. 2.3.

Let {Yi,Xi, Zi;i = 1,… , n} be i.i.d samples. Xi = (Xi1,… ,Xip)
⊤ are generated 

from uniform distribution on [0, 1]p with independent components, Zi1 = 1 and 
(Zi2,… , Ziq)

⊤ follows a multivariate normal distribution with cov(Zij1 , Zij2 ) = 0.5|j1−j2| 
for 2 ≤ j1, j2 ≤ q . Consider the model

where 𝛽 = (𝛽1,… , 𝛽p)
⊤ with true value �0 and ei is the error term. Additionally, the 

functions gs(⋅) are set, respectively, in the following examples. Let n = 100 and 200. 
A total of 500 simulation replications are conducted for each example.

Example 1 Let p = 8 and q = 8 . In model (6), 𝛽0 = (3, 1.5, 0, 0, 2, 0, 0, 0)⊤∕
√
15.25 , 

g1(u) = 4u, g2(u) = exp(2u − 1), g3(u) = 2 cos2(2�u) and gk(u) ≡ 0 for k = 4,⋯ , 8 . 
Moreover, ei ∼ N(0, 1) . As one can see, the first three variables (Z1, Z2, Z3) are rel-
evant and have varying effects.

Example 2 The setup is the same as that in Example 1 except for different design of func-
tion g. Specifically, g1(u) = 2 sin(2�u), g2(u) = exp(2u − 1), g3(u) = 4, g4(u) = 1.5 
and gk(u) ≡ 0 for k = 5,⋯ , 8 . That is, four variables (Z1, Z2, Z3, Z4) are relevant 
where the first two have varying effects and the other two have constant effects.

To demonstrate the performance of the proposed procedure, we consider the fol-
lowing criterions: NS is the average number of variables selected; NST is the aver-
age number of selected that are truly nonzero; NV is the average number of varying-
coefficient components selected; NVT is the average number of varying-coefficient 
components selected that are truly nonzero and varying; NC is the average num-
ber of nonzero constant components selected while NCT is the average number of 
nonzero constant components selected which are truly nonzero constant. Further-
more, we differentiate the following three situations. When one or more relevant 
predictors are not selected, we label it as an under-fitted model. The following cases 
are also labeled as under-fitted: A varying-coefficient component is selected as a 
nonzero constant component; a nonzero constant component is estimated as a vary-
ing-coefficient component. When the resulting model is exactly the same as the true 
model, we refer it to the correctly fitted model. When the resulting model includes 

(6)Yi =

q∑
s=1

gs(X
⊤
i
𝛽)Zi(s+1) + 0.5ei,
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at least one irrelevant predictor and all relevant predictors are selected, we label it 
as an over-fitted model. Following Wang and Xia (2009), to evaluate estimation, we 
use the relative estimation error (REE)

where 𝛽j, ḡj(⋅) are either unpenalized estimators or oracle estimators.
We summarize the results in Table 1. In the columns labeled ‘U-fit,’ ‘C-fit’ and 

‘O-fit,’ we present proportions of trials that result in under-fitted, correctly fitted and 
over-fitted models, respectively. The values in the parentheses are the corresponding 
standard deviations. Several observations can be made. First, the proportion of the 
correctly fitted model increases as the sample size increases, quickly approaching 
1. This also confirms that the BIC-type criterions proposed in Sect. 2.3 can indeed 
identify the true model consistently. Second, the means of REE�(REEg) of our esti-
mators to unpenalized estimators are much smaller than 1, which indicates that the 
proposed estimators are much more accurate than the unpenalized estimators. Last, 
the values of REE�(REEg) of ours to the oracle estimators based on true model 
are close to 1. These phenomena corroborate the oracle properties of the proposed 
estimators.

3.2  Data analysis

We analyze a body fat data (http://lib.stat.cmu.edu/datas ets/bodyf at). The aim is to 
build a predictive model for the percentage of body fat. We delete three samples 
with potential outliers, which lead to records on 249 men and thirteen baseline pre-
dictors: AGE (age), BMI (body mass index), NK (neck), CT (chest), AN (2 abdo-
men), HIP (hip), RAN (the ratio of 2 abdomen to hip), TN (thigh), KE (knee), AK 
(ankle), BS (biceps), FA (forearm) and WI (wrist). All predictors except AGE, BMI 
and RAN are standardized. These three variables are transformed so that the mar-
ginal distributions are U[0, 1]. The response of interest is the logarithm of percent-
age of body fat.

Lai et al. (2016) consider the following homoscedastic model

where U = �1AGE + �2BMI + �3RAN and � is the error term. We label the estima-
tion developed in Lai et  al. (2016) for model (7) as ‘The unpenalized approach.’ 
Two hundred samples are random selected to fit the model, and the rest 49 obser-
vations are to evaluate the prediction ability of the underlying model by the mean 
absolute prediction error (MAPE), which are defined as 

∑49

i=1
�yi − ŷi�∕49 , where ŷi 

is the predicted value by the proposed approach or the unpenalized approach. To 
overcome the randomness, we run the process 100 times and summarize the results. 
Figure 1 shows the boxplots for 100 MAPEs based on the proposed and unpenalized 
approaches. The median of MAPEs of the proposed approach is equal to 0.2665 

REE𝛽 =

∑p

j=1
�𝛽j − 𝛽j�∑p

j=1
�𝛽j − 𝛽j�

, REEg =

∑n

i=1

∑q

j=1
�ĝj(X⊤

i
𝛽) − gj(X

⊤
i
𝛽0)�∑n

i=1

∑q

j=1
�ḡj(X⊤

i
𝛽) − gj(X

⊤
i
𝛽0)�

,

(7)
Y = g0(U) + g1(U)NK + g2(U)CT + g3(U)AN + g4(U)HIP + g5(U)TN

+ g6(U)KE + g7(U)AK + g8(U)BS + g9(U)FA + g10(U)WI + �,

http://lib.stat.cmu.edu/datasets/bodyfat
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(0.0238), while that of the unpenalized approach is 0.3176 (0.0947). The values in 
the parentheses are MAD of APEs. We can conclude that the proposed approach has 
better prediction performance and stability.

4  Discussion

In this paper, we have proposed a two-stage efficient variable selection procedure for 
single-index varying-coefficient models. With a proper choice of tuning parameters, we 
have established that the proposed method can consistently identify the true structure, 
and the estimators of important parametric and nonparametric components are consist-
ent and asymptotically normal. It is remarkable that the method can also separate pre-
dictors into varying-coefficient and constant-coefficient predictors automatically. The 
numerical studies show that the proposed approach works well. We have focused on 
variable selection problems with fixed dimension. Extension to a ‘large p small n’ sce-
nario is of interest in future study. In addition, very little work exists on the inferential 
aspects (e.g., constructing confidence intervals or statistical testing) of high dimen-
sional single-index varying-coefficient models, which requires further research.

Acknowledgements The authors wish to thank the associate editor and two anonymous referees for their 
constructive comments that greatly improved the manuscript. This study was supported by the National 
Natural Science Foundation of China (11771215, 11971404), the Natural Science Foundation of Jiangsu 
Province (BK20161530), Qing Lan Project of Jiangsu Province (2016), and MOE (Ministry of Education 
in China) Project of Humanities and Social Sciences (19YJC910010).

Fig. 1  The boxplots of 100 MAPEs based on the proposed and unpenalized approaches



469

1 3

Model identification and selection for SIVCM

Appendix: Technical proofs

Proof of  Theorem  1 The proof is similar to the proof of Theorem  1 in Wang and 
Xia (2009). From Sect. 2, we know that GM = (G⊤, hG�⊤)⊤ , and its estimator is ĜM . 
Firstly, let �n = (nh)−1∕2 , we prove that there exists a large constant C such that

for any small constant 𝜖 > 0 . (8) implies with probability at least 1 − � that there 
exists a local maximum in {GM + �nu ∶ n−1‖u‖2 ≤ C} , where u = (uij) ∈ R2q×n with 
columns u1,… , un and rows v1,… , vq . Further, we can divide u as u = (ū⊤

1
, ū⊤

2
)⊤ , 

where ūk ∈ Rq×n with columns uk1,… , ukn and rows vk1,… , vkq , k = 1, 2 . Hence, (8) 
also proves there exists a local maximizer such that

From (4), note that ti = X⊤
i
𝛽, 𝛽 ∈ �n and aj = g(tj), bj = g�(tj), 𝜂j = (a⊤

j
, hb⊤

j
)⊤,

where

For L1 , since Z̃i(tj) = (Z⊤
i
,
ti−tj

h
Z⊤
i
)⊤ and �n = (nh)−1∕2 , we have

 where

(8)lim inf
n

P

�
inf

1

n
‖u‖2=C

Q𝜆(GM + 𝛼nu) > Q𝜆(GM)

�
= 1 − 𝜖,

n−1
n�
i=1

‖�̂�𝜆(ti) − 𝜂0(ti)‖2 = Op(𝛼
2
n
).

(9)n−1h
{
Q�(GM + �nu) − Q�(GM)

}
= L1 + L2,

L1 =
h

n

n�
j=1

n�
i=1

�
Yi − Z⊤

i
(aj + 𝛼nu1j) −

ti − tj

h
Z⊤

i
(hbj + 𝛼nu2j)

�2
Kh(ti − tj)

−
h

n

n�
j=1

n�
i=1

�
Yi − Z⊤

i
aj −

ti − tj

h
Z⊤

i
hbj

�2
Kh(ti − tj),

L2 =
h

n

q�
j=1

𝜆1j(‖cj + 𝛼nv1j‖ − ‖cj‖) + h

n

q�
j=1

𝜆2j(‖dj + 𝛼nv2j‖ − ‖dj‖).

(10)

L1 =
h

n

n∑
j=1

n∑
i=1

[𝛼nZ̃
⊤
i
(tj)uj]

2Kh(ti − ti) −
2h

n

n∑
j=1

n∑
i=1

[Yi − Z̃⊤
i
(tj)𝜂j][𝛼nZ̃

⊤
i
(tj)uj]Kh(ti − tj)

=
1

n

n∑
j=1

u⊤
j
�̂�1(tj)uj −

2

n

n∑
j=1

u⊤
j
êj −

2

n

n∑
j=1

u⊤
j
ẽj,
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Let R1 = L1 + L2 , from the assumptions, we know that ‖cj‖ = 0 for any j > q0 , and 
‖dj‖ = 0 for any j > q0 . Furthermore, if some gk(t) is constant, without loss of gen-
erality, gd0+1(t),… , gq0 (t) are constants, then ‖dj‖ = 0 for any j > d0 . Based on this 
information and �n = (nh)−1∕2 , we can conclude that

Let �̂�min
j

 be the smallest eigenvalue of �̂�1(tj) , �̂�min = min{�̂�min
j

, j = 1,… , n} . Then, 
we have

 By the condition that 1
n
‖u‖2 = C , we have

From (10), we know that êj =
�

h

n

∑n

i=1
𝜀iZ̃i(tj)Kh(ti − tj) . Then for a given tj,

This concludes that 1
n
‖ê‖2 = Op(1) . Similarly,

�̂�1(tj) =
1

n

n∑
i=1

Z̃i(tj)Z̃
⊤
i
(tj)Kh(ti − tj), êj =

√
h

n

n∑
i=1

𝜀iZ̃i(tj)Kh(ti − tj),

ẽj =

√
h

n

n∑
i=1

Z̃i(tj)g
��⊤(tj)Zi(

ti − tj

h
)2h2Kh(ti − tj).

R1 ≥1

n

n�
j=1

u⊤
j
�̂�1(tj)uj −

2

n

2�
i=1

u⊤
j
êj −

2

n

2�
i=1

u⊤
j
ẽj

+
h

n

q0�
j=1

𝜆1j(‖cj + 𝛼nv1j‖ − ‖cj‖) + h

n

q0�
j=1

𝜆2j(‖dj + 𝛼nv2j‖ − ‖dj‖).

R1 ≥1

n

n�
j=1

�
‖uj‖2�̂�min

j
− 2‖uj‖‖êj‖ − 2‖uj‖‖ẽj‖

�
−

�
h

n3

q0�
j=1

‖v1j‖𝜆1j −
�

h

n3

d0�
j=1

‖v2j‖𝜆2j

≥�̂�min

�
1

n

n�
j=1

‖uj‖2
�

−
2

n

n�
j=1

‖uj‖‖êj‖ − 2

n

n�
j=1

‖uj‖‖ẽj‖ −
�

h

n3

q0�
j=1

�‖v1j‖𝜆1j + ‖v2j‖𝜆2j
�

≥�̂�min

�
1

n
‖u‖2

�
− 2

�
1

n
‖u‖2

� 1

2
�
1

n
‖ê‖2

� 1

2

− 2

�
1

n
‖u‖2

� 1

2
�
1

n
‖ẽ‖2

� 1

2

−

�
h

n3

q0�
j=1

�‖v1j‖𝜆1j + ‖v2j‖𝜆2j
�
∶= R2.

(11)

R2 ≥�̂�minC
2 − 2C

�
1

n
‖ê‖2

� 1

2

− 2C
�
1

n
‖ẽ‖2

� 1

2

−

√
h

n
𝜙n

�
1

n

q�
j=1

‖v1j‖2
� 1

2

−

√
h

n
𝜙�
n

�
1

n

q�
j=1

‖v2j‖2
� 1

2

≥�̂�minC
2 − 2C

�
1

n
‖ê‖2

� 1

2

− 2C
�
1

n
‖ẽ‖2

� 1

2

−

√
h

n
𝜙nC −

√
h

n
𝜙�
n
C.

(12)E‖êj‖2 = h

n

n�
i=1

E

�
𝜀2
i
Z̃⊤
i
(tj)Z̃i(tj)

1

h2
K2

�
ti − tj

h

��
=

h

n
⋅ n ⋅ O

�
1

h

�
= O(1).
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which deduces E‖ẽj‖2 = O(1) since h ∝ n−1∕5 . Then n−1‖ẽ‖2 = Op(1).
By Lemma A.3 in Wang and Xia (2009) and C1, it follows

Then we have P(�̂�min → 𝜆0
min

) → 1 and

If 
√
h

n
�n = n

−
11

10�n → 0 and n−
11

10��
n
→ 0 , from (11) together with (12)-(14), we can 

see that the first term of (11) dominates the last two terms for sufficient large C. 
Then, we prove that

Next, we prove the sparsity. We first prove under some assumptions, we have 
P(‖ĉ𝜆j‖ = 0) → 1 for any q0 < j ≤ q and P(‖d̂𝜆j‖ = 0) → 1 for any d0 < j ≤ q . For 
j = q (for q0 < j < q , the proof is similar), if {‖ĉ𝜆q‖ ≠ 0, ‖d̂𝜆q‖ ≠ 0} , then it must be 
the solution of 𝜕Q𝜆(GML)

𝜕𝜔q

∣GML=ĜML𝜆

= 0 , where 𝜔q = (c⊤
q
, d⊤

q
)⊤ . That is

where Wi is a 2n × 2n diagonal matrix with the first n diago-
nal components [Yi − �̂�⊤

𝜆k
Z̃i(tk)]Kh(ti − tk), k = 1,… , n and the 

last n diagonal components [Yi − �̂�⊤
𝜆k
Z̃i(tk)]Kh(ti − tk), k = 1,… , n , 

Z̃iq = (Ziq11×n, Ziq(ti − t1),… , Ziq(ti − tn))
⊤ . Then for the kth component L3k of L3 , 

k = 1, 2,… , n,

(13)

E‖ẽj‖2 = h

n

n�
i=1

E

�
Z̃⊤
i
(tj)Z̃i(tj)g

��⊤(tj)ZiZ
⊤
i
g��(tj)h

4

�
ti − tj

h

�4
1

h2
K2

�
ti − tj

h

��

+
2h

n

�
i>k

E
�
Z̃⊤

i
(tj)Z̃k(tj)g

��⊤(tj)ZiZ
⊤

k
g��(tj)

×h4
�
ti − tj

h

�2� tk − tj

h

�2
1

h2
K

�
ti − tj

h

�
K

�
tk − tj

h

��

= O(h4) + O(nh5),

(14)

�̂�2(t) − f (t)𝛴2(t) = Op

(
h +

[
log(1∕h)

nh

]1∕2)
, 𝛴2(t) =

(
E(ZZ⊤|t) 0

0 E(ZZ⊤|t)𝜇2

)
.

𝜆0
min

= inf
t∈�

𝜆min(f (t)𝛴2(t)) > 0.

lim inf
n

P

�
inf

n−1‖u‖2=C
Q𝜆(GM + 𝛼nu) > Q𝜆(GM)

�
= 1 − 𝜖.

(15)0 = −2

n�
i=1

WiZ̃iq + 𝜆1q

(c⊤
q
, 0⊤

n×1
)⊤

‖cq‖ + 𝜆2q

(0⊤
n×1

, d⊤
q
)⊤

‖dq‖ = L3 + L4 + L5,
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Similar to the proofs of (12) and (13), we have (∑n

k=1
L2

3k2
)1∕2 = Op(nh

2
√
n) = Op(nh

−1∕2) 
since h ∝ n−1∕5 and (

∑n

k=1
L2
3k3

)1∕2 = Op(nh
−1∕2) . Similar to the proof of (A.7) in 

(Wang and Xia 2009),

For the last n components of L3 , k = 1,… , n,

similarly, we have (
∑n

k=1
L2
3(k+n)l

)1∕2 < Op(nh
−1∕2), l = 1, 2, 3 . It follows 

‖L3‖ = Op(nh
−1∕2).

On the other hand, ‖L4‖ = �1q , if n
−

11

10�n → ∞ , then

Similarly, if n−
11

10��
n
→ ∞ , then

These imply that

Therefore, with probability tending to 1, the estimating equation (15) cannot hold. 
Then we conclude, P

�‖ĉ𝜆j‖ = 0
�
→ 1 for any q0 < j ≤ q , and P

�‖d̂𝜆j‖ = 0
�
→ 1 for 

any q0 < j ≤ q.

L3k = − 2

n∑
i=1

(𝜂k − �̂�𝜆k)
⊤Z̃i(tk)ZiqKh(ti − tk)

−

n∑
i=1

g��⊤(tk)ZiZiqKh(ti − tk)h
2
( ti − tk

h

)2

− 2

n∑
i=1

𝜀iZiqKh(ti − tq)

∶ = L3k1 + L3k2 + L3k3.

�
n�

k=1

L2
3k1

�1∕2

≤
�

n�
k=1

‖𝜂0(tk) − �̂�𝜆(tk)‖2 × ‖
n�
i=1

ZiqZ
⊤

i
Kh(ti − tk)‖2

�1∕2

=
�
nOp

�
1

nh

�
Op(n

2)
�1∕2

= Op(nh
−1∕2).

L3(k+n) = − 2

n∑
i=1

(𝜂k − �̂�𝜆k)
⊤Z̃i(tk)Ziq(ti − tk)Kh(ti − tk)

−

n∑
i=1

g��⊤(tk)ZiZiq(ti − tk)Kh(ti − tk)h
2

( ti − tk

h

)2

− 2

n∑
i=1

𝜀iZiq(ti − tk)Kh(ti − tk)

∶= L3(k+n)1 + L3(k+n)2 + L3(k+n)3,

(nh−
1

2 )−1‖L4‖ = (nh−
1

2 )−1�1q ≥ (nh−
1

2 )−1�n ∝ n
−

11

10�n → ∞.

(nh−
1

2 )−1‖L5‖ = (nh−
1

2 )−1�2q ≥ (nh−
1

2 )−1��
n
∝ n

−
11

10��
n
→ ∞.

P(‖L4‖ + ‖L5‖ ≥ ‖L3‖) → 1.
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Next, we prove that under some conditions, P
�‖d̂𝜆j‖ = 0

�
→ 1 for any 

d0 < j ≤ q0 . For j = q0 (for any d0 < j < q0 , the proof is similar), if ‖d̂𝜆j‖ ≠ 0 , then 
it must be the solution of 𝜕Q𝜆(GML)

𝜕𝜔q0

∣GML=ĜML𝜆

= 0 , where 𝜔q0
= (c⊤

q0
, d⊤

q0
)⊤ . Similar to 

(15), it follows

For the sparsity of g�(t) , we only need to study

where W (2)

i
 is a n × n diagonal matrix with elements [Yi − �̂�⊤

𝜆k
Z̃i(tk)]Kh(ti − tk), k = 1,… , n , 

and Z̃(2)

iq0
= (Ziq0 (ti − t1),… , Ziq0 (ti − tn))

⊤ . Then the kth component L6k of L6 is

Similar to the proof of ‖L3‖ = Op(nh
−1∕2) , we have

Therefore, ‖L6‖ = Op(n
√
h) . From the assumption n−

9

10�n → ∞ , we have

This implies that P(‖L7‖ ≥ ‖L6‖) → 1 , thus (16) does not hold. Then we have 
P
�‖d̂𝜆j‖ = 0

�
→ 1 for any d0 < j ≤ q0.

Therefore, we have

0 = − 2

n�
i=1

WiZ̃iq0 + 𝜆1q0

(c⊤
q0
, 0⊤

n×1
)⊤

‖cq0‖
+ 𝜆2q0

(0⊤
n×1

, d⊤
q0
)⊤

‖dq0‖
,

(16)0 = −2

n�
i=1

W
(2)

i
Z̃
(2)

iq0
+ 𝜆2q0

dq0

‖dq0‖
∶= L6 + L7,

L6k = −2

n∑
i=1

(𝜂k − �̂�𝜆k)
⊤Z̃i(tk)Ziq0(ti − tk)Kh(ti − tk)

−

n∑
i=1

g��⊤(tk)ZiZiq0(ti − tk)Kh(ti − tk)h
2

( ti − tk

h

)2

− 2

n∑
i=1

𝜀iZiq0 (ti − tk)Kh(ti − tk)

∶= L6k1 + L6k2 + L6k3,

�
n�

k=1

L2
6k1

�1∕2

=
�
nOp

�
1

nh

�
Op(n

2h4)
�1∕2

= Op(nh
√
h),

�
n�

k=1

L2
6k2

�1∕2

= Op(n
√
nh4),

�
n�

k=1

L2
6k3

�1∕2

= Op(n
√
h).

(n
√
h)−1‖L7‖ = (n

√
h)−1�2q0 ≥ (n

√
h)−1�n = n

−
9

10�n → ∞.

(17)
P(‖ĉ𝜆j‖ = 0) → 1 for any q0 < j ≤ q,

P(‖d̂𝜆j‖ = 0) → 1 for any d0 < j ≤ q.
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By (4), (17) and Hunter and Li (2005) we know for ĉ(m)
𝜆j

= (ĝ
(m)

𝜆j
(t1),… , ĝ

(m)

𝜆j
(tn))

⊤ 
and d̂(m)

𝜆j
= (ĝ

�(m)

𝜆j
(t1),… , ĝ

�(m)

𝜆j
(tn))

⊤ , as m → ∞ , ‖ĉ(m)
𝜆j

‖ → ‖ĉ𝜆j‖ and ‖d̂(m)
𝜆j

‖ → ‖d̂𝜆j‖ , 
1 ≤ j ≤ q . Then, for 1 ≤ j ≤ q0 , ‖ĉ(m)𝜆j

‖ converges to a positive number, while ‖ĉ(m)
𝜆j

‖ 
converges to 0 for j > q0 ; for 1 ≤ j ≤ d0 , ‖d̂(m)𝜆j

‖ converges to a positive number, 
while ‖d̂(m)

𝜆j
‖ converges to 0 for j > d0 . From (4), it follows

Define

where D(m) =

(
D(m)

a
0

0 D
(m)

b

)
 , D(m)

a
 and D(m)

b
 are (q × q) diagonal matrices. Note that

where

Because �̂�(m+1)
𝜆

(t) = (
(
â
(m+1)

𝜆
(t)
)⊤

, h
(
b̂
(m+1)

𝜆
(t)
)⊤

)⊤ , â(m+1)
𝜆

(t) = (ĝ
(m+1)

𝜆1
(t),… , ĝ

(m+1)

𝜆q
(t))⊤ 

and hb̂
(m+1)

𝜆
(t) = (hĝ

�(m+1)

𝜆1
(t),… , hĝ

�(m+1)

𝜆q
(t))⊤ , and for a given t, 

𝛺
(m)

ab
(t) = 𝛺

(m)⊤

ba
(t) = hOp(Cq) , Cq is a (q × q) constant matrix, we have

where

�̂�
(m+1)

𝜆
(t) =

[
1

n

n∑
i=1

Z̃i(t)Z̃
⊤

i
(t)Kh(ti − t) +

1

n
D(m)

]−1[
1

n

n∑
i=1

YiZ̃i(t)Kh(ti − t)

]
.

𝛺(m)(t) =

�
1

n

n�
i=1

Z̃i(t)Z̃
⊤
i
(t)Kh(ti − t) +

1

n
D(m)

�

=

⎛
⎜⎜⎝

1

n

∑n

i=1
ZiZ

⊤
i
Kh(ti − t) +

D
(m)
a

n

1

n

∑n

i=1
ZiZ

⊤
i

�
ti−t

h

�
Kh(ti − t)

1

n

∑n

i=1
ZiZ

⊤
i

�
ti−t

h

�
Kh(ti − t)

1

n

∑n

i=1
ZiZ

⊤
i

�
ti−t

h

�2

Kh(ti − t) +
D

(m)

b

n

⎞
⎟⎟⎠

=

�
𝛺(m)

aa
(t) 𝛺

(m)

ab
(t)

𝛺
(m)

ba
(t) 𝛺

(m)

bb
(t)

�
,

(18)[�(m)(t)]−1 =

(
A−1
11.2

− A−1
11
A12A

−1
22.1

−A−1
22
A21A

−1
11.2

A−1
22.1

)
,

A11.2 = �(m)
aa

(t) −�
(m)

ab
(t)(�

(m)

bb
(t))−1�

(m)

ba
(t), A11 = �(m)

aa
(t), A22 = �

(m)

bb
(t),

A22.1 = �
(m)

bb
(t) −�

(m)

ba
(t)(�(m)

aa
(t))−1�

(m)

ab
(t), A12 = �

(m)

ab
(t), A21 = �

(m)

ba
(t).

(19)

â
(m+1)

𝜆
(t) =

[
𝛺(m)

aa
(t) − h2Op(Cq)[𝛺

(m)

bb
(t)]−1O⊤

p
(Cq)

]−1
Na(t)

− h
{
𝛺(m)

aa
(t)
}−1

Op(Cq)

×
[
𝛺

(m)

bb
(t) − h2O⊤

p
(Cq)[𝛺

(m)
aa

(t)]−1Op(Cq)
]−1

Nb(t),
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and

Consider â(m+1)
𝜆

(t) = (â
(m+1)⊤

𝜆a
(t), â

(m+1)⊤

𝜆b
(t))⊤ , where

and b̂(m+1)
𝜆

= (b̂
(m+1)⊤

𝜆a
(t), b̂

(m+1)⊤

𝜆b
(t))⊤ , where

Define D(m)
a

=

(
D(m)

aa
0

0 D
(m)

ab

)
 , D(m)

aa
 is the q0 × q0 diagonal submatrix of D(m)

a
 , and 

D
(m)

ab
 is the lower (q − q0) × (q − q0) diagonal submatrix of D(m)

a
 . Define 

D
(m)

b
=

(
D

(m)

ba
0

0 D
(m)

bb

)
 , D(m)

ba
 is the d0 × d0 diagonal submatrix of D(m)

b
 , and D(m)

bb
 is the 

lower (q − d0) × (q − d0) diagonal submatrix of D(m)

b
.

Therefore, for any fixed n, with m → ∞ , by the definition of D(m) and (17), we 
have every diagonal component of D(m)

aa
 and D(m)

ba
 converges to some finite number, 

and the diagonal components of D(m)

ab
 and D(m)

bb
 converge to infinity. Therefore, by 

(19),

We find that

where Zi = (Z∗⊤
i
, Z∗∗⊤

i
)⊤ , the dimensions of Z∗

i
 and Z∗∗

i
 are q0 and q − q0 , respec-

tively. Similar to (18), define

Na(t) =
1

n

n∑
i=1

YiZiKh(ti − t), Nb(t) =
1

n

n∑
i=1

YiZi

( ti − t

h

)
Kh(ti − t),

(20)

hb̂
(m+1)

𝜆
(t)

= −h
{
𝛺

(m)

bb
(t)
}−1

O⊤
p
(Cq)

[
𝛺(m)

aa
(t) − h2Op(Cq)[𝛺

(m)

bb
(t)]−1O⊤

p
(Cq)

]−1
Na(t)

+
[
𝛺

(m)

bb
(t) − h2O⊤

p
(Cq)[𝛺

(m)
aa

(t)]−1Op(Cq)
]−1

Nb(t).

â
(m+1)

𝜆a
(t) = (ĝ

(m+1)

𝜆1
(t),… , ĝ

(m+1)

𝜆q0
(t))⊤ and â

(m+1)

𝜆b
(t) = (ĝ

(m+1)

𝜆(q0+1)
(t),… , ĝ

(m+1)

𝜆q
(t))⊤,

b̂
(m+1)

𝜆a
(t) = (ĝ

�(m+1)

𝜆1
(t),… , ĝ

�(m+1)

𝜆d0
(t))⊤ and b̂𝜆b(t) = (ĝ

�(m+1)

𝜆(d0+1)
(t),… , ĝ

�(m+1)

𝜆q
(t))⊤.

(21)
â
(m+1)

𝜆
(t) =

{
[𝛺(m)

aa
(t)]−1Na(t) − h[𝛺(m)

aa
(t)]−1Op(Cq)[𝛺

(m)

bb
(t)]−1Nb(t)

}
(1 + op(1)).

𝛺(m)
aa

(t) =

⎛
⎜⎜⎝

1

n

∑n

i=1
Z∗
i
Z∗⊤
i
Kh(ti − t) +

D
(m)
aa

n

1

n

∑n

i=1
Z∗
i
Z∗∗⊤
i

Kh(ti − t)

1

n

∑n

i=1
Z∗∗
i
Z∗⊤
i
Kh(ti − t)

1

n

∑n

i=1
Z∗∗
i
Z∗∗⊤
i

Kh(ti − t) +
D

(m)

ab

n

⎞⎟⎟⎠
=

�
𝛺

(m)

aa1
(t) 𝛺

(m)

aa2
(t)

𝛺
(m)

aa3
(t) 𝛺

(m)

aa4
(t)

�
,
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where

Since every diagonal component of D(m)
aa

 converges to some finite number, and the 
diagonal components of D(m)

ab
 converge to infinity, −B−1

22
B21B

−1
11.2

 and B−1
22.1

 converge to 
0 uniformly on t ∈ � as m → ∞ . Furthermore, Na(t) = (N⊤

aa
(t),N⊤

ab
(t)) , 

Nb(t) = (N⊤
ba
(t),N⊤

bb
(t)) , Naa(t),Nab(t),Nba(t) and Nbb(t) are uniformly bounded, 

[�
(m)

bb
(t)]−1 is uniformly bounded, after expanse (21) it proves that â(m+1)

𝜆j
(t) → 0 , as 

m → ∞ , for q0 < j ≤ q , uniformly on t ∈ � . Therefore, we conclude that 
P
�
supt∈T ‖ĝ𝜆j(t)‖ = 0

�
→ 1 for any q0 < j ≤ q . Then, (i) in Theorem 1 is proved.

To prove (ii) in Theorem 1, we consider (20), we have

Define

where Zi = (Z∗⊤
i
, Z∗∗⊤

i
)⊤ , the dimensions of Z∗

i
 and Z∗∗

i
 are d0 and q − d0 , respec-

tively. Since every diagonal component of D(m)

ba
 converges to some finite number, and 

the diagonal components of D(m)

bb
 converge to infinity, similar to the proof of estima-

tion sparsity of ĝ𝜆(t) , we have P
�
supt∈T ‖ĝ�𝜆j(t)‖ = 0

�
→ 1 for any d0 < j ≤ q . Thus, 

this theorem is proved.   ◻

Proof of  Theorem  2 Theorem  1 proves the estimation sparsity of ĝ𝜆(t) and ĝ�
𝜆
(t) , 

together with (4), we have the estimating equation

where Z̃∗
i
(t) = (Z∗⊤

i
, Z∗∗⊤

i
(
ti−t

h
)) , Z∗

i
= (Zi1,… , Ziq0 )

⊤ and Z∗∗
i

= (Zi1,… , Zid0 )
⊤ , 

Dc = diag (
𝜆11

‖ĉ1‖ ,… ,
𝜆1q0

‖ĉq0‖
) and Dd = diag (

𝜆21

‖d̂1‖ ,… ,
𝜆2d0

‖d̂d0‖
) . By (23),

[�(m)
aa

(t)]−1 =

(
B−1
11.2

− B−1
11
B12B

−1
22.1

−B−1
22
B21B

−1
11.2

B−1
22.1

)
,

B11.2 = �
(m)

aa1
(t) −�

(m)

aa2
(t)(�

(m)

aa4
(t))−1�

(m)

aa3
(t), B11 = �

(m)

aa1
(t), B22 = �

(m)

aa4
(t),

B22.1 = �
(m)

aa4
(t) −�

(m)

aa3
(t)(�

(m)

aa1
(t))−1�

(m)

aa2
(t), B12 = �

(m)

aa2
(t), B21 = �

(m)

aa3
(t).

(22)
hb̂

(m+1)

𝜆
(t) = − h

{
𝛺

(m)

bb
(t)
}−1

O⊤

p
(Cq)

[
𝛺(m)

aa
(t)
]−1

Na(t)

+
[
𝛺

(m)

bb
(t)
]−1

Nb(t).

𝛺
(m)

bb
(t) =

⎛⎜⎜⎝

1

n

∑n
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Z∗
i
Z∗⊤
i

�
ti−t

h

�2

Kh(ti − t) +
D

(m)

ba

n

1

n

∑n

i=1
Z∗
i
Z∗∗⊤
i

�
ti−t

h

�2

Kh(ti − t)

1

n

∑n

i=1
Z∗∗
i
Z∗⊤
i

�
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h

�2

Kh(ti − t)
1

n

∑n

i=1
Z∗∗
i
Z∗∗⊤
i

�
ti−t

h

�2

Kh(ti − t) +
D

(m)

bb

n

⎞⎟⎟⎠

=

�
𝛺

(m)

bb1
(t) 𝛺

(m)

bb2
(t)

𝛺
(m)

bb3
(t) 𝛺

(m)

bb4
(t)

�
,

(23)0 = −2

n∑
i=1

[Yi − 𝜂⊤
𝜆�∗

GM

(t)Z̃∗
i
(t)]Z̃∗

i
(t)Kh(ti − t) +

(
Dc 0

0 Dd

)
�̂�𝜆�∗

GM

(t),
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 where �̂�∗
1
(t) =

1

n

∑n

i=1
Z̃∗
i
(t)Z̃∗⊤

i
(t)Kh(ti − t).

To prove the second equation in (24), according to

for j = 1,… , q0 , together with n−
11

10�n → 0 , we have

Similarly, we can obtain 1
2n

(
Dc 0

0 Dd

)
= op(n

−2∕5) . Thus the second equation in (24) 

is proved.
Note that

and 
�

h

n

∑n

i=1
𝜀iZ̃

∗
i
Kh(ti − t) follows the normal distribution N(0, �2V∗

1
),

thus, by (24), we conclude

  ◻

Proof of  Theorem  3 To prove (i), we consider 𝛽
(1)

𝜆n
= 𝛽

(1)

0
+ Cn−1∕2 and let 

𝛽
(1)

𝜆n
= (𝛽

(1)∗⊤

𝜆n
, 0⊤

(p−p0)×1
)⊤ , where 𝛽(1)∗

𝜆n
= 𝛽

(1)∗

0
+ n−1∕2𝛴∗−1

3

1√
n
U∗(𝛽

(1)

0
) , 𝛽(1)∗

0
= (𝛽02,… , 𝛽0p0 )

⊤  
and

(24)

�̂�𝜆�∗
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(t) =

[
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n
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1

2n
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Dc 0

0 Dd
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1

n

n∑
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∗
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(t)Kh(ti − t)

]
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�̂�∗

1
(t)
]−1

�̂�∗
1
(t)𝜂0�∗

GM

(t) +
[
�̂�∗

1
(t)
]−1 h2

2n
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( ti − t

h

)2

g��⊤
�∗

g
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i
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+
[
�̂�∗

1
(t)
]−1 1

n

n∑
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𝜀iZ̃
∗
i
Kh(ti − t),

‖ĉj‖2 =
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i=1
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2 + 2

n�
i=1

gj(ti)(ĝj(ti) − gj(ti)) +

n�
i=1

g2
j
(ti) = Op(n),

1

n

𝜆1j

‖ĉj‖ =
n−11∕10𝜆1j

n ⋅ n−11∕10 ⋅ n1∕2
= n−11∕10𝜆1j ⋅ Op(n

−2∕5) = op(n
−2∕5).

�̂�∗
1
(t) → 𝛴∗

1
(t) =

(
f (t)E(Z∗Z∗⊤|t) 0

0 f (t)E(Z∗∗Z∗∗⊤|t)𝜇2
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,
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1
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(
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0 f (t)E(Z∗∗Z∗∗⊤|t)𝜇2

)
,

√
nh

�
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(t) −
h2
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1
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�
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D
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1
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where ti = X⊤
i
𝛽0 = X∗⊤

i
𝛽∗
0
 , X∗

i
= (Xi1,… ,Xip0

)⊤ , D∗
1
(X⊤𝛽0) = E[Z∗Z∗⊤|X⊤𝛽0] , 

D̃∗
2
(X⊤𝛽0) = E[g�∗⊤(X⊤𝛽0)Z

∗J⊤
𝛽
∗(1)

0

X∗Z∗⊤|X⊤𝛽0] and 𝛴∗
3
= E

[
g�∗⊤(X⊤𝛽0)Z

∗J⊤
𝛽
(1)∗

0

X∗−

D̃
∗
2
(X⊤𝛽0)D

∗−1
1

(X⊤𝛽0)Z
∗
]⊗2.

Similar to the proof of Theorem 2 in Lai et al. (2016), we can conclude

where

Since the true parameter vector 𝛽0 = (𝛽∗⊤
0
, 0⊤

(p−p0)×1
)⊤ , 𝛽∗

0
= (𝛽01,… , 𝛽0p0 )

⊤ , thus

Then J⊤
𝛽
(1)

0

X =

(
J⊤
𝛽
(1)∗

0

X∗

X∗∗

)
 , where X∗∗ = (Xp0+1

,… ,Xp)
⊤ . It is easy to see that 

U∗(�
(1)

0
) are same with the first (p0 − 1) components of U(�

(1)

0
).

By the definition of 𝛽(1)∗
𝜆n

 and (25), for j = 2,… , p0,

The last equation is due to the fact that p�n(⋅) is a SCAD penalty and √
nq𝜆n(�𝛽𝜆nj�) → 0 for j = 2,… , p0 , by the condition �n → 0,

√
n�n → ∞.

In addition, we denote a∗∗ as the last p − p0 components of p − 1 dimensional 
vector a for convenience. For example, 𝛽

(1)∗∗

𝜆n
= (𝛽𝜆n(p0+1),… , 𝛽𝜆np)

⊤ and 
𝛽
(1)∗∗

0
= (𝛽0(p0+1),… , 𝛽0p)

⊤ . From the definition, we know that 
𝛽
(1)∗∗

𝜆n
= 𝛽

(1)∗∗

0
= 0(p−p0)×1

 . Moreover, we find that 1√
n
Ũ(𝛽

(1)

0
) = Op(1) . Thus, the last 

(p − p0) components of (25) reduce to

Since 
√
n�n → ∞ , 1√

n
U∗∗

𝜆n
([𝛽𝜆n ± 𝜖ej]) are dominated by 

√
nq∗∗

�n
(���)sgn∗∗(±�) as � 

tends to zero. Based on the above discussions, we have proved that there exists a 
√
n
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(1)

0
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g∗(ti))[g
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∗
i
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0
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∗
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(25)
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i
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i
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∗
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�
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�
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�
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(26)
1√
n
U𝜆nj

([𝛽𝜆n ± 𝜖ej]
(1)) = op(1) −

√
nq𝜆n(�𝛽𝜆nj ± 𝜖�)sgn(𝛽𝜆nj ± 𝜖) = op(1).

1√
n
U∗∗

𝜆n
([𝛽𝜆n ± 𝜖ej]

(1)) = Op(1) −
√
nq∗∗

𝜆n
(�𝜖�)sgn∗∗(±𝜖).
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-consistent zero-crossing to U�n
(�(1)) . Recall that �∗

�(1)
= {2,… , p0} . Following the 

discussion of Theorem 1(c) in Johnson et al. (2008), we conclude that there exists an 
exact zero-crossing estimator 𝛽

(1)

𝜆n
= (𝛽

(1)⊤

𝜆n�
∗

𝛽(1)

, �⊤)⊤ of U�n
(�(1)) satisfied 

U𝜆n�
∗

𝛽(1)
(𝛽

(1)

𝜆n
) = 0 . Then (i) in Theorem 3 is proved.

Next we prove the estimation sparsity. Similar to the proof of Theorem 1(b) in 
Johnson et  al. (2008), define Bj = {𝛽𝜆nj ≠ 0}, j = p0 + 1,… , p . To prove (ii) in 
Theorem 3, we only need to prove for any 𝜖 > 0 , with n → ∞ , P(Bj) < 𝜖 . Because 
𝛽𝜆nj = Op(n

−1∕2) , there exists some C such that with n is large enough,

On the other hand, from (26), the first two terms on the right side are of order Op(1) , 
which implies that there exists some C′ such that for large n,

Since 
√
n inf��j�≤Cn−1∕2 q�n(��j�) =

√
n�n → ∞ , we have

Therefore, P(Bj) < 𝜖 , for any 𝜖 > 0 , j = p0 + 1,… , p . The consistent selection of 
Theorem 3 (ii) is proved.

To prove the asymptotic normality of Theorem 3, by (25), after the Taylor expan-
sion of the penalty term, we have

where

Therefore, we prove that

where �∗
5
= �2�∗

3
 .   ◻
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2
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