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To establish the asymptotic properties of the proposed estimators, the following

regularity conditions are needed in this paper.
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(C1) There exists a unique solution 6, € © to the equation E,| 5

where w = (uq, -+ ,uy), and © is a convex and compact set.

e integral [ sup o m u exists.
C2) The i o 1 5 0co alog[c(ugé-u 0)] d

e partial derivative supi (., +1)y<u<r, /(r.+1 L < Qk%, where
C3) The partial derivati (o) (o) | FEL | < Qe wh

() and a are some positive constants.

(C4) The conditional density function of T', fx z(t), satisfies that 0 < ¢; < fx z(T') <
C9 < 00 uniformly in X, Z and T for some positive constants ¢; and c¢y. Fur-
thermore, there is a constant M such that the conditional densities satisfy the

Lipschitz condition |f;(s|Xi;, Zi;) — f;(t|Xij, Zij)| < M|s —t|, for all ¢ and j.

(C5) The covariates X;; and Z;; satisfy that maxi<;<n1<j<m || Xij|]| = Op(n¥) and

Maxi <j<n1<j<m || Zij|| = Op(n") for some positive constant v < .
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(C6) aox(t) € H, for some r > 1/2. Where H,. is the collection of all functions on
[0, 1] whose mth order derivative satisfies the Holder condition of order v with

r=m-4v.

(C7) For any positive definite matrix X, %Z?:l Zszl XiT(k)Ai(k)Ti(k)Ai(k)Xi(k)

converges to a positive definite matrix.
(C8) Matrix € is positive definite and ||| = O ().

Conditions (C1) and (C4), together with (C5), are commonly used in quantile regres-
sion literature. Conditions (C2) and (C3) specify conditions on the copula function,
which are satisfied by many commonly used copulas including Gaussian copula, t-
copula and so on. Condition (C6) states the smoothness condition on the coefficient
functions, which describes a requirement on the best convergence rate that the co-
efficient functions can be estimated. Conditions (C7)-(C8) are used to represent the
asymptotic covariance matrix and obtain the optimal convergence rate.

Lemma 1. Under conditions (C1)-(C5), if k2¢t! /n1=2" — 0 and k,, — co asn — oo,
then 6 —p B9, where —, denotes convergence in probability.

Proof of Lemma 1. The proof is similar with the proof of Lemma 1 in Wang et
al. (2018), we omit the details for saving space.

Proof of Theorem 1. Let
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with Py (¢) = (m —Pr(Yy — D < by), - 7 — Pr(Yim — Dyl < bk)> . By

Lemma 5.1 and Hendricks and Koenker (1992), we can obtain that Vi (0) —,
Vi)(8o) and /A\,-(k) —p Aj(x). Hence, we can directly consider the estimation equation

U() = Zszl Yoy DZ»TAZ-(;C)VZ.@(OO)SZ-(;C)(C) = 0. By some direct calculation, we



can get that
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where a;;() is a vector with DiTAi(k)V;(’k%(GO) = (@), , @im(k))- Under condition

(C5) and from the law of large numbers (Pollard 1990), we have that
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According to Lemma 3 of Jung (1996), we have that

sup

n m K
Z Z Z Qa;j(k) [PT(YU - D,;;¢ < Bk) - [(Y;j —D;;¢ < l;k) + [(Y;j — D;;¢o < I;k) - Tk}

i=1 j=1 k=1

= 0,(V/n).

Therefore, U(¢) —U(¢o) = U(¢) +0,(+y/n). By Taylor’s expansion of U (¢) together
with U (¢o) = 0, we can obtain Uy(¢) — Uy(¢o) = D(¢o)(¢ — o) + 0,(y/n), where

aU
D(¢o) = ’c ¢ = ZZDTA 00) Ai(x) D;.

1=1 k=1
Note that ¢° is in the n~1/3 neighborhood of ¢, and Uy(¢?) = 0, we have ¢° — ¢, =
“1(¢o)U (&) + 0p(1y/n). To obtain the closed form expression of 3°, we write the

inverse of D({p) as the following block form
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where D11 = (DXX —DXBDEIBDB)()_I, D22 = (DBB_DBXD;({XDXB)_Ia

DY = —D"DxpDgl and D*' = —D*Dgx Dy} Furthermore, let U(¢) =
(U (Go)™, U (C)")T, UM(Go) = 201y Doy XTI Aty Vi) (B0) Ay Siy (Go) and U?(Co) =
PP I B Ni Vi3 (00) Aigr) Siqr (o). Then
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Because S;)({o) are independent random variables with mean zero, and
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The multivariate central limit theorem implies that

\/— ZZ X I1; DBBDBX} A V (90)A Sik)(Co) —a N(0,E),

=1 k=1

-1

furthermore, nDll = [% (DXX — DXBD;(lBDBx)}
numbers. Then, by using Slutskys theorem, it follows that \/ﬁ(,éo — Bo) —4a
N(0,X7'EX"1). This complete the proof of part (a). Furthermore, by using the

—p 2, by the law of large

same arguments of proving the part (a), we can get = >°7 | > [BT(T3;) (4% — Yor)] =
O, (%) . The triangular inequality implies that
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The proof of (b) is completed.

Similar with the proof of (a) and (b) in order to prove (c) and (d), we can directly
consider the estimation equation U(¢) = Sor, S DI Ay Vi (GO)Si(k)(C) =0.
We first prove that \/—E[U(C) —U(¢)] = 0,(1). Let
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where H, 2 = K,BTA4yB. Furthermore, we standardize XU =1/ *>71 X and
Bij(k) = KTIL/QH 1B Note that SZJ (C) — g@](k)(C) = I(—Al k))(I)(_|Aij(k)|)a



where Aij(k) = (e + Uij(k))/rij with wij) = _<§(k) (C)T (X£7B3;(k))T + Ryij) and
ij = B;Z;")/O — Z?:l Zij,lQOZ(,-Ti ) We can obtain
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Note that
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=73 /_OO O(—[t){20(t < 0) = 1} [£i5(0) + fi;(n(t) (rist — wijw))]

o0

where 7(t) is between 0 and 7t — ;). Because [~ ®(—[t[){2I(t < 0) —1}dt =0,
and by condition (C4), there exists a constant C' such that sup, ; |f(n(t))] < C.
Then note that [ ®(—|t])[¢|dt = 1/2, we have that
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Under conditions (C7) and (C8), as n — 0o, we can obtain
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In addition, by Cauchy-Schwartz inequality,
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where 7 is a positive value, and 7 lies between (—r;;c — Uij(k)» TijC — uij(k)). Let
¢ = n'/3, under condition (C8), since 7;; = O(n~Y?), then ri;c = O(n~%). Note
that ®*(—c) — 0 and rycfij(n) — 0, as n — oo. By conditions (C4) and (C6), it
is easy to get that %var [My] = o(1). Therefore, by Cauchy-Schwarz inequality, we

have
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Therefore, we have \/Lﬁ [Tj(() - U(C)] — 0 as n — oo for any (.

Furthermore, note that sup, ||+ <U ¢) — U(C)) | = o (%), thus we have that

sup, || £ (U(C) ~U(¢) ) | = 0< ) Because that ¢y is the unique solution of
equation of U(¢) = 0. This together with the definition of ¢* implies that ¢* —p

o as n — oo. In order to prove the asymptotic normality, we first prove that
{9 ¢, — D(Co)} —, 0. Note that
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where 7(t) lies between 0 and 7t — w;;). By condition (C4), fi;(-) is uniformly
bounded, hence there exists a constant C' satisfying | f; (n(t))| < C, and by condition
(C8), we have | E¢ <M> — fl-j(O)‘ — 0. By the strong law of large number,
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have
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le=¢co — D(CO)} —, 0. By Taylor series expansion of
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U (¢) around ¢, we have U(¢) = U(¢o) + agéo le=¢+ (€ — ¢o), where ¢* lies between

¢ and ¢,. Because U(¢*) = 0 and ¢ — (o, we therefore obtain ¢* — ¢, and

oU(¢) oU(¢)
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(b), we can complete the proof of (c¢) and (d).

which implies that % {

le=ex — l¢=¢,- Then by the same arguments used in the proof of (a) and
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