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Abstract
Composite quantile regression (CQR) is a powerful complement to the usual mean 
regression and becomes increasingly popular due to its robustness and efficiency. In 
longitudinal studies, it is necessary to consider the intra-subject correlation among 
repeated measures to improve the estimation efficiency. This paper proposes a new 
approach that uses copula to account for intra-subject dependence in CQR. By using 
the copula-based covariance matrix, efficient CQR estimating equations are con-
structed for the longitudinal data partial linear varying coefficient models. Our pro-
posed new methods are flexible, and can provide efficient estimation. The proper-
ties of the proposed methods are established theoretically, and assessed numerically 
through simulation studies and real data analysis.

Keywords Composite quantile regression · Longitudinal data · Copula · Efficiency · 
Robustness

1 Introduction

Longitudinal data arises frequently from many subject-matter studies, such as med-
ical and public health studies. For longitudinal data, subjects are often measured 
repeatedly over a given time period. Thus, observations from the same subject are 
correlated and those from different subjects are often independent. As we all known, 
the within-subject correlation plays an important role in improving estimation 
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efficiency, it is an important problem to study how to use this within-subject cor-
relation. Liang and Zeger (1986) proposed generalized estimating equations (GEE), 
which can incorporate the correlation by using a working correlation matrix. Liang 
and Zeger (1986) showed that the GEE estimators are still consistent even if the 
correlation matrix is misspecified. Recently, there is a huge literature devoted to 
studying the GEE method, e.g., Tian et al. (2015), Lai et al. (2012), Lv et al. (2015), 
Wang et al. (2012), Li et al. (2013), Lian et al. (2014), Zhao and Li (2013) and so 
on.

However, the GEE method is in principle very similar to the weighted least 
squares method, which does not possess robustness. Furthermore, in longitudinal 
data, one outlier in the subject level may generate a set of outliers due to repeated 
measurements. Hence, robustness is very important in longitudinal studies. To make 
GEE more robust, Fan et al. (2012), He et al. (2005), Qin and Zhu (2007) and Qin 
et al. (2009, 2012) all used the traditional robust M-estimations (e.g., Huber’s esti-
mation) on the Pearson residuals to dampen the effect of outliers in the response to 
obtain a robust GEE.

Although the Huber’s score function is a robust modeling tool, it has limitation 
in estimation efficiency. To obtain a highly efficient and robust estimator, Zou and 
Yuan (2008) proposed composite quantile regression (CQR). It becomes a popular 
approach and has been extended to many fields. Kai et al. (2010, 2011) extended it 
to the nonparametric and semiparametric models, respectively. To further improve 
the estimation efficiency, Jiang et al. (2012) and Sun et al. (2013) proposed weighted 
CQR method for the independent data. Zhao et al. (2017) investigates CQR estima-
tion on the basis of quadratic inference functions. Fan et al. (2018) extended it to the 
single index models with high covariates.

However, in CQR setting with longitudinal data, modeling the correlation struc-
ture to improve estimation efficiency is challenging. The main difficulty is how to 
construct the correlation structure of the score of the CQR loss function, which is 
may be different with the correlation structure of the within-subject random errors. 
To solve this issue, we propose a copula and CQR-based method, where copula func-
tions are employed to accommodate the correlation structure of longitudinal data. 
Specifically, unbiased CQR estimating function are proposed, which can incorporate 
the correlation of CQR with longitudinal data by using the copula-based covariance 
matrix. Because the estimating functions are discontinuous, we further smooth them 
by using the induced smoothing method (Brown and Wang 2005). The asymptotic 
properties of the proposed new methods and resulting estimators are derived under 
some regularity conditions.

Copulas have been widely used in longitudinal data analysis, e.g., Sun et  al. 
(2008), Song (2000), Bai et al. (2014), Wang and Sun (2017) and Wang et al. (2018) 
and Noh et al. (2015) proposed a method for semiparametric quantile regression by 
modeling the joint distribution of the response and covariates through copulas. Shi 
and Frees (2010) considered a copula method for quantile regression by modeling 
the conditional marginals of the responses with an asymmetric Laplace (AL) distri-
bution. Also, Fu and Wang (2016) utilized the Gaussian copula to explore the cor-
relations in longitudinal data linear quantile regression. However, the main differ-
ences between our method and Fu and Wang (2016) are as follows. First, Fu and 
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Wang (2016) focused on simple quantile regression and Gaussian copula. While 
our method is built upon composite quantile regression, which not only possesses 
all merits of quantile regression but also has estimation efficiency gain over a sin-
gle quantile regression. What is more, the correlation structure in longitudinal data 
composite quantile regression is different from that of simple quantile regression, 
how to incorporate the correlations in composite quantile regression with longitu-
dinal data is an unknown issue. We propose constructing the correlation matrix via 
copula functions, and find that our method is quite insensitive to the choice of cop-
ula. Second, the method in Fu and Wang (2016) is for the simple parametric linear 
regression model, while we consider a more general semiparametric partial linear 
varying coefficient models. Obviously, the estimation method and asymptotic prop-
erties for the semiparametric models have essentially differences with that for the 
linear regression model.

The rest of this paper is organized as follows. In Sect. 2, we introduce the new 
copula and CQR-based estimating equations. Numerical studies and real data analy-
sis are reported in Sect. 3. All the technical proofs and regularity conditions are pro-
vided in the supplementary file.

2  Copula and composite quantile regression‑based estimating 
equations

Let (Yij,Xij,Zij, Tij), j = 1,… ,mi be the jth observation for the ith subject, where Yij 
is response variable, Xij = (Xij,1,… ,Xij,p)

T ∈ Rp and Zij = (Zij,1,… , Zij,q)
T ∈ Rq are 

covariates. Without loss of generality, we assume Tij ∈ [0, 1] and consider a balanced 
design with mi = m being finite. Let Yi = (Yi1,… , Yim)

T , Xi =
(
Xi1,… ,Xim

)T , 
Zi =

(
Zi1,… ,Zim

)T and Ti = (Ti1,… , Tim)
T , suppose that {Yi,Xi,Zi,Ti, i = 1,… , n} 

is a random sample of {Y = (Y1,… , Ym)
T,X,Z,T} . The partial linear varying coef-

ficient models for longitudinal data is given by

where � = (�1,… , �p)
T is regression parameter vector with true value �0 , and 

�(⋅) = (�1(⋅),… , �q(⋅))
T is function coefficient vector with true value �0(⋅).

2.1  Estimating equations and main algorithm

Let B(t) = (B1,D(t),… ,Bdn,D
(t))T be a set of B-spline basis of order D + 1 with Kn 

quasi-uniform internal knots, where dn = Kn + D + 1 . Then, �k(Tij) can be approxi-
mated as �k(Tij) ≈ B

T(Tij)�k , where �k = (�1k,… , �dnk)
T . For more details about the 

construction of B-spline basis functions, one can refer to Schumaker (1981). Thus, 
model (1) can be approximated as

(1)Yij = X
T
ij
� + Z

T
ij
�(Tij) + �ij,

(2)Yij ≈ X
T
ij
� + B

T
ij
� + �ij = D

T
ij
� + �ij,
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where Bij = (Zij,1B
T(Tij),… , Zij,qB

T(Tij))
T , Dij = (XT

ij
,BT

ij
)T , � = (�T

1
,… , �T

q
)T and 

� = (�T, �T)T.
Assume that 0 < 𝜏1 < ⋯ < 𝜏K < 1 and b(�k) is the 100�k% conditional quantile 

of the random error �ij . For brevity, we use the equally spaced quantiles, i.e., 
�k =

k

1+K
 for k = 1,… ,K , and assume the density function of �ij is nonvanishing 

everywhere, which implies that b(�k) is unique. It is easy to show that

where I(⋅) is the indicator function. Then, motivated by (3) and by using the spline 
approximation (2), consistent estimators can be obtained by solving

where Di = (Xi,Bi) , Bi =
(
Bi1,… ,Bim

)T and Si(k)(�) = (Si1(k)(�),… , Sim(k)(�))
T 

with Sij(k)(�) = �k − I(Yij − D
T
ij
� ≤ b(�k)) . However, Eq. (4) can not be directly used, 

because b(�k), k = 1,… ,K are unknown. Therefore, we find a proxy for it by replac-
ing b(�k), k = 1,… ,K with their estimators. A simple way is ignoring the possible 
correlations by minimizing the following CQR objective function

where 𝜌𝜏(u) = u(𝜏 − I(u < 0)) . Similar with the proof of Theorem  1 in Zou and 
Yuan (2008), we can prove that b̂k − b(𝜏k) = Op(

1√
n
) . Hence, it is easy to show that

So solving Eq. (4) is asymptotically equivalent to solving

where Ŝi(k)(�) = (Ŝi1(k)(�),… , Ŝim(k)(�))
T with Ŝij(k)(�) = 𝜏k − I(Yij − D

T
ij
� ≤ b̂k).

Obviously, Eq. (6) do not incorporate the correlation structure, the estimation 
efficiency may not be satisfactory. Then, in order to take account of the correla-
tion within subject, motivated by the idea of GEE (Liang and Zeger 1986) and 
Jung (1996), we propose the following CQR estimating functions as

(3)E
{
�k − I(Yij − X

T
ij
�0 − Z

T
ij
�0(Tij) ≤ b(�k))|Xij,Zij, Tij

}
= 0,

(4)
K∑

k=1

n∑

i=1

D
T
i
Si(k)(�) = 0,

(5)(b̂1,… , b̂K , �̂) = argmin
b1,…,bK ,�

{
K∑

k=1

n∑

i=1

m∑

j=1

𝜌𝜏k (Yij − bk − D
T
ij
�)

}
,

E
{
I(Yij − X

T
ij
�0 − Z

T
ij
�0(Tij)

≤ b(𝜏k)) − I(Yij − X
T
ij
�0 − Z

T
ij
�0(Tij) ≤ b̂k)|Xij,Zij, Tij

}

= E
{
I(𝜖ij ≤ b(𝜏k)) − I(𝜖ij ≤ b̂k)|Xij,Zij, Tij

}

= P
(
𝜖ij ≤ b(𝜏k)|Xij,Zij, Tij

)
− P

(
𝜖ij ≤ b̂k|Xij,Zij, Tij

)
= op(1).

(6)
K∑

k=1

n∑

i=1

D
T
i
Ŝi(k)(�) = 0,
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where Vi(k) = Cov{S0
i(k)

|Xi,Zi,Ti} with S0
i(k)

= (S0
i1(k)

,… , S0
im(k)

)T = (�
k
− I(Y

i1 − X
T

i1
�0

−ZT

i1
�0(Ti1) − b(�

k
) ≤ 0),… , �

k
− I(Y

im
− X

T

im
�0 − Z

T

im
�0(Tim) − b(�

k
) ≤ 0))T , �

i(k) =

diag(s
i1(k),… , s

im(k)) with sij(k) = fj(X
T
ij
�0 + Z

T
ij
�0(Tij) + b(�k)|Xij,Zij, Tij) , which 

measures the dispersion of Yij − X
T
ij
�0 − Z

T
ij
�0(Tij) − b(�k) , and fj(⋅|Xij,Zij, Tij) is the 

conditional density function of Yij.
Next, we will model the conditional covariance matrix Vi(k) via copulas. Sup-

pose that F(y1,… , ym|x, z, t) is the joint distribution function of (Y1,… , Ym)
T 

given X = x , Z = z and T = t , with continuous conditional marginal distributions 
F1(⋅|x, z, t),… ,Fm(⋅|x, z, t) . Note that Fi(Yi|x, z, t) is uniform distribution on [0, 1], 
then by Sklar’s theorem, there exists an unique copula C on [0, 1]m such that,

For model parsimony, we consider a parametric copula function C, i.e., we consider 
the following simplified copula model

Obviously, for (u1,… , um) ∈ [0, 1]m , the above copula model can be rewritten as 
C(u1,… , um;�0) = F(F−1

1
(u1|x, z, t),… ,F−1

m
(um|x, z, t)|x, z, t), e.g., if F(⋅) is N(0,�) , 

C(u1,… , um;�) = F(Φ−1(u1),… ,Φ−1(um);�) is Gaussian copula. The simplified 
copula assumption in model (9) has been commonly used in the copula literature 
for modeling multivariate distributions, e.g., Haff et al. (2010), Smith et al. (2010) 
and Wang et al. (2018). Haff et al. (2010) and Wang et al. (2018) also showed that 
the simplified copula serves as a good approximation even when the simplifying 
assumption is far from being satisfied.

Note that, for model (1) and any � ∈ (0, 1),

where F�j
(⋅|Xij,Zij,Tij) is conditional distribution of �ij . Let uij = Fj(Yij|Xij,Zij,Tij) , 

which follows U(0,1), then in the above formula, replacing � with uij can deduce

For a given multivariate copula C(⋅;�0) , denote �ijl(k) as the conditional covariance of 
S0
ij(k)

 and S0
il(k)

 , by some calculation, we have that

(7)U(�) =

K∑

k=1

n∑

i=1

D
T
i
�i(k)V

−1
i(k)

Ŝi(k)(�),

(8)

F(y1,… , ym|x, z, t)
= P(Y1 ≤ y1,… , Ym ≤ ym|x, z, t)
= P

{
F1(Y1|x, z, t) ≤ F1(y1|x, z, t),… ,Fm(Ym|x, z, t)

≤ Fm(ym|x, z, t)|x, z, t
}

= C(F1(y1|x, z, t),… ,Fm(ym|x, z, t)|x, z, t).

(9)F(y1,… , ym|x, z, t) = C(F1(y1|x, z, t),… ,Fm(ym|x, z, t);�0).

F−1
j
(�|Xij,Zij, Tij) = X

T
ij
�0 + Z

T
ij
�0(Tij) + F−1

�j
(�|Xij,Zij, Tij),

Yij = X
T
ij
�0 + Z

T
ij
�0(Tij) + F−1

�j
(uij|Xij,Zij, Tij).
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where Cjl(�k, �k;�0) is induced by setting the jth and lth elements of C(⋅;�0) to �k and 
the rest to 1. Then, the resulting copula-based covariance matrix of S0

i(k)
 is

For example, if we choose Gaussian copula, the resulting copula-based covariance 
matrix is Vi(k) = (Φ2(Φ

−1(�k),Φ
−1(�k);�jl) − �2

k
)m
j,l=1

 , where Φ2(⋅, ⋅;�jl) is the stand-
ardized bivariate normal distribution with correlation coefficient �jl , and Φ−1(⋅) is 
the inverse function of the univariate standardized normal distribution. The correla-
tion coefficient �jl depends on the working correlation structures.

Furthermore, we need to estimate �0 , which can be obtained by maximizing the 
following copula log-likelihood

where c(⋅;�) is the density associated with the copula C(⋅;�) and u
ij
= {v ∈ (0, 1) ∶

F
−1
�
j

(v|X
ij
,Z

ij
, T

ij
) + X

T

ij
�0 + Z

T

ij
�0(Tij) = Y

ij
} = P(Y

j
≤ Y

ij
|X

ij
,Z

ij
, T

ij
) = F

j
(Y

ij
|X

ij
,Z

ij
,

Tij) . However, the uij, i = 1,… , n, j = 1,… ,m are unknown, we will first obtain their 
estimators ũij , then by maximizing the copula likelihood, we can obtain the estima-
tor �̂ . Finally, we obtain an efficient estimators of �0 and �0(⋅) by incorporating the 
copula-based correlation structure Vi(k)(�̂) = (Cjl(𝜏k, 𝜏k;�̂) − 𝜏2

k
)m
j,l=1

 in the estimating 
Eq. (7). The details are as follows.

Step 1. Let 0 < 𝜍1 < ⋯ < 𝜍𝜅n < 1 be a grid of quantile levels, where �k =
k

�n+1
 . 

For k = 1,… , �n , obtain (b̃(𝜍k), �̃(𝜍k)) = argmin
b(𝜍k),�(𝜍k)

∑n
i=1

∑m
j=1

𝜌𝜍k
(Yij − b(𝜍k) − D

T
ij
�(𝜍k)) . Note 

that b̃(𝜍k) + D
T
ij
�̃(𝜍k) and b̃(𝜍k+1) + D

T
ij
�̃(𝜍k+1) are estimators of �k and �k+1 condi-

tional quantiles, respectively. Thus, if Yij ∈ [b̃(𝜍k) + D
T
ij
�̃(𝜍k), b̃(𝜍k+1) + D

T
ij
�̃(𝜍k+1)) , 

we think that uij ∈ (�k, �k+1) . Then, we estimate uij by weighted average of �k and 
�k+1 , i.e., 

 where 

(10)

�ijl(k)

= P(�ij − b(�k) ≤ 0, �il − b(�k) ≤ 0|Xij,Xil,Zij,Zil, Tij, Til) − �2
k

= P(F−1
�j
(uij|Xij,Zij, Tij) ≤ b(�k),F

−1
�l
(uil|Xil,Zil, Til)

≤ b(�k)|Xij,Xil,Zij,Zil, Tij, Til) − �2
k

= P(uij ≤ �k, uil ≤ �k|Xij,Xil,Zij,Zil, Tij, Til) − �2
k

= P(Fj(Yij|Xij,Zij, Tij) ≤ �k,Fl(Yil|Xil,Zil, Til)

≤ �k|Xij,Xil,Zij,Zil, Tij, Til) − �2
k

= Cjl(�k, �k;�0) − �2
k
,

Vi(k)(�0) =
(
Cjl(�k, �k;�0) − �2

k

)m
j,l=1

.

(11)l(�) =

n∑

i=1

log[c(ui1,… , uim;�)],

ũij = (1 − �̃�ij)𝜍k + �̃�ij𝜍k+1,
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 and �n is chosen to be [4 + 3n0.4] as suggested by Wang et al. (2018), where [a] 
denotes the integer part of a.
Step 2. Obtain estimator of �0 by maximizing pseudo-copula log-likelihood, i.e., 

Step 3. In (7), after replacing Vi(k) and �i(k) by their estimators Vi(k)(�̂) and �̂i(k) 
respectively, we can obtain the estimator �̂o = (�̂

oT
, �̂oT )T by solving 

 In our implementation, �̂i(k) = diag(ŝi1(k),… , ŝim(k)) is obtained by the quotient 
estimation method of Hendricks and Koenker (1992), i.e., 

 where h is a positive bandwidth such that h → 0 as n → ∞ , and we choose 
h = 1.57n−1∕3{1.5�2[Φ−1(�k)]∕(2[Φ

−1(�k)]
2 + 1)}1∕3 as Hall and Sheather 

(1988).
The difficulty of solving estimating equations Û(�) = 0 lies in that Û(�) is non-con-
vex, noncontinuous and not differentiable. To overcome these difficulties, we apply the 
induced smoothing method introduced in Brown and Wang (2005) to solve it. Specifi-
cally, we assume � ∼ N(0, Ip+qdn ) and � is a (p + qdn) × (p + qdn) positive definite 
matrix, the induced smoothing estimating functions of Û(�) can be naturally defined as

S̃i(k)(�) = (S̃i1(k)(�),… , S̃im(k)(�))
T , S̃ij(k)(�) = 𝜏k + Φ(

Yij−D
T
ij
�−b̂k

rij
) − 1 , where Φ(⋅) rep-

resents the standard normal cumulative distribution function, rij = [DT
ij
�Dij]

1∕2 . 
Then, solve equation Ũ(�) = 0 , we can obtain the estimator �̂ s = (�̂

sT
, �̂sT )T.

Now we describe the algorithm of solving Ũ(�) = 0 . Because Ũ(�) are smoothing 
functions of � , the Newton-Raphson iteration algorithm can be written as follows.

�̃�ij =
Yij − b̃(𝜍k) − D

T
ij
�̃(𝜍k)

(b̃(𝜍k+1) − b̃(𝜍k)) + (DT
ij
�̃(𝜍k+1) − D

T
ij
�̃(𝜍k))

�̂ = argmax
�

{
n∑

i=1

log[c(ũi1,… , ũim;�)]

}
.

Û(�) =

K∑

k=1

n∑

i=1

D
T
i
�̂i(k)V

−1
i(k)

(�̂)Ŝi(k)(�) = 0.

ŝij(k) =
2h

(b̃(𝜏k + h) − b̃(𝜏k − h)) + (DT
ij
�̃(𝜏k + h) − D

T
ij
�̃(𝜏k − h))

,

(12)

Ũ(�) = E
�

[
Û(� +�

1∕2
�)
]

= E
�

[
K∑

k=1

n∑

i=1

D
T
i
�̂i(k)V

−1
i(k)

(�̂)Ŝi(k)(� +�
1∕2

�)

]

=

K∑

k=1

n∑

i=1

D
T
i
�̂i(k)V

−1
i(k)

(�̂)S̃i(k)(�),
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Step 3.1: Given initial values � (0) obtained from (5), and �(0) =
1

n
Ip+qdn

.
Step 3.2: For a given � (t) and �(t) , update � (t+1) and �(t+1) by 

 where D̃
�
� (t),�(t)

�
= −

∑K

k=1

∑n

i=1
D

T
i
�̂i(k)V

−1
i(k)

(�̂)�̃i(k)Di , 

r
(t)

ij
= [DT

ij
�

(t)
Dij]

1∕2 , �(⋅) is the standard normal density function and 

Step 3.3: Iterate Step 3.2 until convergence.

In the above procedure, if ‖� (t+1) − � (t)‖ < 10−6 , we stop the iteration. For computation 
convenience, we use cubic splines (i.e., D = 3) and choose the optimal Kn as the mini-
mizer to the following Schwarz-type information criterion

where �̂ s is the resulting estimator with Kn.

2.2  Asymptotic properties

Then, we will investigate the asymptotic properties of �̂o , �̂s , �̂�o
k
(t) = B(t)T�̂o

k
 

and �̂�s
k
(t) = B(t)T�̂s

k
 , k = 1,… , q . For convenience, write B =

(
B
T
1
,… ,BT

n

)T , 
X = (XT

1
,… ,XT

n
)T , �(k) = diag(�1(k),… ,�n(k)),

� (t+1) = � (t) − D̃
−1(

� (t),�(t)
)
Ũ
(
� (t),�(t)

)
,

�
(t+1) =

[
D̃

−1(
� (t),�(t)

)]
cov

[
Ũ
(
� (t),�(t)

)][
D̃

−1(
� (t),�(t)

)]T
,

�̃i(k)

= diag

(
𝜙

(
Yi1 − D

T
i1
� (t) − b̂k

r
(t)

i1

)
∕r

(t)

i1
,… ,𝜙

(
Yim − D

T
im
� (t) − b̂k

r
(t)

im

)
∕r

(t)

im

)
,

cov
[
Ũ
(
� (t),�(t)

)]

=

K∑

k,k�=1

n∑

i=1

D
T
i
�̂i(k)V

−1
i(k)

(�̂)S̃i(k)(�
(t))S̃

T

i(k�)
(� (t))V−1

i(k�)
(�̂)�̂i(k�)Di.

(13)SIC(Kn) = log

{
1

n

K∑

k=1

n∑

i=1

S
T
i(k)

(�̂
s
)V−1

i(k)
(�̂)Si(k)(�̂

s
)

}
+

log n

2n
{p + qdn},

P(k) = B(BT
�(k)V

−1
i(k)

(�0)�(k)B)
−1
B
T
�(k)V

−1
i(k)

(�0)�(k),

X̃(k) = (I − P(k))X,

� = lim
n→∞

1

n

n∑

i=1

K∑

k=1

X̃
T

i(k)
�i(k)V

−1
i(k)

(�0)�i(k)X̃i(k),

� = lim
n→∞

1

n

n∑

i=1

K∑

k=1

K∑

k�=1

X̃
T

i(k)
�i(k)V

−1
i(k)

(�0)W
kk�
V

−1
i(k�)

(�0)�i(k�)X̃i(k�),
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with Wkk� =
�
Wkk�

jj�

√
�k(1 − �k)

√
�k� (1 − �k� )

�m

j,j�=1
 and Wkk�

jj�
= corr(S0

ij(k)
, S0

ij�(k�)
).

Theorem 1 Under the regularity conditions (C1)–(C8) provided in the supplemental 
file, and if �2a+1

n
∕n1−2v → 0 , �n → ∞ and Kn logKn∕n → 0 as n → ∞ , we have the 

following results 

(a) 
√
n(�̂

o
− �0) →d N(0,�

−1
��

−1),
(b) 1

n

∑n

i=1

∑m

j=1
(�̂�o

k
(Tij) − 𝛼0k(Tij))

2 = Op

�
Kn

n
+ K−2r

n

�
 , k = 1,… , q,

(c) 
√
n(�̂

s
− �0) →d N(0,�

−1
��

−1),
(d) 1

n

∑n

i=1

∑m

j=1
(�̂�s

k
(Tij) − 𝛼0k(Tij))

2 = Op

�
Kn

n
+ K−2r

n

�
 , k = 1,… , q,

where v, a and r are defined in the regularity conditions. In particular, if 
Kn = O(n1∕(2r+1)), then 1

n

∑n

i=1

∑m

j=1
(�̂�o

k
(Tij) − 𝛼0k(Tij))

2 = Op

�
n

−2r

2r+1

�
 , 

1

n

∑n

i=1

∑m

j=1
(�̂�s

k
(Tij) − 𝛼0k(Tij))

2 = Op

�
n

−2r

2r+1

�
.

Theorem 1 gives the asymptotic distribution for the estimators of parametric 
components and the convergence rate for the estimators of nonparametric func-
tions. Under the same smoothness assumptions (C6), we know that the conver-
gence rate for nonparametric estimator is optimal. Theorem 1 also indicates that 
the smoothed estimating functions Ũ(�) is equivalent to their original counterpart 
Û(�).

3  Numerical experiment and real data analysis

In this section, we carry out simulation studies and real data analysis to investi-
gate the finite sample performances of the proposed new method. In the CQR-
based methods, we choose K = 9 as suggested by Zou and Yuan (2008).

3.1  Numerical experiment

We consider the following model

and generate 500 data sets from (14) with n  =  100. In each replication, 
Tij ∼ U[0, 1] , � = (1.5, 2.5, 3)T , Zij ∼ N4(0,�) , where �kl = 0.5|k−l| , Xij,1,… ,Xij,3 
are random realizations of Gaussian processes with zero mean and covari-
ance structure E[Xij,k1

Xij,k2
] = 4 exp(−|k1 − k2|) . �1(t) = 15 + 20 sin(0.5�t) , 

�2(t) = 2 − 3 cos(
1

3
�(6t − 5)) , �3(t) = 6 − 6t and �4(t) = cos(−3t − 1) . For the ran-

dom errors, the following three cases are considered.

(14)Yij =

3∑

k=1

Xij,k�k +

4∑

k=1

Zij,k�k(Tij) + �ij, i = 1,… , n, j = 1,… , 5,



450 K. Wang, W. Shan 

1 3

Case 1: Random error �i follows N(0,�) , where � has an AR(1) correlation 
structure with variance 1 and correlation coefficient � = 0.5.
Case 2: Random error �i follows a multivariate t-distribution with the degree 3 
and covariance matrix � , where � is same as that in the Case 1.
Case 3: Random error �i follows the same multivariate normal distribution as 
that in Case 1, but some outliers are included. We perturb the response Yij for 
two randomly chosen subjects to Yij + 5.

To evaluate the estimation accuracy, we use the mean squared error 
(MSE) for 𝛽k, k = 1, 2, 3 , and the integrated mean squared error (IMSE) for 
�̂�k(u), k = 1, 2, 3, 4 , defined as:

where {tj}100j=1
 is a grid equally spaced on [0.02, 0.98], �̂�k,i(⋅), i = 1,… , 500 are the 

estimates of �k(⋅) in the ith replicate. Tables 1, 2 and 3 report the simulation results. 
For a clear illustration, we also compare our method with other methods, i.e., the 
conventional CQR estimator (Kai et al. 2011) without considering possible correla-
tions (denoted as CQR); the Gaussian copula-based quantile regression method with 
� = 0.5 (denoted as CQR), which extend the method for linear regression model in 
Fu and Wang (2016) to the semiparametric model; the GEE method (Liang and 
Zeger 1986) and the robust GEE method (He et al. 2005, denoted as RGEE). For our 
copula and CQR-based method, we consider multivariate Gaussian copula and 
t-copula, they are denoted as “GCQR” and “TCQR,” respectively, and we use the 
AR(1) and exchangeable working correlation structures, respectively.

Across all scenarios considered, the proposed new copula and CQR-based esti-
mator shows higher efficiency than the working independence CQR estimator and 
GQR0.5 , and the efficiency gain is more obvious. Results also show that the pro-
posed method is quite insensitive to the choice of copula function and correla-
tion structures, the copula and CQR-based method performs well even under the 
misspecification of the copula function or correlation structure. Furthermore, by 
inheriting the robust and efficient properties of CQR and improving the efficiency 
by using the copula, the new estimators perform obviously better than the RGEE 
methods for the Cases 1–3. Even for the Case 1, our method performs equally 
well as the GEE since their IMSE and MSE have little difference.

3.2  Real data analysis

In this subsection, we illustrate our method by analyzing a subset of data from the 
Multi-Center AIDS Cohort study. The data set reports the human immunodeficiency 
virus (HIV) status of 283 homosexual men that were infected with HIV during the 
follow-up period between 1984 and 1991. Details of the study design, methods, and 
medical implications have been given by Kaslow et al. (1987). In our analysis, we 
take x1 to be the smoking status: (1 for a smoker and 0 for a nonsmoker), x2 to be the 

IMSE{�̂�k(u)} =
1

500

500∑

i=1

1

100

100∑

j=1

{�̂�k,i(tj) − 𝛼k(tj)}
2,
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standardized variable for age, x3 to be the standardized variable for PreCD4, and set 
the standardized individual CD4 percentage as response variable y.

Several researchers have studied the same data set by fitting nonparametric mod-
els (Huang et al. 2002; Fan and Zhang 2000) or semi-parametric models (Wang and 
Lin 2015; Wang et al. 2019). Fan and Li (2004) showed that there are quadratic and 
interaction effects. So the quadratic terms of x2 and x3 and the interactions of the 
three covariates are also considered, and we consider the following PLVC model

Table 1  Simulation results for 
the Case 1

�i = (�i1,… , �i5)
T follows N(0,�) , where � has an AR(1) correlation 

structure with variance 1 and correlation � = 0.5 . IMSE: the inte-
grated mean squared error, MSE: the mean squared error

IMSE × 102 MSE × 103

�1(t) �2(t) �3(t) �4(t) �1 �2 �3

GCQR(ex) 3.012 3.532 2.775 2.972 4.161 4.619 3.237
GCQR(ar1) 3.118 3.577 2.797 3.013 4.212 4.597 3.189
TCQR(ex) 3.198 3.519 2.801 2.989 4.263 4.713 3.327
TCQR(ar1) 3.203 3.602 2.818 3.097 4.272 4.737 3.176
CQR 4.032 5.101 3.115 3.365 5.203 6.411 5.603
GQR0.5(ex) 4.155 5.236 3.209 3.414 5.411 6.489 5.711
GQR0.5(ar1) 4.207 5.262 3.311 3.398 5.397 6.545 6.009
RGEE(ex) 3.997 5.003 3.069 3.252 5.111 6.350 5.420
RGEE(ar1) 4.032 5.101 3.115 3.365 5.322 6.411 5.603
GEE(ex) 2.898 4.631 2.572 2.967 4.558 5.762 4.996
GEE(ar1) 3.197 4.689 2.616 3.018 4.621 5.883 5.133

Table 2  Simulation results for the Case 2

�i = (�i1,… , �i5)
T follows a multivariate t-distribution with the degree 3 and covariance matrix � , where 

� is same as that in the Case 1. IMSE: the integrated mean squared error, MSE: the mean squared error

IMSE × 102 MSE × 103

�1(t) �2(t) �3(t) �4(t) �1 �2 �3

GCQR(ex) 3.271 3.738 3.119 3.198 4.793 5.323 3.407
GCQR(ar1) 3.302 3.762 3.201 3.203 4.815 5.339 3.411
TCQR(ex) 3.262 3.665 3.035 3.115 4.776 5.268 3.353
TCQR(ar1) 3.277 3.712 3.113 3.176 4.801 5.317 3.376
CQR 9.129 7.819 9.758 9.616 9.979 9.765 9.892
GQR0.5(ex) 9.167 7.916 10.007 9.732 10.117 9.868 10.011
GQR0.5(ar1) 9.213 8.026 10.131 9.739 10.205 9.785 10.105
RGEE(ex) 9.553 9.759 9.967 9.135 10.529 9.723 10.167
RGEE(ar1) 10.011 9.838 11.016 9.258 10.727 9.919 10.663
GEE(ex) 24.986 26.577 28.701 25.086 30.121 27.927 26.008
GEE(ar1) 25.196 27.467 29.258 25.173 30.353 28.115 26.168
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Wang et al. (2009) indicated that there are outliers in this data set. This motivates 
us to fit the model (15) using our robust CQR estimating equations method. The 
first 15 subjects are used to evaluate the predictive ability of the estimated model, 
and the remaining subjects are used as a training data set to fit the model. Fur-
thermore, the median absolute prediction error (MAPE), which is defined as the 
median of {|yij − ŷij|, i = 1,… , 15, j = 1,… ,mi} , is used to measure the prediction 
performance.

We report the analysis results for the Gaussian copula and t-copula with 
exchangeable and AR(1) correlation structures, respectively. Figure 1a–d shows 
the estimated varying coefficient functions, the estimation results for the linear 
part and the MAPE are reported in Table  4. Smoking and Age tend to have a 
negative interaction, that is, the elder smokers tend to have lower median CD4 
counts, and this agrees with the findings in Fan and Li (2004). In addition, our 
method suggests that the quadratic terms other two interactions are positive. What 
is more, from Table 4 and Fig. 1, we also find that our method is quite insensitive 
to the choice of copula function and correlation structure.

(15)
yij = �0(tij) + �1(tij)xi1 + �2(tij)xi2 + �3(tij)xi3 + �1x

2
i2
+ �2x

2
i3

+ �3xi1xi2 + �4xi1xi3 + �5xi2xi3 + �ij.

Table 3  Simulation results for the Case 3

�i = (�i1,… , �i5)
T follows the same multivariate normal distribution as that in Case 1, but we perturb the 

response Yij for two randomly chosen subjects to Yij + 5 . IMSE: the integrated mean squared error, MSE: 
the mean squared error

IMSE × 102 MSE × 103

�1(t) �2(t) �3(t) �4(t) �1 �2 �3

GCQR(ex) 3.511 3.818 3.218 3.231 4.872 5.587 3.612
GCQR(ar1) 3.507 3.876 3.267 3.307 4.907 5.603 3.637
TCQR(ex) 3.515 3.912 3.232 3.322 4.917 5.615 3.688
TCQR(ar1) 3.522 3.898 3.229 3.335 4.879 5.621 3.657
CQR 9.013 8.979 9.937 9.609 9.632 9.786 8.397
GQR0.5(ex) 9.158 9.093 10.122 9.858 10.117 10.015 9.711
GQR0.5(ar1) 9.173 9.115 10.087 9.797 10.205 10.078 9.616
RGEE(ex) 9.179 9.961 10.216 9.317 9.901 10.128 8.839
RGEE(ar1) 9.236 10.121 10.977 9.502 10.114 10.357 8.918
GEE(ex) 27.736 29.612 30.878 27.257 29.971 30.258 29.369
GEE(ar1) 27.892 29.893 31.408 27.416 30.732 30.397 30.532
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Table 4  Estimation results for the parametric components in model (15)

Variable Gaussian copula t-copula

Exchangeable AR(1) Exchangeable AR(1)

Age2 0.014 0.023 0.027 0.026

PreCD42 0.009 0.017 0.010 0.004
Smoking*Age − 0.132 − 0.138 − 0.148 − 0.151
Smoking*PreCD4 0.139 0.102 0.064 0.104
Age*PreCD4 0.033 0.018 0.007 0.008
MAPE 7.056 7.211 7.155 7.023

Fig. 1  a–d show the estimated �0(t) , �1(t) , �2(t) and �3(t) for Gaussian copula with exchangeable cor-
relation structure (black circle), Gaussian copula with AR(1) correlation structure (blue circle), t-copula 
with exchangeable correlation structure (red circle) and t-copula with AR(1) correlation structure (green 
circle)



454 K. Wang, W. Shan 

1 3

References

Bai, Y., Kang, J., Song, P. (2014). Efficient pairwise composite likelihood estimation for spatial clustered 
data. Biometrics, 70, 661–670.

Brown, B., Wang, Y. (2005). Standard errors and covariance matrices for smoothed rank estimators. 
Biometrika, 92, 149–158.

Fan, J., Li, R. (2004). New estimation and model selection procedures for semiparametric modeling in 
longitudinal data analysis. Journal of the American Statistical Association, 99, 710–723.

Fan, J., Zhang, J. (2000). Two-step estimation of functional linear models with applications to longitudi-
nal data. Journal of the Royal Statistical Society: Series B, 62, 303–322.

Fan, Y., Qin, G., Zhu, Z. (2012). Variable selection in robust regression models for longitudinal data. 
Journal of Multivariate Analysis, 109, 156–167.

Fan, Y., Härdle, W., Wang, W., Zhu, L. (2018). Single-index-based CoVaR with very high-dimensional 
covariates. Journal of Business and Economic Statistics, 36, 212–226.

Fu, L., Wang, Y. (2016). Efficient parameter estimation via Gaussian copulas for quantile regression with 
longitudinal data. Journal of Multivariate Analysis, 143, 492–502.

Haff, I., Aas, K., Frigessi, A. (2010). On the simplified pair-copula construction-simply useful or too sim-
plistic? Journal of Multivariate Analysis, 101, 1296–1310.

Hall, P., Sheather, S. (1988). On the distribution of a studentized quantile. Journal of the Royal Statistical 
Society: Series B, 50, 381–391.

He, X., Fung, W., Zhu, Z. (2005). Robust estimation in generalized partial linear models for clustered 
data. Journal of the American Statistical Association, 100, 1176–1184.

Hendricks, W., Koenker, R. (1992). Hierarchical spline models for conditional quantiles and the demand 
for electricity. Journal of the American Statistical Association, 87, 58–68.

Huang, J., Wu, C., Zhou, L. (2002). Varying-coefficient models and basis function approximation for the 
analysis of repeated measurements. Biometrika, 89, 111–128.

Jiang, X., Jiang, J., Song, X. (2012). Oracle model selection for nonlinear models based on weighted 
composite quantile regression. Statistica Sinica, 22, 1479–1506.

Jung, S. (1996). Quasi-likelihood for median regression models. Journal of the American Statistical 
Association, 91, 251–257.

Kai, B., Li, R., Zou, H. (2010). Local composite quantile regression smoothing: An efficient and safe 
alternative to local polynomial regression. Journal of the Royal Statistical Society: Series B, 72, 
49–69.

Kai, B., Li, R., Zou, H. (2011). New efficient estimation and variable selection methods for semiparamet-
ric varying-coefficient partially linear models. The Annals of Statistics, 39, 399–411.

Kaslow, R., Ostrow, D., Detels, R., Phair, J., Polk, B., Rinaldo, C. (1987). The multicenter AIDS cohort 
study: Rationale, organization and selected characteristics of the participants. American Journal of 
Epidemiology, 126, 310–318.

Lai, P., Wang, Q., Lian, H. (2012). Bias-corrected GEE estimation and smooth-threshold GEE varia-
ble selection for single-index models with clustered data. Journal of Multivariate Analysis, 105, 
422–432.

Li, G., Lian, H., Feng, S., Zhu, L. (2013). Automatic variable selection for longitudinal generalized linear 
models. Computational Statistics and Data Analysis, 61, 174–186.

Lian, H., Liang, H., Wang, L. (2014). Generalized additive partial linear models for clustered data with 
diverging number of covariates using GEE. Statistica Sinica, 23, 173–196.

Liang, K., Zeger, S. (1986). Longitudinal data analysis using generalized linear models. Biometrika, 73, 
13–22.

Lv, J., Yang, H., Guo, C. (2015). An efficient and robust variable selection method for longitudinal gener-
alized linear models. Computational Statistics and Data Analysis, 82, 74–88.

Noh, H., Ghouch, A., Van Keilegom, I. (2015). Semiparametric conditional quantile estimation through 
copula-based multivariate models. Journal of Business and Economic Statistics, 33, 167–178.

Qin, G., Bai, Y., Zhu, Z. (2012). Robust empirical likelihood inference for generalized partial linear mod-
els with longitudinal data. Journal of Multivariate Analysis, 105, 32–44.

Qin, G., Zhu, Z. (2007). Robust estimation in generalized semiparametric mixed models for longitudinal 
data. Journal of Multivariate Analysis, 98, 1658–1683.

Qin, G., Zhu, Z., Fung, W. (2009). Robust estimation of covariance parameters in partial linear model for 
longitudinal data. Journal of Statistical Planning and Inference, 139, 558–570.



455

1 3

Composite quantile regression for longitudinal data

Schumaker, L. (1981). Spline functions: Basic theory. New York: Wiley.
Shi, P., Frees, E. (2010). Long-tail longitudinal modeling of insurance company expenses. Insurance: 

Mathematics and Economics, 47, 303–314.
Smith, M., Min, A., Almeida, C., Czado, C. (2010). Modeling longitudinal data using a pair-cop-

ula decomposition of serial dependence. Journal of the American Statistical Association, 105, 
1467–1479.

Sun, J., Frees, E., Rosenberg, M. (2008). Heavy-tailed longitudinal data modeling using copulas. Insur-
ance: Mathematics and Economics, 42, 817–830.

Sun, J., Gai, Y., Lin, L. (2013). Weighted local linear composite quantile estimation for the case of gen-
eral error distributions. Journal of Statistical Planning and Inference, 143, 1049–1063.

Song, P. (2000). Multivariate dispersion models generated from Gaussian copula. Scandinavian Journal 
of Statistics, 27, 305–320.

Tian, R., Xue, L., Hu, Y. (2015). Smooth-threshold GEE variable selection for varying coefficient par-
tially linear models with longitudinal data. Journal of the Korean Statistical Society, 44, 419–431.

Wang, H., Feng, X., Dong, C. (2018). Copula-based quantile regression for longitudinal data. Statistica 
Sinica. https ://doi.org/10.5705/ss.20201 6.0135.

Wang, K., Li, S., Sun, X., Lin, L. (2019). Modal regression statistical inference for longitudinal data 
semivarying coefficient models: Generalized estimating equations, empirical likelihood and variable 
selection. Computational Statistics and Data Analysis, 133, 257–276.

Wang, K., Lin, L. (2015). Variable selection in semiparametric quantile modeling for longitudinal data. 
Communications in Statistics-Theory and Methods, 44, 2243–2266.

Wang, K., Sun, X. (2017). Efficient parameter estimation and variable selection in partial linear vary-
ing coefficient quantile regression model with longitudinal data. Statistical Papers. https ://doi.
org/10.1007/s0036 2-017-0970-0.

Wang, L., Zhou, J., Qu, A. (2012). Penalized generalized estimating equations for high-dimensional lon-
gitudinal data analysis. Biometrics, 68, 353–360.

Wang, H., Zhu, Z., Zhou, J. (2009). Quantile regression in partially linear varying coefficient models. The 
Annals of Statistics, 37, 3841–3866.

Zhao, P., Li, G. (2013). Modified SEE variable selection for varying coefficient instrumental variable 
models. Statistical Methodology, 12, 60–70.

Zhao, W., Lian, H., Song, X. (2017). Composite quantile regression for correlated data. Computational 
Statistics and Data Analysis, 109, 15–33.

Zou, H., Yuan, M. (2008). Composite quantile regression and the oracle model selection theory. The 
Annals of Statistics, 36, 1108–1126.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

https://doi.org/10.5705/ss.202016.0135
https://doi.org/10.1007/s00362-017-0970-0
https://doi.org/10.1007/s00362-017-0970-0

	Copula and composite quantile regression-based estimating equations for longitudinal data
	Abstract
	1 Introduction
	2 Copula and composite quantile regression-based estimating equations
	2.1 Estimating equations and main algorithm
	2.2 Asymptotic properties

	3 Numerical experiment and real data analysis
	3.1 Numerical experiment
	3.2 Real data analysis

	Acknowledgements 
	References




