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Abstract
Many methods have been developed for analyzing survival data which are com-
monly right-censored. These methods, however, are challenged by complex features 
pertinent to the data collection as well as the nature of data themselves. Typically, 
biased samples caused by left-truncation (or length-biased sampling) and measure-
ment error often accompany survival analysis. While such data frequently arise in 
practice, little work has been available to simultaneously address these features. In 
this paper, we explore valid inference methods for handling left-truncated and right-
censored survival data with measurement error under the widely used Cox model. 
We first exploit a flexible estimator for the survival model parameters which does 
not require specification of the baseline hazard function. To improve the efficiency, 
we further develop an augmented nonparametric maximum likelihood estimator. We 
establish asymptotic results and examine the efficiency and robustness issues for the 
proposed estimators. The proposed methods enjoy appealing features that the distri-
butions of the covariates and of the truncation times are left unspecified. Numeri-
cal studies are reported to assess the finite sample performance of the proposed 
methods.
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1  Introduction

Survival analysis has been proven useful in many areas including cancer research, 
clinical trials, epidemiological studies, actuarial science, and so on. A large body 
of methods have been developed under various survival models. Among them, 
methods on the Cox proportional hazards model have attracted the most research 
attention. Comprehensive discussion on those methods can be found in  Kalb-
fleisch and Prentice (2002), Lawless (2003), and the references therein.

Those methods, however, break down in the presence of complex features 
pertinent to the data collection and the nature of variables. Left-truncation is a 
common characteristic arising from survival studies when subjects do not enter 
the study at the same time (e.g., Kalbfleisch and Prentice 2002, Sect. 1.3; Law-
less 2003, Sect. 2.4). In the presence of left-truncation, individuals with shorter 
survival times are less likely to be recruited for the study, thus resulting in a 
biased sample. Many methods have been available for analyzing such data. 
For instance,  Qin and Shen (2010) proposed the weighted estimating equation 
approach. Qin et al. (2011) described an EM algorithm for estimation involving 
infinite dimensional parameters.  Huang et  al. (2012) examined a profile likeli-
hood method for parameter estimation for which the distribution of the trunca-
tion time was restricted as a uniform distribution.  Wu et  al. (2018) proposed a 
pairwise likelihood method for handling left-truncated data. With joint modeling 
of longitudinal covariates and survival outcomes, Su and Wang (2012) proposed 
a semiparametric method to handle the feature of left-truncation, where the linear 
mixed effects model is employed with the latent variable assumed to follow a nor-
mal distribution.

On the other hand, measurement error in covariates is ubiquitous, and a large 
number of research papers have emerged for handling error-contaminated sur-
vival data since the seminal work of Prentice (1982). To name a few, Nakamura 
(1992) developed an approximate corrected partial likelihood method which was 
extended by Kong and Gu (1999), Buzas (1998), and Hu and Lin (2002). Huang 
and Wang (2000) proposed a nonparametric approach for settings with repeated 
measurements for error-prone covariates.  Xie et  al. (2001) explored a least 
squares method to calibrate the induced hazard function. Song and Huang (2005) 
presented a conditional score approach for estimation of the model parameters. 
Other approaches include Augustin (2004), Greene and Cai (2004), Li and Ryan 
(2006), Küchenoff et al. (2007), and the references therein. A review on this topic 
was given by Yi (2017, Chapter 3).

While there have been methods for dealing with left-truncated survival data 
or error-contaminated survival data, methods of handling those features simul-
taneously are rather limited. To the best of our knowledge, Yi and Lawless 
(2007, Sect. 4.1) is the only work which directly touches on this topic, but their 
discussion is only a sketchy outline of ideas without rigorous or systematic devel-
opment. Simultaneous presence of biased samples caused by left-truncation (or 
length-biased sampling) and measurement error in covariates poses consider-
able challenges in survival analysis. In this paper, we systematically investigate 
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this important problem and develop valid inference methods for analysis of left-
truncated and right-censored (LTRC) survival data with measurement error. To 
delineate the survival process, we employ the most widely used framework—the 
Cox proportional hazards model; to postulate the measurement error process, we 
extend the classical additive model, the most popularly considered in the litera-
ture of measurement error models, to facilitate measurement error that is induced 
from both a systematic way and a random manner. We exploit a flexible estimator 
for the survival model parameters which does not require the specification of the 
baseline hazard function. To improve the efficiency, we further develop an aug-
mented nonparametric maximum likelihood estimator.

While the proposed methods generalize the scope of existing work on survival 
data, the extensions turn out neither trivial nor straightforward. The establishment of 
solid theoretical results is effort taking. In this paper, we provide asymptotic results 
for the proposed estimators including the consistency, asymptotic distributions, and 
the efficiency comparison. The proposed methods enjoy appealing features that the 
distributions of the true covariates and of the truncation times are left unspecified.

Our work is partially motivated by the Worcester Heart Attack Study (WHAS500) 
data (Hosmer et  al. 2008) which involve both left-truncation and right-censoring. 
Three types of time are recorded: time of the hospital admission, time of the hospital 
discharge, and time of the last follow-up (which is either death or censoring time). 
The total follow-up length is defined as the time gap between the hospital admis-
sion and the last follow-up, and the hospital stay time is defined as the time length 
between the hospital admission and the hospital discharge. Data can only be col-
lected for those individuals whose total follow-up length is larger than the hospital 
stay time. It is interesting to study how the risk factors are associated with the sur-
vival times after the patients are discharged from the hospital. To conduct sensible 
analyses, it is imperative to account for possible measurement error effects that are 
induced from error-prone covariates.

The remainder is organized as follows. In Sect. 2, we introduce the basic nota-
tion and the framework. In Sect.  3, we present the conditional likelihood method 
and provide the asymptotic properties. In Sect. 4, we develop an augmented estima-
tion method to improve the efficiency of the estimator in Sect. 3. The estimators in 
Sects. 3 and 4 are developed under the assumption that the parameters associated 
with the measurement error model are known. When this assumption is untrue, in 
Sect. 5, we develop a two-stage procedure which includes estimation of the param-
eters for the measurement error model as well as estimation of the parameters for 
the survival model, and we establish the asymptotic results accordingly. Simulation 
results and a real data analysis are provided in Sect. 6. We conclude the paper with 
discussions in the last section.

2 � Notation and model

For an individual in the target disease population, let � be the calendar time of the 
recruitment (e.g., the recruitment starts right at the hospital discharge) and let u and r 
denote the calendar time of the initiating event (e.g., hospital admission) and the failure 
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event (e.g., death), respectively, where u < r , and u < 𝜉 < r . Let T∗ = r − u be the 
lifetime (e.g., the time length between the hospital admission and the failure), and let 
A∗ = � − u be the truncation time (e.g., the time length between the hospital admission 
and the hospital discharge).

If T∗ < A∗ , this individual is not included in the study to contribute any informa-
tion. We are only able to recruit an individual when T∗ ≥ A∗ ; in this case, we let {A,T} 
replace {A∗, T∗} to emphasize such an individual is eligible for the recruitment, consist-
ent with the notation considered by Wu et al. (2018).

We define C as the censoring time for a recruited subject. Let Y = min{T ,A + C} 
be the observed time and let � = I(T ≤ A + C) be the indicator of a failure event. Fig-
ure 1 gives an illustration of the relationship among those variables. For an individual 
in the study, let X and Z be the associated covariates of dimensions p × 1 and q × 1 , 
respectively, and write V = (X⊤, Z⊤)⊤ . Let h(a) be the probability density function of 
A∗ which is unknown, and let H(a) = ∫ a

0
h(u)du be the corresponding distribution 

function. Let f(t/v) and S(t/v) be the density function and the survivor function of the 
lifetime T∗ , given V = v, respectively.

2.1 � Cox model and inference

Suppose that we have a sample of n subjects where for i = 1,… , n , (Yi,Ai,�i,Vi) 
has the same distribution as (Y ,A,�,V) , and (yi, ai, �i, vi) represents realizations of 
(Yi,Ai,�i,Vi) . Consider the Cox model for survival times T∗ with the hazard function

where �0(⋅) is the unknown baseline hazards function, and � is the vector of param-
eters of primary interest.

Let

be the conditional likelihood of Yi , given Vi = vi and Ai = ai , and let

(1)𝜆(t|vi) = 𝜆0(t) exp(v
⊤
i
𝛽),

(2)LC =

n∏
i=1

f (yi|vi)�i S(yi|vi)1−�i
S(ai|vi)

Fig. 1   Schematic depiction of LTRC data for T∗ ≥ A∗
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be the marginal likelihood of Ai , given Vi = vi , where 
S(t|vi) = exp

{
−𝛬0(t) × exp

(
v⊤
i
𝛽
)}

 , and �0(t) = ∫ t

0
�0(u)du is the cumulative base-

line hazards function.
Inference about � is then carried out by maximizing the likelihood function

with respect to the model parameters.

2.2 � Measurement error model

In applications, covariates are often subject to measurement error. For i = 1,… , n , 
suppose that Zi is precisely observed and that Xi is subject to measurement error; let 
Wi denote an observed value or surrogate measurement of Xi.

We first consider the widely used classical additive measurement error model 
(e.g., Carroll et al. 2006; Yi 2017):

where �i is independent of 
{
Xi, Zi,Ci,Ai, Ti

}
 , and �i ∼ N(0,��) with covari-

ance matrix �� . Thus, the moment generation function of �i is given by 
m(t) = exp(

1

2
t⊤𝛴𝜖t) , and

Starting with measurement error model (5), we next form a more flexible model 
using the idea of exponential tilting (e.g., Goutis and Casella 1999, Sect. 3.2.1). To 
be specific, let f (wi|xi;��) denote the conditional density of Wi , given Xi = xi , for 
model (5). Then we “tilt” model (5) by multiplying f (wi|xi;��) by an exponential 
term exp

(
𝛼⊤wi

)
 , where � is a vector of parameters. To make the resulting function 

exp
(
𝛼⊤wi

)
⋅ f (wi|xi;𝛴𝜖) be a legitimate density function, we need to attach a nor-

malizing constant, which is given by 
[
E
{
exp

(
𝛼⊤Wi

)}]−1 with the expectation taken 
with respect to (5). Therefore, the “exponential tilting” model derived from (5) is 
given by

with a p-dimensional vector � , suggesting that Wi and Xi are characterized by

where �i is characterized as in (5).
Model (6) allows us to consider a broader class of settings than (5) does and it 

also embraces (5) as a special case by setting � = 0 . Model (6) describes a situation 

(3)LM =

n∏
i=1

S(ai|vi)dH(ai)

∫ ∞

0
S(�|vi)dH(�)

(4)L ∝ LC × LM =

n∏
i=1

f (yi|vi)�i S(yi|vi)1−�idH(ai)

∫ ∞

0
S(u|vi)dH(u)

(5)Wi = Xi + �i,

E
{
exp

(
t⊤Wi

)}
= m(t) exp (t⊤Xi).

N(��� + Xi,��)

(6)Wi = ��� + Xi + �i,
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where Wi and Xi are different not only by a random amount �i but also systematically 
by a fixed amount indicated by ��� . While it is possible to express the amount ��� 
of the systematic error by a single parameter vector, say � , we retain the use of ��� 
in model (6) because a value of � can directly reveal the degree of the systematic 
error relative to the degree of the random error (i.e., �� ), but � cannot.

In the following sections, we develop estimation methods with the measurement 
error model given by (6). Let ��;0 and �0 denote the true values of �� and � , respec-
tively. To highlight the idea, in Sects. 3 and 4 we assume that the true values ��;0 
and �0 for the parameters in (6) are known; discussion on handling unknown ��;0 
and �0 is provided in Sect. 5. Let W∗

i
= Wi − ��� . Then

and

3 � Conditional profile‑likelihood method

3.1 � Estimation method

We begin with a simple perspective by examining the conditional likelihood LC , 
determined by (2), which allows us to ignore modeling of the truncation times. Let 
�C = log LC . Since �C contains the Xi whose measurements are unavailable, we want 
to modify �C to be a new function, say �∗

C
 , of the observed measurements and the 

model parameters so that its conditional expectation equals to �C:

where the expectation is taken with respective to the conditional distribution of � 
given {𝕏,ℤ,ℂ,𝔸, 𝕋} , with � = {W1,… ,Wn} , � = {X1,… ,Xn} , ℤ = {Z1,… , Zn} , 
ℂ = {C1,… ,Cn} , � = {A1,… ,An} , and � = {T1,… , Tn} . Such a strategy is useful 
in yielding an unbiased estimating function and is sometimes called the “corrected” 
likelihood method (e.g., Nakamura 1992; Yi and Lawless 2007) or the insertion cor-
rection approach (e.g., Yi 2017, Chapter 2).

Noticing that the Xi appear in �C in linear and exponential forms, we define

where w∗
i
 and zi represent realizations of W∗

i
 and Zi , respectively. It is easily seen that 

�
∗
C
 satisfies (9).

(7)E(W∗
i
|Xi) = E(Wi − ���|Xi) = Xi

(8)E

{
exp

(
t⊤W∗

i
−

1

2
t⊤𝛴𝜖t

)||||Xi

}
= exp

(
t⊤Xi

)
.

(9)E(�∗
C
|𝕏,ℤ,ℂ,𝔸, 𝕋 ) = �C,

(10)
�
∗
C
=

n∑
i=1

[
𝛿i log 𝜆0(yi) + 𝛿i(w

∗
i

⊤𝛽x + z⊤
i
𝛽z)

−
{
𝛬0(yi) − 𝛬0(ai)

}
exp(w∗

i

⊤𝛽x + z⊤
i
𝛽z)

{
m(𝛽x)

}−1
]
,
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To use (10) to derive an estimator of (�x, �z) , we need to deal with the baseline haz-
ard function �0(⋅) and its cumulative function �0(⋅) . Different from the piecewise con-
stant method considered by Yi and Lawless (2007), we discretize �0(⋅) so that �0(⋅) has 
a nonzero value if t = yi for i = 1,… , n ; otherwise, �0(t) = 0 . Let �i denote �0(yi) for 
i = 1,… , n . Then, �0(t) is taken as 

∑n

i=1
I(yi ⩽ t)�i . Given �x and �z , we solve ��

∗
C

��i
= 0 

for i = 1,… , n , which leads to an estimator of �i , given by

and the corresponding estimate of the cumulative baseline hazard function:

Plugging (11) and (12) into (10) gives the function

An estimator of � , called the conditional estimator of � , is then obtained by maxi-
mizing �̂∗

C
:

3.2 � Asymptotic results

Let 𝛽0 = (𝛽⊤
x0
, 𝛽⊤

z0
)⊤ denote the true value of � and let � denote the parameter space of 

� . Consistent with others such as Huang et al. (2012), we assume that T∗
i
 has a finite 

maximal support � , where 𝜏 = sup
{
t ∶ P(T∗

i
≤ t) < 1

}
< ∞ , implying that � is also a 

maximal support of truncation time. Let Ni(t) = �iI(Yi ≤ t) be the counting process of 
the observed failure events for subject i. Let �Vi =

(
W∗

i

⊤, Z⊤
i

)⊤ . Define 
S(k)(u, 𝛽) = n−1

n∑
i=1

�v⊗k

i
exp(�v⊤

i
𝛽)I(ai ≤ u ≤ yi) for k = 0, 1, 2 , where a⊗2 means aa⊤ for 

the column vector a . Let S(k)(u, 𝛽) = E
[
�V⊗k

i
exp(�V⊤

i
𝛽)I(Ai ≤ u ≤ Yi)

]
 be the expecta-

tion of S(k)(u, �) . Using these symbols, we express (12) as

The following theorems, whose proofs are included in the Supplementary Material, 
establish the asymptotic properties of �̂0(t) and �̂ .

(11)�𝜆i =
𝛿i∑n

k=1
I(ak ≤ yi ≤ yk) exp

�
w∗
k

⊤𝛽x + z⊤
k
𝛽z
��

m(𝛽x)
�−1

for i = 1,… , n;

(12)�̂0(t) =

n∑
i=1

I(yi ≤ t)�̂i .

(13)
��∗
C
=

n∑
i=1

[
𝛿i log �𝜆i + 𝛿i(w

∗
i

⊤𝛽x + z⊤
i
𝛽z)

−
{
�𝛬0(yi) −

�𝛬0(ai)
}
exp(w∗

i

⊤𝛽x + z⊤
i
𝛽z)

{
m(𝛽x)

}−1
]
.

(14)�̂ = argmax
�

�̂
∗
C
.

(15)�𝛬0(t) = �
t

0

∑n

i=1
dNi(u)∑n

i=1
exp(�v⊤

i
𝛽)I(ai ≤ u ≤ yi)

�
m(𝛽x)

�−1
.



488	 L.-P. Chen, G. Y. Yi 

1 3

Theorem 1  Under regularity conditions in “Appendix”, we have that as n → ∞,

where �0(t) = ∫ t

0

{
S(0)(u, �0)

}−1
m(�x0)dP(�i = 1, Yi ≤ u).

Let

Define

and

where 0p×q represents a p × q matrix with all entries 0, and 0p stands for a p × 1 vec-
tor with all entries 0.

Theorem  2  Under regularity conditions given in “Appendix”, the estimator �̂  
obtained from (14) has the following asymptotic properties:

(1)	 �̂
p

⟶�0 as n → ∞;
(2)	

√
n
�
�̂ − �0

�
d

⟶N(0, I−1JI−1) as n → ∞.

4 � Augmented pseudo‑likelihood method

Estimator �̂  is easily formulated from (14), which basically hinges on the avail-
ability of �∗

C
 satisfying (9). However, �̂  can be inefficient since it uses only the 

conditional likelihood LC with the marginal likelihood LM ignored, as shown by 
the likelihood (4) formulated in Sect. 2.1. To improve the efficiency of �̂  , now we 
develop an augmented estimator. The basic idea, driven by the form of the likeli-
hood (4), is to include the marginal likelihood LM for the truncation times in the 
estimation procedure. In addition to containing the distribution function H(⋅) of 
A∗ , the marginal likelihood LM in (3) involves the unobserved covariate Xi . Due 
to the complexity of LM , it is difficult to directly apply the insertion correction 

sup
�∈�,t∈[0,�]

|�̂0(t) − �0(t)|
a.s.
⟶ 0,

𝛷
(
wi, zi, yi, ai

)
= �

𝜏

0

{
�vi −

S(1)(u, 𝛽0)

S(0)(u, 𝛽0)
+

(
𝛴𝜖;0𝛽x0
0q

)}
dNi(u)

− �
𝜏

0

exp
(
�v⊤
i
𝛽0
)
I(ai ≤ u ≤ yi)

S(0)(u, 𝛽0)

(
�vi −

S(1)(u, 𝛽0)

S(0)(u, 𝛽0)

)
dE

{
Ni(u)

}
.

J = E
{
𝛷⊗2

(
Wi, Zi, Yi,Ai

)}

(16)I = ∫
𝜏

0

⎡⎢⎢⎢⎣

⎧⎪⎨⎪⎩

S(2)(u, 𝛽0)

S(0)(u, 𝛽0)
−

�
S(1)(u, 𝛽0)

S(0)(u, 𝛽0)

�⊗2⎫⎪⎬⎪⎭
−

�
𝛴𝜖;0 0p×q
0q×p 0q×q

�⎤⎥⎥⎥⎦
dE

�
Ni(u)

�
,
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approach to construct an workable function like �∗
C
 . To get around this difficulty, 

we employ the regression calibration strategy (Prentice 1982; Yi 2017,  p.105) 
to handle the unobserved true covariate Xi in LM , as elaborated in the following 
subsection.

4.1 � Estimation method

Let �X and �X be the mean vector and variance–covariance matrix of Xi , respec-
tively. Let W∗

i
= Wi − ��� as in (7), then model (6) gives that W∗

i
= Xi + �i with 

�i ∼ N
(
0,��

)
 , yielding that

where �W∗ and �W∗ represent the mean and covariance matrix of W∗
i
 , respectively; 

we let x̃i denote (17) for ease of notation. Using the method of moments, (17) is 
estimated by

with �̂W∗ =
1

n

∑n

i=1
w∗
i
 and �𝛴W∗ =

1

n−1

∑n

i=1
(w∗

i
− �𝜇W∗ )(w∗

i
− �𝜇W∗ )⊤.

As a result, replacing vi =
(
x⊤
i
, z⊤

i

)⊤ with 
(
�x⊤
i
, z⊤

i

)⊤ in the likelihood function 
(3) gives

where S(ai|�xi, zi) = exp
{
−𝛬0(ai) exp

(
�x⊤
i
𝛽x + z⊤

i
𝛽z
)}

.
To use (19) for inference about � , we next estimate the distribution function 

H(⋅) . Directly applying the kernel estimation (Silverman 1978) to the observed 
truncation times to estimate dH(⋅) is not suitable since the observed truncation 
times form a biased sample. Instead, we use the nonparametric maximum likeli-
hood estimator (NPMLE) (e.g., Wang 1991) to estimate the distribution function 
of A∗ . For a fixed parameter � , the NPMLE of H(a) in (19) is given by

where �S(ai|�xi, zi) = exp
{
− �𝛬0(ai) exp

(
�x⊤
i
�𝛽x + z⊤

i
�𝛽z

)}
 , and �̂0(⋅) and �̂  are consist-

ent estimators of �0(⋅) and � , respectively, proposed in Sect. 3.
Then replacing H(a) by Ĥ(a) in (19) gives L̂∗

M
 ; let �̂∗

M
= log L̂∗

M
 , which is given 

by

(17)E(Xi|W∗
i
= w∗

i
) = 𝜇X +

(
𝛴W∗ − 𝛴𝜖

)⊤
𝛴−1

W∗ (w
∗
i
− 𝜇W∗ ),

(18)�xi = �𝜇W∗ +
(
�𝛴W∗ − 𝛴𝜖

)⊤
�𝛴−1
W∗ (w

∗
i
− �𝜇W∗ )

(19)L∗
M
=

n∏
i=1

S(ai |̃xi, zi)dH(ai)

∫ ∞

0
S(u|̃xi, zi)dH(u)

,

(20)Ĥ(a) =

(
n∑
i=1

1

Ŝ(ai |̂xi, zi)

)−1 n∑
i=1

I(ai ≤ a)

Ŝ(ai |̂xi, zi)
,
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Finally, we consider the pseudo-likelihood function

maximizing �̂∗ with respect to � gives an estimator of �:

which is called a pseudo-likelihood estimator of �.

4.2 � Asymptotic results

For ease of notation, we let �f (�0)
��0

 and 𝜕
2f (𝛽0)

𝜕𝛽0𝜕𝛽
⊤
0

 , (or �f
��0

 and 𝜕2f

𝜕𝛽0𝜕𝛽
⊤
0

 ), respectively, denote the 
first- and second-order partial derivatives of a function f (�) with respect to � which are 
evaluated at �0 . Let

Let N(t) = P(�i = 1, Yi ≤ t) , S(𝜉|�x, z) = exp
{
−𝛬0(𝜉) exp(�x

⊤𝛽x0 + z⊤𝛽z0)
}
 , and

Let G(a, v̂) denote the joint distribution of Ai and V̂i where �Vi =
(
�X⊤
i
, Z⊤

i

)⊤

 and 
define

(21)

��∗
M
=

n∑
i=1

log
{
d�H(ai)

}
−

n∑
i=1

�𝛬0(ai) exp
(
�x⊤
i
𝛽x + z⊤

i
𝛽z
)

−

n∑
i=1

log

[
∫

∞

0

exp
{
− �𝛬0(𝛼) exp

(
�x⊤
i
𝛽x + z⊤

i
𝛽z
)}

d�H(𝛼)

]
.

(22)�̂
∗ = �̂

∗
C
+ �̂

∗
M
;

(23)�̃ = argmax
�

(�̂∗
C
+ �̂

∗
M
),

(24)𝜇
(
�xi, zi

)
= ∫

𝜏

0

exp
{
−𝛬0(u) exp(�x

⊤
i
𝛽x0 + z⊤

i
𝛽z0)

}
dH(u).

(25)

𝜓i(𝛽0��x, z) = �
𝜏

0 �
𝜏

0

S(𝜉��x, z)
�

dNi(u)

S(0)(u, 𝛽0)

−
dN(u) exp

�
w∗
i

⊤𝛽x0 + z⊤
i
𝛽z0

�
I(ai ≤ u ≤ yi)�

S(0)(u, 𝛽0)
�2

⎫⎪⎬⎪⎭
m(𝛽x0)

× exp
�
�x⊤𝛽x0 + z⊤𝛽z0

�
dH(𝜉) + op(1).

𝛹M1

�
wi,�xi, zi, yi, ai

�
=

𝜕

𝜕𝛽0

⎡
⎢⎢⎢⎣
�

∞

−∞ �
𝜏

0

⎧
⎪⎨⎪⎩

dNi(u)

S(0)(u, 𝛽0)
−

dN(u) exp
�
�v⊤
i
𝛽0
�
I(ai ≤ u ≤ yi)�

S(0)(u, 𝛽0)
�2

⎫
⎪⎬⎪⎭
m(𝛽x0)

× exp
�
�v⊤𝛽0

�
I(u ≤ a ≤ 𝜏)

⎤
⎥⎥⎥⎦
dG(a,�v).
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Let

and

The following theorem shows the asymptotic results of �̃  ; the proof is placed in the 
Supplementary Material.

Theorem 3  Under regularity conditions given in “Appendix”, estimator �̃  obtained 
from (23) has the following properties:

(1)	 �̃
p

⟶�0 as n → ∞;
(2)	

√
n
�
�̃ − �0

�
d

⟶N(0,A−1BA−1) as n → ∞;

where B = E(𝛹⊗2

i
) with �i = �

(
Wi, X̃i, Zi,Ai, Yi

)
 , and A = I +AM with I  and AM 

determined by (16) and (27), respectively.
The following theorem compares the efficiency between the estimators �̂  and �̃  

whose proof is given in the Supplementary Material.

Theorem  4  Under regularity conditions given in  “Appendix”, the estimator �̃  
obtained from (23) is more efficient than the estimator �̂  determined by (14). That is, 
var

(
�̂
)
− var

(
�̃
)
 is a positive definite matrix.

We conclude this section with comments. The consistency of �̂  (determined by 
(14)) and its asymptotic distribution (i.e., Theorem 2) basically come as a result 
of unbiased estimating functions (e.g., Yi 2017, pp.12–13), where the unbiased-
ness of ��C

��
 together with (9) is typically used. On the other hand, when establish-

ing the consistency (as well as the asymptotic result) of �̃  (determined by (23)), 

(26)

𝛹
(
wi,�xi, zi, ai, yi

)

= 𝛷
(
wi, zi, yi, ai

)
− 𝛹M1

(
wi,�xi, zi, yi, ai

)
+

[
∫

∞

−∞ ∫
𝜏

0

{
1

𝜇
(
�x, z

) 𝜕

𝜕𝛽0
𝜓i(𝛽0|�x, z)

−
𝜕𝜇

(
�x, z

)
𝜕𝛽0

1

𝜇2
(
�x, z

)𝜓i(𝛽0|�x, z)
}

dG(a,�v)

]
−

𝜕

𝜕𝛽0
𝛬0(ai) exp

(
�v⊤
i
𝛽0
)

−
1

𝜇
(
�xi, zi

) 𝜕

𝜕𝛽0
𝜇
(
�xi, zi

)
,

(27)

AM = E

�
𝜕2

𝜕𝛽0𝜕𝛽
⊤
0

𝛬0(Ai) exp
�
�V⊤
i
𝛽0

�

+
�
𝜇
�
�Xi, Zi

��−2
⎧
⎪⎨⎪⎩
𝜇
�
�Xi, Zi

�𝜕
�
𝜇
�
�Xi, Zi

��2

𝜕𝛽0𝜕𝛽
⊤
0

−

⎛
⎜⎜⎜⎝

𝜕𝜇
�
�Xi, Zi

�

𝜕𝛽0

⎞
⎟⎟⎟⎠

⊗2⎫
⎪⎬⎪⎭

⎤
⎥⎥⎥⎦
.
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we are unable to directly employ the theory for unbiased estimating functions 
because the derivative � log L

∗
M

��
 does not necessarily have zero mean.

In the augmented pseudo-likelihood method, the first term �̂∗
C
 in (22) links to 

the log-likelihood function �C via (9), and the second term �̂∗
M

 in (22) is obtained 
by applying the regression calibration idea. While purely using the regression 
calibration method does not always ensure a consistent estimator (Wang 1999; Yi 
2017, p.106; Zhao and Prentice 2014), our construction of logL∗

M
 allows its deriv-

ative with respect to � to approximately have a zero expectation at �0 , where the 
relevant conditions and detailed descriptions are summarized in Appendix  A, 
including Lemmas  1 and  2. As a result, the expectation of the log-likelihood 
function (22) has the “approximate” maximizer at �0 . To show the consistency of 
�̃  , we utilize that the true value �0 is the maximizer of the expectation of the like-
lihood function, so that the maximizer �̃  of �̂∗

C
+ �̂

∗
M

 is expected to converge to 
the maximizer �0 of E

{
1

n
log(L∗

C
) +

1

n
log(L∗

M
)
}

 (van der Vaart 1998, Sect. 5.2).

5 � Inference with main/validation data

5.1 � Estimation of parameters for measurement error model

In practice, the covariance matrix �� and parameter � for the measurement error 
model (6) are often unknown, and they need to be estimated from additional data 
sources.

To estimate the parameters in model (6), we assume the availability of an 
external validation sample. Let M and V denote the subject sets for the main 
study and the external validation study containing n and m subjects, respectively, 
where M and V do not overlap. That is, the available data contain measurements {(
yi, ai, �i,wi, zi

)
∶ i ∈ M

}
 from the main study and 

{(
wi, zi, xi

)
∶ i ∈ V

}
 from the 

validation sample. Hence, for the measurement error model, we have

for i ∈ M ∪ V , where the �i are independent and identically distributed with mean 
zero and covariance matrix �� , and are independent of 

{
Xi, Zi,Ci,Ai, Ti

}
 . The distri-

bution of (Wi,Xi, Zi) for i ∈ M is assumed to be identical to that for i ∈ V , essen-
tially saying that the transportability of the distributions of the true covariates and 
their surrogate measurements is needed for the validation study and the main study. 
This assumption is typically imposed in applications (e.g.,  Carroll et  al. 2006,  p. 
29; Yi et  al. 2015) so that the information carried by the validation study can be 
used to delineate the measurement error degree involved in the main study data. We 
assume that lim

n→∞

m

n
 exists and is greater than 0, and let � denote this limit.

Estimation of � and �� can be carried out using the least squares regression 
method. Write � = ��� and define

Wi = ��� + Xi + �i
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where ‖v‖2
2
= v⊤v for a column vector v. Then solving

for � yields

For i ∈ V , let ei = Wi − Xi − �̂  be the residual. Since E
(
eie

⊤
i

)
=

m−1

m
𝛴𝜖 for i ∈ V , we 

obtain that E
�∑

i∈V

eie
⊤
i

�
= (m − 1)𝛴𝜖 , which yields the unbiased estimator of ��:

Finally, since � = ��
−1� , we obtain an estimator of �:

5.2 � Two‑stage estimation of parameter for survival model

To estimate the parameter � , we carry out a two-stage estimation procedure. At the 
first stage, we use (29) and (30) to, respectively, estimate � and �� for the measurement 
error model, as described in Sect. 5.1. At the second stage, we estimate � using a modi-
fied version of (13) or (22), given by

where �̂∗
val,C

 and �̂∗
val,M

 are, respectively, �̂∗
C
 and �̂∗

M
 with the parameters of the meas-

urement error model (6) replaced by their estimates obtained in the first stage. That 
is,

and

(28)Q(�) =
∑
i∈V

‖‖Wi − Xi − �‖‖22

�Q(�)

��
= 0

(29)�̂ =
1

m

(∑
i∈V

Wi −
∑
i∈V

Xi

)
.

(30)�𝛴𝜖 =
1

m − 1

∑
i∈V

eie
⊤
i
.

�̂ = �̂−1
�
�̂ .

(31)�̂
∗
val

= �̂
∗
val,C

+ �̂
∗
val,M

,

(32)

��∗
val,C

=
∑
i∈M

[
𝛿i log �𝜆i + 𝛿i

{
(wi − �𝛾)⊤𝛽x + z⊤

i
𝛽z
}

−
{
�𝛬0(yi) −

�𝛬0(ai)
}
exp

{
(wi − �𝛾)⊤𝛽x + z⊤

i
𝛽z
}{

�m(𝛽x)
}−1

]
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where �m(𝛽x) = exp
(

1

2
𝛽⊤
x
�𝛴𝜖𝛽x

)
 , �xval,i = �𝜇W∗ +

(
�𝛴W∗ − �𝛴𝜖

)⊤
�𝛴−1
W∗ (w

∗
i
− �𝜇W∗ ) , and

By analogy to (14) and (23), two estimators of � can then be obtained by maximiz-
ing (32) and the pseudo-likelihood (31), respectively, given by

and

5.3 � Asymptotic properties

We now explore the asymptotic results for the two estimators of � described in 
Sect. 5.2; the proofs are placed in the Supplementary Material. Different from the 
setting in Sects. 3 and 4 where the true values of the parameters in the measurement 
error model (6) are assumed to be known, here the true values of the parameters �� 
and � for model (6) are unknown and must be estimated from the validation sample 
V . Let �i be the indicator whether or not subject i belongs to the validation sample V , 
i.e., �i = 1 if i ∈ M and �i = 0 if i ∈ V.

Let �0 = ��;0�0 denote the true value of � which is defined before (28). Define

and

Theorem 5  Under regularity conditions in “Appendix”, we have that as n → ∞ , 

(33)

��∗
val,M

=
∑
i∈M

log
{
d�Hval(ai)

}
−

n∑
i=1

�𝛬0(ai) exp
(
�x⊤
val,i

𝛽x + z⊤
i
𝛽z

)

−
∑
i∈M

log

[
∫

∞

0

exp
{
− �𝛬0(u) exp

(
�x⊤
val,i

𝛽x + z⊤
i
𝛽z

)}
d�Hval(u)

]
,

Ĥval(a) =

(
n∑
i=1

1

Ŝ(ai |̂xval,i, zi)

)−1 n∑
i=1

I(ai ≤ a)

Ŝ(ai |̂xval,i, zi)
.

(34)�̂val = argmax
�

�̂
∗
val,C

,

(35)�̃val = argmax
�

(�̂∗
val,C

+ �̂
∗
val,M

).

� = E
{
Ni(𝜏)

}
(1 − 𝜁i) ×

[{(
−1

0

)
+

1

S(0)
(
u;𝛽0

) 𝜕S
(1)
(
u;𝛽0

)
𝜕𝛾0

}

×
(
Wi − Xi

)
+

m

m − 1

{
𝜖i𝜖i

⊤ − (m − 1)𝛴𝜖;0

}
𝛽x0

]

(36)Bval1,i =
√
1 + ��i�

�
Wi, Zi, Yi,Ai

�
+

√
1 + �

�
� .
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(1)	 �̂val
p

⟶�0;

(2)	
√
n
�
�̂val − �0

�
d

⟶N
�
0, I−1JvalI

−1
�
,

where Jval = E
{(

Bval1,i

)⊗2
}

 and I  is given by (16).
Theorem 5 resembles Theorem 2 in that both theorems describe the asymptotic 

properties for the estimators, �̂  and �̂val , of � , respectively, based on using �̂∗
C
 in 

(13) and �̂∗
val,C

 in (32). The asymptotic covariance matrices for �̂  and �̂val share the 
same sandwich form with the same side matrix I  but different inner matrices J  and 
Jval . Matrix J  is formulated for the setting where the true value of the parameters � 
and �� associated with the measurement error model are known, while Jval is con-
structed for the scenario where � and �� are estimated from a validation sample. The 
induced variability of estimating � and �� is reflected by the inclusion of �  as well as 
� in Jval . A general discussion on these aspects can be found in Yi (2017, pp.25–27).

Let

and

Define

and

Theorem 6  Under regularity conditions in “Appendix”, we have that as n → ∞ , 

Eval,1 = E

⎡⎢⎢⎣
𝜕

𝜕𝛽0 �
𝜏

0

dN(u)
1�

S(0)(u;𝛽0)
�2

𝜕S(0)(u;𝛽0)

𝜕𝛾0
m(𝛽x0) × exp

�
�X⊤
i
𝛽x0 + Z

⊤
i
𝛽z0

�
I(u ≤ Ai ≤ 𝜏)

⎤⎥⎥⎦

𝜑val,i =

⎡
⎢⎢⎢⎣

√
1 + 𝜌

𝜌

�
Wi − Xi

�
∫

𝜏

0 ∫
𝜏

0

−

⎧
⎪⎨⎪⎩
S(𝜈��x, z) dN(t)�

S(0)(t;𝛽0)
�2

𝜕S(0)(t;𝛽0)

𝜕𝛾0

×m(𝛽x0) exp
�
�x⊤𝛽x0 + z⊤𝛽z0

�
dH(𝜈)

�
+
√
1 + 𝜌𝜓i(𝛽0��x, z)

�
.

(37)

Bval2,i = −
√
1 + ��i�M1

�
Wi, X̃i, Zi, Yi,Ai

�
+

√
1 + �

�
Eval,1(1 − �i)(Wi − Xi),

(38)

Bval3,i =

[
∫

∞

−∞ ∫
�

0

{
1

�
(
x̃, z

) �

��0
�val,i −

��
(
x̃, z

)
��0

1

�2
(
x̃, z

)�val,i

}]
dG(a, v̂),

�UM,val,i = −
𝜕

𝜕𝛽0
𝛬0(Ai) exp

(
�V⊤
i
𝛽x0

)
−

1

𝜇
(
�Xi, Zi

)
𝜕𝜇

(
�Xi, Zi

)

𝜕𝛽0
.
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(1)	 �̃val
p

⟶�0;

(2)	
√
n
�
�̃val − �0

�
d

⟶N
�
0,A−1BvalA

−1
�
,

where

and A is defined in Theorem 3.

Similar to the comments after Theorem 5, Theorem 6 shares some similarity to 
Theorem 3, and their difference is reflected by the different expressions of B and 
Bval . Theorems 5 and 6 establish the asymptotic results for the two estimators �̂val 
and �̃val . These results offer the basis of conducting inference about � such as calcu-
lating confidence intervals or performing hypothesis testing. While both �̂val and �̃val 
are consistent estimators of � , their efficiencies are different, as shown in the follow-
ing theorem.

Theorem  7  Under regularity conditions given in “Appendix”, the estimator �̃val 
obtained from (35) is more efficient than the estimator �̂val determined by (34). That 
is, var

(
�̂val

)
− var

(
�̃val

)
 is a positive definite matrix.

6 � Numerical studies

We conduct simulation studies to assess the finite sample performance of the pro-
posed estimators �̂  and �̃  under a variety of settings. In contrast, we also report the 
performance of the naive estimator which is obtained by disregarding the feature of 
measurement error.

6.1 � Design setup

We consider the setting where the baseline hazard function is set as �0(t) = 2t and 
the truncation time A∗ is generated from the exponential distribution with mean 10. 
We consider two scenarios of generating the true covariates V = (X, Z)⊤ . In Sce-
nario 1, X and Z are generated from a bivariate normal distribution with mean zero 
and covariance matrix � ; in Scenario 2, X is generated from an exponential distri-
bution with mean one and Z is independently generated from the standard normal 
distribution.

Given �0(t) and (X, Z)⊤ , the failure time T∗ is generated from the model:

where 𝛽0 = (𝛽x0, 𝛽z0)
⊤ is the vector parameters. That is, T∗ is set as

(39)Bval = E

��
Bval1,i + Bval2,i + Bval3,i +

√
1 + 𝜌𝜁i�UM,val,i

�⊗2
�

�(T∗|X, Z) = 2T∗ exp
(
X�x0 + Z�z0

)
,
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where U is simulated from the uniform distribution U(0, 1). The untruncated data 
{A,T} is collected from {A∗, T∗} by conditioning on that T∗ ≥ A∗.

We consider three censoring rates, 0%, 25%, and 50%, and let the censoring time 
C be generated from the uniform distribution U(0, c), where c is determined by a 
given censoring rate. Consequently, Y and � are determined by Y = min {T ,A + C} 
and � = I(T ≤ A + C) . One thousand five hundred simulations are run for each of 
the following settings: 

Setting 1:	 n = 200 , Scenario 1 with � =

(
4 0.5

0.5 36

)
 , and (𝛽x0, 𝛽z0)⊤ = (0.3, 1)⊤.

Setting 2:	 This is the same as Setting 1 except that n is increased to n = 1000.
Setting 3:	 This is the same as Setting 1 except that �x0 is increased to be �x0 = log 3.

Setting 4:	 This is the same as Setting 1 except that � is changed to be � =

(
1 0.6

0.6 1

)
.

Setting 5:	 Simultaneously increase the values in Setting 1 to be 

Setting 6:	 This is the same as Setting 1 except that the covariates are generated as in 
Scenario 2.

For the measurement error process, we consider model (6) with error � ∼ N
(
0,��

)
 , 

where � is set as 0, 10, 50, or 100; and variance �� is taken as 0.01, 0.5, or 0.75, 
describing different degrees of measurement error. These values of �� , respectively, 
yield the reliability ratio to be 0.997, 0.888, and 0.842 for Settings 1–3, and 0.990, 
0.667, and 0.571 for Settings 4–6, where the reliability ratio is defined as �X∕�W 
with �X and �W representing the variances of X and W, respectively.

6.2 � Performance of proposed estimators: ̨  and ˙� are known

We analyze the simulated data using the estimation methods described in Sects. 3 
and 4 with the parameters of the measurement error model (6) assumed known. As a 
comparison, we conduct naive analysis with measurement error ignored.

We report finite sample biases (Bias) of the estimates, empirical standard errors 
(SEE), model-based standard errors (SEM), and the mean squared errors (MSE) 
under the measurement error model (6) with � = 0 . The results for Settings 1, 5, 
and 6 are reported in Tables 1, 2 and 3, respectively. Other results are reported in the 
Supplementary Material to save space.

For each setting with a given measurement error degree �� and a given censoring 
percentage, the three methods perform differently. The naive method performs the 
worst with tremendous biases, but the proposed conditional profile likelihood and 

{
− exp

(
X�x0 + Z�z0

)
log(1 − U)

}1∕2
,

n = 1000,� =

(
1 0.6

0.6 1

)
, and �x0 = log 3.
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the augmented pseudo-likelihood methods give satisfactory performance. Regarding 
SEE and SEM, they are fairly comparable for each method, though the discrepancies 
seem to be more noticeable for the naive method in some settings. As expected, the 
methods of correcting for measurement error effects yield larger SEE and SEM than 
the naive approach does. This is the price paid to remove biases in point estimators; 
this phenomenon is typical in the literature of measurement error models. Moreover, 
mean squared errors produced by the two proposed methods are a lot smaller than 
those obtained from the naive method, suggesting that the efforts of adjusting for 
measurement error effects are worthwhile. In terms of the performance of the two 
correction methods for measurement error effects, simulation results confirm that 
the augmented pseudo-likelihood method is more efficient than the conditional pro-
file likelihood approach.

For a setting with a given censoring percentage, the degree of measurement error 
affects the performance of each method. As the measurement error degree increases, 
biases of the point estimate produced by the naive and proposed methods also tend 
to increase while the associated standard errors do not seem to considerably change. 
Within a setting with a given measurement error degree, the performance of each 
method is influenced by the censoring percentage. The performance tends to dete-
riorate as the censoring proportion increases. Furthermore, comparing the results in 
different settings, we see the impact of the sample size, the magnitude of covariate 
effects and the correlation among the covariates on the performance of the three 
methods. The results for Setting 6 show that when the error-prone covariate X fol-
lows a skewed distribution, the two proposed methods still have satisfactory perfor-
mance with reasonably small finite sample biases and SEEs.

In summary, simulation results demonstrate that the naive method produces con-
siderable finite sample biases with coverage rates of 95% confidence intervals signif-
icantly departing from the nominal level. Both the conditional profile likelihood and 
the augmented pseudo-likelihood methods output satisfactory estimates with small 
finite sample biases and reasonable coverage rates of 95% confidence intervals. The 
augmented pseudo-likelihood method is more efficient than the conditional profile 
likelihood method.

6.3 � Performance with validation data

In this subsection, we evaluate the performance of the proposed method in Sect. 5 
for situations where the main study and the validation study are available; the data 
from the main study are generated as Setting 1 in Sect. 6.1, and the external valida-
tion data with size |V| = 100 are generated independently following the procedure 
in Sect. 6.1, where the true parameter values of the measurement error model (6) 
are set as � = 0, 10, 50 or 100 and �� = 0.010 , 0.500, or 0.750, corresponding to 
increasing degrees of measurement error. In Table 4, we report the results for the 
settings with � = 100 and defer the results for � = 0, 10 , and 50 to the Supplemen-
tary Material.

We first apply the estimation procedure described in Sect. 5.1 to estimate � and 
�� . Corresponding to �� = 0.010 , 0.500, and 0.750, we obtain estimates of �� : 
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�̂� = 0.010 , 0.497, and 0.743, respectively, with the corresponding standard errors 
0.001, 0.035, and 0.051; and the corresponding estimates of � are 100.746, 101.154, 
and 101.492, with the associated standard errors 7.062, 7.029, 7.030, respectively. 
Then, we analyze the data from the main study using the estimators �̂val and �̃val 
derived from (34) and (35), respectively.

The results uncover similar findings to those revealed in Sect.  6.2 and demon-
strate satisfactory finite sample performance of the proposed estimators �̂val and �̃val . 
The results also confirm that �̃val is more efficient than �̂val . Finally, we note that the 
estimator �̂  (or �̃  ), derived under the measurement error model with its parameters 
given, is not more efficient than �̂val (or �̃val ), derived from that the parameters of the 
measurement error model are estimated. This counterintuitive phenomenon has been 
observed for various settings by many authors, including Robins et al. (1994), Yan 
and Yi (2015), and Ning et al. (2018). This paradox does not appear when estima-
tion is based on a likelihood method but may occur when using estimation equation 
methods (Henmi and Eguchi 2004; Yi 2017, Sect. 1.3.4).

6.4 � Analysis of Worcester Heart Attack Study

In this section, we apply the proposed methods to analyze the data arising from 
the Worcester Heart Attack Study (WHAS500), which are described in Sect. 1. As 
in Hosmer et al. (2008), a survival time was defined as the time since a subject was 
admitted to the hospital. We are interested in studying survival times of patients who 
were discharged alive from the hospital. Hence, a selection criterion was imposed 
that only those subjects who were discharged alive were eligible to be included in 
the analysis. That is, individuals were not enrolled in the analysis if they died before 
discharging from the hospital, hence left-truncation occurs. With such a criterion, 
a sample of size 461 was available. In this data set, the censoring rate is 61.8%. To 
be more specific, the total length of follow-up (lenfol) is the last event time (i.e., 
Yi = min

(
Ti,Ci

)
 ), the length of hospital stay (los) is the truncation time (i.e., Ai ), 

and the vital status at last follow-up (fstat) is �i.
In our analysis, the covariates include the body mass index (BMI) and the initial 

heart rate (HR) of a patient, where BMI is regarded to be error-contaminated. This 
consideration is driven by the fact that measurement error in BMI is commonly con-
sidered in the literature. For example, in analyzing the Korean Longitudinal Study 
of Aging (KLoSA) data, Xu et al. (2017, p.196) discussed error-prone BMI. Wang 
(2000, Sect. 5) considered a study of childhood growth where BMI is taken as meas-
urement error involved. Carroll and Li (1992, Sect. 8) studied the breast cancer data 
which include body mass subject to mismeasurement. Furthermore, as commented 
by Rothman (2008), BMI may be subject to mismeasurement due to errors in self-
reported data. In our analysis here, we let X denote the true value of BMI and let W 
denote its observed value, and they are assumed to follow the measurement error 
model (6). Let Z denote HR.

In this data set, while we are able to calculate the sample variance �̂W for the 
observed value W (which is 0.041), there is no additional data source such as a 
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validation subsample to allow us to quantify the degree of measurement error. 
To get around this, we carry out sensitivity analyses, a common and viable strat-
egy to understand the impact of measurement error on estimation. That is, given 
a range of representative values for �� and � , we estimate � using �̂  and �̃  via 
(14) and (23), respectively; and we want to assess how sensitive the results are 
to different degrees of measurement error. Here, we particularly consider the 
case where � is set as 0, 10, 50, or 100, and the specification of �� is guided by 
using the reliability ratio R =

�X

�W

 where �X and �W are the variances of X and W, 
respectively (Yi 2017,  p.46). Noting that �W = �X + �� , i.e., �X is no bigger 
than �W , we take �X to be a value about 10% smaller than �W , bearing in mind 
that other percentages can be considered as well. As �W is unknown, we use the 
sample variance �̂W to specify the value of �X , �X = 90% ⋅ �̂W . To feature dif-
ferent degrees of measurement error in a possibly plausible range, we let R take 
a value in [0.6, 0.9]. That is, �� is specified as �X

(
R−1 − 1

)
 , taking a value in the 

range 
[
0.9 × 0.041 ×

(
1

0.9
− 1

)
, 0.9 × 0.041 ×

(
1

0.6
− 1

)]
= [0.004, 0.025] . The 

analysis results for � = 0, 10, 50 and 100 are shown in Figs. 2 and 3, respectively. 

The performance of �𝛽 =
(
�𝛽x, �𝛽z

)⊤

 and �𝛽 =
(
�𝛽x, �𝛽z

)⊤

 shows insensitivity to dif-
ferent values of � . The estimates obtained from the estimator �̃  (defined in (23)) 
seem to remain stable regardless of changes of �� , while the estimates derived 
from �̂  (defined in (14)) tend to decrease as �� increases.

To see the analysis results more closely, in Table  5, we further report the 
point estimates (EST), model-based standard errors (SEM) determined by the 
asymptotic variances in Theorems 2 and 3, and p-values produced by �̂  and �̃  
for the cases with �� = 0.004 , 0.010 and 0.018 as well as the case without error 
(i.e., �� = 0 ). While the point estimates produced by the two approaches are dif-
ferent, the associated standard errors for �̃  are smaller than those of �̂  , confirm-
ing the theoretical result established in Theorem 4. It is seen that when �� = 0 , 
the results for both methods remain unchanged to the four values of � . The esti-
mator �̂x appears to change more noticeably than other estimators (i.e., �̂z , �̃z and 
�̃z ) when measurement degree changes. Overall, at the significance level 0.05, 
both methods suggest evidence of supporting significant effects of BMI and 
HR regardless of different degrees of measurement error we consider, and the 
augmented pseudo-likelihood method identifies a lot stronger evidence than the 
conditional profile-likelihood method does.

As opposed to taking �X = 90%�̂W earlier, we also conduct sensitivity studies 
for a different value of �X by setting �X = 10%�̂W , following the suggestion of 
a referee. We take � = 0, 10, 50, or 100, and let R take a value in [0.6, 0.9]. The 
results are report in Table S.7 and Appendix F.2 of the Supplementary Material, 
which reveal patterns similar to those displayed in Table 1.
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7 � Discussion

Although survival analysis has proven useful and many methods have been devel-
oped for analyzing survival data with individual features, there has been little work 
of addressing these features simultaneously in inferential procedures, as noted 
by  Yi and Lawless (2007). In this article, we develop two estimation methods to 
handle left-truncated and right-censored survival data with measurement error in 
covariates. We establish asymptotic results for the proposed methods rigorously and 
explore the issues of efficiency of the proposed methods. We demonstrate satisfac-
tory finite sample performance of our methods using simulation studies.

The proposed methods can also accommodate length-biased survival data with 
covariate measurement error. Length-biased data arise commonly from many fields 
including epidemiological studies, cancer research, and etiology studies, and many 

0.000 0.010 0.020

−5
.0

−4
.0

−3
.0

Σε

β x

0.2 0.4 0.6 0.8 1.0

−5
.0

−4
.0

−3
.0

Σε

β x

0.2 0.4 0.6 0.8 1.0

−5
.0

−4
.0

−3
.0

Σε

β x

0.000 0.010 0.020

−5
.0

−4
.0

−3
.0

Σε

β x

Fig. 2   Sensitivity analysis for the estimators of �x , �̂x and �̃x , against different degrees of measurement 
error: solid curves are for �̃x (derived from (23)) and dashed curves are for �̂x (obtained from (14)); in the 
first row, the left panel is for � = 0 and the right panel is for � = 10 ; in the second row, the left panel is 
for � = 50 and the right panel is for � = 100
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methods have been developed for analysis of such data. However, the validity of 
these methods is limited due to the key assumption that data must be accurately col-
lected. In application, measurements of the variables usually are error-contaminated. 
Accommodating the feature of measurement error, our proposed methods generalize 
the scope of usual methods of handling length-biased survival data. Detailed discus-
sions are given in Appendix A of the Supplementary Material.

We comment that in the development here, we consider only the measurement 
error processes which can be feasibly characterized by model (6), bearing in mind 
more general models, such as regression models with various forms of covariates, 
may be used to feature different types of measurement error processes. In appli-
cations, if there is an internal validation sample with measurements of W and X 
together with those of Z, Y and � , we may develop a model diagnostic procedure to 
assess the feasibility of model (6). Without such data, it is generally impossible to 
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Fig. 3   Sensitivity analysis for the estimators of �z , �̂z and �̃z , against different degrees of measurement 
error: solid curves are for �̃z [derived from (23)] and dashed curves are for �̂z [obtained from (14)]; in the 
first row, the left panel is for � = 0 and the right panel is for � = 10 ; in the second row, the left panel is 
for � = 50 and the right panel is for � = 100
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assess the validity of model (6), which is just like the situation we commonly face 
with statistical modeling when handling noisy data with measurement error.

Finally, we comment on the differences between our “measurement error models” 
and “linear mixed effects models” considered by Su and Wang (2012), which were 
questioned by a referee. While it might be an angle to view the additive measure-
ment error model to be a special case of the linear mixed effects model used by Su 

Table 5   Sensitivity analyses of the Worcester Heart Attack Study Data

� �� parameter �𝛽 =

(
�𝛽x, �𝛽z

)⊤
�𝛽 =

(
�𝛽x, �𝛽z

)⊤

EST SEM p-value EST SEM p-value

0 0.000 �x − 2.520 0.867 0.004 − 2.494 0.473 1.344e−07
�z 1.486 0.659 0.024 1.470 0.311 2.282e−06

0.004 �x − 2.807 1.153 0.022 − 2.499 0.561 8.763e−06
�z 1.478 0.671 0.028 1.470 0.471 0.002

0.010 �x − 3.319 1.542 0.031 − 2.501 0.543 4.106e−06
�z 1.461 0.699 0.036 1.472 0.456 0.001

0.018 �x − 4.544 1.859 0.015 -2.507 0.575 1.301e−05
�z 1.405 0.716 0.049 1.473 0.529 0.005

10 0.000 �x − 2.520 0.867 0.004 − 2.494 0.473 1.344e−07
�z 1.486 0.659 0.024 1.470 0.311 2.282e−06

0.004 �x − 2.823 1.152 0.014 − 2.507 0.565 9.115e−06
�z 1.487 0.677 0.028 1.497 0.478 0.002

0.010 �x − 3.319 1.543 0.031 − 2.515 0.551 5.009e−06
�z 1.471 0.694 0.034 1.476 0.493 0.003

0.018 �x − 4.544 1.866 0.014 − 2.516 0.578 1.343e−05
�z 1.415 0.713 0.047 1.478 0.521 0.005

50 0.000 �x − 2.520 0.867 0.004 − 2.494 0.473 1.344e−07
�z 1.486 0.659 0.024 1.470 0.311 2.282e−06

0.004 �x − 2.823 1.155 0.014 − 2.503 0.566 9.767e−06
�z 1.497 0.673 0.026 1.476 0.483 0.002

0.010 �x − 3.319 1.533 0.030 − 2.508 0.569 1.044e−05
�z 1.481 0.693 0.032 1.476 0.514 0.004

0.018 �x − 4.544 1.833 0.013 − 2.513 0.577 1.329e−05
�z 1.425 0.711 0.045 1.477 0.523 0.005

100 0.000 �x − 2.520 0.867 0.004 − 2.494 0.473 1.344e−07
�z 1.486 0.659 0.024 1.470 0.311 2.282e−06

0.004 �x − 2.807 1.150 0.022 − 2.506 0.569 1.061e−05
�z 1.478 0.674 0.027 1.473 0.498 0.003

0.010 �x − 3.319 1.441 0.021 − 2.510 0.558 6.852e−06
�z 1.461 0.684 0.033 1.474 0.502 0.003

0.018 �x − 4.544 1.776 0.011 − 2.515 0.572 1.098e−05
�z 1.405 0.709 0.047 1.477 0.504 0.003
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and Wang (2012), this perspective is often not being taken in the literature due to 
several reasons. First, in joint modeling of longitudinal covariates and survival out-
comes, latent variables are commonly used to combine the model for the longitudi-
nal process and the model for the survival process, and accordingly, inferences are 
derived from taking integration with respect to the latent variables, which is essen-
tially a likelihood-based method. Such a joint modeling scheme essentially puts lon-
gitudinal covariates and survival outcomes on equal footing.

On the contrary, in handling measurement error problems, our emphasis is to use 
covariates to explain the outcome variable by using a regression model in terms of 
the true covariates X. Since X may not be precisely measured, but its observed ver-
sion or the so-called “surrogate covariate” W can be collected, our inferences would 
be based on using measurement W with suitable adjustments to facilitate the pos-
sible differences between X and W. The key difficulties here are to develop a proper 
adjustment to fit each specific model for the response process as well as the meas-
urement error process, and the likelihood-based methods are not the only approach.

A second noticeable difference lies in the interpretation and nature of the var-
iables. Latent variables are random variables which can never be observed; their 
behavior is mainly featured by an assumed distribution which cannot be testified. On 
the other hand, for the problems with measurement error, although the true covariate 
X may not be observed for every subject in the study, it is possible to obtain the true 
value of X in situations where validation data are available. In addition, X does not 
have to be always taken as a random variable and its distribution does not have to be 
specified when conducting inferences (Carroll et al. 2006; Yi 2017).
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Appendix: Regularity conditions

Like any other asymptotic results, the validity of our results requires regularity 
conditions imposed on the processes of survival, censoring, measurement error 
and covariates as well as the sampling scheme. Basically, our regularity conditions 
pertain to those in Andersen and Gill (1982), Huang et al. (2012), and Yan and Yi 
(2016), including the following assumptions: 

	(C1)	 � is a compact set, and the true parameter value �0 is an interior point of �.
	(C2)	 ∫ 𝜏

0
𝜆0(t)dt < ∞ , where � is the finite maximum support of the failure time.

	(C3)	 The 
{
Ni(t), Yi(t), Zi,Xi

}
 are independent and identically distributed for 

i = 1,… , n.
	(C4)	 The covariates Zi and Xi are bounded.
	(C5)	 Conditional on V∗

i
 , 
(
T∗
i
,V∗

i

)
 are independent of A∗

i
.

	(C6)	 Censoring time Ci is non-informative. That is, the failure time Ti and the censor-
ing time Ci are independent, given the covariates {Zi,Xi}.
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	(C7)	 Matrices E
(
−

1

n

𝜕2�∗
C

𝜕𝛽𝜕𝛽⊤

)
 and E

(
−

1

n

𝜕2�∗
M

𝜕𝛽𝜕𝛽⊤

)
 are positive definite, where �∗

C
 is 

defined in (10) and �∗
M

 is the logarithm of the likelihood function (19).
	(C8)	 The operations of differentiation and integration are exchangeable.

Condition (C1) is a basic condition that is used to derive the maximizer of the tar-
get function (e.g., Huang et al. 2012, p.203). (C2) to (C6) are standard conditions 
for survival analysis, which allow us to obtain the sum of independent and identi-
cally distributed random variables and hence to derive the asymptotic properties 
of the estimators (e.g., Andersen and Gill 1982). The requirement of positive def-
inite matrices in Condition (C7) is standard which ensures asymptotic covariance 
matrices of �∗

C
 and �∗

M
 meaningful. Condition (C8) is a routine requirement for 

deriving asymptotic results.

Lemma 1  Let

Then (10) and (40) yield the same maximum likelihood estimator of �.

The proof is given in Appendix B of the Supplementary Material. The follow-
ing lemma is used to establish the consistency of the estimators �̂  and �̃  , respec-
tively, given in Theorems 2 and 3.

Lemma 2  Define

and let

where �̂∗
P
 and L∗

M
 are determined by (40) and (19), respectively, with the data 

{ṽi, ai, yi, zi} replaced by the corresponding random variables {Ṽi,Ai, Yi, Zi} . Then �0 
is the unique maximizer of �P and �.

Proof 
Part 1: We show that �0 is the unique maximizer of �P.

Recall that �C is the logarithm of the likelihood function (2) based on the true 
covariates X. In the absence of measurement error, i.e., based on the true covariates 
X, Huang et al. (2012, p.208) showed that the true value �0 is the unique maximizer 
of E(�C) . Noting that by (9), �C and �∗

C
 , defined in (10), have the relationship

(40)

��∗
P
=

n∑
i=1

�
𝜏

0

[
�v⊤
i
𝛽 +

1

2
𝛽⊤
x
𝛴𝜖𝛽x − log

{
n∑
j=1

exp(�v⊤
j
𝛽)I(aj ≤ u ≤ yj)

}]
dNi(u).

�P = E
(
1

n
�̂
∗
P

)

� = �P + E
{
1

n
log

(
L∗
M

)}
,

(41)E(�∗
C
) = E(�C).
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We conclude that �0 is also the unique maximizer of E(�∗
C
) . By Lemma 1, we con-

clude that �0 is the unique maximizer of �P . With regularity conditions including 
(C8),

and

Part 2: We show that �0 is the unique maximizer of �.
Let �M(�;X, Z) denote the logarithm of the likelihood function (3) based on the 

true covariates X, and let �M(�;X̃, Z) be �M(�;X, Z) with X replaced by X̃ = E(X|W∗) , 
where W∗ = W − ��� as defined before (7). Define UM(�;X, Z) =

��M (�;X,Z)

��
 and let 

UM(�;X, Z) = E
{

1

n
UM(�;X, Z)

}
.

Recall that �X = E(X) defined before (17), then by (7), we have that E(X̃) = �X . 
Let �Z = E(Z) . Then by the linear approximation around �X and �Z , we express 
UM(�;X̃, Z) and UM(�;X, Z) , respectively, as

and

where �UM (�;�X ,�Z )

��X

 represents the partial derivative �UM (�;a,b)

�a
 evaluated at 

(a, b) = (�X ,�Z) , and �UM (�;�X ,�Z )

��Z

 represents the partial derivative �UM (�;a,b)

�b
 evaluated 

at (a, b) = (�X ,�Z) . Here UM(�;a, b) has the same functional form as UM(�;X, Z) 
except that the former is a real-valued function with arguments � , a and b, while the 
latter case is a function of random variables X and Z together with �.

Combining (44) and (45) gives that

Therefore, taking expectation on both sides of (46) and replacing � by �0 give

(42)�0 is the unique solution of E

(
1

n

��̂∗
P

��

)
= 0,

(43)
𝜕2𝜅P

𝜕𝛽𝜕𝛽⊤

|||||𝛽=𝛽0
is negative definite.

(44)
UM(�;X̃, Z) ≈ UM(�;�X ,�Z) +

�UM(�;�X ,�Z)

��X

(X̃ − �X)

+
�UM(�;�X ,�Z)

��Z

(Z − �Z)

(45)
UM(�;X, Z) ≈ UM(�;�X ,�Z) +

�UM(�;�X ,�Z)

��X

(X − �X)

+
�UM(�;�X ,�Z)

��Z

(Z − �Z),

(46)UM(�;X̃, Z) ≈ UM(�;X, Z) +
�UM(�;�X ,�Z)

��X

(X̃ − X).
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because that E(X̃) − E(X) = �X − �X = 0 and UM(�0;X, Z) = 0 (e.g.,  Huang et  al. 
2012, p.208).

By (42) and (47),

By definition of UM(�;X, Z) and (19) together with (17), we have 
UM(�;X̃, Z) =

� log(L∗
M
)

��
 , and thus, UM(�;X̃, Z) = E

{
1

n

� log(L∗
M
)

��

}
 and 

𝜕UM(𝛽;�X,Z)

𝜕𝛽
= E

{
1

n

𝜕2 log(L∗
M
)

𝜕𝛽𝜕𝛽⊤

}
 . Then applying (48) gives

Next, by taking expectation on (46) and then taking the partial derivative with 
respect to � give that

By the derivations similar to Huang et al. (2012, p.208), �UM(�;X,Z)

��
 is negative definite 

at � = �0 , and thus, by (50), �UM(�;X̃,Z)

��
 is also negative definite at � = �0 . Then com-

bining with (43) gives that 𝜕2𝜅

𝜕𝛽𝜕𝛽⊤
=

𝜕2𝜅P
𝜕𝛽𝜕𝛽⊤

+ E
{

1

n

𝜕2 log(L∗
M
)

𝜕𝛽𝜕𝛽⊤

}
 is negative definite at 

� = �0 . Therefore, combining with (49), we conclude that �0 is approximately the 
maximizer of � . 	�  ◻

References

Andersen, P. K., Gill, R. D. (1982). Cox’s regression model for counting processes: A large sample study. 
The Annals of Statistics, 10, 1100–1120.

Augustin, T. (2004). An exact corrected log-likelihood function for Cox’s proportional hazards model 
under measurement error and some extensions. Scandinavian Journal of Statistics, 31, 43–50.

Buzas, J. F. (1998). Unbiased scores in proportional hazards regression with covariate measurement error. 
Journal of Statistical Planning and Inference, 67, 247–257.

Carroll, R. J., Li, K.-C. (1992). Measurement error regression with unknown link: Dimension reduction 
and data visualization. Journal of the American Statistical Association, 87, 1040–1050.

Carroll, R. J., Ruppert, D., Stefanski, L. A., Crainiceanu, C. M. (2006). Measurement error in nonlinear 
model. New York: Chapman & Hall/CRC.

Goutis, C., Casella, G. (1999). Explaining the saddlepoint approximation. The American Statistician, 53, 
216–224.

Greene, W. F., Cai, J. (2004). Measurement error in covariates in the marginal hazards model for multi-
variate failure time data. Biometrics, 60, 987–996.

(47)UM(�0;X̃, Z) ≈ 0

(48)E

⎛
⎜⎜⎝
1

n

��̂∗
P

��

�������=�0

⎞
⎟⎟⎠
+ UM(�0;X̃, Z) ≈ 0.

(49)
��

��

||||�=�0
≈ 0.

(50)
�UM(�;X̃, Z)

��
≈

�UM(�;X, Z)

��
.



516	 L.-P. Chen, G. Y. Yi 

1 3

Henmi, M., Eguchi, S. (2004). A paradox concerning nuisance parameters and projected estimating func-
tions. Biometrika, 91, 929–941.

Hosmer, D. W., Lemeshow, S., May, S. (2008). Applied survival analysis: Regression modeling of time to 
event data. New York: Wiley.

Hu, C., Lin, D. Y. (2002). Cox regression with covariate measurement error. Scandnavian Journal of 
Statistics, 29, 637–655.

Huang, C. Y., Qin, J., Follmann, D. A. (2012). A maximum pseudo-profile likelihood estimator for the 
Cox model under length-biased sampling. Biometrika, 99, 199–210.

Huang, Y., Wang, C. Y. (2000). Cox regression with accurate covariates unascertainable: A nonparamet-
ric correction approach. Journal of the American Statistical Association, 95, 1209–1219.

Kalbfleisch, J. D., Prentice, R. L. (2002). The Statistical Analysis of Failure Time Data. New York: Wiley.
Kong, F. H., Gu, M. (1999). Consistent estimation in Cox proportional hazards model with covariate 

measurement errors. Statistica Sinica, 9, 953–969.
Küchenoff, H., Bender, R., Langner, I. (2007). Effect of Berkson measurement error on parameter esti-

mates in Cox regression models. Lifetime Data Analysis, 13, 261–272.
Lawless, J. F. (2003). Statistical models and methods for lifetime data. New York: Wiley.
Li, Y., Ryan, L. (2006). Inference on survival data with covariate measurement error: An imputation-

based approach. Scandinavian Journal of Statistics, 33, 169–190.
Nakamura, T. (1992). Proportional hazards model with covariates subject to measurement error. Biomet-

rics, 48, 829–838.
Ning, Y., Yi, G. Y., Reid, N. (2018). A class of weighted estimating equations for semiparametric trans-

formation models with missing covariates. Scandinavian Journal of Statistics, 45, 87–109.
Prentice, R. L. (1982). Covariate measurement errors and parameter estimation in a failure time regres-

sion model. Biometrika, 69, 331–342.
Qin, J., Shen, Y. (2010). Statistical methods for analyzing right-censored length-biased data under Cox 

model. Biometrics, 66, 382–392.
Qin, J., Ning, J., Liu, H., Shen, Y. (2011). Maximum likelihood estimations and EM algorithms with 

length-biased data. Journal of the American Statistical Association, 106, 1434–1449.
Robins, J. M., Rotnitzky, A., Zhao, L. P. (1994). Estimation of regression coefficients when some regres-

sors are not always observed. Journal of the American Statistical Association, 89, 846–866.
Rothman, K. J. (2008). BMI-related errors in the measurement of obesity. International Journal of Obe-

sity, 32, 56–59.
Silverman, B. W. (1978). Weak and strong uniform consistency of the kernel estimate of a density and its 

derivative. The Annals of Statistics, 6, 177–184.
Song, X., Huang, Y. (2005). On corrected score approach for proportional hazards model with covariate 

measurement error. Biometrics, 61, 702–714.
Su, Y., Wang, J. (2012). Modeling left-truncated and right-censored survival data with longitudinal 

covariates. The Annals of Statistics, 40, 1465–1488.
van der Vaart, A. W. (1998). Asymptotic statistics. New York: Cambridge University Press.
Wang, C. Y. (1999). Robust sandwich covariance estimation for regression calibration estimator in Cox 

regression with measurement error. Statistics & Probability Letters, 45, 371–378.
Wang, C. Y. (2000). Flexible regression calibration for covariate measurement error with longitudinal 

surrogate variables. Statistica Sinica, 10, 905–921.
Wang, M. C. (1991). Nonparametric estimation from cross-sectional survival data. Journal of the Ameri-

can Statistical Association, 86, 130–143.
Wu, F., Kim, S., Qin, J., Saran, R., Li, Y. (2018). A pairwise likelihood augmented Cox estimator for left-

truncated data. Biometrics, 74, 100–108.
Xie, S. H., Wang, C. Y., Prentice, R. L. (2001). A risk set calibration method for failure time regres-

sion by using a covariate reliability sample. Journal of the Royal Statistical Society, Series B, 63, 
855–870.

Xu, Y., Kim, J. K., Li, Y. (2017). Semiparametric estimation for measurement error models with valida-
tion data. The Canadian Journal of Statistics, 45, 185–201.

Yan, Y., Yi, G. Y. (2015). A corrected profile likelihood method for survival data with covariate measure-
ment error under the Cox model. The Canadian Journal of Statistics, 43, 454–480.

Yan, Y., Yi, G. Y. (2016). A class of functional methods for error-contaminated survival data under addi-
tive hazards models with replicate measurements. Journal of the American Statistical Association, 
111, 684–695.



517

1 3

LTRC analysis with measurement error

Yi, G. Y. (2017). Statistical analysis with measurement error and misclassication: Strategy, method and 
application. New York: Springer.

Yi, G. Y., Lawless, J. F. (2007). A corrected likelihood method for the proportional hazards model 
with covariates subject to measurement error. Journal of Statistical Planning and Inference, 137, 
1816–1828.

Yi, G. Y., Ma, Y., Spiegelman, D., Carroll, R. J. (2015). Functional and structural methods with mixed 
measurement error and misclassification in covariates. Journal of the American Statistical Associa-
tion, 110, 681–696.

Zhao, S., Prentice, R. L. (2014). Covariate measurement error correction methods in mediation analysis 
with failure time data. Biometrics, 70, 835–844.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.


	Semiparametric methods for left-truncated and right-censored survival data with covariate measurement error
	Abstract
	1 Introduction
	2 Notation and model
	2.1 Cox model and inference
	2.2 Measurement error model

	3 Conditional profile-likelihood method
	3.1 Estimation method
	3.2 Asymptotic results

	4 Augmented pseudo-likelihood method
	4.1 Estimation method
	4.2 Asymptotic results

	5 Inference with mainvalidation data
	5.1 Estimation of parameters for measurement error model
	5.2 Two-stage estimation of parameter for survival model
	5.3 Asymptotic properties

	6 Numerical studies
	6.1 Design setup
	6.2 Performance of proposed estimators:  and  are known
	6.3 Performance with validation data
	6.4 Analysis of Worcester Heart Attack Study

	7 Discussion
	Acknowledgements 
	References




