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Abstract
The most common standard estimator of the pair correlation function (PCF) of a 
point process has a pole at zero, which is in most cases a statistical artifact. How-
ever, sometimes it makes sense to assume that a pole really exists. We propose two 
independent approaches for the proof of existence of a PCF’s pole and for the deter-
mination of its order. In the first, we use a summary characteristic F that transforms 
the PCF’s pole order to the location of F’s pole, while the other one uses a natural 
estimation method based on Ripley’s K-function. These methods are applied to sim-
ulated samples of two classical point process models and two cluster point process 
models with special geometries. Finally, we use the approach in the statistical analy-
sis of a classical point pattern of pine trees and a highly clustered pattern of nonme-
tallic inclusions in steel.

Keywords  Pair correlation function · High degree of clustering · Pole

1  Introduction

Today the pair correlation function is a strong tool of point process statistics (see 
Baddeley et  al. 2015; Illian et  al. 2008). (To make the paper self-contained, we 
explain the basic concepts in the beginning of Sect. 2.) Empirical pair correlation 
functions help to understand the structure of many point patterns. This is easy if the 
patterns are completely random or more or less regular, but problems appear when 
the patterns are clustered. Then, the pair correlation function g(r) has large values 
for small r and the corresponding estimates are not precise for these r.

Often, even in textbooks, figures in Fig.  1 show empirical pair correlation 
functions, where it is not clear whether there is a pole of g(r) at r = 0 ; see also 
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Figure 16.5 in Gelfand et al. (2010), Figure 7.24 in Baddeley et al. (2015), and Fig-
ure 5.8 in Illian et al. (2008).

Surely, the question of existence of a pole of g(r) is a difficult one. A pole is a 
mathematical idea, and therefore it is difficult to detect a pole from statistical data. 
There are mathematical point process models the pair correlation functions of which 
have poles, i.e., are proportional to r−� for small r. This order � is limited, and it is 
always between 0 and the space dimension d; the present paper always considers 
the case d = 2 . (By the way, a pair correlation function may have poles also at other 
values of r, not only at r = 0 . Section  4 gives examples.) In empirical point pat-
terns, there is always a positive minimum inter-point distance, which means that at 
very short distances, there is not the theoretical behavior of a cluster process with 
a pole at r = 0 . Nevertheless, there are natural point patterns where it makes sense 
to assume the existence of a pole, at least for an approximative elegant model. A 
prominent example is the three-dimensional pattern of galaxies, where the assump-
tion is that � = 1.8 , see Totsuji and Kihara (1969), Peebles (1974), Davis and Pee-
bles (1983). Also one of the patterns discussed in the present paper may belong to 
a structure where a pole at r = 0 is credible. It was just this pattern of inclusions in 
samples of steel that has led to the present paper. If these inclusions would have a 
pair correlation function with a pole, the choice of a suitable statistical model is 
directed to special models not (yet) popular in recent point process statistics.

The problem with a pole at r = 0 is statistically complicated since one of the 
standard estimators quite often leads to estimates having such a pole. Thus, in many 
cases, poles of empirical pair correlation functions are just statistical artifacts. This 
even happens in the case of Poisson point process samples; only for hard-core pro-
cesses, this effect does not play a role. Therefore, a statistical proof of the existence 
of a pole is a difficult task. For small r, which to consider is necessary in pole detec-
tion, the statistics of pair correlation functions is difficult, since then there is a com-
plicated interplay of bandwidth h and inter-point distance r.

In the present paper, we suggest two independent approaches for the determina-
tion of poles at r = 0 and their order. One uses the natural way to employ Ripley’s 
K-function, while the other works with a new summary characteristic that trans-
forms the order of a possible pole at r = 0 to the location of a pole.

The paper is organized as follows. A short review of pair correlation function 
estimators is given in Sect. 2. Then, a mathematical definition of a pole of a pair 

Fig. 1   An empirical pair 
correlation function from the 
book Chiu et al. (2013), there 
Figure 4.4(b). It is not clear 
whether there is a pole at r = 0 . 
See the discussion in Sect. 6.1
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correlation function and its order and the two approaches for detection and deter-
mination of poles are provided in Sect. 3. Section 4 describes point process models 
without and with poles. The two approaches are then applied to simulated data in 
Sect. 5 and two real data sets in Sect. 6.

2 � Pair correlation function estimators

Suppose N is a stationary and isotropic point process i.e., a random subset of ℝ2 
with the property that the intersection of N with any bounded subset of ℝ2 is of finite 
cardinality. ‘Stationarity’ and ‘isotropy’ mean invariance of the distribution under 
translations and rotations. The mean number of points per area unit of N is called 
‘intensity’ and denoted by � . The pair correlation function g(r) of N is the normal-
ized second-order product density �(r) , normalized by division by �2 . Intuitively, 
�(r)dx1dx2 is the probability that N has each a point in infinitesimally small regions 
of area dx1 and dx2 around two points x1 and x2 of distance r. Large values of g(r) for 
some r indicate that there is a tendency that N has more point pairs of an inter-point 
distance r than a completely random point process. See also Illian et al. (2008) and 
Daley and Vere-Jones (2008).

For statistical analysis, N is observed in a compact window W ⊂ ℝ
2 of positive 

Lebesgue measure �(W) . An edge-corrected kernel estimator of its pair correlation 
function is

where 𝜆̂ is an intensity estimator of N, �(⋅) is the Lebesgue measure, 
W ∩ (W − x1 + x2) = {x − x1 + x2 ∈ W ∶ for all x ∈ W} and kh(t) is a kernel func-
tion in the form k(t/h)/h for some probability density k(⋅) and bandwidth h > 0 , see 
Illian et al. (2008, p. 230). Because of the inverse term 1/r, the estimator ĝk(r) tends 
to infinity as r ↓ 0.

An alternative estimator (see Guan 2007) of g(r) is obtained by replacing the r at 
the denominator of ĝk(r) by pairwise distances ‖xi − xj‖ . It is in the form

Notice that this estimator ĝd(r) has a large bias at small lags r. To reduce this bias, 
Guan (2007) proposed a modified estimator which is expressed as

The estimators ĝd(r) and ĝc(r) are always finite at r = 0 . Thus, they are reasonable 
choices for estimating the pair correlation functions of most of the classical point 
process models such as Poisson point process, Matérn cluster process and modified 

ĝk(r) =
1

2𝜋r𝜆̂2

�≠
x1,x2∈N∩W

kh
�
‖x1 − x2‖ − r

�

𝜈
�
W ∩ (W−x1 + x2)

� for r ≥ 0,

ĝd(r) =
1

2𝜋𝜆̂2

�≠
x1,x2∈N∩W

kh
�
‖x1 − x2‖ − r

�

‖x1 − x2‖𝜈
�
W ∩ (W−x1 + x2)

� for r ≥ 0.

ĝc(r) =
ĝd(r)

∫ min{r,h}

−h
kh(t) dt

for r ≥ 0.
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Thomas process, which have no pole at r = 0 . On the other hand, in some special 
cases, the pair correlation function of a point process may approach infinity as r 
tends to 0. In such cases, the estimator ĝk(r) may be preferable for estimating g(r) at 
small r.

3 � Detection of PCF’s pole

In this section, we give a formal definition of poles of pair correlation functions 
and propose two methods to detect, determine and characterize the poles. The first 
approach is a summary characteristic whose expectation has a pole at the PCF’s pole 
order minus two (the dimension of the space). The second approach is least-square 
estimation of the pole order based on empirical K-functions. Estimation of pole 
orders requires precise information of point pairs with small inter-point distances 
and thus, a large number n of points is necessary in order to obtain accurate results 
in pole statistics.

3.1 � Definition of PCF’s pole

Given a pair correlation function g(r), we say that the function g(r) has a pole at 
r = 0 of order 𝛾 > 0 if

for some small r0 . This is equivalent to saying that there exist constants CL and CU 
such that

When a point process has finite g(0), its g(r) has not a pole at r = 0 and therefore 
� = 0 . To simplify wording, we will say in the following that a point process has a 
pole order � if its pair correlation function has a pole of order � at r = 0.

3.2 � The F‑approach for detecting the pole

Suppose that the pair correlation function of a point process N has a pole of order 
� ≥ 0 at r = 0 . Consider the following function

where �A(⋅) is the indicator function of the set A and rf  is a pre-chosen distance. The 
mean of the right-hand side is determined by using equation (4.3.19) in Illian et al. 
(2008), i.e.,

g(r) = Θ(r−𝛾 ) for 0 ≤ r < r0,

CLr
−𝛾 ≤ g(r) ≤ CUr

−𝛾 for 0 ≤ r < r0.

F(s;rf ) ∶=
�≠
x1,x2∈N

�W (x1)�W (x2)�[0,rf ](‖x1 − x2‖)‖x1 − x2‖s

�2�
�
W ∩ (W−x1 + x2)

� for rf ≤ r0,
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where �(h) denotes the second-order product density of N, which is a consequence 
of the Campbell-Mecke theorem (see Chiu et al. 2013, p. 130) or the refined Camp-
bell theorem (see Daley and Vere-Jones 2008, p. 288).

With

the lower bound EL and upper bound EU of the expectation �
[
F(s;rf )

]
 can be 

expressed as

where X = L or U. Thus, �
[
F(s;rf )

]
 can be represented by using the Big-Theta nota-

tion as

and has a pole at s = � − 2 . That means that the order � of the pole of g(r) is trans-
formed to the location of the pole of �

[
F(s;rf )

]
 . The function F(s;rf ) may give infor-

mation about the pole order � as its expectation tends to infinity when s ↓ � − 2 . 
With a simple plot of F(s;rf ) against s under a proper ordinate scaling, there is hope 
to prove the existence of a PCF’s pole. However, this is a difficult issue as we have 
to consider values of F(s;rf ) that are close to infinity. Notice that depending on rf  , 
the test function F(s;rf ) may exist even when its expectation is undefined, i.e., if 
s ≤ � − 2.

The pre-chosen distance rf  plays a crucial role in detecting the pole. The 
bounds EL and EU are decreasing functions with respect to s if and only if rf  is 
small enough. With a suitable choice of rf  , such as rf = 1 , which always results 
in an F(s;rf ) decreasing in s, one can have a clearer view on where and how the 
test function approaches infinity. On the other hand, the choice of rf  is restricted 
by the minimum pairwise distance of the points. A simple strategy to relax the 
restriction is rescaling the point pattern since the pole order is invariant to resca-
ling. To see the rescaling effect on the test function, denote �N = {�x ∶ x ∈ N} 
as the rescaled point pattern of N with intensity ��N = �−2�N . The window W 
of N is then rescaled as �W = {�x ∶ x ∈ W} such that �(�W) = �2�(W) . Simple 
calculation reveals that the test function FN(s;rf ) of N can be re-expressed in 
terms of the test function F�N(s;�rf ) of �N  as FN(s;rf ) = �−s−2F�N(s;�rf ) . Thus, 
one may apply the detection method without actually rescaling the point pattern 
but the test function.

�

[
∑≠
x1,x2∈N

f (x1, x2)

]
= � � f (x, x + h)�(h)dhdx,

f (x1, x2) =
�W (x1)�W (x2)�[0,rf ](‖x1 − x2‖)‖x1 − x2‖s

�2�
�
W ∩ (W−x1 + x2)

� ,

EX =
2𝜋CX

s − 𝛾 + 2
r
s−𝛾+2

f
for s > 𝛾 − 2,

�
[
F(s;rf )

]
= Θ

(
2𝜋

s − 𝛾 + 2
r
s−𝛾+2

f

)
for s > 𝛾 − 2,
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3.3 � The K‑approach for estimating pole order

Another method to estimate the pole order is the K-approach. If a point process has a 
pole order � , its K-function satisfies

for some constant C and 𝜁 > 2 − 𝛾 . Hence, a natural approach for estimating the 
pole order is fitting a power law to the K-function. Unlike the case of pair correla-
tion function, estimators of K(r) do not require selection of bandwidths, which is a 
complicated issue in practice, and they have no statistical artifact at r = 0 . There-
fore, empirical K-functions are relatively less sensitive to choices of parameters and 
estimators, and hence their use is preferable for direct estimation of pole orders.

A popular translational-edge-corrected estimator (see Chiu et  al. 2013,  Sec-
tion 4.7.4) of the K-function has the form

To estimate the pole order, the K-function is estimated at r = di , i = 1,… , kn , where 
di are the pairwise distances of the point pattern which are smaller than or equal 
to a pre-chosen distance rk . Nonlinear least square methods can then applied on (
di, K̂(di)

)
 to estimate the order 𝛾̂ . Throughout this paper, we use the trust-region-

reflective least squares algorithm, implemented by the nonlinear least-squares solver 
lsqnonlin in the MATLAB optimization toolbox, with the restriction 𝛾̂ ∈ [0, 2].

A pole of pair correlation function is a local property. Thus, the pre-chosen distance 
rk should be small enough to avoid considering the global structure of the point pattern. 
Otherwise, the estimates 𝛾̂ will tend to zero.

4 � Examples of point process models without and with poles

Below, we provide some examples of point process models and state their correspond-
ing pole orders at r = 0 . The classical point process models, such as the Poisson point 
process and modified Thomas process, have pair correlation functions without poles. 
On the other hand, models with a special geometry of clusters, such as processes with 
chain-like clusters, can have a pole at r = 0.

Our examples show that the geometry of clusters plays a crucial role to the existence 
of a pole but not the number of daughters. Thus, a pole cannot be created by just simply 
making denser clusters. We mention here that one can obtain a point process with pole 
by superposition of point processes with and without poles.

K(r) = Θ
(
r2−𝛾

)
≈ Cr2−𝛾 + O

(
r𝜁
)

for 0 ≤ r < r0,

K̂(r) =
1

𝜆̂2

�≠
x1,x2∈N

�[0,r](‖x1 − x2‖)
𝜈
�
W ∩ (W−x1 + x2)

� for r ≥ 0.
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4.1 � Poisson point process

A homogeneous Poisson point process has a pair correlation function which is identical 
to 1, which means it has no pole at r = 0 or it is � = 0 . The expected value of the test 
function is

It has a pole at s = −2 , which is equivalent to the fact that the pair correlation func-
tion has no pole at r = 0.

4.2 � Modified Thomas process

A modified Thomas process (see Illian et al. 2008, p. 377) is a special Neyman-Scott 
cluster point process. Denote �p as the intensity of the Poisson parent points. The repre-
sentative cluster is an isotropic centered Poisson process with mean total number c̄ . The 
distribution of the daughter points around the parent points is the symmetric normal 
distribution with parameter � . Its pair correlation function is

It is obvious that g(r) has no pole at r = 0 as g(0) = 1 + (4𝜋𝜆p𝜎
2)−1 < ∞ . The func-

tion g(r) is independent of the mean daughter numbers c̄ . Thus, even a very large 
value of c̄ would still result in a pattern without a pole. The expectation �

[
F(s;rf )

]
 is 

in the form

where �L(a, x) = ∫ x

0
ya−1e−y dy . Similar to the Poisson process case, �

[
F(s;rf )

]
 tends 

to infinity when s ↓ −2.

4.3 � Pair‑cluster process

The pair-cluster process was introduced by Stoyan (1994). Its parent points form a Pois-
son process with intensity � . Each parent point is the center of a randomly orientated 
segment of random length, and the i.i.d. lengths of the segments follow a probability 
density function f(r). The cluster process is then formed by the two endpoints of the 
random segments. The pair correlation function of the process is given by

With a suitable choice of f(r), the pattern may have a pole at r = 0 . An example is 
the Weibull distribution with

�
[
F(s;rf )

]
=

2𝜋

s + 2
rs+2
f

for s > −2.

g(r) = 1 +
1

4��p�
2
exp

(
−

r2

4�2

)
for r ≥ 0.

�
[
F(s;rf )

]
=

2𝜋

s + 2
rs+2
f

+
1

𝜆p(2𝜎)
s
𝛤L

(
s

2
+ 1,

r2
f

4𝜎2

)
for if s > −2,

g(r) = 1 +
f (r)

4��r
for r ≥ 0.
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where k > 0 and 𝜎 > 0 are the shape and scale parameters, respectively. When the 
segment lengths follow a Weibull distribution, its pair correlation function has the 
form

Thus, g(r) can be shown to have a pole of order � = 2 − k at r = 0 . The expectation 
of the test function is

For any k ∈ (0, 2] , the expectation of F(s;rf ) tends to infinity when s ↓ −k . Here, 
we consider the case of k ≤ 2 only as we consider the two-dimensional space in the 
present paper.

If one considers a three-parameter Weibull distribution, i.e., a Weibull distribution 
with an additional shift parameter a > 0 which shifts the distribution and controls the 
lower bound of the distribution support, the resultant pair-cluster process is then a pro-
cess with nonzero pole order at r = a as mentioned in Sect. 1.

4.4 � Segment Cox process

Instead of using the two endpoints of the random segments as the daughter points, a 
segment Cox process (Martinez and Saar 2002) uses 1D Poisson point processes with 
intensity � as the daughter points on each segment, and the union of all these Poisson 
point process forms the resultant cluster process. Suppose the segment length probabil-
ity density function f(r) has support [a, b]. By using a formula for the ‘Poisson segment 
process’ of Stoyan (1983), the pair correlation function of the cluster process can be 
expressed as

where � is the mean of f(r) and � , as for the previous model, is the intensity of parent 
points. If the length follows uniform distribution with support [0, b], the pair cor-
relation function is

The function g(r) has a pole of order � = 1 at r = 0 . The expectation �
[
F(s;rf )

]
 for 

any s > −1 is given by

f (r) =
k

�

(
r

�

)k−1

exp

(
−
(
r

�

)k
)

for r ≥ 0,

g(r) = 1 +
k

4���k
rk−2 exp

(
−
(
r

�

)k
)

for r ≥ 0.

�
[
F(s;rf )

]
=

𝜋

s + 1
rs+2 +

1

4𝜂𝜋𝜎s
𝛤L

(
s

k
+ 1,

(
rf

𝜎

)k
)

for s > max{−2,−k}.

g(r) = 1 +
�[0,b)(r)

���r �
b

max{a,r}

(x − r)f (x) dx for r ≥ 0,

g(r) = 1 + �[0,b)(r)

(
r2 − 2rb + b2

��rb2

)
.
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It has a pole at s = −1.
We remark here that we suppose that a pole of order 1 appears also if we replace the 

uniform distribution by another length distribution or the segments by smooth curves. 
(We could show this for circular lines.) Replacing the 1D Poisson point process by 
renewal processes can yield poles at other values of r. (For example, at r = a if the 
points on the segments have constant inter-point distance a.)

5 � Simulations

To study the behavior of the test function F(s;rf ) and the performance of the pole-order 
estimation method for point process data, six different point process models are consid-
ered in simulations.

•	 Model 1 is the Poisson point process.
•	 Models 2 and 3 are modified Thomas processes with parameters 

(�p,�, �) = (20, 0.05, 0.5) and (20, 0.05, 1), respectively.
•	 Models 4 and 5 are pair-cluster processes with Weibull length distribution. The 

parameters are (�, k, �) = (0.5, 1.5, 0.15) and (0.5, 0.5, 0.15), respectively.
•	 Model 6 is a segment Cox process with uniform length distribution. The parameters 

are (�, �, b) = (0.02, 5, 2.5).

The six models were generated under four combinations of parameters (W, �) : 
([0, 10]2, 10) , ([0, 10]2, 5) , ([0, 20]2, 1) and ([0, 30]2, 1) . For each combination, 100 
point patterns of each model were simulated. When computing the test function F(s;rf ) , 
the patterns are rescaled to [0, 1]2 to ensure that F(s;rf ) is a decreasing function.

The test function and the K-approach depend on pre-chosen distances rf  and rk , 
respectively. In the simulations, we considered six choices of distances for rf  and rk . 
The first three choices r(1) , r(2) and r(3) are defined as

where x1 = 25 , x2 = 50 and x3 = 100 . The other three choices r(4) , r(5) and r(6) are 
0.1 0.5 and 1 over the square root of the intensity, respectively. The values of r(k) for 
each model and (W, �) are shown in Table 1. The distances r(5) and r(6) are largest in 
all cases. For model 1, 2 and 3, r(4) is smaller than r(1) , while for model 5 and 6, r(4) 
is larger than or close to r(3) . For model 4, r(4) is between r(1) and r(3).

�
[
F(s;rf )

]
=

�

s + 2
rs+2
f

+
2

�b2

(
1

s + 3
min{b, rf }

s+3

−
2b

s + 2
min{b, rf }

s+2 +
b

s + 1
min{b, rf }

s+1
)
.

r(i) = max
j∈{1,…,100}

{
xith smallest pairwise distances of the jth pattern

}
,
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5.1 � Simulation results

5.1.1 � F‑approach

The F-approach tries to detect the existence of a pole by plotting F(s;rf ) against s 
with a pre-chosen rf  . If F(s;rf ) has a pole at some s > −2 , it is expected that the 
corresponding pattern has a pole of nonzero order. Since F(s;rf ) is a decreas-
ing function for all s, one may observe the occurrence of pole at different values 
of s by using different ordinate scalings. Nevertheless, our simulation results reveal 
that plots of F(s;rf ) with the y-axis limit [0, 25] usually can show where the steep 
increase of F(s;rf ) starts. The simulation results also suggest that the choices of rf  
are not important since the values of F(s;r(i)) are similar under different r(i) . Thus, 
we report only the results of F(s;r(6)).

Figure 2 shows the plots of the envelopes of F(s;r(6)) against s for the six mod-
els. The width of the envelopes, i.e., the variation of F at fixed s, increases as the 

Table 1   Values of r(k) for the simulated models under different parameters (W, �)

Model Window � r(1) r(2) r(3) r(4) r(5) r(6)

1 [0, 10]2 10 0.0510 0.0695 0.0945 0.0316 0.1581 0.3162
5 0.1018 0.1418 0.1895 0.0447 0.2236 0.4472

[0, 20]2 1 0.2531 0.3442 0.4792 0.1000 0.5000 1.0000

[0, 30]2 0.1641 0.2145 0.3060 0.1000 0.5000 1.0000
2 [0, 10]2 10 0.0497 0.0684 0.0927 0.0316 0.1581 0.3162

5 0.0995 0.1409 0.1882 0.0447 0.2236 0.4472
[0, 20]2 1 0.2417 0.3432 0.4464 0.1000 0.5000 1.0000

[0, 30]2 0.1575 0.2197 0.2820 0.1000 0.5000 1.0000
3 [0, 10]2 10 0.0495 0.0675 0.0928 0.0316 0.1581 0.3162

5 0.0988 0.1345 0.1935 0.0447 0.2236 0.4472
[0, 20]2 1 0.2806 0.3776 0.5175 0.1000 0.5000 1.0000

[0, 30]2 0.1799 0.2341 0.3111 0.1000 0.5000 1.0000
4 [0, 10]2 10 0.0230 0.0335 0.0507 0.0316 0.1581 0.3162

5 0.0434 0.0618 0.0926 0.0447 0.2236 0.4472
[0, 20]2 1 0.0502 0.0749 0.1366 0.1000 0.5000 1.0000

[0, 30]2 0.0294 0.0449 0.0698 0.1000 0.5000 1.0000
5 [0, 10]2 10 0.0009 0.0039 0.0147 0.0316 0.1581 0.3162

5 0.0053 0.0157 0.0581 0.0447 0.2236 0.4472
[0, 20]2 1 0.0068 0.0217 0.1132 0.1000 0.5000 1.0000

[0, 30]2 0.0015 0.0045 0.0167 0.1000 0.5000 1.0000
6 [0, 10]2 10 0.0052 0.0103 0.0202 0.0316 0.1581 0.3162

5 0.0114 0.0225 0.0452 0.0447 0.2236 0.4472
[0, 20]2 1 0.0153 0.0296 0.0834 0.1000 0.5000 1.0000

[0, 30]2 0.0048 0.0100 0.0194 0.1000 0.5000 1.0000
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window size or the intensity decreases, i.e., as the number of points decreases. For 
the cases of simulated patterns without pole, all the F(s;r(6)) have no pole at s > −2 , 
i.e., the F-approach indicates correctly that the pair correlation functions of models 
1, 2 and 3 have no pole at r = 0 . For model 4, the steep increases in mean of F(s, rf ) 
start near s = 2 − � as expected. For model 5 and 6, the steep increases start at some 
s greater than 2 − �.

5.1.2 � K‑approach

The K-approach estimates the pole orders by applying the least square method to the 
empirical K-functions. Table 2 shows the means and standard deviations (in brack-
ets) of the estimated pole orders 𝛾̂ for all simulated patterns under different values of 
rk . Both the means and standard deviations decrease when r(k) is large because the 
interaction between points vanishes at large r.

(a) (b) (c)

(d) (e) (f)

Fig. 2   Envelopes of the test function F(s;rf ) for a model 1, b model 2, c model 3, d model 4, e model 5 
and f model 6 under different parameters (W, �) (black line ([0, 10]2, 10) , red line ([0, 10]2, 5) , green line 
([0, 20]2, 1) and blue line ([0, 30]2, 1) ). The solid lines indicate the means of F(s;rf ) . The dashed lines 
show the lower and upper bounds of the envelopes. The dotted black lines show the corresponding pole 
orders. The orders of the three models are 1.5, 0.5 and 1, respectively
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When the models have zero pole order, using the small pre-chosen distances r(1) and 
r(4) results in relatively large estimated 𝛾̂ . The estimated orders 𝛾̂ become closer to zero 
when r(k) increases. In the case of models with real poles, small pre-chosen distances, 
r(1) , r(2) , r(3) and r(4) , produce estimated pole orders that are close to the true orders. 
The estimated orders deviate from the true orders at large pre-chosen distances, r(5) and 
r(6) . The distance r(3) gives relatively good estimates to the pole order for all models. 
Thus, it is better to choose r(k) based on pairwise distances and we recommend to use 
r(k) = r(3).

Table 2   Means and standard deviations (in brackets) of the estimated 𝛾̂ by the K-function approach

Model � Window � r
k

r(1) r(2) r(3) r(4) r(5) r(6)

1 0 [0, 10]2 10 0.31 (.17) 0.11 (.14) 0.07 (.09) 0.48 (.07) 0.04 (.06) 0.02 (.03)
5 0.13 (.18) 0.09 (.14) 0.09 (.11) 0.53 (.12) 0.07 (.09) 0.03 (.04)

[0, 20]2 1 0.15 (.20) 0.12 (.15) 0.08 (.11) 0.40 (.39) 0.08 (.10) 0.03 (.05)

[0, 30]2 0.13 (.18) 0.09 (.14) 0.07 (.10) 0.24 (.26) 0.06 (.08) 0.02 (.04)
2 0 [0, 10]2 10 0.31 (.17) 0.12 (.15) 0.07 (.10) 0.49 (.06) 0.04 (.06) 0.02 (.03)

5 0.11 (.16) 0.10 (.13) 0.08 (.11) 0.51 (.12) 0.06 (.08) 0.03 (.05)
[0, 20]2 1 0.14 (.17) 0.10 (.13) 0.07 (.10) 0.45 (.40) 0.07 (.09) 0.07 (.07)

[0, 30]2 0.16 (.17) 0.11 (.15) 0.09 (.10) 0.29 (.31) 0.05 (.06) 0.06 (.05)
3 0 [0, 10]2 10 0.31 (.18) 0.14 (.14) 0.11 (.12) 0.50 (.06) 0.05 (.07) 0.03 (.04)

5 0.13 (.17) 0.09 (.14) 0.08 (.10) 0.50 (.10) 0.07 (.09) 0.04 (.05)
[0, 20]2 1 0.15 (.20) 0.10 (.13) 0.10 (.11) 0.35 (.37) 0.10 (.11) 0.03 (.05)

[0, 30]2 0.14 (.19) 0.10 (.13) 0.08 (.10) 0.33 (.32) 0.05 (.07) 0.03 (.03)
4 0.5 [0, 10]2 10 0.63 (.15) 0.46 (.21) 0.41 (.17) 0.46 (.22) 0.50 (.07) 0.50 (.04)

5 0.48 (.25) 0.48 (.21) 0.52 (.15) 0.48 (.25) 0.70 (.07) 0.68 (.07)
[0, 20]2 1 0.56 (.25) 0.60 (.19) 0.75 (.11) 0.66 (.17) 1.18 (.05) 0.95 (.08)

[0, 30]2 0.52 (.28) 0.57 (.19) 0.61 (.13) 0.68 (.10) 1.18 (.03) 0.95 (.06)
5 1.5 [0, 10]2 10 1.45 (.15) 1.52 (.06) 1.53 (.05) 1.53 (.04) 1.18 (.05) 0.64 (.06)

5 1.52 (.10) 1.54 (.07) 1.54 (.04) 1.55 (.05) 1.26 (.08) 0.70 (.08)
[0, 20]2 1 1.53 (.08) 1.55 (.07) 1.59 (.04) 1.59 (.04) 1.42 (.08) 0.81 (.10)

[0, 30]2 1.51 (.09) 1.52 (.06) 1.53 (.05) 1.58 (.03) 1.41 (.04) 0.82 (.06)
6 1 [0, 10]2 10 1.08 (.12) 1.10 (.13) 1.12 (.11) 1.13 (.11) 1.07 (.08) 0.87 (.08)

5 1.11 (.17) 1.15 (.14) 1.16 (.13) 1.16 (.13) 1.12 (.11) 0.99 (.11)
[0, 20]2 1 1.13 (.19) 1.15 (.18) 1.20 (.13) 1.21 (.12) 1.28 (.08) 1.22 (.08)

[0, 30]2 1.09 (.17) 1.12 (.15) 1.15 (.13) 1.23 (.07) 1.28 (.05) 1.23 (.06)
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6 � Real data examples

6.1 � Longleaf pine trees

The longleaf data set, which is accessible from R under the package spatstat, was 
frequently studied in the statistical literature. The locations of 584 longleaf pine 
(Pinus palustris) trees were recorded from a 200m × 200m region in the Wade 
Tract, an old-growth forest in Thomas County, Georgia. The data were collected by 
W. J. Platt and S. L. Rathbun with the support of Tall Timbers Research Station, 
Tallahassee, Florida (see Rathbun 1990; Cressie 1991). The corresponding point 
pattern shows a high degree of clustering, which is caused by frequent ground fires 
and recruitment primarily in open spaces created by the decline of large trees.

Despite the non-stationarity of the pattern (see Cressie 1991, p. 600; Guan 2008; 
Chiu and Liu 2013), some stationary cluster processes offer good fits. Stoyan and 
Stoyan (1996), Mecke and Stoyan (2005) and Tanaka et al. (2008) fitted generalized 
Thomas process models, which contain two types of clusters, to the data and found 
that it yields a better fit than the classical Thomas process. Ghorbani (2013) mod-
eled the data set by a Cauchy cluster process and tested the goodness-of-fit by the 
Cramér-von Mises test and the empty space function.

Figure 3a shows the empirical pair correlation functions ĝk(r) , ĝd(r) and ĝc(r) for 
the longleaf pine data; the curve for ĝk(r) is the same as that in Fig. 1. It looks as 
having a pole at r = 0m . Is there perhaps really a pole? Are the models fitted not 
suitable and overlook the pole?

To answer these questions, we applied the methodology of Sect.  3. First, we 
determined the corresponding test function F(s;rf ) . The two used values rf = 0.92 
and rf = 1.28 were the 50th and 100th smallest pairwise distances, respectively. The 

(a) (b)

Fig. 3   Plots of the a empirical pair correlation functions (line ĝk(r) , dashed line ĝd(r) and dotted line 
ĝc(r) ) and b F(s;rf ) for the 584 longleaf pine trees for two values of rf  (line 0.92 and dashed line 0.28). 
The bandwidth of the empirical pair correlation functions used in the estimation is 3 m
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plot in Fig. 3b shows that the pair correlation function has no pole at r = 0 : F(s;rf ) 
has a pole at s = −2 , which means that the order � of the pole of the PCF at r = 0 
is zero. The least-squares fit based on the K-function supports this statement: With 
rk = 0.92 and rk = 1.28 , we obtained pole order estimates equal to zero because 
of the restriction in the least square method. When we changed the rk to 1.92 we 
obtained � = 0.079.

In the interpretation of the estimated pole orders 𝛾̂ , we have to consider that the 
sample size of 584 trees is perhaps too small for a reliable estimation of the K-func-
tion. Thus, we conclude that also the estimated order 𝛾̂ = 0 indicates that the pair 
correlation function of a possible model behind the longleaf pines should not have 
a pole. Thus in this point, we have full agreement with the fitted models considered 
in the literature. And because we consider trees in a natural forest, there is no reason 
for clustering with very small inter-tree distances or points on curves.

6.2 � Nonmetallic inclusions in steel

The damage properties of two-phase materials depend heavily on their microstruc-
ture. Often the second phase consists of many small objects, inclusions or pores, 
which can be described as points. The corresponding point patterns are random, 
often clustered. As already noted by Brechet (1994), the geometrical form of these 
clusters plays a crucial role, see also Buryachenko (2007, p.3 and 151).

In a study reported in Seleznev et al. (2018), clusters of inclusions in 42CrMo4 
steel were statistically analyzed, and their number and spatial distribution were 
considered. Figure  4a shows one of the 90 analyzed point patterns, a planar sec-
tion through a steel sample, called ‘Section C’ in Seleznev et  al. (2018). Section 
C contains 1564 inclusions. Because of the large scaling, sometimes a chain-like 
cluster can only be seen as a point in the plot of the whole pattern. Figure 4b shows 
the corresponding empirical pair correlation functions ĝk(r) , ĝd(r) and ĝc(r) , which 
are here, in contrast to the case of the pines, almost identical. The functions start 
from very high values for small r and eventually come close to the value one after 
r = 50 μm.

Visual inspection of Fig. 4a shows chain-like clusters and supports the assump-
tion that the corresponding pair correlation function may have a pole at r = 0 μm . 
We applied the methodology of Sect. 3 to look for a pole.

The plot of the curves of F(s;rf ) with rf = 400 μm for the 90 specimens in Fig. 4c 
shows the great variability of the patterns, here expressed by the F(s;rf ) curves. It 
suggests that the pole of F(s;rf ) is between s = −1.6 and s = −1.3 , which leads to 
an estimate of the order � of the pair correlation function pole between 0.4 and 0.7.

The means of the pole orders estimated by the K(r) approach with rf = 400 μm 
and rf = 800 μm are 0.90 and 0.54, respectively.

Thus, we conclude that a possible mathematical model for the inclusion patterns 
should have a pair correlation function with a pole at r = 0 μm . To find a suitable 
model is of course not the topic of this paper. Possible models are: a generalization 
of the Cox segment process where the 1D Poisson processes are replaced by renewal 
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processes or Cox segment processes with a length probability density function with 
a pole at r = 0 . A detailed discussion of these models is deferred to future work.

We mention that we discussed only planar sections, while of course the steel 
samples are three-dimensional. Therefore, if no 3D samples are available, stereo-
logical methods should be used in order to estimate the pair correlation function of 

(a)

(b) (c)

Fig. 4   Plots of the a locations of nonmetallic inclusions in section C of Seleznev et al. (2018), b empiri-
cal pair correlation functions (line ĝk(r) , dashed line ĝd(r) and dotted line ĝc(r) ) of Section C and c enve-
lopes of the F(s;rf ) curves of the 90 specimens with rf = 400 μm . The bandwidth of the empirical pair 
correlation functions used in the estimation is 5 μm . The dashed line in (c) represents the mean, the dot-
ted line represents F(s;rf ) of section C
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the three-dimensional pattern. Such methods are discussed in Chiu et al. (2013, sec-
tion 10.7.2). Perhaps the approximation (10.86) given there is true also for the inclu-
sions; if so this would lead to a pole order of the spatial pair correlation function similar 
to the values given above for the planar case. But this is only speculation and needs 
further research.
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