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S1 Further Discussion on Likelihood Ratio Tests

S1.1 Null parameters on the boundary of the parameter
space

In Theorems 1 and 2, we establish in particular the asymptotic distribution
of the modified likelihood ratio statistic R under J-th level homogeneity and
L-th level innovation, respectively. These results require that the true but
unknown values of the parameters λJc and µpairk under the null hypothesis of
each LRT are in the interior of the global parameter space. The boundaries
of the parameter spaces when testing J-th level homogeneity and L-th level
innovation contain the parameter vectors satisfying λJk = 0 and µk = 0 for
one or more dyadic translation indexes k ∈ 0, ..., 2J−1 and k ∈ 0, ..., 2L+1−1,
respectively. If λJc = 0 under J-th level homogeneity for any resolution level
J , then we are in the trivial case where the intensity is the zero function on
[0, T ). This would lead us to never observe any event almost surely, thus we
can exclude the value λJc = 0 from the null parameter space of our likelihood
ratio model. From any other data, Theorem 1 can be used provided its other
conditions are met.

∗Correspondence should be addressed to E.A.K.C. (e.cohen@imperial.ac.uk).
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However, point processes with non-zero intensities may not possess L-th
level innovation for some level L but still have parameters for that test on
the boundary. For example, if λ is non-zero and constant on [0, T/2) and
zero otherwise, then there is no level 1 innovation (in the Haar sense) but
µpair2 = 0. Therefore, we need to detail a further analysis in order to propose
decision rules when M is large and some MLEs of the parameters take value
zero. This analysis will be done under the general setting of Section 3.4.1.

Under the null hypothesis of the model leading to Theorem 2, we denote
U the number of true parameters µpairi equal to zero. By definition, we
have 0 ≤ U < P , the case U = P being excluded since under this condition
no data points would be observed. From some data X, we also denote Ū
the number of pairs of MLEs (µ̄2i−1, µ̄2i) that are equal to (0, 0), which is
equivalent to µ̄pairi = 0. If Ū = 0, then U = 0 since U ≤ Ū and therefore the
true parameter vector does not lie on the boundary of the parameter space,
which allows us to apply Wilks’ theorem provided its other conditions are
met. Now consider the case where Ū > 0 and thus U > 0 is a possibility.
Let us place ourselves under the null hypothesis H, which we recall states
µ2i−1 = µ2i = µpairi , 1 ≤ i ≤ P . From the proof in Appendix S2.5, statistic
R would have the same value if the data X was instead obtained from a
multivariate Poisson random variable of dimension 2P − 2U where we ex-
clude the U pairs of components that have zero mean. Therefore, under the
conditions of Theorem 2, R is asymptotically χ2

P−U distributed.
Since the value of U is hidden and U ≤ Ū , we have Ū + 1 possible distri-

butions for R under the null and hence Ū + 1 possible critical values. Each
critical value is denoted zP−u,α, 0 ≤ u ≤ Ū , and is the upper 100(1 − α)%
point of the χ2

P−u distribution. We propose three choices of critical values
which yield different type 1 error bounds for the LRT. The asymptotic type
1 error of the LRT is denoted ε1 and the cumulative distribution function
of the chi-squared distribution with d degrees of freedom is denoted Fd.

1. The first choice is to use the critical value zP,α, which is equiva-

lent to assuming U = 0, i.e. all mean parameters µpairi are non-
zero. This places us in the most conservative setting since zP,α =
max

{
zP−u,α, 0 ≤ u ≤ Ū

}
. The type 1 error of the LRT in this case

satisfies 1 − FP−Ū (zP,α) ≤ ε1 ≤ α. This reduction in type 1 error is
accompanied by a loss of power.

2. The second choice is to use the critical value zP−Ū ,α, which is equi-

valent to assuming U = Ū , i.e µpairi = 0 if and only if µ̄pairi = 0.
Therefore, this is the maximum likelihood decision. It leads to a gain

2



of power when U < Ū since zP−Ū ,α = min
{
zP−u,α, 0 ≤ u ≤ Ū

}
. Ho-

wever, the type 1 error of the LRT in this case now satisfies α ≤ ε1 ≤
1−FP (zP−Ū ,α).

3. The third choice of critical value is motivated by an attempt to strike a
balance between zP,α and zP−Ū ,α. We propose the intermediate value
z
P−

⌈
Ū
2

⌉
,α

. This provides a scheme for balancing the type 1 error/power

trade-off. The type 1 error now satisfies the inequality

1−FP−Ū (z
P−

⌈
Ū
2

⌉
,α

) ≤ ε1 ≤ 1−FP (z
P−

⌈
Ū
2

⌉
,α

).

Figure 1 gives a potential criterion on how to choose zP−u,α. If both Ū/2J

is close to 0 and Ū is low (top-left plot), then the choice of critical value
does not lead to considerably significant differences in the behaviour of the
hypothesis test and hence this choice mostly depends on a preference for
a slightly more conservative or power favoring setting. If alternatively Ū
increases or Ū/2J is closer to 1, then the two extreme choices zP,α and
zP−Ū ,α lead to an effective type 1 error that will be significantly different
than α when this choice is erroneous, and could yield a test that is almost
always accepting or rejecting the null. In this situation, the intermediate
value z

P−
⌈
Ū
2

⌉
,α

gives more reasonable error boundaries.

S1.2 Maximizing the J-th level homogeneity test statistic

For a point process that is not level J homogeneous, and for large M , we can
still encounter situations where one or several MLEs λ̄Jk are equal to zero,
whether the corresponding true parameters λJk are zero or not. Considering
the general setting of the LRT in Section 3.2.1, we derive the situation under
which R, the test statistic defined in Proposition 3, is maximized.

Proposition S1.1 Let c > 0, P ≥ 1 and fP : RP+ → R given by fP (x) =
P∑
i=1

xi log(xic ), where we assume the continuous extension of the function

x log x from R∗+ to R+, i.e. fP (0) = 0. Let Ωc,P be the subset of [0, P c]P

defined as

Ωc,P =

{
(x1, ..., xP ) ∈ [0, P c]P ,

1

P

P∑
i=1

xi = c

}
.

Then the restriction of fP on Ωc,P attains its maximum for any element in
Ωc,P of the form (0, ..., xi = Pc, ..., 0), 1 ≤ i ≤ P .
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Figure 1: True type 1 error depending on the choice of critical value
zP−u,α, 0 ≤ u ≤ Ū . Each line represents the situation when there are

truly U parameters µpairi equal to zero, with 0 ≤ U ≤ Ū .

See proof in Appendix S2.8. In our setting, Proposition S1.1 has an interes-
ting interpretation. If we impose that the MLE µ̄c takes some value c > 0,
then statistic R is maximized by the data X that produces one MLE µ̄i with
value Pc and all other MLEs with value zero. Proposition S1.1 illustrates a
scenario of maximum inhomogeneity in the likelihood ratio sense, which is
characterized by a maximum distance between the lowest and highest values
among the MLEs µ̄i, 1 ≤ i ≤ P . A similar result can be formulated for L-th
level innovation.
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S2 Proofs

S2.1 Proof of Remark 1

W.l.o.g. we prove this result with T = 1. Since αJ,k = 〈λ, φJ,k〉, we have:

αJ,k =

1∫
0

λ(t)φJ,k(t)dt =

(k+1)/2J∫
k/2J

2J/2λ(t)dt

= 1√
2

[
(2k+1)/2J+1∫

2k/2J+1

2(J+1)/2λ(t)dt+
(2k+2)/2J+1∫
(2k+1)/2J+1

2(J+1)/2λ(t)dt

]

=
1√
2
(αJ+1,2k + αJ+1,2k+1).

S2.2 Proof of Proposition 1

From the multiresolution setting defined in Section 2.2.2, we know that
λ̂J(t) = λ̂Jk · 1sJk (t) where λ̂Jk is the value of the J-th level wavelet recon-

struction estimator on the subinterval sJk ∈ SJ . Using α̂J,k =
∑

τi
φJ,k(τi),

for Haar wavelets we have α̂J,k = 2J/2
√
T
xJk , where xJk is the event count in the

corresponding subinterval sJk ∈ SJ . Therefore λ̂Jk = 2J

T x
J
k . Since N is a Pois-

son process and Haar wavelets have disjoint supports across all translations
for a fixed scale J , we have:

1. each event count xJk is Poisson distributed with mean µJk =
∫
sJk

λ(t)dt,

2. all event counts xJk , 0 ≤ k ≤ 2J − 1, are independent.

Therefore the intensity estimators λ̂J0 , ..., λ̂
J
2J−1

are independent random va-
riables distributed as

λ̂Jk ∼
2J

T
Pois(µJk ).

S2.3 Proof of Proposition 2

Left to right: This direction is proved using the definition of Haar wavelet
coefficients. We know there exists λ0 ≥ 0 such that λ(t) = λ0 a.e. (in
the Lebesgue sense) on [0, T ). Let J ≥ 0 and consider the subdivision
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SJ = {sk}2
J−1
k=0 defined in Section 2.2.2. For all 0 ≤ k ≤ 2J − 1 we have:

αJ,k =

T∫
0

λ(t)φJ,k(t)dt =

∫
sk

λ(t)φJ,k(t)dt =

∫
sk

λ0φJ,k(t)dt =

√
T

2J/2
λ0.

Hence for all 0 ≤ k ≤ 2J − 1 and 0 ≤ k′ ≤ 2J − 1 we obtain αJ,k = αJ,k′ .
This is equivalent to λJk = λJk′ and N ∈ HJ .

Right to left: Since λ is locally square integrable, it is also locally inte-
grable. Let F : [0, T ] → R+ given by F (x) =

∫ x
0 λ(t)dt. Let x, y ∈ [0, T )

such that 0 < x < y, and for each resolution J let kx,J , ky,J ∈ {0, ..., 2J − 1}
such that [kx,JT/2

J , ky,JT/2
J) be the smallest interval that includes [x, y).

Since N ∈ HJ for all J ≥ 0, we have

F (
kx,J + ky,J

2J+1
T ) =

1

2

(
F (kx,JT/2

J) + F (ky,JT/2
J)
)
. (1)

The Lebesgue integral F is continuous and the interval [kx,JT/2
J , ky,JT/2

J)
shrinks to [x, y) when J →∞ thus (1) becomes F (x+y

2 ) = 1/2(F (x)+F (y))
when J →∞. From the Lebesgue differentiation theorem F is differentiable
almost everywhere on [0, T ), and for all y ∈ [0, T ) we have

∂

∂x
F (
x+ y

2
) =

1

2
F ′(

x+ y

2
) =

1

2
F ′(x).

Taking y = T − x gives F ′(T/2) = F ′(x) hence F ′ = λ is constant almost
everywhere on [0, T ).

S2.4 Proof of Proposition 3

Let X = {Xm}Mm=1 be a set of iid scaled Poisson random vectors, each

with independent components of form Xm = (Xm,i)
P
i=1, Xm,i ∼ δPois(µi).

Therefore, for any non-negative integer km,i we have P (Xm,i = δkm,i) =

exp(−µi)
µ
km,i
i
km,i!

. The likelihood functions of X under the null and alternative

hypotheses H and K are

LH(X;µc, ..., µc) =

M∏
m=1

P∏
i=1

exp(−µc)
µ
km,i
c

km,i!
= exp(−MPµc)

P∏
i=1

µ

M∑
m=1

km,i

c

M∏
m=1

km,i!

and LK(X;µ1, ..., µP ) =

M∏
m=1

P∏
i=1

exp(−µi)
µ
km,i

i

km,i!
= exp(−M

P∑
i=1

µi)

P∏
i=1

µ

M∑
m=1

km,i

i

M∏
m=1

km,i!

.
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To locate their maxima we consider the log-likelihood functions

logLH(X;µc, ..., µc) = −MPµc +

P∑
i=1

[
log(µc)

M∑
m=1

km,i −
M∑

m=1

log(km,i!)

]

and logLK(X;µ1, ..., µP ) = −M
P∑

i=1

µi +

P∑
i=1

[
log(µi)

M∑
m=1

km,i −
M∑

m=1

log(km,i!)

]
.

Differentiating each function with respect to its parameters gives:
d logLH
dµc

= −MP + 1
µc

P∑
i=1

M∑
m=1

km,i

∂ logLK
∂µi

= −M + 1
µi

M∑
m=1

km,i, ∀ 1 ≤ i ≤ P.

Therefore, with km,i = Xm,i/δ, the maximum values of LH and LK are

respectively attained at µ̄c = 1
δMP

P∑
i=1

M∑
m=1

Xm,i and µ̄i = 1
δM

M∑
m=1

Xm,i for

all 1 ≤ i ≤ P . Statistic µ̄c is the MLE of µc, the constant intensity under
the null hypothesis H, and µ̄i is the MLE for µi (i = 1, ..., P ) under the
alternative hypothesis K. Since the likelihood ratio statistic r is

r =

sup
µc>0

L(X;µc, ..., µc)

sup
{µi}Pi=1,

∑
µi>0

L(X;µ1, ..., µP )
,

applying the previous results yields

r = exp

(
−M

(
Pµ̄c −

P∑
i=1

µ̄i

))
P∏
i=1

(
µ̄c
µ̄i

)Mµ̄i

=

P∏
i=1

(
µ̄c
µ̄i

)Mµ̄i

.

We can now derive the test statistic R:

R = −2 log (r) = 2M
P∑
i=1

µ̄i log

(
µ̄i
µ̄c

)
.

S2.5 Proof of Proposition 4

Let X = {Xm}Mm=1 be a set of iid Poisson random vectors, each with inde-

pendent components of form Xm = (Xm,i)
2P
i=1, Xm,i ∼ Pois(µi). Therefore,

for any non-negative integer km,i we have P (Xm,i = km,i) = exp(−µi)
µ
km,i
i
km,i!

.
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The likelihood functions of X under the null and alternative hypotheses H
and K are

LH(X;µpair
1 , µpair

1 , ..., µpair
P , µpair

P ) =

M∏
m=1

P∏
i=1

exp(−2µpair
i )

(µpair
i )km,2i−1+km,2i

km,2i−1!km,2i!

= exp(−2M
P∑

i=1

µpair
i )

P∏
i=1

(µpair
i )

M∑
m=1

km,2i−1+km,2i

M∏
m=1

km,2i−1!km,2i!

and LK(X;µ1, ..., µ2P ) =

M∏
m=1

2P∏
i=1

exp(−µi)
µ
km,i

i

km,i!

= exp(−M
2P∑
i=1

µi)

2P∏
i=1

µ

M∑
m=1

km,i

i

M∏
m=1

km,i!

.

Then similarly as in S2.4, the likelihood function LH is maximized when

each parameter µpairi is equal to µ̄pairi = 1
2M

M∑
m=1

km,2i−1 + km,2i, and the

likelihood function LK is maximized when each parameter µi is equal to

µ̄i = 1
M

M∑
m=1

km,i. We also immediately have µ̄pairi = 1
2(µ̄2i−1 + µ̄2i). Since

the likelihood ratio statistic r is

r =

sup

{µpairi }P
i=1

,
∑
µpairi >0

L(X;µpair1 , ..., µpairP )

sup
{µi}2Pi=1,

∑
µi>0

L(X;µ1, ..., µ2P )
,

applying the previous results yields

r = exp

(
−M

(
2

P∑
i=1

µ̄pairi −
2P∑
i=1

µ̄i

))
P∏
i=1

(
µ̄pairi

)2Mµ̄pairi

(µ̄2i−1)Mµ̄2i−1 (µ̄2i)
Mµ̄2i

=
P∏
i=1

(
µ̄pairi

)2Mµ̄pairi

(µ̄2i−1)Mµ̄2i−1 (µ̄2i)
Mµ̄2i

=
P∏
i=1

(
µ̄pairi

)Mµ̄2i−1
(
µ̄pairi

)Mµ̄2i

(µ̄2i−1)Mµ̄2i−1 (µ̄2i)
Mµ̄2i

.
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We can now derive the test statistic R:

R = −2 log (r) = 2M

[
P∑
i=1

µ̄2i−1 log

(
µ̄2i−1

µ̄pairi

)
+

P∑
i=1

µ̄2i log

(
µ̄2i

µ̄pairi

)]
.

S2.6 Proof of Theorem 1

The expression of R given in Proposition 3 can be rewritten as

R = 2
P∑
i=1

[
M∑
m=1

Xm,i

δ
log

(
P
∑M

m=1Xm,i∑P
j=1

∑M
m=1Xm,j

)]

when replacing the MLEs by their actual value. Using the notation YM
i =∑M

m=1Xm,i/δ, this becomes

R = 2

P∑
i=1

[
YM
i log

(
PYM

i∑P
j=1 Y

M
j

)]
.

Given YM
i is Poisson distributed with mean µcM under the null hypothesis

H (µiM under the alternative hypothesis K), the distribution of R depends
only on the product µcM (or µiM). Therefore, the standard asymptotic
results for R hold as µcM →∞. This limit can be achieved either through
M → ∞, µc → ∞, or both. The null distribution of R is asymptotically
χ2 with P − 1 degrees of freedom for a large µcM . We thus reject H at
significance level α if R > cα where cα, the critical value, is the upper
100(1− α)% point of the χ2

P−1 distribution.

S2.7 Proof of Theorem 2

Similarly as in the proof for Theorem 1, we go back to the expression of R
given in Proposition 4:

R = 2M

[
P∑
i=1

µ̄2i−1 log

(
µ̄2i−1

µ̄pairi

)
+

P∑
i=1

µ̄2i log

(
µ̄2i

µ̄pairi

)]
.

This can also be written as

R = 2

[
P∑
i=1

∑M
m=1Xm,2i−1 log

(
2
∑M

m=1 Xm,2i−1∑M
m=1Xm,2i−1+Xm,2i

)
+

P∑
i=1

∑M
m=1Xm,2i log

(
2
∑M

m=1Xm,2i∑M
m=1Xm,2i−1+Xm,2i

)]
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when replacing the MLEs by their actual value. Using the notation YM
i =∑M

m=1Xm,i, this becomes

R = 2

[
P∑
i=1

YM
2i−1 log

(
2YM

2i−1

YM
2i−1 + YM

2i

)
+

P∑
i=1

YM
2i log

(
2YM

2i

YM
2i−1 + YM

2i

)]
.

Given YM
i is Poisson distributed with mean µpairi M under the null hypot-

hesis H (µiM under the alternative hypothesis K), the distribution of R
depends only on the product µpairi M (or µiM). Therefore, the standard

asymptotic results for R hold as µpairi M → ∞, for all 1 ≤ i ≤ P . This

limit can be achieved either through M →∞, µpairi →∞ for all 1 ≤ i ≤ P ,
or both. The null distribution of R is asymptotically χ2 with P degrees of
freedom for all µpairi M large. We thus reject H at significance level α if
R > cα where cα, the critical value, is the upper 100(1 − α)% point of the
χ2
P distribution.

S2.8 Proof of Proposition S1.1

We prove this by mathematical induction on the number of parameters P .
The result is obvious at P = 1 since Ωc,1 becomes the singleton {c}. We will
therefore detail the case P = 2.

Base case P = 2 :

We have Ωc,2 =
{

(x1, x2) ∈ [0, 2c]2, x1 + x2 = 2c
}

. This lets us write

f2(x1, x2) = x1 log(
x1

c
) + x2 log(

x2

c
) = x1 log(

x1

c
) + (2c− x1) log(

2c− x1

c
).

Denoting g : x1 7→ x1 log(x1
c ) + (2c− x1) log(2c−x1

c ), then g is differentiable
with respect to x1 on (0, 2c) and for all x1 ∈ (0, 2c) we have:

g′(x1) = log(
x1

c
) + 1− log(

2c− x1

c
)− 1 = log(

x1

2c− x1
).

Immediately, g′(x1) = 0 when x1 = c, g′(x1) ≤ 0 when x1 ≤ c and g′(x1) ≥ 0
when x1 ≥ c. Hence g attains a local minimum at x1 = c and max

x1∈[0,2c]
g(x1) =

g(0) = g(2c) = 2c log(2). Similarly, the restriction of f2 on Ωc,2 is minimized
at (x1, x2) = (c, c) and maximized at (2c, 0) and (0, 2c).
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Inductive step:

Assume P ≥ 2 and the restriction of fP on Ωc,P is maximized at any vec-
tor (x1, ..., xP ) of the form (0, ..., xi = Pc, ..., 0), 1 ≤ i ≤ P . Let xP+1 ∈
[0, (P + 1)c] and cxP+1 = 1

P ((P + 1)c − xP+1). For any (x1, ..., xP ) ∈

ΩcxP+1
,P , we have

P∑
i=1

xi + xP+1 = PcxP+1 + xP+1 = (P + 1)c, hence

(x1, ..., xP , xP+1) ∈ Ωc,P+1. Since the converse is also true we have Ωc,P+1 =⋃
xP+1∈[0,(P+1)c]

ΩcxP+1
,P × {xP+1}, where A × B is the cartesian product of

the sets A and B. We know from the initial assumption that with a fixed
value of xP+1 the restriction of hP : (x1, ..., xP ) 7→ fP+1((x1, ..., xP ), xP+1)
on ΩcxP+1

,P is maximized when (x1, ..., xP ) is a vector belonging to the set{
(0, ..., xi = PcxP+1 , ..., 0), 1 ≤ i ≤ P

}
. We now want to find the values x̃P+1

that satisfy:

x̃P+1 = arg max
xP+1∈[0,(P+1)c]

max
ΩcxP+1

,P

hP (x1, ..., xP ).

Denoting gi : xP+1 7→ fP+1(0, ..., xi = PcxP+1 , ..., 0, xP+1), then gi is diffe-
rentiable with respect to xP+1 on the open interval (0, (P + 1)c) and for all
xP+1 ∈ (0, (P + 1)c) we have:

g′i(xP+1) = log
(xP+1

c

)
+ 1− log

(
(P+1)c−xP+1

c

)
− 1 = log

(
xP+1

(P+1)c−xP+1

)
.

Similarly as in the base case, gi attains a local minimum in the open interval
(0, (P + 1)c) when xP+1 = (P + 1)c/2. It also attains a maximum on
[0, (P + 1)c] at xP+1 = 0, giving cxP+1 = P+1

P c, and at xP+1 = (P + 1)c,
giving cxP+1 = 0. Therefore the restriction of fP+1 on Ωc,P+1 is maximized
when (x1, ..., xP , xP+1) ∈ {(0, ..., xi = (P + 1)c, ..., 0), 1 ≤ i ≤ P + 1}.
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S3 Influence of Different Parameters on the MRISE
and MIAE

In this section, we provide an extension of the simulation study proposed in
Section 4.4. We want to study the effect of parameters such as the coarse
resolution j0, the finest resolution J , the magnitude A0 and the significance
level α on the ranking between the thresholding methods and linear esti-
mator defined in Section 4.4. The statistical validity of this study relies
on bootstrapped 95% confidence intervals for the MRISE and the MIAE,
obtained from 10000 simulations of the different intensity models.

S3.1 Influence of j0

Table 1: Bootstrapped 95% confidence intervals for the MRISE and MIAE
with A0 = 10000, j0 = 3, J = 7,M = 1 and significance level α = 0.05.
The number in bold indicates the best performing method for each intensity
model.

Linear DM-L LRT-L LRT-I LRT-G

Blocks MRISE 2317 ([2315,2319]) 1495 ([1493,1497]) 1607 ([1604,1609]) 1483 ([1481,1486]) 1782 ([1776,1788])

Blocks MIAE 1838 ([1836,1839]) 948 ([945,950]) 1062 ([1059,1064]) 939 ([936,941]) 1354 ([1349,1360])

Bumps MRISE 3061 ([3059,3063]) 3091 ([3089,3094]) 3226 ([3223,3229]) 2957 ([2954,2959]) 3060 ([3058,3061])

Bumps MIAE 2100 ([2099,2102]) 1603 ([1601,1605]) 1675 ([1673,1677]) 1512 ([1510,1514]) 2100 ([2099,2102])

TriangleSine MRISE 2267 ([2265,2269]) 1561 ([1560,1563]) 1484 ([1483,1484]) 1530 ([1528,1531]) 1360 ([1355,1365])

TriangleSine MIAE 1809 ([1807,1811]) 1347 ([1347,1348]) 1307 ([1306,1307]) 1281 ([1280,1282]) 1087 ([1083,1091])

Table 2: Bootstrapped 95% confidence intervals for the MRISE and MIAE
with A0 = 10000, j0 = 0, J = 7,M = 1 and significance level α = 0.05.
The number in bold indicates the best performing method for each intensity
model.

Linear DM-L LRT-L LRT-I LRT-G

Blocks MRISE 2317 ([2315,2319]) 1530 ([1528,1533]) 1637 ([1635,1640]) 1493 ([1490,1495]) 1770 ([1765,1776])

Blocks MIAE 1838 ([1836,1839]) 999 ([996,1001]) 1116 ([1113,1119]) 953 ([950,955]) 1342 ([1337,1347])

Bumps MRISE 3059 ([3057,3060]) 3125 ([3122,3128]) 3241 ([3238,3244]) 2971 ([2968,2973]) 3065 ([3063,3066])

Bumps MIAE 2100 ([2099,2102]) 1683 ([1681,1685]) 1758 ([1755,1760]) 1543 ([1541,1545]) 2103 ([2101,2104])

TriangleSine MRISE 2266 ([2264,2268]) 1541 ([1540,1542]) 1458 ([1457,1458]) 1514 ([1513,1515]) 1303 ([1299,1308])

TriangleSine MIAE 1809 ([1807,1811]) 1335 ([1335,1336]) 1294 ([1294,1295]) 1269 ([1268,1270]) 1042 ([1039,1046])
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S3.2 Influence of J and A0

Table 3: Bootstrapped 95% confidence intervals for the MRISE and MIAE
with A0 = 100000, j0 = 3, J = 7,M = 1, and significance level α = 0.05.
The number in bold indicates the best performing method for each intensity
model.

Linear DM-L LRT-L LRT-I LRT-G

Blocks MRISE 8798 ([8792,8803]) 6896 ([6891,6902]) 7037 ([7032,7043]) 7116 ([7110,7123]) 8795 ([8789,8800])

Blocks MIAE 6374 ([6369,6379]) 3302 ([3296,3308]) 3380 ([3374,3387]) 3381 ([3374,3387]) 6371 ([6366,6376])

Bumps MRISE 21812 ([21809,21815]) 21585 ([21581,21588]) 21610 ([21607,21614]) 21516 ([21513,21519]) 21812 ([21809,21815])

Bumps MIAE 10060 ([10056,10065]) 8237 ([8232,8242]) 8248 ([8243,8254]) 8226 ([8221,8232]) 10060 ([10055,10065])

TriangleSine MRISE 7324 ([7317,7330]) 8297 ([8288,8306]) 8697 ([8687,8708]) 6873 ([6866,6879]) 6860 ([6845,6875])

TriangleSine MIAE 5847 ([5842,5852]) 6499 ([6491,6507]) 6829 ([6820,6838]) 5352 ([5346,5357]) 5492 ([5479,5504])

Table 4: Bootstrapped 95% confidence intervals for the MRISE and MIAE
with A0 = 100000, j0 = 3, J = 9,M = 1, and significance level α = 0.05.
The number in bold indicates the best performing method for each intensity
model.

Linear DM-L LRT-L LRT-I LRT-G

Blocks MRISE 14435 ([14429,14441]) 6371 ([6362,6380]) 6840 ([6831,6849]) 6661 ([6651,6671]) 11216 ([11181,11252])

Blocks MIAE 11457 ([11452,11463]) 3236 ([3229,3242]) 3433 ([3426,3439]) 3299 ([3292,3306]) 8821 ([8791,8852])

Bumps MRISE 16220 ([16212,16229]) 14805 ([14792,14818]) 15780 ([15767,15793]) 13562 ([13547,13576]) 16217 ([16208,16225])

Bumps MIAE 12071 ([12066,12077]) 6904 ([6897,6910]) 7161 ([7155,7167]) 6553 ([6546,6559]) 12072 ([12066,12077])

TriangleSine MRISE 14314 ([14308,14320]) 8568 ([8558,8577]) 10045 ([10033,10057]) 6916 ([6908,6923]) 6987 ([6960,7015])

TriangleSine MIAE 11414 ([11409,11420]) 6617 ([6609,6626]) 8052 ([8040,8064]) 5372 ([5366,5377]) 5566 ([5543,5589])

S3.3 Influence of α

Table 5: Bootstrapped 95% confidence intervals for the MRISE and MIAE
with A0 = 10000, j0 = 3, J = 7 and M = 1. The number in bold indicates
the best choice of α for each method.

LRT-L, α = 0.01 LRT-L, α = 0.05 LRT-I, α = 0.01 LRT-I, α = 0.05 LRT-G, α = 0.01 LRT-G, α = 0.05

Blocks MRISE 1694 ([1692,1697]) 1607 ([1604,1609]) 1530 ([1529,1532]) 1483 ([1481,1485]) 1648 ([1644,1652]) 1782 ([1776,1788])

Blocks MIAE 1137 ([1134,1139]) 1062 ([1059,1064]) 983 ([981,985]) 939 ([936,941]) 1210 ([1205,1214]) 1354 ([1348,1359])

Bumps MRISE 3475 ([3472,3479]) 3226 ([3223,3229]) 3090 ([3088,3093]) 2957 ([2954,2959]) 3060 ([3058,3061]) 3060 ([3058,3061])

Bumps MIAE 1811 ([1809,1813]) 1675 ([1673,1677]) 1591 ([1589,1593]) 1512 ([1510,1514]) 2101 ([2099,2102]) 2100 ([2099,2102])

TriangleSine MRISE 1480 ([1479,1480]) 1484 ([1483,1484]) 1521 ([1520,1522]) 1530 ([1528,1531]) 1310 ([1306,1313]) 1360 ([1355,1365])

TriangleSine MIAE 1304 ([1304,1304]) 1307 ([1306,1307]) 1293 ([1292,1294]) 1281 ([1280,1282]) 1047 ([1044,1050]) 1087 ([1083,1091])
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Table 6: Bootstrapped 95% confidence intervals for the MRISE and MIAE
with A0 = 10000, j0 = 0, J = 7 and M = 1. The number in bold indicates
the best choice of α for each method.

LRT-L, α = 0.01 LRT-L, α = 0.05 LRT-I, α = 0.01 LRT-I, α = 0.05 LRT-G, α = 0.01 LRT-G, α = 0.05

Blocks MRISE 1744 ([1742,1747]) 1637 ([1635,1640]) 1553 ([1551,1555]) 1493 ([1490,1495]) 1655 ([1651,1659]) 1770 ([1765,1776])

Blocks MIAE 1223 ([1220,1226]) 1116 ([1113,1118]) 1018 ([1015,1020]) 953 ([950,955]) 1213 ([1208,1217]) 1342 ([1337,1347])

Bumps MRISE 3500 ([3497,3503]) 3241 ([3238,3244]) 3112 ([3109,3115]) 2971 ([2968,2973]) 3070 ([3069,3072]) 3065 ([3063,3066])

Bumps MIAE 1917 ([1914,1919]) 1758 ([1755,1760]) 1649 ([1647,1651]) 1543 ([1541,1545]) 2110 ([2109,2112]) 2103 ([2101,2104])

TriangleSine MRISE 1453 ([1452,1453]) 1458 ([1457,1458]) 1499 ([1498,1500]) 1514 ([1513,1515]) 1269 ([1266,1272]) 1304 ([1299,1308])

TriangleSine MIAE 1291 ([1291,1292]) 1294 ([1294,1295]) 1279 ([1279,1280]) 1269 ([1268,1270]) 1023 ([1021,1026]) 1042 ([1039,1046])

S3.4 Discussion

Decreasing j0 from 3 to 0 is only slightly beneficial for the TriangleSine
model and increases the MRISE in the two other intensity models. The
amelioration observed for TriangleSine could be explained by the absence
of innovation at levels 0 and 1, and therefore the truly zero coefficients from
these scales are less likely to be kept.

When we increase the value of A0 from 10000 to 100000, the effect of
which is to increase the power of each individual LRT involved in the statis-
tical thresholding strategies. For the Blocks model, we observe that DM-L is
performing better than LRT-L, LRT-I and LRT-G. A study on the asymp-
totic evolution of the MRISE values as A0 →∞ could be done to verify this
change of ranking. We also look at the effect of increasing J from 7 to 9
while fixing A0 = 100000. This leads to a significant decrease of the MRISE
for all thresholding strategies in the Bumps model, as the peaks are located
at very fine scales. As expected, it also increases the MRISE for Linear and
LRT-G under the Blocks model as they keep a larger number of unneces-
sary coefficients, whereas the performance of DM-L, LRT-L and LRT-I is
improved with this choice. However, a significant increase is observed for
all thresholding strategies with the TriangleSine intensity, which indicates
that high resolutions terms penalize the MRISE in this model.

Decreasing α from 0.05 to 0.01, and thus making the hypothesis tests
more conservative, seems only interesting for LRT-G as it decreases its
MRISE for Blocks and TriangleSine as well as maintaining similar perfor-
mance for Bumps. For all other methods, choosing α = 0.01 leads to a
significant increase in MRISE for Blocks and Bumps whereas a slight decre-
ase is observed for TriangleSine. Again, the effect of one parameter on the
MRISE is very specific to each intensity model. This whole analysis holds
for both choices of j0.

When using the MIAE as an error measure, the rankings remain gene-
rally unchanged. The exceptions to this happen with LRT-I, which performs
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better with α = 0.05 rather than α = 0.01 on TriangleSine and significantly
better than LRT-G on TriangleSine when A0 is increased to 100000.

S3.5 MATLAB Code

A MATLAB code for the five thresholding strategies defined in Section 4
has been written to be applied on both simulated and real Poisson process
data. This code is available using the following link: https://github.com/
YoussefT/Statistical-thresholding. The function to run is “statisti-
cal thresholding.m”, with instructions and details of the inputs specified in
the file “Instructions.html”.

S4 Extension of J-th level homogeneity and L-th
level innovation to other wavelets

Since only Haar wavelets allow for a constant reconstruction, an extension
of J-th level homogeneity to other wavelets should be based on a different
criterion. For some resolution J , we denote ṼJ,K a subspace of the approxi-
mation space VJ spanned by a subset of K + 1 father wavelets. This allows
us to define a flexible generalization of J-th level homogeneity.

Definition S4.1 Let N be a point process with a locally square integrable
intensity λ and let (φ, ψ) be a compactly supported wavelet family associated
with an MRA of L2(R). We say that N is level J homogeneous of order

K under (φ, ψ) if there exists a subspace ṼJ,K of VJ such that the projection

of the intensity on ṼJ,K admits identical wavelets coefficients. This means

αJ,k = 〈λ, φJ,k〉 = CJ , for all φJ,k ∈ ṼJ,K .

If N is level J homogeneous of order K under (φ, ψ), then the projection of

λ on ṼJ,K is equal to

CJ
∑

φJ,k∈ṼJ,K

φJ,k.

Under Haar wavelets and a point process on [0, T ), Definition 2 for J-th level
homogeneity translates here into a J-th level homogeneity of order 2J − 1.
From Definition S4.1, every point process for which the intensity is at least
locally square integrable is level J homogeneous at order 0 for all compactly
supported wavelets and all resolutions, similarly to Definition 2 from which
every point process on [0, T ) is level 0 homogeneous under Haar wavelets. J-
th level homogeneity of order K indicates the largest temporal region where
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the intensity display a constant behavior in the sense of the corresponding
wavelet family (φ, ψ). With Haar wavelets, this is easily interpretable as a

constant integrated intensity across ṼJ,K .
An extension of L-th level innovation to other wavelets could initially be

thought as following.

Definition S4.2 Let N be a point process with intensity λ ∈ L2(R) and let
(φ, ψ) be a wavelet family associated with an MRA of L2(R). We then say
that N possesses strictly no level L innovation under (φ, ψ) if and only if
we have βL,k = 〈λ, ψL,k〉 = 0, for all k ∈ Z.

Although this view of L-th level innovation encompasses the entirety of the
detail space WL, it corresponds to an ideal theoretical case and has at le-
ast two limitations. First, it is in practice almost exclusively adapted to
Haar wavelets. Indeed, a point process on [0, T ) with constant intensity has
strictly no level L innovation under the Haar basis. However, its intensity
has non zero mother wavelet coefficients for a Daubechies wavelet whose
support is partially included in the support of the intensity or for a wave-
let with infinite support. Second, Definition S4.2 makes hypothesis testing
challenging when one has to test an infinite number of coefficients.

In the spirit of Definition S4.1, we now denote W̃L,K the subspace of the
detail space WL generated by a subset of K+1 mother wavelets. This again
allows us to define a flexible view for the absence of L-th level innovation.

Definition S4.3 Let N be a point process with a locally square integrable
intensity λ and let (φ, ψ) be a compactly supported wavelet family associated

with an MRA of L2(R). If there exists a subspace W̃L,K of WL such that

λ satisfies βL,k = 〈λ, ψL,k〉 = 0, for all ψL,k ∈ W̃L,K , we then say that N
exhibits an absence of level L innovation of order K under (φ, ψ).

With this perspective, Definition S4.1 and Definition S4.3 follow a consistent
modelling. Definition 4 for L-th level innovation would translate here into
an absence of level L innovation of order 2L − 1 under the Haar basis.
One interest of Definition S4.3 is that we can avoid the consideration of
non-zero wavelet coefficients that are solely due to boundary effects when
the intensity has a compact support. Absence of L-th level innovation of
order K has a meaning dependent on the wavelet family (φ, ψ). In the case
of Haar wavelets, it has an intuitive interpretation as the absence of any
change in the integrated intensity between the left and right hand sides of
the Haar wavelet. Admittedly, such an interpretation becomes less intuitive
with alternative wavelets.
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Figure 2: QQ-plots for the coefficients estimates β̂1,k, k = 1, ..., 4 with the
Daubechies D4 wavelet and a homogeneous Poisson process with intensity
λ0 = 1000.

S4.1 Intensity Estimation with Daubechies D4 Wavelets

S4.1.1 Linear estimator

The Daubechies D2Q wavelets (e.g. Daubechies, 1988; Härdle et al, 1998)
have supp φ ⊆ [0, 2Q−1] and supp ψ ⊆ [−Q+1, Q]. When considering Dau-
bechies D2Q wavelets with Q > 1, a closed form time domain approximation
is needed as there does not exist an exact one. From a set of values obtained
with the cascade algorithm (Mallat, 1989), we use a linear interpolation to
approximate the mother and father wavelets. As supp φ ⊆ [0, 2Q− 1], Dau-
bechies D2Q wavelets do not have disjoint supports across all unit translati-
ons for a fixed scale. However supp φ is finite so we do have a finite number
of coefficients that we estimate at each scale. For consistency between the
different estimation methods, we desire that the interval [0, T ] coincide with
the support of the Daubechies D2Q father wavelet at resolution 0. Taking
Q = 2, this means rescaling the process N to [0, 3], performing the estima-
tion of its intensity, and rescaling this reconstruction back to [0, T ]. We have
the following linear estimator for the projection of the rescaled intensity onto
VJ :

λ̂J(t) =

(3×2J )−1∑
k=−2

α̂J,kφJ,k(t).

S4.1.2 Coefficient-wise hypothesis test for local thresholding

In order to define thresholding strategies we need to derive the distribu-
tion of the mother wavelet coefficients. Consider the collection of mother
Daubechies D2Q wavelets {ψL,k, k ∈ KL} that describes W̃L,KL , the sub-
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set of WL for which all mother wavelets have their support included in
[0, T ) at each scale L. Under the Daubechies D4 wavelet, we have KL ={

1, ..., (3× 2L)− 2
}

and hence W̃L,KL = span{ψL,k; k = 1, ..., (3× 2L)− 2}.
As defined in Section 4, let B̂L = (bm,k) ∈ RM×KL where M is the number
of independent realizations of the point process N , KL = |KL| = (3×2L)−2

and bm,k ≡ β̂
(m)
L,k is the estimator of the true wavelet coefficient βL,k obtained

from Nm.
In order to extend the local thresholding scheme based on FDR control

to Daubechies D4 wavelets, we need a hypothesis test for each single coef-
ficient. The probability density function of the empirical coefficients for a
compactly supported and continuous wavelet family is given in de Miranda
(2008). However if the wavelet is non tractable in time domain then so is
its density. QQ-plots in Figure 2 suggest that a Gaussian approximation
is well suited when the coefficients are estimated using the stochastic in-
tegral β̂j0,k =

∫
R ψj,k(t)dN(t) =

∑
τi∈E ψj,k(τi) and ψ is approximated as

in S4.1.1. Also, a useful result from de Miranda and Morettin (2011) is

V̂ar(β̂L,k) =
∫
ψ2
L,k(t)dN(t) =

∑
τi∈E ψ

2
j,k(τi) is an unbiased estimator for

the variance of coefficient β̂L,k. With M ≥ 1 independent realizations of
the point process N , the estimator of βL,k used in the final reconstruction

of λ will be the sample mean 1
M

M∑
m=1

β̂
(m)
L,k . Similarly, a variance estimator

for β̂L,k is 1
M

M∑
m=1

V̂ar(β̂
(m)
L,k ). Therefore, testing the hypothesis H : βL,k = 0

against the alternative hypothesis K : βL,k 6= 0 can be performed using

1
M

M∑
m=1

β̂
(m)
L,k as a test statistic. Under the null hypothesis, we assume that

β̂
(m)
L,k ∼ N (0, σ2

L,k). Since σ2
L,k is unknown we instead use 1

M

M∑
m=1

V̂ar(β̂
(m)
L,k )

to estimate a confidence interval from a given significance level α. All esti-
mators are consistent so the approximate null distribution converges to the
true null distribution as M →∞.

S4.1.3 L-th level innovation hypothesis test for global threshol-
ding

We now want to design a multivariate test for the null hypothesis H :
µL = 0L where µL is the mean vector of the coefficients β̂L,k, k ∈ KL. Gi-

ven the approximate normality of the coefficients estimates β̂L,k, k ∈ KL
under the Daubechies D4 wavelet suggested in Figure 2, a possible choice
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Figure 3: Comparison between the empirical and null cumulative distribu-
tion functions of Hotelling’s t-squared statistic with the Daubechies D4 wa-
velet and a homogeneous Poisson process at resolution L = 1 with λ0 = 1000
and M = 50.

of hypothesis test is the multivariate extension of the Student’s t-test ba-
sed on Hotelling’s t-squared statistic. In our setting this statistic will be
t2 = (µ̄L)T Σ̂Lµ̄L where µ̄L is the sample mean of the empirical coefficients

and Σ̂L their sample covariance. If the estimators β̂L,k, k ∈ KL form a mul-
tivariate Gaussian vector, then under the null hypothesis H this statistic is
proportional to an F-distributed random variable with parameters M and
KL. The empirical cumulative distribution function of t2 shown in Figure
3 seems to follow closely the desired distribution under the null hypothesis.
However, this particular hypothesis test requires that the sample size M
must always be greater than KL, making it impossible to apply at higher
resolutions for low values of M . We will therefore not develop this hypothesis
test further in this work.
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