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Abstract
We take a wavelet-based approach to the analysis of point processes and the esti-
mation of the first-order intensity under a continuous-time setting. A Haar wavelet 
multiresolution analysis is formulated which motivates the definition of homogene-
ity at different scales of resolution, termed J-th level homogeneity. Further to this, 
the activity in a point process’ first-order behaviour at different scales of resolution 
is also defined and termed L-th level innovation. Likelihood ratio tests for both these 
properties are proposed with asymptotic distributions provided, even when only a 
single realization is observed. The test for L-th level innovation forms the basis for 
a collection of statistical strategies for thresholding coefficients in a wavelet-based 
estimator of the intensity function. These thresholding strategies outperform the 
existing local hard thresholding strategy on a range of simulation scenarios. This 
methodology is applied to NetFlow data, characterizing multiscale behaviour on 
computer networks.
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1  Introduction

The development of wavelet theory has been one of the most significant advances 
in signal and image processing. Wavelets’ ability to decompose an object at differ-
ent scales makes them ideal for understanding underlying structures in random pro-
cesses. Based on their success in analysing time series (Percival and Walden 2000), 
there has been an ever increasing interest in applying wavelets to point processes 
(e.g. Brillinger 1997; Cohen 2014). Representing a point process as N(A), a ran-
dom integer indicating the number of events that have occurred in the set A ⊂ ℝ , 
one may use the notation N(t) to be equal to N((0, t]) for t > 0 , −N((t, 0]) for t < 0 
and N(0) = 0 (Daley and Vere-Jones 1988). Wavelets have most commonly been 
used to estimate the first-order intensity (rate) function � ∶ ℝ → ℝ+ defined as 
�(t) = dE{N}∕dt . This is based on the fact we can represent any L2(ℝ) function as 
a linear combination of basis functions. Namely, for some j0 ∈ ℤ and an orthogonal 
wavelet basis generated by father and mother pair (�,�),

where �j0,k
(x) = 2j0∕2�(2j0x − k) and �j,k(x) = 2j∕2�(2jx − k) , provided 

� ∈ L2(ℝ) . To estimate � , the task becomes estimating the set of coeffi-
cients {�j0,k ≡ ⟨�,�j0,k

⟩;k ∈ ℤ} and {�j,k ≡ ⟨�,�j,k⟩;j ≥ j0, k ∈ ℤ} , where 
⟨f1, f2⟩ = ∫

ℝ
f1(t)f

∗
2
(t)dt is the usual inner product on L2(ℝ) and f ∗

2
 is the com-

plex conjugate of f2 . This can be achieved by computing the stochastic integrals 
�̂j0,k = ∫

ℝ
�j0,k

(t)dN(t) =
∑

�i∈E
�j0,k

(�i) and �̂j,k = ∫
ℝ
�j,k(t)dN(t) =

∑
�i∈E

�j,k(�i) , 
where E is the set of random event times of the process. Both �̂j0,k and �̂j,k can eas-
ily be shown to be unbiased estimators of �j0,k and �j,k , respectively. Restricting the 
wavelet reconstruction up to some maximum resolution J ≥ j0 in (1), one can con-
struct the estimator

which is asymptotically unbiased as J → ∞ under standard regularity assumptions 
on N (de Miranda and Morettin 2011). As in the classical wavelet regression setting 
(Donoho 1993), or when using wavelets to estimate probability density functions 
(Härdle et al. 1998), it is then typical that shrinkage or thresholding procedures are 
applied to the coefficients to reduce the variance of the estimator �̂J.

Estimating the intensity of a point process has of course been addressed numer-
ous times in either parametric (e.g. Rathbun and Cressie 1994) or nonparametric 
methods (e.g. Aalen 1978; Ramlau-Hansen 1983; Helmers and Zitikis 1999; Patil 
and Wood 2004; Brillinger 2012). In the specific case of wavelet-based estimation, 
a nonparametric method, the approaches can be split into discrete-time and contin-
uous-time methods. Discrete-time methods (e.g. Timmermann and Nowak 1999; 
Kolaczyk 1999; Kolaczyk and Dixon 2000; Fryzlewicz and Nason 2004) typically 
apply a discrete wavelet transform (DWT) to the aggregated process {Nt;t ∈ ℤ} , 

(1)�(t) =
∑
k∈ℤ

�j0,k�j0,k
(t) +

∑
j≥j0

∑
k∈ℤ

�j,k�j,k(t)

(2)�̂J(t) =
∑
k∈ℤ

�̂j0,k�j0,k
(t) +

J∑
j=j0

∑
k∈ℤ

�̂j,k�j,k(t)
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where Nt ≡ N(t + 1) − N(t) and then perform a shrinkage procedure. Besbeas et al. 
(2004) offer a comprehensive review of discrete-time methods and provide a simula-
tion study comparing various thresholding schemes.

Under the continuous-time framework, the setting of this paper, Brillinger (1997) 
proposes the estimator in (2), as well as an estimator for the second-order intensity. 
The shrinkage procedure �̂jk → w(�̂j,k∕sj,k) is proposed where sj,k is an estimate of 
the standard error in �̂j,k and w(u) = (1 − u−2)+ is the Tukey function. Although 
applied to California earthquake data, the properties of the estimator are not studied 
in any detail. de Miranda (2008) offers the first proper treatment of the continuous-
time formulation, providing the characteristic and density functions for the estima-
tors of the coefficients {�j0,k;k ∈ ℤ} and {�j,k;j ≥ j0, k ∈ ℤ} in terms of the basis 
(�,�) under Haar wavelets as well as any continuous compactly supported wavelet 
of known closed form. This result is theoretically interesting but cannot be readily 
exploited as wavelets that fulfil all these criteria are rare and exotic. This work is 
extended in de Miranda and Morettin (2011) to provide first- and second-order 
moments for the linear (no thresholding) intensity estimator for any compactly sup-
ported wavelet of known closed form. With �A(x) representing the characteristic 
function of the set A, they also propose a hard threshold 
�̂j,k → �̂j,k(1 − �[−�sj,k ,�sj,k]

(�̂j,k)) ( � typically set to 3), but it is given little treatment. 
Further thresholding procedures in continuous time have been proposed in Bigot 
et  al. (2013) under a Meyer wavelet basis and in Reynaud-Bouret and Rivoirard 
(2010) under any biorthogonal wavelet basis. Both of these estimators are shown to 
achieve near-optimal performance in the asymptotic setting that M, the number of 
observed independent realizations of the point process, goes to infinity. Further, the 
thresholding procedure of Reynaud-Bouret and Rivoirard (2010) does not require a 
compactly supported and bounded intensity to achieve asymptotic optimality. How-
ever, both thresholds are proportional to log(M) and are therefore only nonzero when 
M > 1 , which questions their applicability to practical situations where one may 
only ever be able to observe a single realization. A thresholding procedure that can 
be applied in the M = 1 setting and for which the statistical properties are still tracta-
ble is therefore clearly desirable.

In this paper, we go beyond solely estimating the intensity and provide methodol-
ogy for characterizing the multiscale properties of the point process. We consider 
a wavelet-based multiresolution analysis of a temporal point process, the motiva-
tion of which is both theoretical and practical. We demonstrate properties such as 
homogeneity can be explored and characterized through a multiresolution approach. 
We further propose statistical thresholding procedures for estimating the intensity in 
a data-driven way. Statistical thresholding has previously been considered in Abra-
movich and Benjamini (1995) in the classical wavelet regression setting. Here, we 
adapt it for point processes and show it is capable of providing estimates with just 
a single realization of the process ( M = 1 ), while being grounded in a statistically 
principled and tractable framework.

In Sect. 2, we provide a background to wavelet estimation of point process inten-
sities. We extend existing results to show that the linear wavelet estimator of � has 
a scaled Poisson distribution under a Poisson process and the Haar wavelet basis. 
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Then in Sect. 3 we develop the theoretical framework for a wavelet-based multireso-
lution analysis of a point process. Considering the first-order properties of a point 
process to be due to activity on different scales, under the Haar basis we define dif-
ferent levels of homogeneity, which we term J-th level homogeneity in reference to 
the particular scale J at which we are analysing the point process. We provide a like-
lihood ratio test (LRT) for these different levels of homogeneity for the class of Pois-
son processes, providing the asymptotic distribution for the LRT statistic under the 
null hypothesis. We then consider a further test for whether the intensity function 
exhibits activity at a particular scale, which we term L-th level innovation. Again, 
we provide a LRT for this property for the class of Poisson processes under the Haar 
wavelet basis.

In Sect. 4, we demonstrate how the LRT for L-th level innovation can be used as 
a method of statistical thresholding for wavelet coefficients, for which we propose 
three different forms: local, intermediate and global. Importantly, we demonstrate 
that under our LRT framework increasing M and increasing the intensity of the pro-
cess are equivalent to one another, and hence indistinguishable in the asymptotic 
analysis. We are therefore able to use the asymptotic distributions to draw reliable 
inference and threshold the intensity in the M = 1 setting. We provide a compre-
hensive simulation study comparing the three different statistical thresholding pro-
cedures presented in this paper with the hard thresholding procedure given in de 
Miranda and Morettin (2011). We demonstrate that one or more of the proposed sta-
tistical thresholding procedures outperform this hard thresholding in almost all cir-
cumstances. In Sect. 5, we apply the presented methodology to real NetFlow data. In 
doing so, we demonstrate its effectiveness at revealing and characterizing multiscale 
behaviour on computer networks which could have a powerful impact in cyber-secu-
rity, among other applications.

Further discussion on the LRTs, including boundary cases, can be found in Sup-
plementary Material Section S1; all proofs are provided in Supplementary Material 
Section S2, and results of a comprehensive simulation study can be found in Sup-
plementary Material Section S3, with a link to access the MATLAB code written to 
replicate the simulation study.

We focus on the Haar wavelet basis as the notion of homogeneity and innovation 
within its associated multiresolution analysis is natural, interpretable and tractable, 
albeit producing discontinuous estimates. Extensions of J-th level homogeneity and 
L-th level innovation to other wavelet bases are proposed in Supplementary Material 
Section S4. Similarly, a discussion on how the estimation and statistical thresholding 
procedures presented in this paper can be extended to Daubechies D4 wavelets can 
be found in Supplementary Material Section S4.1.

2 � Wavelets and estimation of the intensity

In this section, we provide a brief background to wavelet estimation of point process 
intensities. We will restrict ourselves to simple point processes with no fixed atoms, 
i.e. point processes that satisfy N({t}) ∈ {0, 1} almost surely for all t ∈ ℝ , and the 
probability of observing a point at any pre-specified location is zero.
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2.1 � Wavelets and multiresolution analysis

We summarize here essential definitions and results on wavelets that need to be 
stated prior to their application to the intensity function. The theory presented here 
follows the work of Meyer (1992).

Definition 1  A multiresolution approximation of L2(ℝn) is an increas-
ing sequence Vj , j ∈ ℤ , of closed linear subspaces of L2(ℝn) with the following 
properties: 

1.	
∞⋂

j=−∞

Vj = {0},
∞⋃

j=−∞

Vj is dense in L2(ℝn);

2.	 for all f ∈ L2(ℝn) and j ∈ ℤ , f (⋅) ∈ Vj ⟺ f (2⋅) ∈ Vj+1;
3.	 for all f ∈ L2(ℝn) and k ∈ ℤ

n , f (⋅) ∈ V0 ⟺ f (⋅ − k) ∈ V0;
4.	 there exists a function g ∈ V0 , such that the sequence g(⋅ − k), k ∈ ℤ

n , is a Riesz 
basis of the space V0.

It is also shown in Meyer (1992) that for a Riesz basis g(⋅ − k), k ∈ ℤ
n of V0 , the 

sequence �(⋅ − k), k ∈ ℤ
n defined by �(�) = G(�)(

∑
k∈ℤn �G(� + 2k�)�2)−1∕2 is the 

canonical orthonormal basis of V0 , where � and G are the Fourier transforms of � 
and g, respectively. � is called either the father wavelet or scaling function. In this 
paper, we are concerned with point processes on the real line, and therefore we focus 
on the space L2(ℝ) . Defining Wj to be the orthogonal complement of Vj in Vj+1 , Defi-
nition 1 allows us to write

The spaces Vj each have the basis {�j,k(x) ∶= 2j∕2�(2jx − k), k ∈ ℤ} and are called 
the approximation spaces. The spaces Wj are called detail spaces, and each has 
the orthonormal basis {�j,k(x) ∶= 2j∕2�(2jx − k), k ∈ ℤ} , where �(x) is called 
the mother wavelet and is constructed from the father wavelet. The mappings 
f (⋅) → 2j∕2f (2j ⋅ −k) are called dyadic transformations. Consequently, a fundamen-
tal result from (3) is that for any j0 ∈ ℤ , the set 

{
�j0,k

;k ∈ ℤ
}
∪
{
�j,k;j ≥ j0, k ∈ ℤ

}
 

forms an orthonormal basis for L2(ℝ) . Furthermore, for any j0 ∈ ℤ a function 
f ∈ L2(ℝ) can be decomposed as

This identity, which illustrates the idea of multiscale analysis, will be used to decom-
pose the first-order intensity of a point process. In practice, a function f ∈ L2(ℝ) is 
often approximated by its projection onto a specific approximation space 

VJ = Vj0
⊕

J−1⨁
j=j0

Wj , with J > j0 . Expansion (4) is then reduced to:

(3)L2(ℝ) = Vj0
⊕

∞⨁
j=j0

Wj or L2(ℝ) =

∞⨁
j=−∞

Wj.

(4)f (x) =
�
k∈ℤ

⟨f ,�j0,k
⟩�j0,k

(x) +
�
j≥j0

�
k∈ℤ

⟨f ,�j,k⟩�j,k(x).
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As we increase J, the function f J ∈ VJ approximates f with ever increasing accuracy 
such that ‖f J − f‖2 → 0 as J → ∞ , where ‖ ⋅ ‖2 =

√⟨⋅, ⋅⟩ is the L2 norm.

2.2 � Continuous‑time wavelet estimator of the intensity

Consider a point process with a piecewise continuous intensity function � ∈ L2(ℝ) , 
typically restricted to a finite length observation window [0, T). We write the follow-
ing wavelet expansion for this intensity (de Miranda and Morettin 2011; Brillinger 
1997):

where j0 ∈ ℤ is fixed and called the coarse resolution level, �j0,k = ⟨�,�j0,k
⟩ 

and �j,k = ⟨�,�j,k⟩ . We are required to estimate the coefficients �j0,k and 
�j,k which we do so with �̂j0,k = ∫ �j0,k

(t)dN(t) =
∑

�i∈E
�j0,k

(�i) and 
�̂j,k = ∫ �j,k(t)dN(t) =

∑
�i∈E

�j,k(�i), where E = {�i, 1 ≤ i ≤ N(T)} are the event 
times for one realization of a point process N on the time interval [0, T). The obser-
vation window [0,  T) is often arbitrary or dictated by the application of interest. 
Hence, the general linear estimator of the intensity function based on its wavelet 
expansion is:

In the temporal case, dN(t) can also denote the differential process N(t + dt) − N(t) . 
For a compactly supported wavelet function, Campbell’s theorem (Daley and Vere-
Jones 1988, Chapter 6) gives us

showing the coefficient estimators to be unbiased. This is a linear estimator as it 
involves no shrinkage of the coefficients.

For obvious computational reasons, we cannot in practice use an infinite 
wavelet basis to reconstruct the intensity (the intensity may only be fully recon-
structed when we know that its decomposition is actually finite). Therefore, we 
firstly have to choose a maximum resolution level J. This maximum level plays a 
role in the bias-variance trade-off of the estimator. Low values of J result in a 

(5)

f J(x) =
�
k∈ℤ

⟨f ,�J,k⟩�J,k(x) =
�
k∈ℤ

⟨f ,�j0,k
⟩�j0,k

(x)

+

J−1�
j=j0

�
k∈ℤ

⟨f ,�j,k⟩�j,k(x).

(6)�(t) =
∑
k∈ℤ

�j0,k�j0,k
(t) +

∑
j≥j0

∑
k∈ℤ

�j,k�j,k(t),

(7)�̂(t) =
∑
k∈ℤ

�̂j0,k�j0,k
(t) +

∑
j≥j0

∑
k∈ℤ

�̂j,k�j,k(t).

E{�̂j0,k} = ∫ �j0,k
(t)E{dN(t)} = ∫ �j0,k

(t)�(t)dt = �j0,k

E{�̂j,k} = ∫ �j,k(t)E{dN(t)} = ∫ �j,k(t)�(t)dt = �j,k,
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smooth (high bias, low variance) estimator, whereas large values of J result in a 
noisy (low bias, high variance) estimator. The linear estimator then becomes the 
estimator of the projection of � onto the space VJ = Vj0

⊕
⨁J−1

j=j0
Wj , and is 

denoted �̂J from now on. In the case of linear estimation (no thresholding), the 
choice of j0 is not relevant since it suffices to estimate the father wavelet coeffi-
cients from the approximation space VJ . Also, with compactly supported wave-
lets and events restricted to a finite length observation window [0, T), the subset 
of translation indexes k ∈ ℤ satisfying �̂j,k ≠ 0 is finite. A nonlinear estimator is 
obtained by adding a coefficient shrinkage term, determined from a thresholding 
strategy. The use of shrinkage methods in the classical wavelet regression set-
ting is well studied (e.g. Donoho et al. 1995 and is used as a smoothing method 
to suppress contributing terms from fine scales which typically contain noise. 
For point process intensity estimation, while we do not have a noise term per se, 
shrinkage strategies are again desirable for smoothing, with fine scale terms typ-
ically having high variance. Thresholding also requires to choose the coarsest 
level of resolution j0 , ideally to some optimal value, since j0 is also involved in 
the bias-variance trade-off. When j0 ≥ 0 , all the mother wavelet coefficients at 
the coarse levels 0 ≤ j ≤ j0 are kept. Donoho and Johnstone (1994) and Donoho 
et al. (1995) typically use j0 = 5 . From a further simulation study in Abramov-
ich and Benjamini (1995), it is suggested that the choice for j0 should be depend-
ent on both the smoothness of the estimated function and the noise level.

When reconstructing the intensity of a point process, we have two desirable 
properties for a wavelet function. The first is that it should have a closed-form 
expression; it will be shown that this is required to compute the continuous lin-
ear estimator of the intensity function in an exact fashion, although in general 
not necessary for wavelet analysis and reconstruction of intensities. Second, the 
wavelet should be compactly supported; this is because invariably we can only 
observe the point process on a finite interval and therefore compactly supported 
wavelets allow us to only consider a finite set of dyadic translations. In Fig. 1, 
we show three examples of wavelet families; these are the Haar, Daubechies D4 
and Meyer wavelets. Each family exhibits either one or both characteristics.

0 1 2 3
-2

-1

0

1

2

Father D4
Mother D4

-8 -4 0 4 8
-2

-1

0

1

2

Father Meyer
Mother Meyer

0 0.5 1
-2

-1

0

1

2

Father Haar
Mother Haar

Fig. 1   Representation of three different wavelets. The Haar wavelet has a compact support and a closed-
form expression, the Daubechies D4 wavelet has a compact support only and the Meyer wavelet has a 
closed-form expression only
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2.2.1 � Haar estimator

The Haar mother and father wavelets are defined as

These wavelets can be extended to the support [0,  T] with an orthonormal-
ity preserving rescaling �T (t) = T−1∕2�(t∕T) and dyadic transforms of the type 
�T ,j,k(t) = 2j∕2�T (2

jt − kT) . Henceforth, we will drop the subscript T and assume all 
wavelets are scaled for the support [0, T]. At each scale J, the supports of �J,k and 
�J,k are of length T∕2J . Now, consider a point process N on [0, T). By construction, 
the interiors of Haar wavelets’ supports are disjoint across all translations for a fixed 
scale, which implies that we only need 2J wavelet coefficients when reconstructing 
on VJ , when J ≥ 0 . The linear estimator of the intensity function based on its Haar 
wavelet expansion becomes:

for j0 ≥ 0, J ≥ j0.

Remark 1  Under the Haar wavelet basis, at scale J ≥ 0 and a translation 
0 ≤ k ≤ 2J − 1 we have �J,k =

1√
2
(�J+1,2k + �J+1,2k+1).

See proof in Supplementary Material S2.1. The linear estimator based on the 
Daubechies D4 wavelets is discussed in Supplementary Material Section S4.1.1. 
In Fig. 2, we illustrate how the linear estimator behaves on an example intensity 
model with Haar and Daubechies D4 wavelets.

𝜓(t) =

⎧
⎪⎨⎪⎩

1 if 0 ≤ t < 1∕2

−1 if 1∕2 ≤ t < 1

0 otherwise

and 𝜙(t) =

�
1 if 0 ≤ t < 1

0 otherwise
.

�̂J(t) =

2j0−1∑
k=0

�̂j0,k�j0,k
(t) +

J−1∑
j=j0

2j−1∑
k=0

�̂j,k�j,k(t) =

2J−1∑
k=0

�̂J,k�J,k(t),

0 1 2 3
1500

2000

2500

3000

3500

True Intensity
Average Estimated Intensity

3210
1500

2000

2500

3000

3500

True Intensity
Average Estimated Intensity

Fig. 2   Estimation of an example intensity with Haar and D4 wavelets obtained with an average over 1000 
realizations of a point process on [0, 3]. We choose J = 3 here. The intensity is the sum of a triangular 
and a sine function
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2.2.2 � Distribution of �̂
J

In the case of Haar wavelets, we are able to derive the distribution of the estima-
tor �̂J . The approximation space of interest, VJ , naturally induces a subdivision 
SJ =

{
sJ
k

}2J−1

k=0
 of the interval [0,  T). The elements of this subdivision, 

sJ
k
= [T

k

2J
, T

k+1

2J
) , are the nonzero intervals of the Haar wavelets at scale J and 

form 2J disjoint subintervals [0, T). The Haar reconstruction of the intensity �J 
and its linear estimator �̂J are piecewise constant functions, with forms 
�J(t) =

∑2J−1

k=0
�J
k
�sJ

k
(t) and �̂J(t) =

∑2J−1

k=0
�̂J
k
�sJ

k
(t) , respectively. Hence, we can 

establish the exact distribution for this estimator under a Poisson process model.

Proposition 1  Under the Haar wavelet basis and for an inhomogeneous Poisson 
process N of intensity � on [0, T), �̂J

0
,… , �̂J

2J−1
 are independent random variables 

distributed as

where �J
k
= ∫

sJ
k

�(t)dt.

The proof can be found in Supplementary Material S2.2. The result can also 
naturally be extended to any other point process with a square integrable inten-
sity function for which the distribution of the event counts in any time interval is 
known (e.g. a binomial point process). It follows that E{�̂J

k
} = �J

k
=

2J

T
�J
k
 , for all 

0 ≤ k ≤ 2J − 1 . We will now use Proposition 1 to develop likelihood ratio tests for 
two newly defined multiscale properties of a Poisson process.

3 � A new testing protocol for multiscale properties of Poisson 
processes

In this section, we will develop the theoretical framework for a wavelet-based 
multiresolution analysis of a point process. Considering the first-order properties 
of a point process to be due to activity on different scales, under the Haar basis 
we define different levels of homogeneity under a multiresolution framework. We 
call this J-th level homogeneity, and provide a likelihood ratio test for it for the 
class of Poisson processes.

Under a compactly supported wavelet family, we then consider a more gen-
eral setting to describe any activity of the intensity function at a particular scale, 
which we term L-th level innovation. We provide a likelihood ratio test for this 
property for the class of Poisson processes under the Haar basis. In Sect. 4, we 
will demonstrate how this test can be used as a method of thresholding coeffi-
cients in our wavelet estimator of the intensity function. In this section, it will be 
always assumed that � ∈ L2(ℝ).

�̂J
k
∼

2J

T
Pois(�J

k
), 0 ≤ k ≤ 2J − 1,
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3.1 � Global behaviour: J‑th level homogeneity

We use the Haar wavelet basis (rescaled if T is different than 1), because of its intui-
tive interpretation, its simplicity to implement and its amenability to statistical anal-
ysis. We consider the projection of the intensity on the Haar approximation space 
VJ = Vj0

⊕
⨁J−1

j=j0
Wj . With Haar wavelets, the reconstruction of the intensity at scale 

J is a piecewise constant function, and hence we can define a wavelet reconstruction 
vector (�J

0
, �J

1
,… , �J

2J−1
)T where �J

k
 is the value of �J on the subinterval sJ

k
∈ SJ , , 

k = 0,… , 2J − 1 . We use this formulation to define a property we call J-th level 
homogeneity.

Definition 2  A point process N on [0,  T) with intensity � is considered level J 
homogeneous if the reconstruction of the intensity at resolution J with Haar wave-
lets, or its projection on VJ , is constant on [0, T). That is, �J

0
= �J

1
= ⋯ = �J

2J−1
.

Jth-level homogeneity was introduced in Taleb and Cohen (2016) in terms of the 
projection of the intensity on VJ+1 . We propose that it is instead more convenient to 
base it on VJ , i.e. every point process is level 0 homogeneous as the projected inten-
sity �0

0
 on V0 is always a constant on [0, T). The concept of J-th level homogeneity 

goes side by side with the idea of a Haar multiresolution analysis of the intensity 
function, providing a natural way of studying on what scales the intensity function 
appears constant and hence the point process homogeneous, and on what scales the 
intensity function exhibits variability. If we define HJ as the class of level J homoge-
neous point processes, we have HJ ⊃ HJ+1 . Indeed we know from Remark  1 that 
�J,k =

1√
2
(�J+1,2k + �J+1,2k+1) for Haar wavelets, and therefore �J

0
= �J

1
= ⋯ = �J

2J−1
 

if �J+1,0 = �J+1,1 = ⋯ = �J+1,2J+1−1.

Proposition 2  Let N be a point process with a locally square integrable intensity � . 
Then � is constant almost everywhere on [0, T) (i.e. �(t) = �0

0
=

1

T
∫ T

0
�(t)dt almost 

everywhere) if and only if N ∈ HJ for all J ≥ 0.

See Supplementary Material S2.3 for the proof. To avoid any confusion, we say 
that a point process with intensity � is strictly homogeneous on [0, T) when �(t) = �0

0
 

for all t ∈ [0, T) . Proposition  2 illustrates how strict homogeneity can be loosely 
interpreted as the limit extension of Jth-level homogeneity. Furthermore, Defini-
tion 2 naturally leads us to define Jth-level inhomogeneity.

Definition 3  A point process N on [0,  T) with intensity � is considered level  J  
inhomogeneous if it is level J − 1 homogeneous and not level J homogeneous.

We immediately remark that a level J inhomogeneous point process is not level 
j homogeneous for all j ≥ J . Since J-th level homogeneity and inhomogeneity are 
based on the projection of the intensity function on the Haar approximation space 
VJ , they are descriptors of the first-order behaviour of the point process when viewed 
at a particular scale. For instance, a point process may appear homogeneous when 
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viewed at a coarse scale but show inhomogeneity when viewed at a finer resolution. 
An extension of J-th level homogeneity to other wavelets is proposed in Supplemen-
tary Material S4.

3.2 � Testing J‑th level homogeneity

As the scope of this work is to analyse point processes in a multiscale fashion, we 
are not interested in testing the strict homogeneity of a Poisson process, which is 
the limit case for Definition 2 and has been thoroughly addressed in previous stud-
ies (e.g. Bain et al. 1985; Ng and Cook 1999). We are instead aiming to statistically 
determine the resolution level where inhomogeneous behaviour appears. Recall that 
the choice of Haar wavelets implies that the wavelet reconstruction �J of the inten-
sity � , as well as the intensity estimator �̂J , are piecewise constant functions on the 
dyadic partition SJ . Although a piecewise analysis has also been carried out in Fierro 
and Tapia (2011) as a basis for a similar LRT, the wavelet approach presented here 
gives a natural, multiresolution scheme for defining the subdivision of the process. 
We begin by considering the LRT for equal means of scaled Poisson distributions, 
the results of which we can then utilize to test J-th level homogeneity of Poisson 
processes. This provides a comprehensive and rigorous treatment of the ideas first 
proposed in Taleb and Cohen (2016).

3.2.1 � LRT for equal means of scaled Poisson distributions

Let � =
{
�m

}M

m=1
 be a set of iid scaled Poisson random vectors, each with inde-

pendent components of form �m =
(
Xm,i

)P
i=1

 , Xm,i ∼ �Pois(�i) . The scale parameter 
𝛿 > 0 is known and fixed so �m is parametrized by the vector 

(
�i

)P
i=1

 . We consider 
testing the null hypothesis H ∶ �1 = ⋯ = �P = �c against the alternative hypothesis 
K that states H is not true. The LRT statistic is defined as

where L(�;�1,… ,�P) is the likelihood of the data � given parameter vector 
(
�i

)P
i=1

.

Proposition 3  Let R = −2 log (r) , with r being the likelihood ratio statistic defined 
in (8). Then we have

where 𝜇̄c =
1

𝛿MP

∑P

i=1

∑M

m=1
Xm,i is the maximum likelihood estimator (MLE) for �c , 

the constant mean under the null hypothesis H, and 𝜇̄i =
1

𝛿M

∑M

m=1
Xm,i is the MLE 

for �i ( i = 1,… ,P ), under the alternative hypothesis K.

(8)r =

sup
𝜇c>0

L(�;𝜇c,… ,𝜇c)

sup

{𝜇i}
P

i=1
,
∑

𝜇i>0

L(�;𝜇1,… ,𝜇P)
,

R = 2M

P∑
i=1

𝜇̄i log

(
𝜇̄i

𝜇̄c

)
,
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See Supplementary Material S2.4 for the proof. If there exists at least one index i 
such that 𝜇̄i = 0 , we use the convention 0 log(0) = 0 . Further discussion on the 
absence of points within intervals can be found in Supplementary Material S1.2. 
Now, let dH be the number of free parameters under the null hypothesis H and let dK 
be the number of free parameters under the alternative hypothesis K, then under the 
null hypothesis and regularity conditions on the likelihood functions that are met 
here, R → �2

dK−dH
 as sample size M → ∞ (see Wilks 1938; Van der Vaart 2000). In 

this setting, dK = P and dH = 1 . In practice, the M = 1 case is frequently encoun-
tered, and therefore we establish a more general and applicable result for the asymp-
totic distribution of R.

Theorem 1  Let �1,… ,�M ( M ≥ 1 ) be independent and identically distributed P 
dimensional random vectors where each �m =

(
Xm,1,… ,Xm,P

)T is constructed from 
independent components Xm,i ∼ � Pois(�i) . Let R = −2 log(r) where r is the likeli-
hood ratio statistic defined in (8). Then the distribution of statistic R is invariant 
to simultaneous changes in parameters M and �i provided that all products �iM , 

1 ≤ i ≤ P , remain constant. Furthermore, if �1 = ⋯ = �P = �c , then R
d
→ �2

P−1
 as 

�cM → ∞.

See Supplementary Material S2.6 for the proof1. It will now be shown that this 
result illustrates the practical advantage of Haar wavelets as it ensures that only one 
realization of the process is enough to conduct a LRT for J-th level homogeneity.

3.2.2 � LRT for J‑th level homogeneity of a Poisson process

Now, let {Nm,m = 1,… ,M} be a collection of M ≥ 1 independent realizations of the 
same Poisson process N. Let � =

{
�m

}M

m=1
 be the set of M independent random vec-

tors where �m =
(
�̂J
m,k

)2J−1

k=0
 is the vector of all subinterval estimates of the intensity 

from Nm . From Proposition 1, �m is a vector of independent scaled Poisson random 
variables and is therefore parametrized by the vector 

(
�J
k

)2J−1
k=0

 . We look to test the 
null hypothesis H which states N is level J homogeneous, i.e. �J

0
= ⋯ = �2J−1 = �J

c
 

for some 𝜆J
c
> 0 , against the alternative hypothesis K which states H is not true. The 

LRT statistic in this case is given as:

rJ =

sup
𝜆J
c
>0

L(𝛬;𝜆J
c
,… , 𝜆J

c
)

sup

{𝜆Jk}
2J−1

k=0
,
∑

𝜆J
k
>0

L(𝛬;𝜆J
0
,… , 𝜆J

2J−1
)
,

1  It has been shown in Feng et  al. (2012) that the classic asymptotic distributional result for the test 
statistic R does not hold if we are restricting ourselves to the M = 1 case and low values of �

c
 ( �

c
≤ 10 

in their study). This refutes the opposite claim in Brown and Zhao (2002), which possibly resulted from 
a confusion between the number of parameters P and the number M of independent realizations of the 
Poisson vector.
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where L(�;�J
0
,… , �J

2J−1
) is the likelihood of the data � given parameter vector (

�J
k

)2J−1
k=0

 . Now using Proposition 3 we can write

where �J = 2J∕T  , statistic 𝜆̄J
c
 is the maximum likelihood estimator (MLE) of �J

c
 

and 𝜆̄J
k
 is the MLE for �J

k
 ( k = 0,… , 2J − 1 ), under the alternative hypothesis K. In 

this particular setting, we have dK = 2J and dH = 1 , giving R as asymptotically �2 
distributed with 2J − 1 degrees of freedom under the conditions of Theorem 1. We 
reject J-th level homogeneity at significance level � if R > c𝛼 where c� , the critical 
value, is the upper 100(1 − �)% point of the �2

2J−1
 distribution.

3.2.3 � Simulation study

Here, we demonstrate the LRT for J-th level homogeneity through simulations. 
We consider a class of inhomogeneous Poisson processes on a time interval [0, T). 
These processes share a similar piecewise triangular intensity represented in Fig. 3 
and are defined as the following:

where i(t) ∈
{
0,… , 2V+1 − 1

}
 is the index of the subinterval sV+1

i(t)
= [

i(t)

2V+1
T ,

i(t)+1

2V+1
T) 

in which t belongs, and �(t) is defined by t = (i(t) + �(t))T∕2V+1 . The absolute value 
of the gradient is ��02V+1∕T  and 2V is the number of “triangles”. The intensity takes 
values between �0

2−�

2
 and �0

2+�

2
 and its mean value �0

0
 is the parameter 𝜆0 > 0 . By 

construction, the quantity �0
0
= ∫ T

0
�(t)dt = T�0 does not depend on V, the process is 

level V + 1 homogeneous and level V + 2 inhomogeneous. We set the significance 
level of our test at � = 0.05 , with M = 1 , i.e. we observe just a single realization. 
The empirical type 1 error and power of the LRT (over 10,000 simulations) at differ-
ent values of J are shown in Fig. 3 as a function of �0 , with �0 ∈ [1000, 50,000].

In the example represented in Fig. 3 where the process is level 2 homogene-
ous, the empirical type 1 error lies close to the 5% level as expected. When J ≥ 3 
and J-th level homogeneity no longer holds, the empirical power converges to 1 

RJ = −2 log(rJ) = 2
M

𝛿J

2J−1∑
k=0

𝜆̄J
k
log

(
𝜆̄J
k

𝜆̄J
c

)
,

�(t) = �0

(
1 + (−1)i(t)�

(
�(t) −

1

2

))
,
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Fig. 3   Left: Haar wavelet reconstruction of a piecewise triangular intensity with V = 1 , � = 0.1 and T = 1 
at resolutions J ∈ {2, 3, 4, 5} . Right: Empirical type 1 error ( J = 2 ) and power ( J ∈ {3, 4, 5} ) for this 
piecewise triangular intensity as a function of �0
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when �0 → ∞ . This behaviour is expected as well. Indeed, this intensity model 
is proportional to �0 and therefore its Haar reconstruction at any scale J satis-
fies �J

k
∝ �0 as well as �J

k
∝ �0 . Since statistic RJ tends to infinity as M increases 

towards infinity when J ≥ 3 and a fixed �0 , then the power of the LRT converges 
to 1. Hence, the observed convergence of the empirical power to 1 when M is 
fixed and �0 increases towards infinity as ensured by Theorem  1. Similarly, the 
value of parameter � influences the speed of this convergence. Moreover, we note 
the power decreases as we increase J because the mass of the null distribution 
�2
2J−1

 is displaced to the right as J increases, making it harder for the test to distin-
guish between the two hypotheses.

We also consider two scenarios where the parameter � is now dependent on �0 
(variable ripple). The results for these two scenarios are given in Fig.  4. When 
� = �0∕�0 , the power decreases as �0 increases. Since �(t) takes values in the 
interval �0

2−�

2
 and �0

2+�

2
 , the inhomogeneity from J ≥ 3 due to the structure of the 

intensity is less detectable by the LRT as its amplitude decreases too quickly with 
� . When the parameter � is instead equal to �0∕

√
�0 , the power stays maximal for 

the values of �0 considered in the simulation study. The amplitude of the intensity 
model decreases slowly enough as �0 increases such that the inhomogeneity is 
always detected by the LRT.

3.3 � Local behaviour: L‑th level innovation

In Sect. 2.1, we presented the decomposition L2(ℝ) = Vj0
⊕

⨁∞

j=j0
Wj where Wj is 

the orthogonal complement of Vj in Vj+1 and often called the detail or innovation 
space. With J-th level homogeneity we focused on the behaviour displayed on any 
space Vj , which brings together contributions from several resolutions. Projecting � 
on Wj for increasing j ≥ j0 , we explore the intensity function in progressively finer 
resolutions. To characterize this, we introduce the concept of L-th level innovation.
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Fig. 4   Left: Empirical type 1 error ( J = 2 ) and power ( J ∈ {3, 4, 5} ) for the piecewise triangular inten-
sity where � = �0∕�0 , with �0 = 1000 . Right: Empirical type 1 error ( J = 2 ) and power ( J ∈ {3, 4, 5} ) for 
the piecewise triangular intensity where � = �0∕

√
�0 , with �0 =

√
1000
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Definition 4  Let N be a point process on [0, T) with a square integrable intensity 
� . We say that N possesses a level L innovation under the Haar basis if and only if 
there exists at least one index k ∈ ℤ such that �L,k = ⟨�,�L,k⟩ ≠ 0.

Since a point process on [0, T) with constant intensity is level J homogeneous 
for all J ≥ 0 , it also displays no L-th level innovation irrespective of L ≥ 0 . With a 
constant intensity on observation window [0, T), wavelets with non-compact support 
will always produce an infinite number of nonzero wavelet coefficients and unbi-
asedness of their estimators is not guaranteed. Furthermore, compactly supported 
wavelets whose support is only partially contained within [0,  T) will also admit 
nonzero wavelet coefficients. This is why we restrict ourselves to Haar wavelets in 
the definition of L-th level innovation. Extensions of L-th level innovation to other 
wavelets is considered in Appendix in ESM. We further comment that although 
defined according to a specific scale, L-th level innovation also has an inherent tem-
poral component. The translation index of nonzero coefficients given by wavelets in 
WL indicates the time localization of the corresponding innovation.

Remark 2  For the Haar wavelet, there is the following equivalence:

•	 A point process N is level J homogeneous and possesses a level J innovation.
•	 A point process N is level J + 1 inhomogeneous.

This equivalence is immediate from applying Definitions 3 and 4 to the identity 
VJ+1 = VJ ⊕WJ.

3.4 � Testing Lth‑level innovation

We are now interested in testing for L-th level innovation based on Definition 4 using 
the null hypothesis H: “A point process N possesses no L-th level innovation under 
a wavelet family (�,�) ”. To do so, we consider the vector of empirical wavelet coef-
ficients corresponding to the wavelet basis for WL , which under the null hypothesis 
will be zero mean. As for J-th level homogeneity, we define a likelihood ratio test 
for Lth-level innovation under the Poisson process model and Haar wavelets. This 
test will again be a special case of a more general setting for multivariate Poisson 
random variables.

If a point process is level J + 1 inhomogeneous, then such a test should take place 
for any given scale L > J (as by Remark 2 we know there already exists an innova-
tion at level J). Consider a subdivision SL+1 of [0, T) defined as in Sect. 2.2.2. Let 
{Nm}

M
m=1

 be a collection of M independent realizations of the same Poisson process 
N on [0, T) with intensity function � , and let �N =

{
�m

}M

m=1
 be a collection of M 

independent random vectors �m =
(
Xm,i

)2L+1−1
i=0

 , where Xm,i = Nm(s
L+1
i

) is the event 
count for process Nm in sL+1

i
∈ SL+1 . With �̂L,k =

∑
�i∈E

�L,k(�i) , for the Haar wave-
lets �̂L,k =

2L∕2√
T
(Xm,2k − Xm,2k+1), 0 ≤ k ≤ 2L − 1 . Each count Xm,i is distributed as 

Pois(�i) where �i = ∫
sL+1
i

�(t)dt . Therefore, the estimators �̂L,k , k = 0,… , 2L − 1 are 
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independent realizations of a scaled Skellam distribution (or Poisson difference dis-
tribution), each with parameters �2k and �2k+1 . Since �̂L,k has mean 2

L∕2√
T
(�2k − �2k+1) , 

Definition  4 is then equivalent to the following property: “There exists 
k ∈ {0,… , 2L − 1} such that �̂L,k is Skellam distributed with parameters 
�2k ≠ �2k+1 ”. We can therefore build a likelihood ratio test for testing the null 
hypothesis H: “ �2k = �2k+1 for all k = 0,… , 2L − 1”.

Since there does not exist an explicit expression for the MLE of the parameter 
�k = �2k − �2k+1 given Skellam distributed random variables (instead having to be 
numerically approximated (Alzaid and Omair 2010)), it is more appealing to design 
a likelihood ratio test based on the event counts themselves. This leads us to first 
consider a LRT for the general setting of testing pairwise equality of means of Pois-
son distributions, which will then be used for the specific setting of testing L-th level 
innovation.

3.4.1 � LRT for pairwise equality of Poisson means

We define here a LRT for the pairwise equality of the means of a multivariate Pois-
son distribution. Let � =

{
�m

}M

m=1
 be a set of iid Poisson random vectors, each with 

independent components of form �m =
(
Xm,i

)2P
i=1

 , Xm,i ∼ Pois(�i) . We consider test-
ing the null hypothesis H ∶ �2i−1 = �2i = �pair

i
, 1 ≤ i ≤ P , against the alternative 

hypothesis K that states H is not true. The LRT statistic is defined as

where L(�;�1,… ,�2P) is the likelihood of the data � given parameter vector 
(
�
i

)2P
i=1

.

Proposition 4  Let R = −2 log (r) , with r being the likelihood ratio statistic defined 
in (9). Then

where 𝜇̄i =
1

M

∑M

m=1
Xm,i and 𝜇̄pair

i
=

1

M

∑M

m=1
�𝜇pair

m,i
 where �̂pair

m,i
=

1

2
(Xm,2i−1 + Xm,2i) . 

Statistic 𝜇̄pair

i
 is the maximum likelihood estimator (MLE) of �pair

i
 ( i = 1,… ,P ) 

under the null hypothesis H and 𝜇̄i is the MLE for �i ( i = 1,… , 2P ) under the alter-
native hypothesis K.

The proof can be found in Supplementary Material S2.5. From Wilks’ Theorem 
(Wilks 1938), we immediately have that under the null hypothesis R is asymptotically 
�2 distributed with dK − dH = P degrees of freedom for a large sample size M (under 
the usual regularity assumptions). However, this result is not guaranteed when the true 
parameter vector lies on the boundary of the parameter space. This was not the case 

(9)r =

sup�
𝜇pair

i

�P

i=1
,
∑

𝜇pair

i
>0

L(�;𝜇pair

1
,𝜇pair

1
,… ,𝜇pair

P
,𝜇pair

P
)

sup

{𝜇i}
2P

i=1
,
∑

𝜇i>0

L(�;𝜇1,𝜇2,… ,𝜇2P−1,𝜇2P)
,

R = 2M

[
P∑
i=1

𝜇̄2i−1 log

(
𝜇̄2i−1

𝜇̄pair

i

)
+

P∑
i=1

𝜇̄2i log

(
𝜇̄2i

𝜇̄pair

i

)]
,
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for the test in Sect. 3.2.1 since we must have 𝜇c > 0 , although it happens in this model 
when �pair

i
= 0 . Further discussion on this particular case can be found in Supplemen-

tary Material S1.1. We now assume that �pair

i
≠ 0 for all 1 ≤ i ≤ P . Similar to Theo-

rem 1, we can state an extension of Wilks’ theorem for this LRT.

Theorem 2  Let �1,… ,�M ( M ≥ 1 ) be independent and identically distributed 2P 
dimensional random vectors where each �m =

(
Xm,1,… ,Xm,2P

)T is constructed 
from independent components Xm,i ∼ Pois(�i) . Let R = −2 log (r) where r is the like-
lihood ratio statistic defined in (9). Then the distribution of statistic R is invariant to 
simultaneous changes in parameters M and �i provided all products �iM , 1 ≤ i ≤ 2P 
remain constant. Furthermore, if �2i−1 = �2i = �pair

i
and �pair

i
≠ 0, 1 ≤ i ≤ P , then 

R
d
→ �2

P
 as �pair

i
M → ∞, 1 ≤ i ≤ P.

The proof of Theorem 2 follows an analogous argument to that of Theorem 1 (see 
Supplementary Material S2.7). We again prove that in the asymptotic analysis of the 
distribution of R, M and the mean intensity are indistinguishable from their product, 
and thus, the results are applicable for only one realization of the random vector �.

3.4.2 � LRT for L‑th level innovation

We can now apply the test developed in Sect.  3.4.1 to the task of testing L-th level 
innovation. The LRT statistic for testing the null hypothesis H: “ �2k = �2k+1 for all 
k = 0,… , 2L − 1 ” is

From Proposition 4, we have:

Again, we refer to Supplementary Material S1.1 in the situation where one or sev-
eral parameters �pair

k
 are equal to zero. In all other cases, we have dK = 2L+1 and 

dH = 2L , giving R as asymptotically �2 distributed with 2L degrees of freedom under 
the conditions of Theorem 2. We reject the absence of a level L innovation at signifi-
cance level � if R > c𝛼 where c� , the critical value, is the upper 100(1 − �)% point of 
the �2

2L
 distribution.

rL =

sup
�
𝜇pair

k

�2L−1

k=0
,
∑

𝜇pair

k
>0

L(�;𝜇pair

0
,𝜇pair

0
,… ,𝜇pair

2L−1
,𝜇pair

2L−1
)

sup

{𝜇k}
2L+1−1

k=0
,
∑

𝜇k>0

L(�;𝜇0,… ,𝜇2L+1−1)
.

RL = −2 log(rL) = 2M

⎡⎢⎢⎣
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3.4.3 � Simulation study

Let us now consider the triangular intensity model from Sect.  3.2.3 where we 
now introduce an additive perturbation in the form of a sine function with period 
T∕2� , � ≥ V + 3, and magnitude A�0 . Again, T is the length of the process and �0 
is the mean value of the rate. Therefore, this intensity model has expression

Similar to the previous model, the quantity �0
0
= ∫ T

0
�sine(t)dt = T�0 does not depend 

on V, the process is level V + 1 homogeneous and level V + 2 inhomogeneous. The 
sinusoidal term does not influence the values of the wavelets coefficients up to reso-
lution � . Hence a Poisson process N whose intensity is �sine possesses no innovations 
from levels 0 to V, V + 1 innovation is introduced by the triangular part and another 
source of innovation is introduced at level � from the sinusoidal term. The power of 
the test is studied for L ≥ � . An example plot is given in Fig. 5.

We set the significance level of our test at � = 0.05 , with M = 1 and 
�0 ∈ [1000, 50,000] as in the LRT for J-th level homogeneity. The empirical type 
1 error and power plots from 10,000 simulations are shown in Fig.  5 for L = 1 
(type 1 error in the absence of innovation) and L = 3, 4 and 5 (power in the pres-
ence of innovation). We are interested in exploring the effects of the parameter �0 
on the empirical type 1 error and power of the LRT for the absence of L-th level 
innovation. Again the empirical type 1 error lies close to the 5% level as expected 
when the conditions of Theorem 2 are met. We also observe that the empirical 
power converges to 1 as the magnitude of the perturbation increases through the 
product A�0 . Since the intensity model is still proportional to �0 , this is also jus-
tified from Theorem 2 as the equivalent behaviour is expected when �0 is fixed 
and M increases towards infinity. Furthermore, it is noticeable that for a fixed �0 , 
the power decreases as we increase L. This can be explained because increasing 
L displaces the mass of the null distribution �2

2L
 further to the right, making it 

harder for the test to distinguish between the null hypothesis and the true state of 
nature.

�sine(t) = �0

(
1 + (−1)i(t)�

(
�(t) −

1

2

))
+ A�0 sin

(
2�+1�

T
t

)
.
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Fig. 5   Left: Triangular rate on [0,  1] with mean �0 = 1000 , V = 1 , � = 0.1 and an additive sine per-
turbation with � = 3 and magnitude A = 0.05 . Right: Empirical type 1 error ( L = 1 ) and power plots 
( L ∈ {3, 4, 5} ) as a function of �0 with T = 1 , V = 1 , � = 0.1 and A = 0.05 . See text in Sect.  3.4.3 for 
further details
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4 � Statistical thresholding

As stated in Sect. 2.2, we can define a nonlinear wavelet estimator of the intensity of a 
point process when a thresholding strategy is applied on the coefficient estimates. We 
initially define a general formulation for thresholding strategies in intensity estimation 
that we can adapt to different examples. To define a thresholding strategy, we need to 
choose a wavelet family for the estimation of the corresponding coefficients and a 
threshold operator that will be applied on the data. We consider a collection of com-
pactly supported mother wavelets 

{
�L,k, k ∈ KL

}
 , where KL is the ordered finite subset 

of ℤ containing the translation indexes of the wavelets that are used as a basis for WL , 
and further denote KL = |KL| . For instance KL =

{
0,… , 2L − 1

}
 under the Haar basis 

if the intensity has support [0,  1) or [0,  T) with rescaled wavelets. Let 
{Nm,m = 1,… ,M} , M ≥ 1 , be a collection of independent realizations of the same 
point process N, we define �̂L = (bm,i) ∈ ℝ

M×KL , where bm,i ≡ �̂(m)
L,ki

 is the estimator of 
the true wavelet coefficient �L,ki obtained from Nm.

We represent a thresholding operator T ∶ ℝ
M×KL → ℝ

M×KL with �̂
L
= T(�̂L) being 

the output where each column of �̂
L
 is the corresponding column of �̂L if a threshold-

ing criterion C is met, or a column of zeros if C is not met (see illustration in Fig. 6). If 
the i-th column of �̂L meets the criterion C and is therefore kept by the operator T  , then 
the estimator of �L,ki used in the final reconstruction of � will be the sample mean 
1

M

∑M

m=1
�̂(m)
L,ki

 . A thresholding operator is applied between coarse and fine limits j0 and 
J, respectively, resulting in a filtering of the information contained in the detail spaces 
Wj, j0 ≤ j ≤ J . The effect of different choices for j0 and J is explored in Appendices in 
ESM. Defining the ℝKL vector �L(t) = (�L,k1

(t),… ,�L,kKL
(t))T , where k1 and kKL

 are, 
respectively, the first and last elements of the index set KL , and 1M = (1,… , 1)T the 
vector of ones of length M, the nonlinear estimator can be formulated as

(10)�̂J
T
(t) =

1

M

M∑
m=1

∑
ki∈Kj0

�̂(m)

j0,ki
�j0,ki

(t) +
1

M

J∑
L=j0

1
T
M
�̂

L
�L(t) .

B̂L =





β̂
(1)
L,1 β̂

(1)
L,2 β̂

(1)
L,3 β̂

(1)
L,4

...
...

...
...

β̂
(m)
L,1 β̂

(m)
L,2 β̂

(m)
L,3 β̂

(m)
L,4

...
...

...
...

β̂
(M)
L,1 β̂

(M)
L,2 β̂

(M)
L,3 β̂

(M)
L,4





=⇒ Θ̂L = T (B̂L) =





β̂
(1)
L,1 0 β̂

(1)
L,3 0

...
...

...
...

β̂
(m)
L,1 0 β̂

(m)
L,3 0

...
...

...
...

β̂
(M)
L,1 0 β̂

(M)
L,3 0





Fig. 6   Example output of a thresholding operator with KL = {1, 2, 3, 4}
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Similar to the distinction made in Härdle et al. (1998) for density estimation, we 
define three procedures for thresholding. We are applying local thresholding if cri-
terion C considers each column of �̂L separately, global thresholding if C considers 
the entire matrix �̂L , and intermediate thresholding for other cases where C consid-
ers subsets of columns. The criteria C that we will propose here are based on vari-
ations of the previously defined L-th level innovation hypothesis test formulated in 
Sect. 3.4.2, and in doing so we assume that the conditions of Theorem 2 are always 
met for all j0 ≤ L ≤ J . Our thresholding strategies hence take the form of multiple 
hypothesis testing procedures. It is consequently crucial to consider efficient ways 
of handling multiple hypothesis tests as ignoring this specificity could lead to a high 
number of truly zero coefficients to be kept in the reconstruction of �.

When M = 1 , a common setting, �̂L and �̂
L
 become row vectors with the i-th ele-

ment of �̂
L
 being �̂L,ki(1 − �[−�ki ,�ki ]

(�̂L,ki )) , where �ki ≥ 0 , i = 1,… ,KL , are threshold 
levels that need to be chosen. de Miranda and Morettin (2011) propose 
�ki = �

√
Var(�̂L,ki ) , with � typically equal to 3. This requires a crude estimator of 

the variance of the coefficient estimators. The authors notice an equivalence between 
this method and using �̂L,ki as a test statistic for the null hypothesis �L,ki = 0 . This 
employs Chebyshev’s inequality and works on the assumption that �̂L,ki is approxi-
mately Gaussian. This parallel is interesting enough for us to use this thresholding 
operator as a comparison point in our simulations.

4.1 � Local thresholding with false discovery rate control

Under this thresholding procedure, we apply a hypothesis test to each coefficient 
with the null hypothesis being that this coefficient is zero. In the case of Haar 
wavelets, the LRT for L-th level innovation defined in Sect.  3.4.2 can be reduced 
to the case of a single coefficient without any change to its asymptotic properties. 
In particular, the reduced null hypothesis is now HL,k

0
:“�L,k = 0 ” or equivalently 

“ �2k = �2k+1 ”, for any k ∈ {0,… , 2L − 1} and j0 ≤ L ≤ J.
Using a local thresholding operator with Haar wavelets requires a total of 

Q = 2J+1 − 2j0 hypothesis tests for coarse and fine resolution scales j0 and J, respec-
tively. For this thresholding scheme, the criterion C considers individually the p 
value of each test. A naive criterion C is that the coefficient is kept if the p value 
for the corresponding test is lower than some fixed significance level � . However, 
in this case too few coefficients might be thresholded. The other approach that we 
explore here follows the statistical thresholding method of Abramovich and Benja-
mini (1995) which is based on the False Discovery Rate (FDR) defined in Benjamini 
and Hochberg (1995). Of the Q hypotheses being tested, we say that Q0 are true null 
hypotheses and the total number of rejected hypotheses is R, of which F are falsely 
rejected. Note that Q0 and F are unknown quantities. The FDR is the expectation 
of the ratio F/R, and is the quantity we look to control. Since the FDR approach to 
multiple testing produced lower mean squared errors compared to the universal hard 
threshold for certain types of signals in Abramovich and Benjamini (1995), it seems 
natural to carry it over to the Poisson intensity estimation model. This method posi-
tions itself between the naive approach where the error is only controlled at the very 



415

1 3

Haar multiresolution analysis of point processes

local level (coefficient-wise) and more constrained approaches like Bonferroni’s 
correction where the error is instead simultaneously controlled among all tests (the 
family-wise error rate), with the latter being prone to power loss.

This procedure assumes independence of at least the Q0 test statistics associated 
with the true null hypotheses. Under that setting the FDR is controlled by � , a global 
significance level. Since our Poisson intensity estimation model introduces depend-
ence (between scales) among the test statistics, Benjamini and Yekutieli (2001) 
demonstrate that a conservative modification of � to �Q = �∕(

∑Q

i=1

1

i
) allows us to 

extend the FDR control method for any joint distribution of the test statistics. The 
FDR is then bounded by (Q0∕Q)� which is lower than � . Now, the thresholding pro-
cedure is as follows: 

1.	 Determine the p values pL,k of the LRT for the null hypothesis of each coefficient 
H

L,k

0
:“�L,k = 0 ”, for all j0 ≤ L ≤ J and k ∈ KL and sort them by increasing value 

to obtain the ordered indexed set P =
{
p1,… pQ

}
 , where Q is the total number 

of tests considered in the thresholding range. Note that Q does not depend on M.
2.	 For a given significance level � , find the largest index i that satisfies pi ≤ (i∕Q)�Q 

where �Q = �∕(
∑Q

i=1

1

i
).

3.	 Criterion C states that the coefficients corresponding to the p values smaller than 
or equal to pi are kept.

4.2 � Global thresholding with Holm–Bonferroni correction

The global thresholding strategy is based on the exact L-th level innovation test 
defined in Sect. 3.4.2. In this circumstance, we test each level j, j0 ≤ j ≤ J with a 
single test. The total number of tests is now Q = J − j0 + 1 , significantly decreasing 
computational time when compared to the local thresholding method. Again, several 
approaches can be considered to control the multiplicity of errors arising from com-
bining the results of multiple tests. One thing to notice is that swapping multiple uni-
variate tests for a single multivariate test at each level L is already a way to address 
multiple hypothesis testing in this context. This choice reflects an emphasis on the 
detection of any significant information inside the detail space WL regardless of its 
temporal location. This makes the thresholding easier to control statistically but may 
lead to an unnecessary number of coefficients kept in the end. Now since the number 
of tests here is linear with the maximum resolution J and thus limited in practice, the 
Holm-Bonferroni method (Holm 1979), which is a uniformly more powerful method 
than Bonferroni correction, can be reasonably considered. Another interesting thing 
here is that Holm-Bonferroni correction does not require independence of the test 
statistics. Now, the procedure to determine the criterion C is the following: 

1.	 Determine the p value of the LRT for each null hypothesis HL
0
∶ “ there is no 

L-th level innovation”, j0 ≤ L ≤ J , and sort them by increasing value to obtain 
the ordered indexed set P =

{
p1,… pQ

}
 , where Q is the total number of tests 

considered in the thresholding range. Again Q does not depend on M.
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2.	 From a given significance level � , find the minimal index i that satisfies 
pi >

𝛼

Q+1−i
 . Denote this index im.

3.	 Accept the null hypotheses with p values indexed from 1 to im − 1.
4.	 Criterion C states that if the null hypothesis HL

0
 is accepted, then �̂

L
= 0 , other-

wise �̂
L
= �̂L.

Using Holm-Bonferroni’s correction, the family-wise error rate of this global 
thresholding strategy, which is the probability or having at least one type 1 error 
for an individual test, is always less or equal to the given significance level �.

4.3 � Intermediate thresholding based on recursive tests

The intermediate thresholding strategy uses the recursive testing approach pro-
posed in Ogden and Parzen (1996). This method falls into the intermediate cat-
egory since the number of coefficients tested together to determine Criterion C 
varies between 1 and KL = |KL| for each resolution level L. The procedure is the 
same at each level j0 ≤ L ≤ J , and is as follows: 

1.	 Test the null hypothesis HL
0
∶“�L,k = 0 for all k ∈ KL ” using the LRT at signifi-

cance level �.
2.	 If the null is rejected, find the index i ∈ KL such that the sample mean 1

M

∑
m �̂(m)

L,i
 

has the largest absolute value. Remove the i-th component in the null hypothesis 
HL

0
 to form a new null hypothesis HL,−i

0
.

3.	 Repeat steps 1 and 2 until the null is not rejected. Criterion C retains all the coef-
ficients that have been removed from the original null hypothesis.

4.4 � Simulation study

This study aims to compare the accuracy of different thresholding strategies by 
applying them on three Poisson process models on [0,  1] with intensities that 
exhibit different behaviours and regularities. The chosen measures of accuracy 
are the mean root integrated squared error (MRISE) which is defined as

and the mean integrated absolute error (MIAE) which is defined as

We estimate the MRISE and the MIAE with

E

[(
∫ (�̂J(t) − �(t))2dt

)1∕2
]
,

E

[
∫ ∣ �̂J(t) − �(t) ∣ dt

]
.
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and

In this study, we use n = 10,000 repeat simulations and tj = (j − 1)∕m where 
m = 1000 . The first two intensity models are based on the “Blocks” and “Bumps” 
test functions from Donoho and Johnstone (1994). The third function is a modifica-
tion to that defined in Sect. 3.4.3. We will refer to this model as “TriangleSine” and 
it has expression

where i(t) ∈
{
0,… , 2V+1 − 1

}
 is the index of the subinterval sV+1

i(t)
= [

i(t)

2V+1
T ,

i(t)+1

2V+1
T) 

in which t belongs, and �(t) is defined by t = (i(t) + �(t))T∕2V+1.
We set T = 1 and rescale these functions so that their integral on [0, 1] are equal. 

Further, since the “Blocks” function can take negative values, we apply an upwards 
shift such that it is positive. The resulting intensities are

 We are therefore ensuring that E{N(1)} is always equal to 2A0 for the three Poisson 
process models. The value of A0 determines the highest resolution at which we can 
threshold the Haar wavelet coefficients. From the conditions of Theorem 2, the mini-
mum value of the set 

{
M�i = M ∫

sJ+1
i

�(t)dt, i = 0,… , 2J+1 − 1
}

 should be high 
enough (for instance, greater than or equal to 50) for reliable likelihood ratio tests 
for L-th level innovation up to level J (and for smaller groups of wavelet coefficients 
in local and intermediate thresholding). Since we are demonstrating the presented 
methods for the M = 1 case this imposes that the minimum value of 
{�i, i = 0,… , 2J+1 − 1} is greater than or equal to 50.

We now compare the MRISE and MIAE on these three intensity models for 
five thresholding strategies: statistical local, intermediate and global thresholding, 
as well as no thresholding (linear estimation) and the hard local thresholding of de 
Miranda and Morettin (2011). This study is restricted to continuous estimation of 

M̂RISE =
1

n

n∑
i=1

(
1

m

m∑
j=1

(
�̂J
i
(tj) − �(tj)

)2

)1∕2

M̂IAE =
1

n

n∑
i=1

(
1

m

m∑
j=1

∣ �̂J
i
(tj) − �(tj) ∣

)
.

ftsine(t) = �0

(
1 + (−1)i(t)�

(
�(t) −

1

2

)
+ A sin

(
2L+1�

T
t +

1

T

))
,

�blocks(t) =1.75A0 + 0.25A0

fblocks(t)

∫ 1

0
fblocks

�bumps(t) =1.75A0 + 0.25A0

fbumps(t)

∫ 1

0
fbumps

�tsine(t) =A0 + A0

ftsine(t)

∫ 1

0
ftsine

.
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the intensity and M = 1 as we want to compare methods in a practical context. We 
included the linear estimation as it serves as a reference point and is also the M = 1 
case for the methods presented in Reynaud-Bouret and Rivoirard (2010) and Bigot 
et al. (2013). We aim to study the influence of four parameters on this accuracy rank-
ing: the starting resolution level j0 , the maximum resolution level J, the significance 
level � and the value of A0 . In Table 1, we provide the relative MRISE (R-MRISE) 
and relative MIAE (R-MIAE) values for one scenario where the estimated MRISE 
and MIAE for each thresholding strategy is divided by the value under absence 
of thresholding, which serves as a reference point. We refer to the method of de 
Miranda and Morettin (2011) as “DM-L” and our three statistical thresholding strat-
egies as “LRT-L”, “LRT-I” and “LRT-G” for the local, intermediate and global 
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Fig. 7   Averaged reconstruction of the three intensity models “Blocks”, “Bumps” and “TriangleSine”, 
with A0 = 10,000, j0 = 3, J = 7,M = 1 and significance level � = 0.05 . The true intensity is in blue, and 
the reconstruction is in red (colour figure online)

Table 1   R-MRISE and 
R-MIAE values with 
A0 = 10,000, j0 = 3, J = 7,M = 1 
and significance level � = 0.05

The number in bold indicates the best-performing method

Linear DM-L LRT-L LRT-I LRT-G

Blocks R-MRISE 1 0.6455 0.6937 0.6402 0.7701
Blocks R-MIAE 1 0.5156 0.5778 0.5107 0.7367
Bumps R-MRISE 1 1.0099 1.0538 0.9659 0.9996
Bumps R-MIAE 1 0.7632 0.7974 0.7201 1
TriangleSine R-MRISE 1 0.6887 0.6544 0.6747 0.6000
TriangleSine R-MIAE 1 0.7448 0.7224 0.7079 0.6008
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thresholding methods, respectively. Intensity reconstructions averaged over 10,000 
simulations are shown in Fig.  7 under the same setting and for all thresholding 
procedures as well. Bootstrapped 95% confidence intervals for the MRISE and the 
MIAE, plus further simulation studies, can be found in Supplementary Material S3.

The first conclusion in the setting of Table 1 is that we have statistical evidence 
that for all three intensity models at least one of LRT-I or LRT-G performs better 
than the linear and DM-L strategies. The statistical validity of this ranking relies 
on the absence of overlap between the 95% confidence intervals for the MRISE and 
MIAE of each method, as shown in Supplementary Material S3 Table  1. LRT-G 
performs better when innovations are well spread across time, whereas LRT-I leads 
in the case of abrupt changes. The same ranking is obtained when using the MIAE 
as an error measure, which gives consistency to the results. This was expected from 
the design of each strategy. For instance, the “Blocks” intensity has a sparse Haar 
wavelet decomposition with nonzero mother wavelets coefficients at high resolutions 
localized at the jumps. Therefore, this model favours LRT-L and LRT-I. Figure 7 
shows the mean intensity estimate against the true intensity and therefore illustrates 
bias. We note as expected that the linear estimator is unbiased, although it has high 
variance which is accounted for in the MRISE. The improvement from the linear 
estimation is more significant for the “Blocks” and “Bumps” intensity models when 
the MIAE is used as an error measure. This is due to the MRISE giving more penal-
ization to noisy estimators at higher resolutions than the MIAE.

5 � Application to NetFlow data

We apply the methodology presented in this paper to NetFlow data from a single 
router on the Imperial College London network. This data consists of 1.566 × 108 
event times, each corresponding to the time a flow was sent or received by the router. 
The data was collected over a single 24-h period that starts and ends at midnight. We 
therefore assume this to be a single realization ( M = 1 ) of an underlying Poisson 
process that may or may not be homogeneous. In Sect. 4.4, to give validity to our 
approach, we proposed that the minimum event count across the half-support of a 
Haar wavelet at the highest level of resolution J should be at least 50. In the follow-
ing data analysis, we consider up to scale J = 10 , at which the minimum event count 
is 5.9035 × 104 . This puts us well within the setting where asymptotic distributions 
derived in this paper can be assumed and the power of the tests within the threshold-
ing mechanism are high.

We start with testing level-1 homogeneity for which we obtain a p value less than 
10−300 indicating strong evidence to reject homogeneity. We also strongly reject the 
absence of level-L innovation for all levels between 1 and 10, with p values again 
less than 10−300 in all cases. This indicates an underlying intensity function which 
is rapidly varying across even very small timescales ( ∼ 1 min). In Fig. 8, we plot 
reconstructions of the intensity for different values of J using the LRT-I method with 
j0 = 3 and � = 0.05 . From the simulation study in Supplementary Material S3, this 
method is preferred as it performed consistently well under this choice of param-
eters. Analysing at J = 4 shows broad trends in network activity, including both 
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human behavioural habits and general automated processes on the network. Specifi-
cally, between 03:00 and 07:00 the high activity through the router corresponds to 
automated system tasks, predominantly the backing up of servers. Human activity 
is then likely to be responsible for increasing activity from 09:00 until late after-
noon. NetFlow traffic then decreases from 18:00 until midnight as human activity 
on the network gradually decreases. The analysis of J = 4 and J = 6 reveal interest-
ing spikes in activity at around 18:00 and 21:00. The spike at 18:00, for example, 
is likely to be a flurry of activity before people leave to go home. As we move up 
to scales 8 and then 10 we reveal regular, pronounced spiking in the activity on the 
network. Further analysis reveals these to be all of similar magnitudes and at regu-
lar 15-min intervals. Routers are designed to manage their memory, which means 
that, at regular intervals, it will close some open flows, and start them again. Typical 
manufacturer choices for these intervals are 5, 10 or 15 min. This analysis would 
indicate 15 min for this particular router.

Our ability to be able to detect and characterize network behaviour in this mul-
tiscale fashion has potential usage in cyber-security applications where the charac-
terization of “normal” network activity is key to being able to detect anomalous and 
potentially malicious activity.

6 � Conclusion

The wavelet analysis of point processes in continuous time has been addressed 
through wavelet expansions of the first-order intensity. By defining a Haar wavelet 
multiresolution analysis on the point process, new multiscale properties, namely J-
th level homogeneity and L-th level innovation, were introduced and tests for them 
formulated. Importantly, these tests can be applied when only a single realization of 
the process is observed. Tests for L-th level innovation formed the framework with 
which to perform thresholding of wavelet coefficients for intensity estimation.
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Fig. 8   Reconstruction of the NetFlow intensity with LRT-I, using parameters 
j0 = 3, J ∈ {4, 6, 8, 10},M = 1 and significance level � = 0.05
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The mean root integrated squared error and mean integrated absolute error of 
these methods were compared on simulated data for three different intensity models, 
revealing different accuracy rankings depending on the model. An important point 
here is that no thresholding method uniformly outperforms all others—although 
at least one of the statistical thresholding (LRT) methods outperforms the existing 
local hard thresholding method (DM-L) in all but one of the scenarios studied (see 
Supplementary Material S3). This seems reasonable and is consistent with the study 
of Antoniadis et al. (2001) for wavelet regression and Besbeas et al. (2004) for dis-
crete time Poisson intensity estimation. The rule of thumb we offer is that LRT-G 
outperforms the other methods for intensity functions that exhibit smooth, large-
scale changes in time. For intensity functions that exhibit abrupt, localized changes 
(i.e. possess a sparse wavelet representation), LRT-L and LRT-I strategies are to be 
preferred. It has been demonstrated that LRT-I thresholding when applied to Net-
Flow data exposes different behaviour at different scales, and that this can be attrib-
uted with various human and automated activities. This illustrates the benefit and 
insight gained from a multiscale approach to analysing point processes.

How to go about choosing the free-parameters �, j0 and J in a data-driven way 
still needs to be addressed. The development of cross-validation schemes in the 
point process setting would make an interesting extension but falls outside the scope 
of this paper. Extensions of the presented theory and methodology can now be con-
sidered for the second-order intensity and multidimensional point processes.
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