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Abstract
We study an online multiple testing problem where the hypotheses arrive sequen-
tially in a stream. The test statistics are independent and assumed to have the same 
distribution under their respective null hypotheses. We investigate two recently 
proposed procedures LORD and LOND, which are proved to control the FDR in 
an online manner. In some (static) model, we show that LORD is optimal in some 
asymptotic sense, in particular as powerful as the (static) Benjamini–Hochberg pro-
cedure to first asymptotic order. We also quantify the performance of LOND. Some 
numerical experiments complement our theory.

Keywords  Online multiple testing · False discovery rate (FDR) control · Asymptotic 
optimality · False non-discovery rate (FNR) analysis

1  Introduction

Multiple testing is now a well-established area in statistics and arises in almost every 
scientific field (Dudoit and van der Laan 2007; Dickhaus 2014; Roquain 2011). The 
literature on multiple testing has focused almost exclusively on the offline setting, 
which assumes the entire batch of hypotheses and the corresponding P values are 
available.

In this paper, we consider, instead, an online multiple testing scenario where 
infinitely many hypotheses H = (ℍ1,ℍ2,ℍ3,…) arrive sequentially in a stream 
with corresponding P values, P1,P2,P3,… , and we are required to decide whether 
we accept or reject ℍi only based on P1,… ,Pi , without access to the total number 
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of hypotheses in the stream or future P values. Our purpose is to study the recent 
online multiple testing procedures introduced by Javanmard and Montanari (2018). 
They are known to control the FDR in an online manner, and we study their power 
properties in an asymptotic framework where the offline method of Benjamini and 
Hochberg (1995) plays the role of (oracle) benchmark.

1.1 � The risk of a multiple testing procedure

Consider a setting where we want to test an ordered infinite sequence of null 
hypotheses, denoted H = (ℍ1,ℍ2,ℍ3,… , ), where at each step i we have to decide 
whether to reject ℍi having access to only previous decisions. The test that we use 
for ℍi rejects for large positive values of a statistic Xi . Throughout, we assume 
that test statistics are all independent. Denote the collection of the first n hypoth-
eses in the stream by H(n) = (ℍ1,… ,ℍn) , and the vector of first n test statistics 
by �(n) = (X1,… ,Xn) . Let �i denote the (true) survival function1 of Xi and 
�(n) = (�1,… ,�n) . We assume that the P value corresponding to Xi can be com-
puted. The simplest such case is when ℍi is a singleton, ℍi = {�null

i
} , and the cor-

responding null distribution �null
i

 is known. In that case, the ith P value is defined 
as Pi = �null

i
(Xi) , which is the probability of exceeding the observed value of the 

statistic under its null distribution.
Let F  index all the false null hypotheses in the stream, and let 

Fn ⊂ [n] ∶= {1,… , n} index the false null hypotheses in the first n hypotheses, 
meaning

A multiple testing procedure R , for each n ≥ 1 , takes in �(n) and returns a subset of 
{1,… , n} indicating the null hypotheses that the procedure rejects among the first n 
in the sequence. Given such a procedure R , the false discovery rate is defined as the 
expected value of the false discovery proportion (Benjamini and Hochberg 1995)

where we denoted the cardinality of a set A ⊂ [n] by |A| and use the convention that 
0∕0 = 0 . While the FDR of a multiple testing procedure is analogous to the level or 
size of a test procedure, the false non-discovery rate (FNR) plays the role of power 
and is defined as the expected value of the false non-discovery proportion2

(1)Fn = {i ∈ [n] ∶ �i ∉ ℍi}.

(2)FDRn(R) = �
�

[|R(�(n))⧵Fn|
|R(�(n))|

]
,

1  In this paper, the survival function of a random variable Y is defined as y ↦ ℙ(Y ≥ y).
2  We note that this definition is different from that of Genovese and Wasserman (2002). According to 
our definition, the FNR is the expected fraction of non-nulls that are not correctly rejected out of all non-
nulls, while according to the definition of Genovese and Wasserman (2002), the FNR is the fraction of 
non-nulls that are not rejected out of all non-rejections. We find our definition to be more appropriate in 
the asymptotic setting that we consider.
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In analogy with the risk of a test—which is defined as the sum of the probabilities of 
type I and type II error—we define the risk of a multiple testing procedure R as the 
sum of the false discovery rate and the false non-discovery rate

Remark 1  The procedure that never rejects and the one that always rejects both 
achieve a risk of 1, so that any method that has a risk exceeding 1 is useless.

1.2 � More related work

1.2.1 � Related work in online multiple testing and FDR control

The literature on multiple testing is by now vast. Only more recently, though, have 
multiple testing procedures been proposed for the online setting. The online multi-
ple testing framework goes back to the work of Foster and Stine (2008), who pro-
pose a class of online multiple testing procedures referred to as alpha-investing 
rules, which provide in the online setting a uniform control of the marginal FDR 
(mFDR). Building on this early work, Aharoni and Rosset (2014) propose a broader 
class of online procedures called generalized alpha-investing rules (GAI), which 
are also shown to control the mFDR. Javanmard and Montanari (2015) propose two 
closely related procedures called LOND and LORD algorithms which control both 
FDR and mFDR in online testing. We refer to Sects. 4.1 and 4.2 for more details 
of rules and discuss their asymptotic risk in our context. In the published version 
of their work, Javanmard and Montanari (2018) study generalized alpha-investing 
rules and derive conditions under which they provide an online FDR control. They 
also propose other procedures for online control of the false discovery exceedance. 
In their paper, they establish some power lower bound for LORD under the Gauss-
ian mixture model with a fixed fraction of contamination. We note that the lower 
bound becomes trivial (tending to zero) under the sparse Gaussian mixture model 
where the fraction of contamination is vanishing to zero, which is the regime we 
consider in the present paper. Ramdas et al. (2017) modify the GAI class (referred 
as to GAI++ in their paper) to improve the power of GAI rules (uniformly) while 
still controlling the FDR, and in particular propose LORD++, a variant of LORD. 
In follow-up work, Ramdas et al. (2018) demonstrate that using adaptivity à la (Sto-
rey 2002), a method called SAFFRON is able to improve on LORD++. (We note 
that these works appeared after ours was made available.)

In the present paper, we study the asymptotic power properties of the LORD and 
LOND methods, complementing the results of Javanmard and Montanari (2018) in 
the online multiple testing setup. To the best of our knowledge, this is the first time 
that the (asymptotic) power of online testing rules is established under the sparse 
Gaussian mixture model defined in (9).

(3)FNRn(R) = �
�

[|Fn⧵R(�(n))|
|Fn|

]
.

(4)riskn(R) = FDRn(R) + FNRn(R).
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This paper is a continuation of our previous work in the static3 (offline) setting 
(Arias-Castro and Chen 2017), where an asymptotic oracle risk bound for multiple 
testing is obtained, and both the method of Benjamini and Hochberg (1995) and the 
distribution-free method of Foygel-Barber and Candès (2015) are proved to achieve 
that bound. Compared with the offline testing problem considered by Arias-Castro 
and Chen (2017), the online testing problem is more complicated in that an online 
procedure assigns a different threshold to each p value arriving sequentially, instead 
of using the same threshold as the BH method does.

Various other oracle bounds and corresponding optimality results for multiple 
testing procedures are available in the literature; see, for example, Genovese and 
Wasserman (2002), Sun and Cai (2007), Storey (2007), Bogdan et al. (2011), Neu-
vial and Roquain (2012), Meinshausen et al. (2011), Ji and Jin (2012), Jin and Ke 
(2016) and Butucea et al. (2018).

1.2.2 � Related work in other sequential setting

There is a broader literature on sequential multiple testing problems. For example, 
Bartroff (2013) consider the setup of testing K > 2 null hypotheses ℍ1,… ,ℍK , 
where K is fixed. For each hypothesis ℍk , the data X(k)

1
,… ,X(k)

n
 comes sequentially 

in a stream. So in their paper, “sequential” refers to the manner in which data is 
collected, rather than the manner in which the hypotheses are considered (which is 
the setting we consider). They propose variant of the BH procedure which can deal 
with this sequential sampling setup and prove its simultaneous FDR and FNR con-
trol (which are defined differently than we do here). See Bartroff (2014) and Bartroff 
and Song (2014) for general step-up and step-down procedures which control the 
simultaneous generalized type I and II error rates (including FDR and FWER) in 
this sequential sampling setting.

Another situation, referred to as sequential selection, is where the hypotheses are 
ordered based on side information about how important or promising each hypoth-
esis is, and one is only permitted to reject an initial contiguous block, ℍ1,… ,ℍk , of 
hypotheses. A rejection rule in this setting amounts to a procedure for choosing the 
stopping point k. In this setting the total number of hypotheses is assumed known. 
In this context, G’Sell et al. (2016) develop two rules (FowardStop and StrongStop) 
to decide the first k hypotheses in the sequence to reject, which are shown to con-
trol the FDR. Foygel-Barber and Candès (2015) propose their own step-up proce-
dure (SeqStep), which also guaranties FDR control under independence, while Li 
and Barber (2017) develop a broader class of ordered hypotheses testing procedures 
under such setting, called accumulation tests. Lei and Fithian (2016) propose an 
adaptive version of SeqStep. Fithian et al. (2015) consider sequential selection in the 
context of selecting variables in a linear regression modeling.

3  By “static” we mean a setting where all the null hypotheses of interest are considered together. This is 
the more common setting considered in the multiple testing literature.
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1.3 � Content

The rest of the paper is organized as follows. In Sect. 3.1 we consider the normal 
location model and derive the performance of LORD under this model. Gener-
alizing this model, in Sect.  3.2 we consider a nonparametric Asymptotic Gen-
eralized Gaussian model. We analyze the asymptotic performance of the LORD 
and LOND procedures of Javanmard and Montanari (2018) under this model in 
Sects. 4.1 and 4.2. We present some numerical experiments in Sect. 5. All proofs 
are gathered in Sect. 7.

2 � Methods

We describe the LORD and LOND procedures of Javanmard and Montanari 
(2018), which are the methods we study in this paper. Recall that ℍ1,ℍ2,… are 
tested sequentially and that Pi denotes the P value corresponding to the test of 
ℍi . These two procedures, and most others, work as follows: set a significance 
level �i based on P1,… ,Pi−1 (except for �1 which is set beforehand) and reject ℍi 
if Pi ≤ �i . The LORD and LOND methods vary in how they set these thresholds, 
although they both start with a sequence of the form

where q denotes the desired FDR control level. In what follows, we stay close to the 
notation used in Javanmard and Montanari (2018).

2.1 � The LORD method

Based on a chosen sequence (5), the LORD algorithm—which stands for (signifi-
cance) Levels based On Recent Discovery—sets the sequential significance levels 
(�i)

∞
i=1

 as follows:

with ti ∶= 0 for all i before the time of first discovery.
In Javanmard and Montanari (2018) the LORD algorithm is shown to control 

FDR at a level less than or equal to q in an online fashion, specifically,

if the P values are independent. More generally, Javanmard and Montanari (2018) 
study a class of monotone generalized alpha-investing procedures (which includes 
LORD as a special case) and prove that any rule in this class controls the cumulative 

(5)�i ≥ 0 such that

∞∑
i=1

�i = q,

(6)𝛼i = 𝜆i−ti , ti = max{l < i ∶ ℍl is rejected},

(7)sup
n≥1

FDRn(R) ≤ q,
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FDR at each stage provided the P values corresponding to true nulls are independent 
from the other P values.

2.2 � The LOND method

Based on a chosen sequence (5), the LOND algorithm—which stands for (signifi-
cance) Levels based On Number of Discovery—sets the sequential significance lev-
els (�i)∞i=1 as follows:

where D(n) denotes the number of discoveries in H(n) = (ℍ1,… ,ℍn) , with 
D(0) ∶= 0.

In Javanmard and Montanari (2018) the LOND is shown to control FDR at level 
less than or equal to q everywhere in an online manner, the same as (7), if the P val-
ues are independent.

3 � Models

In this paper, we study the FNR of each of the LORD and LOND methods of Javan-
mard and Montanari (2018) on the first n hypotheses as n → ∞ . As benchmark, 
we use the oracle that we considered previously (Arias-Castro and Chen 2017) for 
the static setting defined by these n hypothesis testing problems. For the reader not 
familiar with that paper, at least in the models that we consider, this turns out to be 
asymptotically equivalent to applying the Benjamini–Hochberg (BH) method to the 
first n hypotheses. Note that the latter accesses all the first n hypotheses at once and 
is thus not constrained to be sequential in nature.

The static setting we consider is that of a location mixture model. We assume that 
we know the null distribution function � , assumed to be continuous for simplic-
ity. We then assume that the test statistics are independent with respective distribu-
tion Xi ∼ �i = �(⋅ − �i) , where �i = 0 under the null ℍi and 𝜇i > 0 otherwise. Both 
minimax and Bayesian considerations lead one to consider a prior on the �i ’s where 
a fraction � of the �i ’s are randomly picked and set equal to some 𝜇 > 0 , while the 
others are set to 0. The prior is therefore defined based on � and � , which together 
control the signal strength. The P value corresponding ℍi is Pi ∶= 𝛷̄(Xi) , where 
𝛷̄ ∶= 1 −𝛷 is the null survival function.

3.1 � The normal model

As an emblematic example of the distributional models that we consider in this paper, 
let � denote the standard normal distribution. Assume as above that Xi ∼ � under ℍi 
and Xi ∼ �(⋅ − �) otherwise. Thus, under each null hypothesis, the corresponding test 
statistic is standard normal, while that statistic is normal with mean � and unit vari-
ance otherwise. This is the model we consider in Arias-Castro and Chen (2017) and the 
inspiration comes from a line of research on testing the global null 

⋂
i ℍi in the static 

(8)�i = �i(D(i − 1) + 1),
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setting (Ingster 1997; Ingster and Suslina 2003; Donoho and Jin 2004). As in this line 
of work, we use the parameterization pioneered by Ingster (1997), namely

In the static setting, we know from our previous work (Arias-Castro and Chen 2017) 
that any threshold-type procedure has risk tending to 1 as n → ∞ when r < 𝛽 are 
fixed. We also know that the BH method with FDR control at q → 0 slowly has risk 
tending to 0 when r > 𝛽 are fixed. In fact, these results are derived in the wider 
context of an asymptotically generalized Gaussian model, which we consider later. 
Thus, r = � is the static selection boundary.

Remark 2  (Javanmard and Montanari 2018) compared the power of their procedures 
in terms of lower bounds on the total discovery rate under the same mixture model 
but with a fixed mixture weight � . This is in keeping with the seminal work of Geno-
vese and Wasserman (2002). In contrast, here we focus on a “sparser” setting where 
� = o(1) , meaning that the fraction of false null hypotheses (i.e., true discoveries) is 
negligible compared to the total number of null hypotheses being tested.

3.2 � Asymptotically generalized Gaussian model

Beyond the normal model, we follow (Arias-Castro and Chen 2017; Donoho and Jin 
2004) and consider other location models where the base distribution has a polynomial 
right tail in log scale.

Definition 1  A survival function 𝛷̄ = 1 −𝛷 is asymptotically generalized Gauss-
ian (AGG) on the right with exponent 𝛾 > 0 if limx→∞ x−𝛾 log 𝛷̄(x) = −1∕𝛾.

The AGG class of distributions is nonparametric and quite general. It includes the 
parametric class of generalized Gaussian (GG) distributions with densities {𝜓𝛾 , 𝛾 > 0} 
given by log�� (x) ∝ −|x|�∕� , which comprises the normal distribution ( � = 2 ) and 
the double-exponential distribution ( � = 1 ). We assume that � ≥ 1 so that the null dis-
tribution has indeed a sub-exponential right tail.

Remark 3  We note that the scale (e.g., standard deviation) is fixed, but this is really 
without loss of generality as both the LORD and LOND methods are scale invariant. 
This is because the P values are scale invariant.

The model is the same as the one considered in Sect. 3.1 except that � is an AGG 
distribution with parameter � ≥ 1 . As in our previous work (Arias-Castro and Chen 
2017), we use the following parameterization

where r ≥ 0 and � ∈ (0, 1) are always assumed fixed.

(9)� = n−� and � =
√
2r log n.

(10)� = n−� and � = (�r log n)1∕� ,
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4 � Performance analysis

In this section, we analyze the performance of the LORD and LOND methods in 
the static setting described earlier. Recall that q denotes the desired FDR control 
level. Typically q is set to a small number, like q = 0.10 . In this paper, we allow 
q → 0 as � → 0 , but slowly. Specifically, we always assume that

4.1 � The performance of LORD

We first establish a performance bound for LORD. It happens that, despite 
required to control the FDR in an online fashion, LORD achieves the static selec-
tion boundary when desired FDR control is appropriately set.

Theorem  1  (Performance bound for LORD) Consider a static AGG mixture 
model with exponent � ≥ 1 parameterized as in (10). Assume that we apply LORD 
with (�i)∞i=1 defined as �i ∝ i−� with 

∑∞

i=1
�i = q , where 𝜈 > 1and q satisfies (11). If 

r > 𝜈𝛽 , the LORD procedure has FNRn → 0 as n → ∞ . In particular, if q → 0 , then 
it has risk tending to 0.

Note that the latter part comes from the fact that the LORD procedure controls 
of the FDR at the desired level q as established in (Javanmard and Montanari 
2018) in the more demanding online setting. In essence, therefore, LORD (with a 
proper choice of � above) achieves the static oracle selection boundary r = �.

Remark 4  Assume that, instead, we apply LORD with any decreasing sequence 
(�i)

∞
i=1

 satisfying 
∑∞

i=1
�i = q and

Then the conclusions of Theorem  1 remain valid. In particular, such a choice of 
sequence (e.g., �i ∝ (log i)2∕i ) adapts to the (usually unknown) values of r and � . 
(We provide details in Sect. 7.)

4.2 � The performance of LOND

We now turn to LOND and establish a performance bound under the same setting.

Theorem 2  Consider a static AGG mixture model with exponent � ≥ 1 parameter-
ized as in (10). Assume that we apply LOND with (�i)∞i=1 defined as �i ∝ i−� with ∑∞

i=1
�i = q , where 𝜈 > 1 and q satisfies (11). If r > 𝛽 + (𝜈1∕𝛾 − r1∕𝛾 )𝛾 + 𝜈 − 1 , the 

(11)q = q(n) > 0 and naq(n) → ∞ for all fixed a > 0.

(12)i𝜈𝜆i → ∞, for any fixed 𝜈 > 1.
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LOND procedure has FNRn → 0 as n → ∞ . In particular, if q → 0 , then it has risk 
tending to 0.

In essence, LOND (with a proper choice of � above) has risk tending to 0 when 
r − (1 − r1∕𝛾 )𝛾 > 𝛽 . This is the best upper bound that we were able to establish for 
the LOND algorithm. We do not know if it is optimal or not. In particular, it’s 
quite possible that LOND also achieves the static selection boundary.

Remark 5  The analog of Remark  4 applies here as well. (Technical details are 
omitted.)

5 � Numerical experiments

In this section, we perform some simulations to study the numerical performance 
of LORD and LOND, and also to compare them with the (static) BH procedure. 
We consider the normal model and the double-exponential model. It is worth 
repeating that the BH procedure, which is a static procedure, requires knowl-
edge of all P values to determine the significance level for testing the hypoth-
eses. Hence, it does not address the scenario in online testing. In contrast, the 
sequential methods decide the significance level at each step based on previous 
outcomes and are required to control the FDR at each step.

In our experiments, for both LORD and LOND, we choose the sequence (�i)∞i=1 
as

with L set to ensure 
∑∞

i=1
�i = q , where (as before) q denotes the desired FDR level.

5.1 � Fixed number of hypotheses

In this first set of experiments, the number of tests is chosen large at n = 109 , 
to assess the accuracy of our asymptotic analysis, and then small at n = 103 , to 
see how the various methods behave when the number of tests is more moder-
ate. (“Appendix” describes additional simulation results with varying number of 
hypotheses and desired FDR level q.)

We draw m values of the test statistics from the alternative distribution 
�(⋅ − �) , and the other n − m from the null distribution � . All the models are 
parameterized as in (10). We choose a few values for the parameter � so as to 
exhibit different sparsity levels, while the parameter r takes values in a grid span-
ning [0, 1.5]. Each situation is repeated 500 times, and we report the average FDP 
and FNP for each procedure. The FDR control level is set at q = 0.10.

(13)�i =
L

i�
, � = 1.05,
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5.1.1 � Normal model

In this model, � is the standard normal distribution. The simulation results are 
reported in Figs. 1 and 3 for n = 109 and in Figs. 2 and 4 for n = 103 . In Figs. 1 
and  2 we report the FDP. We see that LOND becomes more conservative than 
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Fig. 1   Simulation results showing the FDP for the BH, LORD and LOND methods under the normal 
model in three distinct sparsity regimes. The black horizontal line delineates the desired FDR control 
level ( q = 0.1 ). The number of the hypotheses is n = 109
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LORD as r increases under both scenarios. In Figs. 3 and 4 we report the FNP. We 
see that LOND is clearly less powerful than LORD in the regime � = 0.2 , but per-
forms comparably to LORD in the regime � = 0.6 . This is in line with the theory 
that LOND can at least achieve the line r = � + (1 − r1∕� )� , which is getting closer 
to r = � with increasing values of � . We notice that both LORD and LOND are 
clearly less powerful than BH in finite samples, even at n = 109 , even though our 
theory says that LORD achieves the same selection boundary as BH in the large-
sample limit. Also, due to the limitation in choice of � (here � = 1.05 ), the selection 
boundary that LORD can achieve is r = �� by theory, which explains why LORD 
lags behind BH—although we do see that as n increases from 103 to 109 , the dis-
tance between LORD and BH is smaller, and also the transition from powerless 
(high FNP) to powerful (low FNP) is sharper (for all methods) around the selection 
boundary of r = �.

5.1.2 � Double‑exponential model

In this model, � is the double-exponential distribution with variance 1. The simula-
tion results for n = 109 are reported in Figs. 5 (FDP) and 7 (FNP), and the results 
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Fig. 4   Simulation results showing the FNP for the BH, LORD and LOND methods under the normal 
model in three distinct sparsity regimes. The black vertical line delineates the theoretical threshold 
( r = � ). The number of the hypotheses is n = 103
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Fig. 5   Simulation results showing the FDP for the BH, LORD and LOND methods under the double-
exponential model in three distinct sparsity regimes. The black horizontal line delineates the desired 
FDR control level ( q = 0.1 ). The number of the hypotheses is n = 109
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for n = 103 are reported in Figs. 6 (FDP) and 8 (FNP). Here, we observe that LOND 
becomes more conservative than LORD as r increases in terms of FDP. The LOND 
and LORD perform more comparably than in the normal setting in terms of FNP, 
especially when � is close to 1. This is again in line with our theoretical results. The 
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Fig. 6   Simulation results showing the FDP for the BH, LORD and LOND methods under the double-
exponential model in three distinct sparsity regimes. The black horizontal line delineates the desired 
FDR control level ( q = 0.1 ). The number of the hypotheses is n = 103
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Fig. 7   Simulation results showing the FNP for the BH, LORD and LOND methods under the double-
exponential model in three distinct sparsity regimes. The black vertical line delineates the theoretical 
threshold ( r = � ). The number of the hypotheses is n = 109
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Fig. 8   Simulation results showing the FNP for the BH, LORD and LOND methods under the double-
exponential model in three distinct sparsity regimes. The black vertical line delineates the theoretical 
threshold ( r = � ). The number of the hypotheses is n = 103
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transition from powerful to powerless appears sharper, in particular when n is large 
(Figs. 6, 7, 8).

6 � Discussion

In this paper, we have considered the online multiple testing scenario where a possibly 
infinite sequence of hypotheses arrive in a stream, and decisions are made only based 
on previous results before the next hypothesis arrives. We investigate the asymptotic 
properties of the recent sequential multiple testing procedures, LORD and LOND, of 
Javanmard and Montanari (2015, 2018), which have been proved to control the FDR in 
an online manner. We have compared their performance with the (offline) BH method 
in the context of a sparse asymptotically generalized Gaussian mixture model, and have 
shown that LORD can achieve the same power as the BH method to first asymptotic 
order. We have also quantified the asymptotic performance of LOND in the same set-
ting. Although we were not able to establish LOND as being as powerful as LORD (to 
first order), in our simulations their performances are comparable. (We note that Javan-
mard and Montanari (2018) introduce LORD but do not mention LOND.)

7 � Proofs

We prove our results in this section. Let � denote the CDF of null distribution. Without 
loss of generality, we assume throughout that �(0) = 1∕2 . Let F(t) denote the CDF of 
the P values under alternatives so that

where �−1 is the inverse function of � . Let

which is the CDF of the P values from the mixture model. Let F̄ = 1 − F , which is 
the survival function of the P values under alternatives. Note that

where � ∶= �−1(1 − t) , or equivalently, t = 𝛷̄(𝜉) . Because � is as in Definition 1, 
when � → ∞ , we have

which also implies, when t → 0 , that

(14)F(t) = �(� −�−1(1 − t)),

(15)G(t) = (1 − �)t + �F(t),

(16)F̄(t) = 1 − F(t) = 1 −𝛷(𝜇 − 𝜉) = 𝛷̄(𝜇 − 𝜉),

(17)t = 𝛷̄(𝜉) = exp

{
−
𝜉𝛾

𝛾
(1 + o(1))

}
→ 0,

(18)� = �−1(1 − t) ∼ (� log(1∕t))1∕� .
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7.1 � Discovery times (LORD)

We apply LORD to the static setting under consideration. Denote �l as the time of lth 
discovery (with �0 = 0 ), and �l = �l − �l−1 as the time between the (l − 1) th and lth dis-
coveries. Assume a sequence satisfying (5) has been chosen. Given the update rule of 
(6), it can be seen that the inter-discovery times {�l ∶ l ≥ 1} are IID.

To prove Theorem 1, we will use the following bound on the expected inter-discov-
ery time.

Proposition 1  Consider a static AGG mixture model with exponent � ≥ 1 parame-
terized as in (10). Assume that � ∈ (0, 1) and r ≥ 0 are both fixed. Assume that r > 𝛽 
and let 𝜈 > 1 be such that 𝜈 < r∕𝛽 . If we apply LORD with (�i)∞i=1 defined as �i ∝ i−� 
with 

∑∞

i=1
�i = q,

for some C > 0 that does not depend on n. The same holds if we apply LORD with 
(�i)

∞
i=1

 satisfying (12) and 
∑∞

i=1
�i = q.

We prove this result. Recall the definition of G in (15) and note that G ≥ �F . By the 
update rule of LORD algorithm, for all m ≥ 1 we have

Let t∗ be the value such that �−1(1 − t∗) = � , i.e., t∗ = �(−�) = n−r+o(1) by the fact 
that � satisfies Definition 1. Then, for t ≥ t∗ , we get

and then

so that if �i = Li−� ≥ t∗ , i.e., i ≤ n1 ∶= ⌊(L∕t∗)1∕�⌋ = nr∕�+o(1) , we have 
F(�i) ≥ �(0) = 1∕2.

Remark 6  If instead (�i)∞i=1 satisfies (12) then i��i → ∞ as i → ∞ , so that exists a 
constant L > 0 such that �i ≥ Li−� for all i, and this is all that we need to proceed.

Thus, for m ≤ n1,

(19)�(𝛥l ∧ n) ≤ 2n𝛽 + C, for all l > 0,

ℙ(𝛥l > m) =

𝜏l−1+m∏
i=𝜏l−1+1

(1 − G(𝛼i)) =

𝜏l−1+m∏
i=𝜏l−1+1

(1 − G(𝜆i−𝜏l−1))

=

m∏
i=1

(1 − G(𝜆i)) ≤ exp

{
−

m∑
i=1

G(𝜆i)

}
≤ exp

{
−𝜀

m∑
i=1

F(𝜆i)

}
.

�−1(1 − t) ≤ �−1(1 − t∗) = �,

F(t) = �(� −�−1(1 − t)) ≥ �(� −�−1(1 − t∗)) = �(� − �) = �(0) = 1∕2,
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and for m > n1,

Thus,

Next, we bound �(�l ∧ n) . Due to the fact that {𝛥l ∧ n > m} = {𝛥l > m} for 
1 ≤ m ≤ n − 1 , and {𝛥l ∧ n > m} = � if m ≥ n , we have

We split the summation over 1 ≤ m ≤ n1 and n1 + 1 ≤ m ≤ n and derive the corre-
sponding upper bound separately. For the first part,

For the second part,

since �n1 = nr∕�−�+o(1) and r
𝜈
> 𝛽 . Combining the above two bounds, we obtain

This establishes Proposition 1.	�  ◻

7.2 � Proof of Theorem 1

Note the number of false nulls is m = |Fn| = �n ∼ n1−� . The false non-discovery 
rate of LORD (denoted FNRn ) is as follows:

m∑
i=1

F(�i) ≥ m∕2,

m∑
i=1

F(�i) ≥

n1∑
i=1

F(�i) ≥ n1∕2.

ℙ(𝛥l > m) ≤ exp{−𝜀(m ∧ n1)∕2}.

𝔼(𝛥l ∧ n) =

∞∑
m=0

ℙ(𝛥l ∧ n > m)

=

n−1∑
m=1

ℙ(𝛥l > m) + 1

≤

n−1∑
m=1

exp{−𝜀(m ∧ n1)∕2} + 1.

n1∑
m=1

exp{−𝜀(m ∧ n1)∕2} =

n1∑
m=1

exp{−𝜀m∕2} ≤
1

exp{𝜀∕2} − 1
<

2

𝜀
= 2n𝛽 .

n−1∑
m=n1+1

exp{−�(m ∧ n1)∕2} =

n−1∑
m=n1+1

exp{−�n1∕2} ≤ n exp{−�n1∕2} = o(1),

�(�l ∧ n) ≤ 2n� + o(1) + 1.



326	 S. Chen, E. Arias‑Castro 

1 3

So, it suffices to bound the RHS of the equation.
Let D(n) be the number of discoveries in first n hypotheses H(n) by apply-

ing LORD with the sequence (�i) . Let 𝛥l = 𝛥l = 𝜏l − 𝜏l−1 , for 1 ≤ l ≤ D(n) , and 
𝛥D(n)+1 = n − 𝜏D(n) . Due to the fact that 0 ≤ 𝛥l ≤ (𝛥l ∧ n) , for 1 ≤ l ≤ D(n) + 1 , we 
have for any fixed 𝛿 > 0,

by Markov Inequality. Note that (�l ∧ n) ’s are IID. We define Mn ∶= ⌈�(�)∕�⌉ , 
where �

d
= �l ∧ n for all l > 0.

For any i ∈ H(n) , there exists only one j = j(i) ∈ {1, 2,… ,D(n) + 1} such that 
i ∈ (�j−1, �j ∧ n] , and

so that

By Proposition 1, there is C > 0 not depending on n such that

And thus, there is some L′ > 0 (constant in n) such that, for 1 ≤ i ≤ Mn,

Remark 7  If instead (�i)∞i=1 satisfies (12), then i��i → ∞ as i → ∞ , so that exists a 
constant L > 0 such that �i ≥ Li−� for all i, and this is all that we need to proceed.

FNRn = 𝔼

�∑n

i=1
𝕀{i ∉ H0(n) ∶ Pi ≥ 𝛼i}

m

�

=

∑n

i=1
𝔼[𝔼(𝕀{i ∉ H0(n) ∶ Pi ≥ 𝛼i} ∣ 𝛼i)]

m

=

∑n

i=1
𝔼[ℙ(i ∉ H0(n),Pi ≥ 𝛼i ∣ 𝛼i)]

m

=

∑n

i=1
𝔼[𝜀F̄(𝛼i)]

𝜀n

=

∑n

i=1
𝔼[F̄(𝛼i)]

n
.

ℙ(𝛥l ≥
𝔼(𝛥l ∧ n)

𝛿
) ≤

𝔼(𝛥l)

𝔼(𝛥l ∧ n)
⋅ 𝛿 ≤ 𝛿, for 1 ≤ l ≤ D(n) + 1,

�
[
F̄(𝛼i)

]
= �

[
F̄(𝛼i) ⋅ �{𝛥j(i) ≥ Mn}

]
+ �

[
F̄(𝛼i) ⋅ �{𝛥j(i) < Mn}

]

≤ 𝛿 + �
[
F̄(𝛼i) ⋅ �{𝛥j(i) < Mn}

]
,

(20)
n∑
i=1

�
[
F̄(𝛼i)

]
≤ n𝛿 + �

[
n∑
i=1

F̄(𝛼i) ⋅ �{𝛥j(i) < Mn}

]
.

(21)�(𝛥) ≤ 2n𝛽 + C, for all l > 0.

(22)
�i = Li−� ≥ L ⋅ (Mn)

−� = L ⋅ ⌈�(�)∕�⌉−� ≥ L ⋅

�
(2n� + C)∕�

�−�
≥ L�n−�� .
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Since F̄ is a decreasing function, the second term in RHS of (20) can be bounded 
as

Combining these bounds, we obtain

Since L�n−�� → 0 as n → ∞ , by Eq. (18) we have

so that

since r > 𝛽𝜈 . Therefore, F̄(L�n−𝛽𝜈) = 𝛷̄(𝜇 − 𝜉n) → 0 as n → ∞ . Hence,

This being true for any 𝛿 > 0 , necessarily, FNRn → 0 as n → ∞ . This establishes 
Theorem 1.	�  ◻

7.3 � Discovery times (LOND)

We apply LOND to the static setting under consideration. Denote �l as the time of 
lth discovery (with �0 = 0 ), and �l = �l − �l−1 as the time between the (l − 1) th and 
lth discoveries. Assume a sequence satisfying (5) has been chosen. Given the update 
rule of (8), it can be seen that the inter-discovery times {�l ∶ l ≥ 1} are i.i.d.

To prove Theorem 2, we will use the following bound on the expected discovery 
times.

�

�
n�
i=1

F̄(𝛼i) ⋅ �{𝛥j(i) < Mn}

�
= �

⎡
⎢⎢⎣

D(n)+1�
j=1

𝜏j∧n�
i=𝜏j−1+1

F̄(𝛼i) ⋅ �{𝛥j < Mn}

⎤
⎥⎥⎦

= �

⎡
⎢⎢⎣

D(n)+1�
j=1

𝛥j�
i=1

F̄(𝜆i) ⋅ �{𝛥j < Mn}

⎤
⎥⎥⎦

≤ �

⎡
⎢⎢⎣

D(n)+1�
j=1

𝛥j�
i=1

F̄(L�n−𝛽𝜈) ⋅ �{𝛥j < Mn}

⎤
⎥⎥⎦

≤ �

�
n�
i=1

F̄(L�n−𝛽𝜈)

�
≤ n ⋅ F̄(L�n−𝛽𝜈).

FNRn(R) =

∑n

i=1
�[F̄(𝛼i)]

n
≤ 𝛿 + F̄(L�n−𝛽𝜈).

�n ∶= �−1(1 − L�n−��) = (��� log n)1∕� (1 + o(1)),

� − �n = (�r log n)1∕� − (��� log n)1∕� (1 + o(1))

∼ (r1∕� − (��)1∕� )(� log n)1∕� → ∞, as n → ∞,

lim sup
n→∞

FNRn ≤ �.
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Proposition 2  Consider a static AGG mixture model with exponent � ≥ 1 parame-
terized as in (10). Assume that � ∈ (0, 1) and r ∈ [0, 1] are both fixed. For any 𝜈 > 1 , 
if we apply LOND with (�i)∞i=1 defined as �i ∝ i−� with 

∑∞

i=1
�i = q,

where bn → 0 as n → ∞.

We now prove this result. By the update rule of LOND algorithm, for all l ≥ 0 , 
and all m ≥ �l + 1 , we have

Note �l is the time of lth discovery (with �0 = 0 ) by LOND. Let 𝜏l = 𝜏l ∧ n . If 𝜏l = n , 
we have �(𝜏l+1 ∣ 𝜏l) = n = 𝜏l . Otherwise, if 𝜏l = 𝜏l < n,

Next, we bound �(𝜏l+1 ∣ 𝜏l) . Let t∗ be the value such that �−1(1 − t∗) = � , i.e., 
t∗ = �(−�) = n−r+o(1) by the fact that � satisfies Definition 1. Then, for t ≥ t∗ , we 
get

and,

so that if (l + 1)�i = (l + 1)Li−� ≥ t∗ , i.e., i ≤ n1 ∶= ⌊((l + 1)L∕t∗)1∕�⌋ = nr∕�+o(1) , 
we have F((l + 1)�i) ≥ �(0) = 1∕2.

We consider the following cases.
Case 1 𝜏l < n1 < n . In this case, for 𝜏l + 1 ≤ m ≤ n1,

(23)�(𝜏l ∧ n) ≤ l ⋅ n𝛽+(𝜈
1∕𝛾−r1∕𝛾 )𝛾+bn , for all l > 0,

ℙ(𝜏l+1 > m ∣ 𝜏l) =

m∏
i=𝜏l+1

(1 − G((l + 1)𝜆i)) ≤ exp{−

m∑
i=𝜏l+1

G((l + 1)𝜆i)}.

(24)𝔼(𝜏l+1 ∣ 𝜏l) = 𝜏l + 1 +

∞∑
m=𝜏l+1

ℙ(𝜏l+1 ∧ n > m ∣ 𝜏l)

(25)= 𝜏l + 1 +

n−1∑
m=𝜏l+1

ℙ(𝜏l+1 > m ∣ 𝜏l)

(26)≤ �l + 1 +

n∑
m=�l+1

exp{−

m∑
i=�l+1

G((l + 1)�i)}

(27)= 𝜏l + 1 +

n∑
m=𝜏l+1

exp{−

m∑
i=𝜏l+1

G((l + 1)𝜆i)}.

�−1(1 − t) ≤ �−1(1 − t∗) = �,

F(t) = �(� −�−1(1 − t)) ≥ �(� −�−1(1 − t∗)) = �(� − �) = �(0) = 1∕2,
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and for m > n1,

since F(x) is non-decreasing.
We split the summation in (27) over �l + 1 ≤ m ≤ n1 and n1 + 1 ≤ m ≤ n and 

derive the corresponding upper bound separately. For the first part,

For the second part,

Case 2 n1 ≤ 𝜏l < n.
For this case, we don’t need to split the summation, since

m∑
i=𝜏l+1

G((l + 1)𝜆i) ≥

m∑
i=𝜏l+1

𝜀F((l + 1)𝜆i) ≥ 𝜀 ⋅ (m − 𝜏l)∕2,

m∑
i=𝜏l+1

G((l + 1)𝜆i) ≥

m∑
i=𝜏l+1

𝜀F((l + 1)𝜆i)

≥

m∑
i=𝜏l+1

𝜀F((l + 1)𝜆m) = (m − 𝜏l)𝜀F((l + 1)𝜆m),

n1∑
m=𝜏l+1

exp{−

m∑
i=𝜏l+1

G((l + 1)𝜆i)} ≤

n1∑
m=𝜏l+1

exp{−𝜀(m − 𝜏l)∕2} =

n1−𝜏l∑
m=1

exp{−𝜀m∕2}

≤
1

exp{𝜀∕2} − 1
<

2

𝜀
= 2n𝛽 .

n∑
m=n1+1

exp

{
−

m∑
i=𝜏l+1

G((l + 1)𝜆i)

}
≤

n∑
m=n1+1

exp{−(m − 𝜏l)𝜀F((l + 1)𝜆m)}

≤

n∑
m=n1+1

exp{−(m − n1)𝜀F((l + 1)𝜆n)}

≤

n−n1∑
m=1

exp{−m𝜀F((l + 1)𝜆n)}

≤
1

exp{𝜀F((l + 1)𝜆n)} − 1

<
1

𝜀F((l + 1)𝜆n)
≤

1

𝜀F(𝜆n)
.
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Case 3 n1 ≥ n . Since 𝜏l < n ≤ n1 , we have that

Combining all the cases, we obtain

where F(𝜆n) = 𝛷̄(𝜉n − 𝜇) , and �n ∶= �−1(1 − �n) . Since �n = Ln−� → 0 as n → 0 , 
by Eq. (18), we have �n ∼ (�� log n)1∕� , so that

by the fact that 𝜈 > 1 ≥ r . By Definition 1,

Thus, when n is large enough,

where the o(1) is uniform in l, and this further implies that

so that

	�  ◻

n∑
m=𝜏l+1

exp{−

m∑
i=𝜏l+1

G((l + 1)𝜆i)} ≤

n∑
m=𝜏l+1

exp{−(m − 𝜏l)𝜀F((l + 1)𝜆m)}

≤

n−𝜏l∑
m=1

exp{−m𝜀F((l + 1)𝜆n)}

<
1

𝜀F((l + 1)𝜆n)
≤

1

𝜀F(𝜆n)
.

n∑
m=𝜏l+1

exp{−

m∑
i=𝜏l+1

G((l + 1)𝜆i)} ≤

n∑
m=𝜏l+1

exp{−(m − 𝜏l)𝜀∕2}

≤

n−𝜏l∑
m=1

exp{−m𝜀∕2} <
2

𝜀
= 2n𝛽 .

�(𝜏l+1 ∣ 𝜏l) ≤ 𝜏l + 1 +
2

𝜀
+

1

𝜀F(𝜆n)
,

�n − � = (�� log n)1∕� (1 + o(1)) − (�r log n)1∕�

∼ (�1∕� − r1∕� )(� log n)1∕� → ∞, as n → ∞,

F(𝜆n) = 𝛷̄(𝜉n − 𝜇) = exp

{
−
(𝜉n − 𝜇)𝛾

𝛾
(1 + o(1))

}
= n−(𝜈

1∕𝛾−r1∕𝛾 )𝛾+o(1).

�(𝜏l+1 ∣ 𝜏l) ≤ 𝜏l + 1 +
2

𝜀
+

1

𝜀F(𝜆n)
≤ 𝜏l + n𝛽+(𝜈

1∕𝛾−r1∕𝛾 )𝛾+o(1), for all l > 0,

�(𝜏l+1) = �[�(𝜏l+1 ∣ 𝜏l)] ≤ �(𝜏l) + n𝛽+(𝜈
1∕𝛾−r1∕𝛾 )𝛾+o(1), for all l > 0,

�(𝜏l ∧ n) ≤ l ⋅ n𝛽+(𝜈
1∕𝛾−r1∕𝛾 )𝛾+o(1), for all l > 0.
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7.4 � Proof of Theorem 2

It suffices to consider the case where r ∈ [0, 1] since the observations from 
ℍ0 almost never get substantially larger than (� log n)1∕� . For r ∈ [0, 1] , if 
r − (1 − r1∕𝛾 )𝛾 > 𝛽 , we can choose 𝜈 > 1 close to 1 and 𝜂 > 0 close to 0 such that 
r > 𝜌 ∶= 𝛽 + (𝜈1∕𝛾 − r1∕𝛾 )𝛾 + 𝜈 − 1 + 𝜂 . By Proposition 2, when n is large enough,

Fix 𝛿 > 0 and let n2 ∶= ⌈n�+(�1∕�−r1∕� )�+�∕�⌉ . Note n2 = o(n) , since 
1 ≥ r > 𝛽 + (𝜈1∕𝛾 − r1∕𝛾 )𝛾 + 𝜂.

For n2 ≤ i ≤ n , let �i ∶= i � n−�−(�
1∕�−r1∕� )�−� , we get

By Rule (8) defining the LOND algorithm,

due to the fact that D(i − 1) + 1 ≥ D(i) and that F̄(x) is a non-increasing function, so 
that LOND’s false non-discovery rate (denoted FNRn ) is bounded as follows

For 1 ≤ i ≤ n2,

And for n2 + 1 ≤ i ≤ n,

and since 𝜈 > 1 , we have

which implies that,

�(𝜏l ∧ n) ≤ l ⋅ n𝛽+(𝜈
1∕𝛾−r1∕𝛾 )𝛾+𝜂 , for all l > 0.

ℙ(D(i) < 𝜁i) = ℙ(𝜏⌈𝜁i⌉ > i) ≤ ℙ(𝜏⌈𝜁i⌉ ≥ i) = ℙ(𝜏⌈𝜁i⌉ ∧ n ≥ i)

≤

𝔼(𝜏⌈𝜁i⌉ ∧ n)

i
≤

⌈𝜁i⌉ ⋅ n𝛽+(𝜈1∕𝛾−r1∕𝛾 )𝛾+𝜂
i

<
(𝜁i + 1) ⋅ n𝛽+(𝜈

1∕𝛾−r1∕𝛾 )𝛾+𝜂

i

= 𝛿 +
n𝛽+(𝜈

1∕𝛾−r1∕𝛾 )𝛾+𝜂

i
< 2𝛿.

�[F̄(𝛼i)] = �[F̄(𝜆i(D(i − 1) + 1))] ≤ �[F̄(𝜆iD(i))],

FNRn =
1

n

n∑
i=1

�[F̄(𝛼i)] ≤
1

n

n∑
i=1

�[F̄(𝜆iD(i))].

1

n

n2∑
i=1

�[F̄(𝜆iD(i))] ≤
n2

n
.

�[F̄(𝜆iD(i))] = �[F̄(𝜆iD(i)) ⋅ �{D(i) < 𝜁i}] + �[F̄(𝜆iD(i)) ⋅ �{D(i) ≥ 𝜁i}]

≤ 2𝛿 + F̄(𝜆i𝜁i),

�i�i = L� ⋅ i1−� ⋅ n−�−(�
1∕�−r1∕� )�−�

≥ L� ⋅ n1−� ⋅ n−�−(�
1∕�−r1∕� )�−� = �n�n,
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Since �n�n = L�n−� → 0 as n → ∞ , by Eq. (18)

then

since r > 𝜌 . Therefore, F̄(𝜆n𝜁n) = 𝛷̄(𝜇 − 𝜉n) → 0 as n → ∞ . Hence,

This being true for any 𝛿 > 0 , necessarily, FNRn → 0 as n → ∞ . 	�  ◻
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Appendix: Simulations with varying number of hypotheses

In this second set of experiments, we examine the performance of the same methods 
as the number of hypotheses, n, varies.

FNR of LORD with a fixed level

In this subsection, we present numerical experiments meant to illustrate the theoreti-
cal results we derived about asymptotic FNR of LORD. We fix q = 0.1  and choose 
a few values for the parameter � so as to exhibit different sparsity levels, while the 
parameter r takes values in a grid of spanning [0, 1.5]. We plot the average FNP of 

1

n

n∑
i=1

�[F̄(𝜆iD(i))] ≤
n2

n
+

n − n2

n
(2𝛿 + F̄(𝜆n𝜁n)) ≤ 2𝛿 + F̄(𝜆n𝜁n) + o(1).

�n ∶= �−1(1 − �n�n) = (�� log n)1∕� (1 + o(1)),

� − �n = (�r log n)1∕� − (�� log n)1∕� (1 + o(1))

∼ (r1∕� − �1∕� )(� log n)1∕� → ∞, as n → ∞,

lim sup
n→∞

FNRn ≤ 2�.
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Fig. 9   Simulation results showing the FNP for LORD under the normal model in three distinct sparsity 
regimes with different test size. The black vertical line delineates the theoretical threshold ( r = �)
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LORD procedure with different n ∈ {106, 107, 108, 109} . The simulation results are 
reported in Figs. 9 and 10. Each situation is repeated 200 times. We observe that 
in the normal model when r > 𝛽 , the FNP decreases as n is getting larger. In the 
double-exponential model, as n increases, the FNP transition lines are getting closer 
the theoretical thresholds r = � , especially when � = 0.7.

Varying level

Here, we explore the effect of letting the desired FDR control level q tend to 0 as n 
increases in accordance with (11). Specifically, we set it as q = qn = 1∕ log n . We 
choose n on a log scale, specifically, n ∈ {106, 107, 108, 109} . Each time, we fix a 
value of (�, r) such that r > 𝛽.

In the first setting, we set (�, r) = (0.4, 0.9) for normal model and (�, r) = (0.4, 0.7) 
for double-exponential model. The simulation results are reported in Figs.  11 
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Fig. 10   Simulation results showing the FNP for LORD under the double-exponential model in three dis-
tinct sparsity regimes with different test size. The black vertical line delineates the theoretical threshold 
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and 12. We see that, in both models, the risks of the two procedures decrease to zero 
as the test size gets larger. LORD clearly dominates LOND (in terms of FNP). Both 
methods have FDP much lower than the level qn , and in particular, LOND is very 
conservative.

In the second setting, we set (�, r) = (0.7, 1.5) for normal model and 
(�, r) = (0.7, 0.9) for double-exponential model. The simulation results are reported 
in Figs.  13 and  14. In this sparser regime, we can see that although LORD still 
dominates, the difference in FNP between two methods is much smaller than that in 
dense regime, especially in the double-exponential model. Both methods have FDP 
lower than the level qn , and in particular, LOND is very conservative.
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Fig. 12   FDP and FNP for the LORD and LOND methods under the double-exponential model with 
(�, r) = (0.4, 0.7) and varying test size n. The black line delineates the desired FDR control level ( q = qn)
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