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Abstract
We estimate the kernel function of a symmetric alpha stable ( S�S ) moving average 
random function which is observed on a regular grid of points. The proposed esti-
mator relies on the empirical normalized (smoothed) periodogram. It is shown to 
be weakly consistent for positive definite kernel functions, when the grid mesh size 
tends to zero and at the same time the observation horizon tends to infinity (high-
frequency observations). A simulation study shows that the estimator performs well 
at finite sample sizes, when the integrator measure of the moving average random 
function is S�S and for some other infinitely divisible integrators.

Keywords High-frequency observations · Moving average random function · Self-
normalized periodogram · Stable random function

1  Inverse problem

We consider the problem of estimation of a kernel f ∶ ℝ → ℝ , f ∈ L�(ℝ) from 
observations of the symmetric �-stable (for short, S�S ) stationary (moving average) 
random function
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where � is a S�S random measure with independent increments and Lebesgue con-
trol measure, see, e.g., Samorodnitsky and Taqqu (1994) for more details on S�S 
moving averages. While the integrator � determines the marginal properties of X, 
the kernel function f forms its dependence structure. The stability index � ∈ (0, 2) 
which controls the heaviness of the tails of X is assumed to be known. If � is 
unknown, then it has to be additionally estimated and used as a plug-in in what fol-
lows. There exist several approaches to estimate � from an iid sample of stable ran-
dom variables, cf., e.g., Koutrouvelis (1980, 1981), McCulloch (1986), Zolotarev 
(1986, Section 4.3), Zolotarev and Uchaikin (1999, Chapter 9), Gu and Mao (2002), 
Fan (2006), Chèn (2011) and references in Koblents et al. (2016). Most of them still 
work in the setting of weakly dependent sample variables, but the estimation quality 
diminishes. Using these estimators as a plug-in in our estimation of f would surely 
increase the variance of this estimate, but a careful investigation of that is out of the 
scope of the present paper.

The class of stochastic processes (1) includes stable CARMA processes, cf. 
Brockwell and Lindner (2009), and in particular the stable Ornstein–Uhlenbeck 
process. These processes are popular in econometry and finance, e.g., they have 
served as (an essential part of) a model for electricity spot and future prices 
(García et al. 2011; Müller and Seibert 2019) or for the rates of interbank loans 
(Janczura et al. 2011); see Brockwell (2014) for an overview. An application of 
stable random fields of the form (1) with index variable t ∈ ℝ2 to spatial mod-
eling of the claims of storm insurance in Austria is given in Karcher et al. (2009) 
and Karcher (2012).

Our aim is to provide a nonparametric estimator for the function f. We assume 
that the observations are taken at the points 

{
tk,n, k = 1,… , n

}
 , where tk,n = k�n , 

�n → 0 , n → ∞ , and n�n → ∞, n → ∞ . So we have high-frequency observations, 
and the observation horizon expands to the whole ℝ+ . In other words, we try to 
solve the inverse problem

In Mikosch et al. (1995), this problem was solved for a moving average time series X 
with innovations belonging to the domain of attraction of the stable law. For X being 
�-stable, 1 < 𝛼 < 2 , the parametric estimation of f via a minimum contrast method 
for the first-order madogram of X is performed in Karcher et al. (2009). A nonpara-
metric estimator of a piecewise constant symmetric f based on the covariation of X 
was proposed in Karcher and Spodarev (2012). However, this procedure is defined 
recursively and thus errors made at one step influence all following steps.

Problem (2) for random process (1) with square-integrable random measure 
� and causal f, i.e., supp f ⊆ ℝ+ , was treated in Brockwell et  al. (2013). There, 
a nonparametric estimator for the kernel function f was proposed and its con-
sistency was shown under CARMA assumptions. The estimator made use of the 
Wold expansion of the sampled process X.

(1)X(t) = ∫
ℝ

f (t − s)�(ds), t ∈ ℝ,

(2){X(tk,n), k = 1,… , n, n ∈ ℕ} ↦ f ∈ L�(ℝ).
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Here, we extend the ideas of the paper Mikosch et  al. (1995) and use the 
empirical (properly normalized) periodogram of the random function X to esti-
mate the symmetric uniformly continuous kernel function f of positive type satis-
fying some additional assumptions if the stability index � ∈ (0, 2) is known. The 
merit of our approach [as compared to the discrete time series method (Mikosch 
et al. 1995)] is that it is easily extendable to infinitely divisible moving average 
random fields (cf. the details in Kampf et al. 2019, Remark 6; Section 5.1). This 
enables applications to heavy-tailed spatial data, cf., e.g., Karcher et  al. (2009) 
and Karcher (2012).

The paper is organized as follows. In the next section, we discuss conditions on 
f which would guarantee the existence and uniqueness of solution of the problem 
(2). After introducing the normed smoothed periodogram and the estimator for f in 
Sect.  3, the weak consistency of the kernel estimation is stated in Sect.  4. There, 
Theorems 1 and 2 treat the cases of compact and unbounded support of f, respec-
tively. The consistency of the estimation of the L2-norm of f is treated in Corollary 1. 
For the ease of reading, proofs are moved to Appendix 1 (Theorems 1 and 3) and 
Appendix 2 (auxiliary lemmata). The proof of Theorem  2 is omitted and can be 
found, together with a detailed proof of Theorem 1, in the arXiv version of the pre-
sent paper Kampf et al. (2019). A simulation study shows the good performance of 
estimation in Sect. 5. There, the scope of applicability of this estimation method is 
studied empirically. The estimator performs well also for skewed stable, symmetric 
infinitely divisible and for Gaussian � , whereas it fails to work with some skewed 
non-stable � . We conclude with a summary and conjectures (Sect. 6).

2  Existence and uniqueness of the solution

As most of the inverse problems, the problem (2) of restoring f from observa-
tions of X is in general ill posed. Here, we discuss the additional conditions to 
be imposed onto f to make (2) have a unique solution. These conditions cannot 
be inferred from real data and have to be postulated as some prior knowledge 
on the nature of the process under consideration. For instance, if X(t) models 
temperature, precipitation, air pressure or some other weather feature at a spot 
t, then the condition (F1) below seems plausible. At the same time, this con-
dition is inacceptable for causal processes, e.g., in finance since it implies the 
symmetry of the dependence structure of X(t) on observations X(s) in a vicinity 
{s ∈ ℝ ∶ |s − t| < 𝛿} of t making X(t) dependent on the future X(s), s > t.

Notice that the spectral representation (1) of X for 0 < 𝛼 ≤ 2 is not unique. 
However, it is shown in Rosiński (1994,  Example 3.2) for 0 < 𝛼 < 2 that two 
functions f1, f2 ∈ L�(ℝ) fulfilling (1) are connected by f2(t) = ±f1(t + t0) for 
almost all t ∈ ℝ and for some fixed t0 ∈ ℝ . Let f̂  be the Fourier transform of f, 
and let f̂ −1 be its inverse, whenever these exist. We additionally assume that 

 (F1) f is positive semidefinite.
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It follows from Trigub and Bellinsky (2004, 6.2.1) that f is even (or symmetric), 
i.e., f (t) = f (−t) for all t ∈ ℝ . Under the condition (F1), it can be easily shown that 
f1 = f2 almost everywhere (for short, a.e.) on ℝ , i.e., f is determined uniquely a.e. on 
ℝ . In the Gaussian case � = 2 , the existence of the so-called canonical kernel can be 
shown for a centered purely nondeterministic mean square continuous X, see Hida 
and Hitsuda (1993, Theorem 3.4). The uniqueness of f cannot be guaranteed. How-
ever, under the additional assumption f ∈ C(ℝ) ∩ L1(ℝ) ∩ L2(ℝ) it is unique which 
can be shown directly by the following covariance-based approach.

Let X in (1) be an infinitely divisible moving average random function with finite 
second moments, i.e., � be an infinitely divisible independently scattered random 
measure with Lebesgue control measure, �

[
𝛬2(B)

]
< ∞ for any bounded Borel set 

B ⊂ ℝ , and f ∈ C(ℝ) ∩ L1(ℝ) ∩ L2(ℝ) . Then, the covariance function of X is given 
by

Applying the Fourier transform, we get Ĉ = f̂ 2 , and hence, the relation

proves the uniqueness of f in the Gaussian case. Assumption (F1) is needed in 
order to reconstruct f uniquely from the absolute value of its Fourier transform. 
Indeed, under the condition f ∈ C(ℝ) ∩ L1(ℝ) it can easily be shown by the Boch-
ner–Khintchine theorem, see, e.g., Trigub and Bellinsky (2004, 6.2.3) or Akhiezer 
(1988, p. 54), that (F1) is equivalent to f̂ (𝜆) ≥ 0 for all � ∈ ℝ , i.e., f being of posi-
tive type. In turn, to show that f being of positive type implies (F1) one also has to 
use the inversion formula for Fourier transforms which holds a.e. on ℝ by Akhiezer 
(1988,  p.  17–18, Corollary 2 and Theorem  2) or by Trigub and Bellinsky (2004, 
3.1.10 and 3.1.15). Relation (3) can be used to build a strongly consistent estimator 
of a symmetric piecewise constant compact supported f if smoothed spectral density 
estimates are used (cf., e.g., Karcher 2012, § 3.3).

It is worth mentioning that under low-frequency observations, it is in general not 
possible to identify f in a unique way. Indeed, let �n = � be constant. Define for any 
h ∈ L�[−�∕2,�∕2] with ‖h‖� = 1 the process

Then, the observations 
{
Xh(tk,n), k = 1,… , n

}
 are iid S � S with scale parameter 1, so 

their distribution does not depend on h.
The reason why the observation interval should expand infinitely is less obvious. 

In the Gaussian case, on any finite interval [0, t] it is possible to construct stationary 
processes such that the corresponding probability measures on C[0, t] are different 
but the processes have the same distribution. Therefore, one is not able to identify 
the kernel function (not even the distribution) from observations of the process on a 

C(t) = Cov (X(0),X(t)) = ∫
ℝ

f (t − s)f (−s) ds, t ∈ ℝ.

(3)f =
�√
Ĉ

−1

a.e. on ℝ

Xh(t) = ∫
�∕2

−�∕2

h(t − s)�(ds).
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finite interval. However, to the best of our knowledge, there are no such results in the 
stable case.

3  Estimators

We use the following notation: an = oP(bn) , n → ∞ , means an∕bn
P

⟶ 0 , n → ∞ ; 
an

P
∼ bn , n → ∞ , means an∕bn

P
⟶ 1 , n → ∞ ; we write an = OP(bn) , n → ∞ , if the 

sequence 
{
an∕bn, n ≥ 1

}
 is bounded in probability. The symbol C will denote a 

generic constant, the value of which is not important.
To estimate the function f in (1), we use the self-normalized (empirical) peri-

odogram of X, defined as

It is known (Fasen and Fuchs 2013a,  Theorem  2.11) that �n ⋅ In,X(�) converges 
to a random limit as n → ∞ , and so it cannot be a consistent estimator of any 
deterministic quantity of interest. Thus, following Fasen and Fuchs (2013b) 
we define its smoothed version. Let 

{
mn, n ≥ 1

}
 be a sequence of positive inte-

gers such that mn → ∞ and mn = o(n) , n → ∞ . Consider a sequence of filters {
Wn(m), |m| ≤ mn, n ≥ 1

}
 satisfying 

 (W1) Wn(m) ≥ 0;
 (W2) 

∑
�m�≤mn

Wn(m) = 1;
 (W3) max|m|≤mn

Wn(m) → 0 , n → ∞;
 (W4) 

∑
�m�≤mn

m2Wn(m) = o
�
(n�n)

2
�
 , n → ∞.

In the following, we will denote W∗
n
= max|m|≤mn

Wn(m) , W (2)
n

=
∑

�m�≤mn
m2Wn(m).

Denote �n(m, �) = � + m∕(n�n) , m = −mn,… ,mn . Then, a smoothed perio-
dogram is defined as

Remark 1 The periodogram defined in Fasen and Fuchs (2013b) has the argument 
� = �∕�n . This explains why the quantity � + m∕n rather than � + m∕(n�n) is used 
in their definition of smoothed periodogram. And as long as the main result of Fasen 
and Fuchs (2013b) concerns the limit behavior of smoothed periodogram evaluated 
at ��n , it is comparable with our findings.

For the sake of brevity, define the normalized function g(t) = f (t)∕‖f‖2, where 
‖f‖2 =

�
∫
ℝ
f (x)2 dx is the L2-norm of f whenever it is finite; the Fourier transform 

of g is

(4)In,X(�) =

���
∑n

j=1
X(tj,n)e

itj,n����
2

∑n

j=1
X(tj,n)

2
.

(5)Is
n,X

(�) =
∑

|m|≤mn

Wn(m)In,X(�n(m, �)).
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whenever it exists. First, we estimate g and ‖f‖2 separately. If g̃ and ‖̃f‖2 are their 
weakly consistent estimators, then f̃ = �‖f‖2 ⋅ g̃ is a weakly consistent estimator of f.

Considering the fact that 
√

�nI
s
n,X

(�) is an estimator for ĝ(𝜆) (see, e.g., Theo-

rem  1), it is natural to estimate g(t) by 1

2�
∫
ℝ

√
�nI

s
n,X

(�)eit� d�. However, √
�nI

s
n,X

(�) ∉ L1(ℝ) a.s. since Is
n,X

 is 2��−1
n

-periodic. Thus, we put

where 
{
an, n ≥ 1

}
 is a deterministic sequence with the following properties: 

 (A1) an → ∞ , n → ∞;
 (A2) a2

n
W∗

n
→ 0 , n → ∞;

 (A3) a3∕4n = o((n�n)
1∕�) , n → ∞;

 (A4) a2
n
�n → 0 , n → ∞;

 (A5) a2
n
W (2)

n
= o

(
(n�n)

2
)
 , n → ∞.

Remark 2 From (W1), (W2) and (W3), it is clear that lim supn→∞ W (2)
n

> 0 . There-
fore, (A5) implies that an = o(n�n) , n → ∞ (this will be used in the future). In par-
ticular, (A3) follows from (A5) for � ≤ 4

3
 . Besides this, the assumptions are rather 

independent.

Let f satisfy (F1). Further assumptions depend on whether f is compactly sup-
ported or not. In the case of compact support, we assume 

 (F2) an�f (�n) → 0 , n → ∞,

where 𝜔f (𝛥n) = sup|t−s|<𝛥n
|f (t) − f (s)| is the modulus of continuity of f. Clearly, 

assumption (F2) implies the uniform continuity of f. Hence, f is bounded, and 
then f ∈ Lp(ℝ) for all p ∈ (0,∞] . In the case of non-compact support, we assume 
(additionally to (F1)) that for some a > max{2, 1∕𝛼}

(F2′)  an�f (�n)
1−1∕a → 0 , n → ∞;

(F3′)  f (t) = O(|t|−a), |t| → ∞;
(F4′)  a3∕4n = o

(
�f (�n)

1∕(a�)(n�n)
1∕�

)
 , n → ∞.

 It follows from (F2′ ) and (F3′ ) that f is uniformly continuous and bounded, 
f ∈ Lp(ℝ) for p ∈ (

1

a
,∞] , e.g, p = �, 1, 2 . Hence f̂  is bounded, too, and moreover, 

it is square integrable.

ĝ(𝜆) = ∫
ℝ

g(t)e−i𝜆tdt, 𝜆 ∈ ℝ,

(6)g̃(t) =
1

2𝜋 ∫[−an,an]

√
𝛥nI

s
n,X

(𝜆)eit𝜆 d𝜆, t ∈ ℝ,
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Remark 3 The assumptions (F2′)–(F4′ ) relate the size an of “integration window” of 
the smoothed periodogram used in the estimator g̃ with the regularity and the rate of 
decay of f. But this does not mean that the latter characteristics should be available 
a priori: usually the kernel f can be assumed to be at least Hölder continuous, so we 
can choose an = log n or any other slowly varying function at infinity with an → +∞ 
as n → +∞ . Section 5 further clarifies this by giving explicit examples of kernels 
and corresponding sequences {an} , {Wn} , {�n} , {mn} satisfying the above assump-
tions. A problem of the optimal choice of these sequences can be solved numerically 
by minimizing the upper bounds (8)–(9) of the mean-squared error of g̃ . However, 
these bounds require the a priori knowledge of the modulus of continuity of f and 
the decay rate of the Fourier transform ĝ(𝜆) as |�| → ∞ which makes this optimiza-
tion not realistic in practical data inference.

4  Main results

Here, we state our main results about the weak consistency of the estimates of g and 
f.

Theorem  1 Let f be compactly supported and (F2), (A1)–(A5), (W1)–(W4) be 
satisfied.

 (i) The following convergence in probability holds:

 (ii) If additionally (F1) is true, then ‖g̃ − g‖2
P

⟶ 0, n → ∞.

Remark 4 Using Brockwell and Lindner (2009,  Lemma  2.3), it can be shown 
that in CARMA(p, q) models |ĝ(𝜆)|2 coincides with the power transfer function if 
p > q + 1 , where p is the order of the autoregressive polynomial and q is the order 
of the moving average polynomial of the CARMA(p, q) model. Thus, Theorem 1(i) 
shows that �nI

s
n,X

(�) is a weakly consistent estimator for the power transfer func-
tion. However, this is already known (Fasen and Fuchs 2013b, Theorem 1) under the 
weaker assumption p > q.

Theorem 2 The assertion of Theorem 1 holds true also under the assumptions (F1), 
(F2′)–(F4′ ), (A1)–(A5), (W1)–(W4).

Remark 5 Carefully examining the proofs of Theorems 1 and 2, we can bound the 
rate of convergence in (7) by

(7)an ⋅ ∫
an

−an

(𝛥nI
s
n,X

(𝜆) − |ĝ(𝜆)|2)2d𝜆 P
⟶ 0, n → ∞.

OP

(
an(n�n)

−1 + a2
n
�f (�n)

2 + a2
n
W∗

n
+ a2

n
W (2)

n
(n�n)

−2

+ a3∕2
n

(n�n)
−2∕� + a4

n
�2
n

)
, n → ∞
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in the case of bounded support and by

in the case of unbounded support.
Consequently (from the first part of the proof),

in the case of bounded support and

in the case of unbounded support.

Taking into account the evident relation ‖f‖2 = ‖f‖�∕‖g‖� , the estimation of the 
norm ‖f‖2 is reduced to the estimation of ‖f‖� = �X(0) , the scale parameter of X(0) 
(see Samorodnitsky and Taqqu 1994,  Property 3.2.2), and ‖g‖� . In the literature, 
there are a number of estimators of scale available, see, e.g., Zolotarev (1986, Chap-
ter  4), (Zolotarev and Uchaikin 1999,  Chapter  9), Fan (2006) and Koblents et  al. 
(2016). Among those, we choose the quantile estimator for the sake of its robust-
ness. It is based on the fact that the quantiles of X(0) are equal to those of S�(1, 0, 0) , 
multiplied by �X(0) . Taking different quantile levels, this can be used to construct a 
variety of estimators. The most popular choice is quartiles, so that the correspondent 
estimator is

where x1∕4 and x3∕4 are, respectively, the lower and upper quartiles of S�(1, 0, 0) and 
x̃1∕4;n and x̃3∕4;n are, respectively, the lower and upper empirical quartiles of the sam-
ple 

{
X(tk,n), k = 1,… , n

}
.

It is well known that estimator (10) is a.s. consistent for iid observations, mixing 
sequences and some linear ergodic processes with or without heavy tails. The proof 
involves the Bahadur–Kiefer-type representation for the empirical quantiles of X(0), cf. 
Hesse (1990), Wu (2005), Kulik (2007), Wang et al. (2016) and references therein. For 
instance, if X is ergodic (cf. Cambanis et al. 1995 for sufficient conditions), its kernel 

OP

(
an(n�n)

−1 + a2
n
�f (�n)

2−2∕a + a2
n
W∗

n
+ a2

n
W (2)

n
(n�n)

−2

+ a3∕2
n

(n�n)
−2∕��f (�n)

−2∕(a�) + a4
n
�2
n

)
,

(8)

‖g̃ − g‖2
2
=OP

�
a1∕2
n

(n𝛥n)
−1∕2 + an𝜔f (𝛥n) + an(W

∗
n
)1∕2 + an(W

(2)
n
)1∕2(n𝛥n)

−1

+ a3∕4
n

(n𝛥n)
−1∕𝛼 + a2

n
𝛥n

�
+O

�
∫{𝜆∶�𝜆�>an} ĝ(𝜆)

2d𝜆

�
, n → ∞,

(9)

‖g̃ − g‖2
2
=OP

�
a1∕2
n

(n𝛥n)
−1∕2 + an𝜔f (𝛥n)

1−1∕a

+ an(W
∗
n
)1∕2 + an(W

(2)
n
)1∕2(n𝛥n)

−1

+ a3∕4
n

(n𝛥n)
−1∕𝛼𝜔f (𝛥n)

−1∕(a𝛼) + a2
n
𝛥n

�

+ O

�
∫{𝜆∶�𝜆�>an} ĝ(𝜆)

2d𝜆

�
, n → ∞,

(10)�̃q =
x̃3∕4;n − x̃1∕4;n

x3∕4 − x1∕4
,
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function f is simple (i.e., piecewise constant) and either compactly supported or satis-
fying condition (F3′ ) then the a.s. consistency of (10) follows from Hesse (1990, The-
orem 1). We believe that it does so also for ergodic X with general kernels f satisfying 
(F3′ ) and some additional assumptions, but checking this carefully would blow up the 
size of this paper. Anyway, the results of our paper are applicable to any weakly con-
sistent estimator of scale �̃X(0) , whatever it is.

Now let us turn to the estimation of ‖g‖� . In the case where f is supported by 
[−T , T] (and T is known a priori), one can use the estimator

If the size of support of f is unknown or it has unbounded support, we need a deter-
ministic sequence 

{
bn, n ≥ 1

}
 such that 

 (B1) bn → ∞ , n → ∞;
 (B2) b2∕�−1n a

1∕2
n = o

(
(n�n)

1∕2
)
 , n → ∞;

 (B3) b2∕�−1n anW
∗
n
→ 0 , n → ∞;

 (B4) b2∕�−1n an(W
(2)
n
)1∕2 = o

(
n�n

)
 , n → ∞;

 (B5) b2∕�−1n a2
n
�n → 0 , n → ∞;

 (B6) b2∕�−1n an�f (�n)
q → 0 , n → ∞ , where q = 1 in the compact support case and 

q = 1 − 1∕a in the case of unbounded support;
 (B7) b2∕�−1n a

3∕4
n = o((n�n)

1∕��f (�n)
r) , n → ∞ , where r = 0 in the compact support 

case and r = 1∕(a�) in the case of unbounded support;
 (B8) b2∕𝛼−1n ∫{𝜆∶|𝜆|>an} ĝ(𝜆)2d𝜆 → 0 , n → ∞.

An example of such sequence {bn} is given in Sect. 5. With this in hand, an esti-
mator for ‖g‖� is constructed as

Theorem 3 

 (i) Let f be supported by [−T , T] and the assumptions of Theorem 1 (ii) hold. Then

 (ii) Under the assumptions of Theorem 1 (ii) and (B1)–(B8), 

 (iii) Under the assumptions of Theorem 2 and (B1)–(B8), 

�‖g‖𝛼,T =

�
∫

T

−T

�g̃(t)�𝛼dt
�1∕𝛼

.

(11)�‖g‖𝛼,bn =
�
∫

bn

−bn

�g̃(t)�𝛼dt
�1∕𝛼

.

‖̃g‖�,T
P

⟶ ‖g‖� , n → ∞.

‖̃g‖�,bn
P

⟶ ‖g‖� , n → ∞.
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Introduce a plug-in estimator ‖̃f‖2 = �̃X(0)∕‖̃g‖� of ‖f‖2 where �̃X(0) is a scale 
estimator of X(0) (e.g., �̃q ) and ‖̃g‖� is any of the estimators ‖̃g‖�,T and ‖̃g‖�,bn cor-
responding to the case of compact or non-compact support of f. Moreover, estimate 
f by f̃ ∶= g̃∕�‖f‖2.

Corollary 1 Let �̃X(0) be any weakly consistent estimator of scale of X(0). Under the 
assumptions of Theorems 1 and 3 for compact-supported f (or Theorems 2, 3, other-
wise), it holds

and

Remark 6 The above results stay true also for the case of estimation of the kernel 
function f ∶ ℝd → ℝ of a stationary random field X(t) = ∫

ℝd f (t − s)�(ds) , t ∈ ℝd, 
where � is a homogeneous S�S independently scattered random measure on ℝd . See 
details and numerical experiments in Kampf et al. (2019).

5  Simulation study

In this section, we study the performance and the applicability range of the above 
estimation method empirically, i.e., by estimating f from Monte Carlo simulations 
of the trajectories of X. Before that, dwell on the particular choice of the weights Wn 
and sequences {�n} , {mn} , {an} and {bn}.

Assumptions (W1)–(W4), (A1)–(A5) and (B1)–(B5) are evidently satisfied, e.g., 
for

– uniform weights Wn(m) =
1

2mn+1
,

– �n = n−� , � ∈ (0, 1),
– mn = n� , � ∈ ((1 − �)∕2, 1 − �),
– an = log n,
– bn =

(
n(1−�)∕2−� log−1 n

)�∕(2−�) , � ∈
[
� − (1 − �)∕2, (1 − �)∕2).

Assumptions (F1)–(F2) hold for all positive semidefinite compact supported Lip-
schitz continuous kernels f. For all Lipschitz continuous functions (F2′ ) holds. 
Assumption (F3′ ) is valid whenever f decays at infinity rapidly enough, e.g., for 
f (t) = e−|t| , while (F4′ ) holds for all non-constant functions f provided 𝛿 < a

a+1
 , 

since then �f (�) ≥ c ⋅ � for an appropriate constant c > 0 and sufficiently small 
𝛥 > 0 . Assumptions (B6)–(B7) are satisfied when f is Lipschitz continuous and

‖̃g‖�,bn
P

⟶ ‖g‖� , n → ∞.

‖̃f‖2
P

⟶ ‖f‖2, n → ∞,

‖f̃ − f‖2
P

⟶ 0, n → ∞.
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where q = 1 for compactly supported f and q = 1 − 1∕a , otherwise. This condition 
can be fulfilled iff 𝛿 < a∕(a + 1) . Assumption (B8) holds true if ĝ(𝜆) = O(e−c𝜆) , 
|�| → +∞ , with c > ((1 − 𝛿)∕2 − 𝛽)∕2.

Now let us study the behavior of our estimator at finite sample size. To simulate 
the realizations of X, we used the algorithms given in Karcher et  al. (2013). For 
sample size n, we considered a lattice spacing of �n = 1∕

√
n , so that the observation 

points range from −
√
n∕2 to 

√
n∕2 − �n . We simulated fields for � = 0.3, 0.7 and 

1.7 and as kernels we used the triangular, the spherical and the exponential kernels

chosen such that ‖f‖2 = 1 . These kernels f satisfy conditions (F1)–(F2) and (F1), 
(F2′)–(F4′ ), respectively. Indeed, assumption (F1) holds since all these functions 
are valid covariance functions which are positive semidefinite. One can check that 
their Fourier transforms are nonnegative also directly, compare (Lantuéjoul 2002, 
Table 4, p. 245). (F2) and (F2′ ) follow from Lipschitz continuity of the functions 
(12)–(14).

As parameters for the estimator we chose mn = ⌊n1∕4⌋ , uniform weights 
Wn(m) = 1∕(2mn + 1) and an = log n.

5.1  S˛ S case, 0 < ˛ < 2

In what follows, we apply our estimation method to S � S moving averages. The 
results are shown in Fig.  1. Each plot contains the graph of the real kernel func-
tion f used to simulate X on n = 1000 data points, the mean of 10,000 estimates of 
f and their (0.025, 0.975)-quantile envelope, i.e., the region containing 95% of all 
estimated curves of f. We see that the results are quite good. Since an estimator con-
verging to a positive value can, of course, be negative at finite sample size, there is 
no problem in the fact that the lower envelope attains negative values.

In order to evaluate the tail behavior of our estimators, we report different 
quantiles of f̃ (0) , f̃ (0.4) , f̃ (1) , ‖f̃‖2 and ‖f̃ − f‖2 applied to a S�S moving average 
random field with � = 1.7 and spherical kernel in Table  1. The L2-norms were 
approximated by ‖f̃‖2 ≈

�
1

25

∑1000

k=0
f̃ 2(xk) resp. 

‖f̃ − f‖2 ≈
�

1

25

∑1000

k=0
(f̃ (xk) − f (xk))

2 , where xk ∶= −20 +
k

25
, k = 0,… , 1000 , and 

the quantiles were estimated by the empirical quantiles of the 10000 simulation 
runs mentioned above. We see only small differences between the quantiles of 
different orders, indicating strongly that the distributions are light-tailed if not 

𝛽 > min
{
1 − 𝛿

2
−

1 − 𝛿

𝛼
+

𝛿

𝛼a
,
1 − 𝛿

2
− 𝛿q

}

(12)f (t) =
√
3∕2(1 − �t�)�[−1,1](t),

(13)f (t) =
√
70∕33(1 − 1.5�t� + 0.5�t�3)�[−1,1](t),

(14)f (t) = exp(−|t|)
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even deterministically bounded. A survey over the quantiles of different orders of 
‖f̃ − f‖2 for the different settings considered in this section is given in Table 2.

Moreover, we investigated how the estimation improves as more observation points 
are used. We tried n = 2000, 4000, 10,000, 20,000, 40,000 , but did only 100 simula-
tions for these larger data sets due to the longer computation time. The results for the 
S�S moving average field with � = 1.7 and spherical kernel are plotted in Fig. 2. We 
present the mean-squared error of f̃ (x) for x ∈ {0, 0.4, 1} and the L2-distance ‖f̃ − f‖2 

Fig. 1  Estimation results for S�S X with triangular kernel (12), � = 0.3 (top left), with spherical kernel 
(13), � = 1.7 (top right) and with exponential kernel (14), � = 0.7 (bottom row)

Table 1  Quantiles of the estimator f̃  applied to a S�S field X with triangular kernel and � = 1.7

50% 70% 90% 95% 97% 99% 99.5%

f̃ (0) 1.2139 1.2338 1.2592 1.2708 1.2771 1.2952 1.3032

f̃ (0.4) 0.6374 0.6532 0.6720 0.6802 0.6855 0.6954 0.7003

f̃ (1) 0.0512 0.0802 0.1314 0.1590 0.1745 0.2098 0.2287

‖f̃‖
2

0.9963 0.9969 0.9974 0.9977 0.9978 0.998 0.9982

‖f̃ − f‖2 0.2908 0.3235 0.3745 0.4017 0.4184 0.4505 0.4646
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as well as the quantiles of ‖f̃ − f‖2 . We see that the errors are decreasing with few 
exceptions which are probably due to simulation errors. For example, we repeated 
the simulation of the mean-squared errors of f̃ (0.4) for n = 2000 and for n = 4000 
ten times, in order the judge whether this increase is a simulation error. We got five 
times a higher mean-squared error for n = 2000 and five times a higher mean-squared 
error for n = 4000—so there is no incidence for a real increase. In Table 3 we give a 
survey over the expected values of ‖f̃ − f‖2

2
 for different sample sizes n. We see that 

for those ten settings for which the results are already good at sample size n = 1000 
the mean-squared error decreases with increasing n, while for the last two settings 
with poor results at sample size n = 1000 things get even worse when n is increasing.

In Fig. 1 we concentrated on the estimation of function g = f  (which is equiva-
lent to setting ‖f‖2 = 1 ). If the norm of f is unknown, then it has to be estimated 

Fig. 2  Convergence of f̃  toward f as the sample size increases. On the left, we plotted the mean-squared 
error in three different points as well as the expected value of the squared L

2
-distance. On the right, we 

plotted various quantiles of the L
2
-distance between f̃  and f 

Table 2  Survey over the quantiles of ‖f̃ − f‖
2
 in the twelve different settings considered in this section

Setting 50% 70% 90% 95% 97% 99% 99.5%

Figure 1, left 0.0669 0.1347 0.2821 0.3459 0.3874 0.5005 0.5717
Figure 1, right 0.2908 0.3235 0.3745 0.4017 0.4184 0.4505 0.4646
Figure 1, bottom 0.1548 0.2228 0.3248 0.3644 0.3977 0.4719 0.5116
Figure 3, left 0.3353 0.3871 0.5092 0.5797 0.6289 0.7409 0.8149
Figure 3, right 0.6372 0.8169 0.9769 1.0570 1.3848 2.1029 2.6195
Figure 4 0.2728 0.3272 0.4232 0.4820 0.5234 0.5893 0.6309
Figure 5, left 0.2647 0.3127 0.3877 0.4308 0.4597 0.5215 0.5518
Figure 5, right 0.2982 0.3331 0.3861 0.4127 0.4312 0.4684 0.4916
Figure 6, left 0.2681 0.3149 0.3972 0.4422 0.4702 0.5351 0.5651
Figure 6, right 0.2689 0.3202 0.4024 0.4437 0.4722 0.5342 0.5701
Figure 7, left 0.9115 0.9189 0.9294 0.9342 0.9376 0.9440 0.9467
Figure 7, right 0.9220 0.9279 0.9358 0.9397 0.9421 0.9468 0.9493
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separately, e.g., via relation (10). The same curves as in Fig. 1 are shown for the esti-
mates of f in Fig. 3 for � = 0.7 and � = 1.7 . Not surprisingly, the empirical standard 
deviation is much higher than for known norm and the performance of the estima-
tors of the norm ‖̃f‖2 gets better with increasing �.

Numerical experiments with different sampling mesh values �n show that the 
estimation of f performs well for �n ∈ (0, 0.1] (high-frequency framework).

5.2  Beyond the S ̨  S case: Gaussianity, skewness and general infinite divisibility

As shown above, our estimator works well in all cases in which its consistency was 
proven in Sect.  4. An interesting question is whether it also performs well beyond 
these cases. Indeed, it does work well for Gaussian ( � = 2 , cf. Fig.  4) and skewed 

Fig. 3  Estimation results for S�S X with unknown norm of f. Here � = 1.7 , f is a spherical kernel (13) 
(left) and � = 0.7 , f is an exponential kernel (14) (right)

Table 3  Survey over the expected values of ‖f̃ − f‖2
2
 for different sample sizes n in the twelve different 

settings considered in this section

Setting 1000 2000 4000 10000 20000 40000

Figure 1, left 0.1247 0.1000 0.1126 0.0821 0.0643 0.0474
Figure 1, right 0.2900 0.2803 0.2561 0.2237 0.2034 0.1831
Figure 1, bottom 0.1707 0.1624 0.1431 0.1123 0.1106 0.0897
Figure 3, left 0.3566 0.3272 0.2842 0.2271 0.2333 0.1931
Figure 3, right 0.6599 0.6456 0.5367 0.4863 0.4614 0.4730
Figure 4 0.2802 0.2553 0.2408 0.1898 0.1952 0.1643
Figure 5, left 0.2648 0.2545 0.2219 0.1893 0.1733 0.1441
Figure 5, right 0.3024 0.2894 0.2703 0.2310 0.2204 0.1903
Figure 6, left 0.2798 0.2664 0.2461 0.2252 0.2039 0.1840
Figure 6, right 0.2816 0.2771 0.2590 0.2265 0.2161 0.1758
Figure 7, left 0.9109 0.9647 1.0144 1.0597 1.0862 1.0915
Figure 7, right 0.9217 0.9731 1.0234 1.0667 1.0925 1.0976



351

1 3

Nonparametric kernel estimation of stable random functions

random measures � with stability index � = 1.3 and skewness intensity � = 0.7,− 0.5 , 
cf. Fig.  5. The parameters of the Gaussian measure � were chosen such that 
�(B) ∼ N(0, |B|) for a bounded Borel subset B.

Finally, we would like to evaluate the performance of our estimator when the inte-
grator � is not stable. Since it has to be infinitely divisible, one canonical choice is here 
of course the Gamma distribution, but we would also like to have a distribution without 
finite second moment. For this we choose � with Lévy density

for some � ≥ 0 , c1, c2 > 0 , p1, p2 > 0 . In more detail, we choose � such that for any 
bounded Borel set B ⊂ ℝ we have �(B) = �(|B|) in distribution where |B| is the Leb-
esgue measure of B and � = {�(t), t ≥ 0} is the Lévy process given by

(15)h(x) =

⎧⎪⎨⎪⎩

c1
� log x�
�x�p1 , x > 𝜀,

c2
� log(−x)�
�x�p2 , x < −𝜀,

0, �x� ≤ 𝜀

Fig. 4  Estimation results for 
S�S X and with triangular kernel 
(12), � = 2 (Gaussian case)

Fig. 5  Estimation results for skewed X with triangular kernel (12), � = 1.3 and � = 0.7 (left), � = − 0.5 
(right)
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cf. Sato (2013,  Theorem  19.2). Here, Q is a random Poisson measure on ℝ+ ×ℝ 
with intensity measure �(A,B) = |A| ∫

B
h(x) dx for any bounded Borel sub-

set A × B ⊂ ℝ+ ×ℝ . If p1, p2 ∈ (0, 3) then � is not square integrable, cf. Sato 
(2013, Corollary 25.8). � is symmetric iff h is symmetric, i.e., c1 = c2 and p1 = p2 , 
cf. Sato (2013, Exercise 18.1). It is known that the distribution of � is completely 
determined by the law of �(1) . Since the Lévy–Ito representation (16) can be used to 
generate �(1) , Karcher et al. (2013) can be used to simulate � . We chose � = 0.1 in 
order to avoid extremely high jumps.

In the case of � -distributed � , we set �(B) ∼ � (1, |B|) for any bounded Borel 
subset B where a random variable Y ∼ � (�, p) has the density

(16)𝜉(t) = �
t

0 �
ℝ

xQ(dx, ds) − t �|x|<1
xh(x) dx, t ≥ 0,

Fig. 6  Estimation results for X with infinitely divisible � and exponential kernel (14). Parameters of 
Lévy density (15) are c

1
= c

2
= 1 , p

1
= p

2
= 2.5 (left) and p

1
= p

2
= 4 (right)

Fig. 7  Estimation results for X with triangular kernel (12), Gamma-distributed � (left) and skewed infi-
nitely divisible � (right). Parameters of Lévy density (15) are p

1
= 2.1 , p

2
= 2.7 and c

1
= c

2
= 1
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Numerical experiments with non-stable infinitely divisible integrators � show that 
symmetry is an important assumption that cannot be omitted there. Indeed, we 
saw that the estimation method for f does not work for Gamma-distributed or other 
unsymmetric non-stable integrators (cf. Fig. 7), but it works well for symmetric infi-
nitely divisible measures � with or without finite second moment, compare Fig. 6.

6  Summary and open problems

The preceding section showed the good performance of the high-frequency esti-
mates of a smooth symmetric bounded rapidly decreasing kernel f of positive type 
for �-stable moving averages X (both skewed and symmetric) in the case � ∈ (0, 2] . 
Additionally, we verified empirically the applicability of the method to certain non-
stable symmetric infinitely divisible integrators � . An open problem is to provide 
rigorous mathematical proofs for this experimental evidence. Recall that we were 
able to show the consistency of our estimation methods only in the S�S case. Our 
working hypothesis is that the results of Theorems 1 and 2 stay true for all stable 
integrators � as well as for symmetric infinitely divisible � without a finite second 
moment (at least lying in the domain of attraction of a stable law).

Another open problem is to prove limit theorems for the estimates of g and f in 
case of S�S � . If f is not symmetric (e.g., it is causal) our estimation ansatz fails to 
work completely, so new ideas are needed here. This is the subject of future research.

Acknowledgements We thank I. Liflyand and V.P. Zastavnyi for the discussion on positive definite func-
tions and their Fourier transforms. We are also grateful to our students L. Palianytsia, O. Stelmakh and 
B. Ströh for doing numerical experiments in Sect. 5. Finally, we express our gratitude to M. Wendler for 
drawing our attention to paper Hesse (1990).

Appendix 1: Proofs of Theorems 1, 3

Proof of Theorem 1 We first show how (ii) follows from (i). Notice that |ĝ(𝜆)| = ĝ(𝜆) 
for all � ∈ ℝ , since by (F1) f is of positive type. Since �√a −

√
b� ≤ √�a − b� for 

a, b ≥ 0 , we get, using the Cauchy–Schwarz inequality,

Since ĝ ∈ L2(ℝ) , we then have

p(x) =
�pxp−1

� (p)
e−�x�{x≥0}.

�
an

−an

��
𝛥nI

s
n,X

(𝜆) − ĝ(𝜆)
�2

d𝜆 ≤ √
2an⋅

�
�

an

−an

���𝛥nI
s
n,X

(𝜆) − ĝ(𝜆)2
���
2

d𝜆
P

⟶ 0, n → ∞.
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The desired statement now follows from the Plancherel’s equality.
Now let us prove (i). Write

where Js
n,X

(�) =
∑

�m�≤mn
Wn(m)

���
∑n

j=1
X(tj,n)e

itj,n�n(m,�)���
2

, Sn,X =
∑n

j=1
X(tj,n)

2.

Let f be supported by [−T , T] . We will assume that N = T∕�n is integer: this will 
simplify the exposition while not harming the rigor. The proof is rather long, so we 
split it into several steps for better readability. Choose n ≥ 2N + 1.

Step 1. Denominator 
We start with investigating the denominator Sn,X . First, we study the behavior of a 

similar expression with f replaced by its discretized version. Specifically, define

where fn(x) =
∑N−1

k=−N
f (tk,n)�[tk,n,tk+1,n)(x) . Denote �l,n = �

(
((l − 1)�n, l�n]

)
 , l ∈ ℤ . 

For fixed n, these variables are independent S�S with scale parameter �1∕�
n .

Decompose

∫
ℝ

(
�[−an,an]

(𝜆) ⋅
√

𝛥nI
s
n,X

(𝜆) − ĝ(𝜆)
)2

d𝜆
P

⟶ 0, n → ∞.

Is
n,X

(�) =
Js
n,X

(�)

Sn,X
,

Xn(tj,n) =

N−1∑
k=−N

f (tk,n)�
(
((j − k − 1)�n, (j − k)�n]

)

=∫
ℝ

fn(tj,n − s)�(ds), j = 1,… , n,

n∑
j=1

Xn(tj,n)
2 =

n∑
j=1

(
j+N∑

l=j−N+1

f (tj−l,n)�l,n

)2

=

n∑
j=1

j+N∑
l=j−N+1

f (tj−l,n)
2�2

l,n

+

n∑
j=1

j+N∑
l1, l2 = j − N + 1

l1 ≠ l2

f (tj−l1,n)f (tj−l2,n)�l1,n�l2,n

=

(
n−N∑
l=N+1

l+N−1∑
j=l−N

+

N∑
l=2−N

l+N−1∑
j=1

+

n+N∑
l=n−N+1

n∑
j=l−N

)
f (tj−l,n)

2�2
l,n

+

n∑
j=1

j+N∑
l1, l2 = j − N + 1

l1 ≠ l2

f (tj−l1,n)f (tj−l2,n)�l1,n�l2,n

=∶S1,n + S2,n + S3,n + S4,n.
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We are going to show that the last three terms are negligible. We use the short-
hand En =

∑n−N

l=N+1
�2
l,n

 , as this will be our benchmark term. Observe that 
S1,n =

∑N−1

k=−N
f (tk,n)

2En . Thanks to the boundedness and uniform continuity of f,

On the other hand, by Feller (1966, XVII.5, Theorem 3 (i)), we have

where Z� is some positive �∕2-stable random variable. Therefore, by Slutsky’s 
theorem,

Estimating

similarly to (19), we get

Since N�n = T  , we have

The term S4,n is estimated using Lemma  3: S
4,n = OP(N

3∕2n2∕�−1∕2�
2∕�
n ) =

OP((n�n)
−1∕2S

1,n).

Summing up, we have 
∑n

j=1
Xn(tj,n)

2 = S1,n
�
1 + OP((n�n)

−1∕2)
�
 , n → ∞ , and S1,n 

is of order n2∕��2∕�−1
n  , in the sense of (19).

Now we get back to the denominator of In,X(�) . For any positive vanishing 
sequence 

{
�n, n ≥ 1

}
, write the following simple estimate:

Then, we obtain

(17)
|||||
S1,n −

1

�n
∫

T

−T

f (x)2dx ⋅ En

|||||
= O

(
�−1
n
�f (�n)En

)
, n → ∞.

(18)
En

n2∕��
2∕�
n

⇒ Z� , n → ∞,

(19)
S1,n

n2∕��
2∕�−1
n

⇒ Z� ∫
T

−T

f (x)2dx, n → ∞.

S2,n + S3,n ≤
(

N∑
l=2−N

+

n+N∑
l=n−N+1

)
�2
l,n

N−1∑
k=−N

f (tk,n)
2 =∶ S5,n,

(20)
S5,n

(2N)2∕��
2∕�−1
n

⇒ Z�
� ∫

T

−T

f (x)2dx, n → ∞.

S2,n + S3,n =OP(�
−1
n
) = OP

(
(n�n)

−2∕�n2∕��2∕�−1
n

)

=OP

(
S1,n(n�n)

−2∕�
)
, n → ∞.

(21)
|||a

2 − b2
||| ≤ 2|a(a − b)| + |a − b|2 ≤ �na

2 + (1 + �−1
n
)|a − b|2.
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From Lemma 4 it follows that

Putting �n = �f (�n) and using (17), we conclude that

Step 2. Whole expression
Thanks to (22),

Thus, it remains to prove that

Step 3. Numerator 
As with the denominator, we start with examining the discretized version of 

Js
n,X

(�):

||||||

n∑
j=1

Xn(tj,n)
2 − Sn,X

||||||
≤ �n

n∑
j=1
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We proceed in three substeps, first considering the following expression

Step 3a). We shall show

We have for � ∈ [−an, an] that

where

With the help of Lemma 6, we obtain
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By Lemma 2,

where, by Lemma 7,
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Combining the estimates, we get (24).
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Let us estimate the first expression. Take some positive vanishing sequence {
�n, n ≥ 1

}
 , which will be specified later. Using (21), we have
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Using Lemma 2, we obtain
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for �n = a
1∕4
n �f (�n) . Hence,
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Proof of Theorem 3
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(ii) Similarly to (i),

in view of (8).
The proof of (iii) uses the same ideas and is based on (9).
For � ∈ (0, 1) , the proof goes in a similar manner through the triangle inequality 

for ‖ ⋅ ‖�
�
 .   ◻

Appendix 2: Auxiliary statements

Lemma 1 Let (E, E, �) be a �-finite measure space, � be an independently scattered 
S�S random measure on E with the control measure � , and {ft, t ∈ �} ⊂ L𝛼(E, E, 𝜈) 
be a family of functions indexed by some parameter set � , � be a positive probability 
density on E. Then

has the same finite-dimensional distributions as the almost surely convergent series
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}
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}
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random elements of E with density � , �k = �1 +⋯ + �k , 
{
�k, k ≥ 1

}
 are iid Exp(1)

-distributed random variables, and these three sequences are independent;

Proof The statement follows from Samorodnitsky and Taqqu (1994, Section 3.11) 
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where M is an independently scattered S � S random measure on E defined by

so that the control measure of M has �-density �.  ◻

Lemma 2 Let, for each n ≥ 1 , 
{
�m,n,m = 1,… , n

}
 be iid S�S random variables 

with scale parameter �n . Let also 
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Integrating over � , we get

By the strong law of large numbers, �k ∼ k , k → ∞ , a.s. Therefore, given � ’s, 
∫
ℝ
|�n(�)|2d� = OP(Ann

4∕�−2) , n → ∞ , whence the required statement follows.  ◻ 

The following lemma is an immediate corollary of the proof of Lemma 2.

Lemma 3 Let, for each n ≥ 1 , 
{
�m,n,m = 1,… , n

}
 be iid S�S random variables 

with scale parameter �n . Let also 
{
bj,l,n, 1 ≤ j < l ≤ n

}
 be a set of complex numbers 

with

Then

In the next two lemmas, 
{
�n, n ≥ 1

}
 is some vanishing sequence, 

{
Nn, n ≥ 1

}
 is 

a sequence of positive integers such that Nn → ∞ , n → ∞ , and Nn = o(n) , n → ∞ . 
We denote tk,n = k�n , k ∈ ℤ , Tn = Nn�n , n ≥ 1 . The proofs of these lemmas are 
similar to the proof of Lemma 2 and thus omitted. They can be found in the arXiv 
version of the present paper Kampf et al. (2019).

Lemma 4 Let 
{
hn, n ≥ 1

}
 be a sequence of compactly supported bounded functions 

such that the bounds of both the function values and the support are uniform in n. 
Then

�
[ |𝛯n(𝜆)|2 ∣ 𝛤

]

≤ C4∕𝛼
𝛼

n4∕𝛼
∞∑
k≠k�

𝛤
−2∕𝛼

k
𝛤

−2∕𝛼

k�

n∑
1≤j<l≤n

|||aj,l,n(𝜆)
|||
2

�
[
�[j−1,j](𝜉k)�[l−1,l](𝜉k� )

]

= C4∕𝛼
𝛼

n4∕𝛼
∞∑
k≠k�

𝛤
−2∕𝛼

k
𝛤

−2∕𝛼

k�

n∑
1≤j<l≤n

|||aj,l,n(𝜆)
|||
2

P
(
𝜉k ∈ [j − 1, j]

)
P
(
𝜉k� ∈ [l − 1, l]

)

≤ C4∕𝛼
𝛼

n4∕𝛼−2
∑

1≤j<l≤n
|||aj,l,n(𝜆)

|||
2

(
∞∑
k=1

𝛤
−2∕𝛼

k

)2

.

�

[
�
ℝ

|�n(�)|2d� | �
]
≤ C4∕�

�
n4∕�−2An

(
∞∑
k=1

�
−2∕�

k

)2

.

Bn =
∑

1≤j<l≤n
|||bj,l,n

|||
2

.

∑
1≤j<l≤n

bj,l,n𝜀j,n𝜀l,n = OP(B
1∕2
n

𝜎2
n
n2∕𝛼−1), n → ∞.

n�
j=1

Y2
tj,n,n

= OP

�‖hn‖2∞n2∕��2∕�−1
n

�
, n → ∞.
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Lemma 5 Let 
{
mn, n ≥ 1

}
 be a sequence of positive integers such that mn → ∞ 

as n → ∞ . For a deterministic sequence 
{
Wn(m), n ≥ 1,m = −mn,… ,mn

}
 sat-

isfying (W1)–(W2) and continuous functions hn,m ∶ [−Tn, n�n + Tn] ×ℝ → ℂ , 
n ≥ 1,m = −mn,… ,mn , define

Then

where H∗
n
= ∫

ℝ
H(�) d� for H(�) =

∑
�m�≤mn

Wn(m)‖hn,m(⋅, �)‖4∞.

Lemma 6 Let a bounded uniformly continuous function f ∶ ℝ → ℝ with compact 
support [−T , T] and let �n , mn , Wn(m) and �n(m, �) be as defined in Sect. 1 or 3 fulfill-
ing (W1), (W2) and (W4). Choose a sequence of integers (Nn)n∈ℕ with Nn ⋅ �n ∼ T  . 
Put

Then

We also omit the proof of this and the following lemma and refer the interested 
reader to Kampf et al. (2019).

Lemma 7 Let 
{
mn, n ≥ 1

}
 be a sequence of positive integers such that mn → ∞ , 

mn = o(n) , n → ∞ , and let 
{
Kn(m), n ≥ 1,m = −mn,… ,mn

}
 be a sequence in ℝ , 

and let 
{
Wn(m), n ≥ 1,m = −mn,… ,mn

}
 be a sequence of filters satisfying (W1)–

(W2). Then

with W∗
n
= max|m|≤mn

Wn(m) , K∗
n
= max|m|≤mn

|Kn(m)|.

Rn(�) =
∑

|m|≤mn

Wn(m)
|||||�

n�n+Tn

−Tn

hn,m(t, �)�(dt)
|||||

2

.

∫
ℝ

Rn(�)
2d� = OP

(
H∗

n
(n�n)

4∕�
)
, n → ∞,

Fn(�) =
∑

|m|≤mn

Wn(m)

||||||

Nn−1∑
k=−Nn

f (tk,n)e
itk,n�n(m,�)

||||||

2

.

||||
|||f̂ (𝜆)

|||
2

− 𝛥2
n
Fn(𝜆)

|||| = O
((

W (2)
n

)1∕2
(n𝛥n)

−1 + 𝜔f (𝛥n) + |𝜆|𝛥n

)
, n → ∞.

Sn =

n∑
j1,j2=1

||||||
∑

|m|≤mn

Wn(m)Kn(m)e
i(j1−j2)m∕n

||||||

2

= O(W∗
n
(K∗

n
n)2), n → ∞
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