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Abstract
We extend the construction principle of multivariate phase-type distributions to 
establish an analytically tractable class of heavy-tailed multivariate random vari-
ables whose marginal distributions are of Mittag–Leffler type with arbitrary index 
of regular variation. The construction can essentially be seen as allowing a scalar 
parameter to become matrix-valued. The class of distributions is shown to be dense 
among all multivariate positive random variables and hence provides a versatile can-
didate for the modelling of heavy-tailed, but tail-independent, risks in various fields 
of application.

Keywords  Multivariate distribution · Heavy tails · Markov process · Mittag–Leffler 
distribution · Phase-type · Matrix distribution · Extremes · Laplace transforms

1  Introduction

The joint modelling of dependent risks is a crucial task in many areas of applied 
probability and quantitative risk management, see, for example, McNeil et  al. 
(2015). While in many situations, there is a reasonable amount of data available for 
the fitting procedure of univariate risks, the identification of multivariate models 
is much more delicate. A frequent approach proposed in applications is to use the 
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available data for univariate fitting and choose a parametric copula to combine the 
margins, where the parameters of that copula are then either assumed a priori or 
estimated from the joint data. The choice of such a copula is of course crucial for 
the resulting joint distribution and the conclusions one draws from it, cf. Mai and 
Scherer (2017) and Mikosch (2006). In multivariate extremes, which is currently 
a very active research topic, one typically uses less restrictive assumptions for the 
quantification of joint exceedances, see, for example, Falk et al. (2019) and Kiril-
iouk et  al. (2019). Some specific families, like multivariate regular variation, are 
considered particularly attractive in this context, as they have a natural interpreta-
tion in terms of how to extend univariate behaviour into higher dimensions (Ho and 
Dombry 2019; Joe and Li 2011; Resnick 2002). These results focus, however, on 
the asymptotic behaviour, so that for a concrete application with an available data 
set, one typically has to choose thresholds above which this respective behaviour is 
assumed (Wan and Davis 2019), and the bulk of the distribution is then to be mod-
elled by a different distribution (see, for example, Beirlant et  al. 2004; Albrecher 
et al. 2017, Ch.IV.5).

In this paper, we would like to establish a family of multivariate distributions that 
can be applied for modelling across the entire positive orthant, so that no threshold 
selection is needed. In particular, we are interested in a family that leads to explicit 
and tractable expressions for the model fitting and interpretation. While such a fam-
ily already exists for marginally light (exponentially bounded) tails in the form of 
multivariate phase-type (MVPH) distributions, our goal here is to develop a related 
family with heavy-tailed marginal distributions. The univariate starting point for this 
procedure is the matrix Mittag–Leffler (MML) distribution, which is a heavy-tailed 
distribution that was recently studied in Albrecher et al. (2019), and which proved 
to be very tractable, with excellent fitting properties. While in principle, there are 
many possible ways of defining a vector of random variables with given marginals, 
we want to consider here the natural concept of multivariate families that can be 
characterized by the property that any linear combination of the components of such 
a vector is again of the same marginal type. This is exactly one possible definition 
of MVPH distributions (so any linear combination of the coordinates of a random 
vector is again (univariate) phase-type), and it is also a characterizing property of 
multivariate regular variation in a random vector, namely that any linear combina-
tion of the coordinates of such a vector is again (univariate) regularly varying, see 
Basrak et al. (2008).

The goal is hence to study the class of multivariate random vectors for which such 
a property applies with MML marginal distributions. It will turn out that for this 
approach to work, we first need to consider a slightly more general class, which we will 
refer to as generalized MML distributions. We will show that the analysis developed 
for the MVPH case can then be extended to our more general situation. In particu-
lar, we will establish some properties of this class and work out explicit expressions 
for a number of concrete cases. The analysis is considerably simpler for the symmet-
ric situation where all marginal distributions share the same index of regular variation, 
but the general case can be handled as well. The resulting multivariate MML distribu-
tion is asymptotically independent, i.e. there is tail independence for each bivariate pair 
of components. In the case of multivariate regular variation, the sub-class of random 
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vectors with asymptotic independence was studied and characterized in terms of sec-
ond-order conditions in Resnick (2002), where also concrete application areas for such 
heavy-tailed but asymptotically independent risks are given. In a sense, the multivariate 
MML family of distributions we introduce here is another candidate for models in this 
domain, with the advantage of being explicit and tractable across the entire range ℝn

+
 . 

In that respect, this family is also an interesting alternative to multivariate Linnik distri-
butions (see, for example, Anderson 2019; Lim and Teo 2010), which can be conveni-
ently defined in terms of their characteristic function, have the range ℝn (rather than 
ℝ

n
+
 ) and also have heavy-tailed marginals, but which do not lead to explicit expressions 

for the multivariate density.
The remainder of the paper is organized as follows. Section 2 recapitulates the con-

struction principle of univariate and multivariate PH distributions and provides the 
available background on MML distributions. Section 3 introduces generalized MML 
distributions. In Sect.  4, we then develop the necessary theoretical background for 
our definition of the multivariate MML family and establish some of its properties. 
We also consider power transforms, which will provide useful flexibility for model-
ling applications, and we derive denseness properties of the resulting multivariate fam-
ily. In Sect. 5, we work out a concrete simple example in detail and illustrate resulting 
dependence properties for this case. Section 6 concludes.

2 � Phase‑type distributions

2.1 � Notation

We shall apply a common convention from phase-type theory that matrices are 
expressed in bold capital letters (e.g. T,�) , and row vectors are bold minuscular Greek 
letters (e.g. �,�), while column vectors are bold minuscular roman letters (e.g. t , 
x) . Elements of matrices and vectors are denoted by their corresponding minuscular 
unbold letters with indices, e.g. A = {aij} and a = (ai) . If a = (a1,… , an) is a vector, 
then by �(a), we shall denote the diagonal matrix with a as diagonal.

2.2 � Univariate phase‑type distributions

Phase-type distributions are defined as the distribution of the time until absorption of 
a finite state-space Markov jump process with one absorbing state and the other states 
being transient.

Let p be a positive integer and {Xt}t≥0 denote a Markov jump process on 
E = {1,… , p, p + 1} , where states 1, 2,… , p are transient and state p + 1 is absorbing. 
Let �i = ℙ(X0 = i) and assume that �1 +⋯�p = 1 , i.e. initiation in the absorbing state 
is not possible. The intensity matrix of {Xt}t≥0 can be written as

(1)� =

(
T t

0 0

)
,
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where T is the p × p sub-intensity matrix whose off-diagonal elements consist of 
transition rates between the transient states, t is a p-dimensional column vec-
tor, and 0 is a p-dimensional row vector. The diagonal elements of T are given by 
tii = −

∑
j≠i tij + ti , since the row sums of � must be zero.

Let e denote the vector of ones and � = (�1,… ,�p) . Dimensions are usually sup-
pressed, and e may then have any adequate dimension depending on the context.

Then, the time until absorption,

is said to have a phase-type (PH) distribution with representation (�,T) and we write 
PH p(�,T) . Since rows of � sum to zero, we get t = −Te . Note that the case p = 1 
leads to an exponential distribution.

If � ∼ PH p(�,T) , then a number of relevant formulas can be written compactly 
in matrix notation, like, e.g.

for the density, c.d.f., Laplace transform and (fractional) moments, respectively. 
Here, �max denotes the eigenvalue with maximum real part of T , and this real part is 
strictly negative. In particular, the Laplace transform is well defined for all s ≥ 0 and 
in a neighbourhood around zero.

Remark 1  Representations (�,T) of phase-type distributions are not unique. In fact, 
one can construct an infinite number of different representations, which may even 
be of different orders p. Hence, phase-type representations may also suffer from 
over-parametrization, and it is not possible to attach a specific significance to indi-
vidual elements of an intensity matrix. While one can typically construct a certain 
behaviour by means of structuring the sub-intensity matrix T , the opposite task of 
deducing such a behaviour from a given matrix is typically not possible. Some sim-
ple cases, however, may be described. For instance, p = 1 means one phase and the 
resulting distribution is exponential and hence unimodal. For p = 2 , bimodality can-
not be achieved either, as one could at most aim for a mixture of exponentials. For 
p = 3, it is possible to have a mixture of an exponential with an Erlang(2) which is 
bimodal.

For further details on phase-type expressions, we refer to Albrecher et al. (2019) 
and Bladt and Nielsen (2017).

2.3 � Multivariate phase‑type distributions

A nonnegative random vector X = (X1,… ,Xn) is phase-type distributed (MVPH) 
if all nonnegative, non-vanishing linear combinations of its coordinates Xi , 

� = inf{t ≥ 0 ∶ Xt = p + 1},

f (x;�,T) = �eTxt, x > 0,

F(x;�,T) = 1 − �eTxt, x > 0,

L(s;�,T) = �(sI − T)−1t, s > Re (𝜂max ),

�(𝜏𝛼) = Γ(𝛼 + 1)�(−T)−𝛼e, 𝛼 > 0,
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i = 1,… , n have a (univariate) phase-type distribution. This is the most general 
definition of a multivariate phase-type distribution which, however, lacks prac-
ticality since it does not suggest how to construct such distributions. It contains 
a sub-class of multivariate distributions, MPH∗ , which have multidimensional 
Laplace transforms of the form

and we write that X ∼ MPH ∗(�,T,R) . Here, (�,T) is a phase-type representation 
of dimension p, say, R is a p × n matrix and u = (u1,… , un) ∈ ℝ

n
+
 . Furthermore, the 

joint Laplace transform exists in a neighbourhood around zero (Bladt and Nielsen 
2017, Thm.8.1.2).

The form (2) is established from the following probabilistic construction 
(cf. Kulkarni 1989). Consider the Markov jump process {Xt}t≥0 underlying the 
phase-type distribution with representation (�,T) . The n columns of R = {rik} 
are p-dimensional vectors which contain nonnegative numbers. These numbers 
are “rewards” to be earned during sojourns in state i. If � denotes the time until 
absorption of the underlying Markov jump process, then

is the total reward earned according to column k of R until absorption. The structure 
matrix R hence picks scaled sojourns out of the underlying Markov jump process. 
Correlation between different total rewards, Xi and Xj say, will then depend on the 
structure of R and on the underlying stochastic process. If there are common states 
in which reward is earned for both Xi and Xj , then this will contribute to a posi-
tive correlation between them. If there are no common states, the correlation will be 
entirely generated by the structure of the T matrix. Negative correlation between Xi 
and Xj is achieved if large rewards earned in one reduces the one earned in the other 
and vice versa. Specific constructions of dependencies between phase-type distrib-
uted random variables with given marginals are non-trivial, see, for example, Bladt 
and Nielsen (2010), for an example with exponentially distributed marginals.

The random variables Xk defined in (3) are again phase-type distributed and 
in general dependent since different variables may be generated through earn-
ing positive rewards on certain common states (while in other states, there may 
be zero reward for one variable whenever the other has positive reward). If all 
rik > 0 , i = 1,… , p , then Xk is phase-type distributed with initial distribution � 
and sub-intensity matrix �−1(r

⋅k)T . This follows easily from a sample path argu-
ment: if reward rik is earned during a sojourn in state i, then the distribution of the 
reward during a sojourn is exponentially distributed with intensity −tii∕rik.

If some rik = 0 , then finding a representation for Xk is more involved. Let w ≥ 0 
denote a nonzero vector. For obtaining the k’th marginal distribution, we would 
choose w = e

�
k
 , the k’th Euclidean unit vector, while for a more general projection, 

we may choose w = c1e1 +⋯ + cnek for some constants ci , i = 1,… , n . For this 
given w , decompose the set of transient states E = {1,… , p} into E = E+ ∪ E0 , 

(2)L
X
(u;�,T,R) = E(e−<u,X>) = �(�(Ru) − T)−1t,

(3)Xk =

p∑
i=1

∫
�

0

1{Xt = i}rik dt, k = 1,… , n
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where E+ denotes states i ∈ E for which (Rw)i > 0 and E0 states i ∈ E for which 
(Rw)i = 0 . Decompose � = (�+,�0) and

accordingly. Then, we have the following theorem which is proved in Bladt and 
Nielsen (2017, p. 441).

Theorem  1  The distribution of ⟨X,w⟩ is given by an atom at zero of size 
q = �0

(
I −

(
−T00

)−1
T0+

)
e and an absolute continuous part given by a possibly 

defective phase-type distribution with representation (�
w
,T

w
) , where

This means that

where t
w
= −T

w
e.

Remark 2  It is still an open question whether MPH ∗⊂ MVPH or whether 
MPH ∗ = MVPH.

Remark 3  As for univariate phase-type distributions, representations (�,T,R) of 
MPH∗ are not uniquely determined by their distributions, and they may be over-par-
ametrized as well. In particular, the interplay between T and R introduces further 
ambiguity.

While both MPH∗ and MPVH distributions lack explicit formulas for distribution 
and density functions, there is a sub-class of MPH∗ distributions that does allow 
explicit forms. The latter is the one where the structure of the underlying Markov 
chain is of so-called feed-forward type.

Let C1,… ,Cn be sub-intensity matrices, and let D1,… ,Dn denote nonnegative 
matrices such that −Cie = Die . The matrices Di are not necessarily square matrices, 
with the number of rows being equal to the number of rows in Ci and the number of 
columns equal to the number of rows (and columns) of Ci+1 . Define

(4)T =

(
T++ T+0

T0+ T00

)

�w = �+ + �0

(
−T00

)−1
T0+ and Tw = �

(
(Rw)+

)−1(
T++ + T+0

(
−T00

)−1
T0+

)

(5)

�(�(Ruw) − T)−1t = �
�
e−⟨X,uw⟩

�

= �
�
e−u⟨X,w⟩

�

= q + �
w
(uI − T

w
)−1t

w
,

(6)� = (�, 0,… , 0) and T =

⎛
⎜⎜⎜⎜⎝

C1 D1 0 ⋯ 0

0 C2 D2 ⋯ 0

0 0 C3 ⋯ 0

⋮ ⋮ ⋮ ⋮⋮⋮ ⋮

0 0 0 ⋯ Cn

⎞
⎟⎟⎟⎟⎠
,
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and let the reward matrix be

The structure of the R matrix implies that the i’th total reward, Xi , then equals the 
inter-arrival time between arrivals i − 1 and i. Positive correlation between two con-
secutive inter-arrivals i − 1 and i can then be obtained by choosing the matrix Di in 
such a way that a long (short) duration of the Markov chain in block i − 1 will imply 
a long (short) duration in block i as well. For a negative correlation, we have to 
choose the matrix D1 such that the implications are reversed. The joint density of the 
MPH∗ distribution is then given by

Remark 4  The matrices Ci are sub-intensity matrices, providing a phase-type distrib-
uted time until arrival i. The matrices Di are nonnegative matrices containing inten-
sities for initiating a new inter-arrival time for arrival i + 1 at the time of the arrival i. 
Hence, the matrices Di create the dependence between the inter-arrivals. In particu-
lar, if Di = ci�i+1 , where ci = −Cie is the exit rate (column) vector corresponding to 
Ci and �i+1 is some probability (row) vector on {1, 2,… , pi} , then the inter-arrivals 
are independent.

Remark 5  The (full) matrix Dn is not really needed for our purposes, but only the 
exit vector cn = −Cne = Dne . Thus, we may rewrite (8) in the form

We shall, however, maintain the notation with Dn for notational reasons. Since 
−Cie = Die for all i, this also implies the exit vector

so Dne , which is not part of T , is part of t [see (1)].

Remark 6  Note that the restriction −Cie = Die reduces the effective number of 
parameters contributed from those matrices from 2p2

i
 to 2p2

i
− pi . In particular, the 

model of (9), and therefore also (8), has p1 − 1 +
∑n−1

i=1
pi(2pi − 1) + p2

n
 effective 

degrees of freedom.

Remark 7  If Ci = C and Di = D for all i, then (8) is the joint density function for 
the first n inter-arrival times of a Markovian arrival process (MAP) (see, for exam-
ple, Neuts 1979; Bladt and Nielsen 2017). This class of point processes is dense in 
the class of point processes on ℝ+ (see Asmussen and Koole 1993), and therefore, 

(7)R =

⎛
⎜⎜⎜⎜⎝

e 0 0 ⋯ 0

0 e 0 ⋯ 0

0 0 e ⋯ 0

⋮ ⋮ ⋮ ⋮⋮⋮ ⋮

0 0 0 ⋯ e

⎞
⎟⎟⎟⎟⎠
.

(8)f (x1,… , xn;�,T,R) = �eC1x1D1e
C2x2D2 ⋯Dn−1e

CnxnDne.

(9)f (x1,… , xn;�,T,R) = �eC1x1D1e
C2x2D2 ⋯Dn−1e

Cnxncn.

t = −Te = (0, 0,… , 0, cn)
�,
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the class of distributions given by (8) is also dense—in the sense of weak conver-
gence and with flexible dimension of the matrices C and D—in the class of multi-
variate distributions on ℝn

+
.

Later, we shall need the joint fractional moments for such distributions, which are 
given in the following lemma.

Lemma 1  Suppose that X = (X1,X2,… ,Xn) has a joint phase-type distribution 
with density (8). Then, for 𝜃i > 0 , i = 1,… , n,

Proof  It is sufficient to prove the lemma for n = 2.

where Lz� (u) = Γ(u + 1)∕u�+1 is the Laplace transform for z → z� . Since the Laplace 
transforms are analytic (where they are defined), the result follows by a functional 
calculus argument [see Theorem 3.4.4 of Bladt and Nielsen (2017)].	�  ◻

2.4 � Matrix Mittag–Leffler distributions

Let (�,T) be a phase-type representation. Then, a random variable X has a matrix 
Mittag–Leffler (MML) distribution with representation (�,�,T) , if it has Laplace 
transform

where 0 < 𝛼 ≤ 1 . We write X ∼ MML (�,�,T) . Let

denote the Mittag–Leffler (ML) function. Then (see Albrecher et al. 2019), the den-
sity of X is given by

and the corresponding c.d.f. is

�
(
X
�1
1
X
�2
2
⋯X�n

n

)
=

(
n∏
i=1

Γ(�i + 1)

)
�

(
n∏
i=1

(−Ci)
−�i−1Di

)
e

�
(
Z
�1
1
Z
�2
2

)
= ∫

∞

0 ∫
∞

0

z
�1
1
z
�2
2
�eC1z1D1e

C2z2D2e dz1 dz2

= � ∫
∞

0

z
�1
1
eC1z1 dz1D1 ∫

∞

0

z
�2
2
eC2z2 dz2D2e

= �Lz�1 (−C1)D1Lz�2 (−C2)D2e,

LX(u;�,�,T) = �(u�I − T)−1t, u ≥ 0,

E�,�(z) =

∞∑
k=0

zk

Γ(�k + �)
, z ∈ ℂ,

f (x;𝛼,�,T) = x𝛼−1� E𝛼,𝛼(Tx
𝛼) t, x > 0,
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The ML function with (complex) matrix argument A is defined as

For 𝛽 > 0 , one can express the (then entire) ML function of a matrix A by Cauchy’s 
formula

where � is a simple path enclosing the eigenvalues of A . Invoking the residue theo-
rem, for each entry of the matrix E�,�(z)(zI − A)−1 , then provides a simple method 
for calculating E�,�(A).

As outlined in Albrecher et  al. (2019), MML distributions with 0 < 𝛼 < 1 are 
heavy-tailed with tail indices less than one, so that their mean does not exist. This 
may be too restrictive in many situations, and one way to obtain a closely related 
class of distributions is by considering power transformations of the original MML 
distributed random variables. Indeed, if X ∼ MML (�,�,T) , then X1∕� has density

and distribution function

for 𝜈 > 0 (cf. Albrecher et al. 2019). Rewriting � = �� leads to the reparametrization

and

Thus, for any 0 < 𝛼 ≤ 1 and 𝛽 > 0 , (10) and (11) define densities and their cor-
responding distribution functions, with tail index � instead of � . We shall 
refer to distributions with densities of the form (10) as power MML and write 
X ∼ MML1∕�(�,�,T) . Their Laplace transforms are somewhat more involved. 
Indeed, the Laplace transform for X ∼ MML1∕�(�,�,T) is given by [see Formula 
(5.1.30) in Gorenflo et al. (2014) and compare to Gorenflo et al. (2014, p. 364)]

F(x;𝛼,�,T) = 1 − �E𝛼,1(Tx
𝛼)e, x > 0.

E�,�(A) =

∞∑
k=0

A
k

Γ(�k + �)
.

E�,�(A) =
1

2� i ∫
�

E�,�(z)(zI − A)−1 dz,

f (x;𝜈, 𝛼,�,T) = 𝜈x𝜈𝛼−1�E𝛼,𝛼(Tx
𝜈𝛼)t, x > 0,

F(x;𝜈, 𝛼,�,T) = 1 − �E𝛼,1(Tx
𝛼𝜈)e, x > 0,

(10)f (x;𝛽, 𝛼,�,T) =
𝛽

𝛼
x𝛽−1�E𝛼,𝛼

(
Tx𝛽

)
t, x > 0,

(11)F(x;𝛽, 𝛼,�,T) = 1 − �E𝛼,1(Tx
𝛽)e, x > 0.

(12)LX(s;�, �,�,T) = s−���

(
∞∑
k=0

Γ(��(k + 1))

Γ(�(k + 1))
(s−��T)k

)
t, s ≥ 0,
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where the series expansion relates to a generalized Wright hypergeometric function. 
The similarity with the Laplace transform for Y ∼ MML (�,�,T) may be appreci-
ated by rewriting

where we also notice that (12) reduces to (13) for � = 1.

3 � Generalized matrix Mittag–Leffler distributions

The convolution of Mittag–Leffler distributions is not a Mittag–Leffler distribution. 
However, if the components in the convolution have the same tail index, then the 
resulting distribution is a MML.

Theorem 2  Suppose that X ∼ MML (�,�1,T1) and Y ∼ MML (�,�2,T2) . Then,

with

Proof  This result follows from the Laplace transform of X + Y  being

	�  ◻

Since X ∼ MML (�,�1,T1) implies that cX ∼ MML (�,�,T) for any constant 
c > 0 , where

we conclude that if X1,X2,… ,Xn are independent MML with the same tail index � , 
then any linear combination c1X1 +⋯ + cnXn with c1, c2,… , cn ≥ 0 is again MML 
with tail index �.

The convolution of MML distributions with different tail indices is not an MML 
distribution, but naturally leads to an extended class of MML which we refer to as 
Generalized MML, as we will define in the sequel. If X ∼ MML (�,�1,T1) and 
Y ∼ MML (�,�2,T2) with � ≠ � , then calculations similar to the proof of Theo-
rem 2 lead to X + Y  having Laplace transform

(13)LY (s;�,�,T) = �(s�I − T)−1t = s−��(I − s−�T)−1t, s ≥ 0,

X + Y ∼ MML (�,�,T),

� = (�1, 0) and T =

(
T1 t1�2

0 T2

)
.

LX+Y (u;�,�,T) = �1(u
�
I − T1)

−1
t1�2(u

�
I − T2)

−1
t2

= (�1, 0)

(
(u�I − T1)

−1 − (u�I − T1)
−1(−t1�2)(u

�I − T2)
−1

0 (u�I − T2)
−1

)(
0

t2

)

= (�1, 0)

(
u�I −

(
T1 t1�2

0 T2

))−1 (
0

t2

)
.

� = �1 and T = c−�T1,
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where �(A,B) denotes the block diagonal matrix

for square matrices A and B . The linear combination c1X + c2Y  will then have a 
Laplace transform on the form:

This motivates the following definition.

Definition 1  A random variable X is said to have a (univariate) generalized matrix 
Mittag–Leffler distribution, if there exist �1,… , �n with 0 < 𝛼i ≤ 1 , and a phase-type 
representation (�,T) for which the absolutely continuous part of its Laplace trans-
form is given by

where Ik are identity matrices and dim (I1) +⋯ + dim (In) = dim (T) . We write

where � = (�1,… , �n)∈ ℝ
n
+
.

Then, if X1,… ,Xn are independent with

we get

where

and

(14)LX+Y (u) = (�1, 0)

(
�(u�I, u�I) −

(
T1 t1�2

0 T2

))−1 (
0

t2

)
,

�(A,B) =

(
A 0

0 B

)

Lc1X+c2Y (u) = (�1, 0)

(
�(u�I, u�I) −

(
c−�
1
T1 c−�

1
t1�2

0 c
−�

2
T2

))−1 (
0

c
−�

2
t2

)
.

Lcont
X

(u;�,�,T) = �(�(u�1I1,… , u�nIn) − T)−1t, u ≥ 0,

X ∼ GMML (�,�,T),

Xi ∼ GMML (�i,�i,Ti),

X1 +⋯ + Xn ∼ GMML (�,�,T)

� = (�1,… ,�n),

� = (�1, 0,… , 0),

T =

⎛
⎜⎜⎜⎜⎝

T1 t1�2 0 ... 0

0 T2 t2�3 ... 0

0 0 T3 ... 0

⋮ ⋮ ⋮ ⋮⋮⋮ ⋮

0 0 0 ⋮⋮⋮ Tn

⎞
⎟⎟⎟⎟⎠
.



380	 H. Albrecher et al.

1 3

By scaling, any nonnegative nonzero linear combination of GMML distributed ran-
dom variables will again follow a GMML distribution.

4 � The multivariate matrix Mittag–Leffler distribution

Motivated by Sect. 3, we proceed now to define the multivariate MML in a simi-
lar way as their underlying multivariate phase-type distributions.

Definition 2  A random vector X = (X1,… ,Xn) has a multivariate GMML dis-
tribution in the wide sense, if all nonnegative non-vanishing linear combinations 
c1X1 +⋯ + cnXn have a GMML distribution.

As for MVPH distributions, this definition is not very practical from a con-
structive point of view, and we shall introduce a sub-class inspired by (2). To this 
end, we first notice the following result.

Lemma 2  Let �(s1,… , sk) be a multidimensional Laplace transform, and let g1(x) 
,… , gk(x) denote functions for which −gi are completely monotone. Then, it follows 
that

is again a Laplace transform.

Proof  This follows immediately from the multidimensional Bernstein–Widder theo-
rem, see Bochner (2005, p. 87), which states that a multivariate function �(s1,… , sk) 
is a multidimensional Laplace transform if and only if it is infinitely often differenti-
able and

for all n1 ≥ 0,… , nk ≥ 0.	�  ◻

From this we immediately get the following important result.

Theorem 3  Let (�,T,R) be a representation for a multivariate PH distribution (2). 
Then, the multidimensional function

with u� = (u
�1
1
,… , u

�n
n ) , is a multidimensional Laplace transform.

From Theorem 1, we now obtain the following.

L(s1,… , sk) = �(g1(s1),… , gk(sk))

(−1)n1+⋯+nk
�n1+…+nk�

�s
n1
1
… �s

nk
k

≥ 0

(15)�(u) = �(�(Ru�) − T)−1t, u ∈ ℝ
n
+
,
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Theorem 4  Let w ≥ 0 denote a nonzero vector, and let X = (X1,… ,Xn) have a dis-
tribution given by the joint Laplace transform (15) with all �i = � . Decompose 
(�,T) as in (4) according to Rw� . Then, the distribution of ⟨X,w⟩ has an atom at 
zero of size q = �0

(
I −

(
−T00

)−1
T0+

)
e and a possibly defective absolute continu-

ous part which is MML (�,�
w� ,Tw� ) , where (�

w� ,Tw� ) is given in Theorem 1.

Proof  The result follows from

	�  ◻

For possibly distinct �i , we proceed as follows.

Theorem 5  Let w ≥ 0 denote a nonzero vector, and let X = (X1,… ,Xn) be a ran-
dom vector with joint Laplace transform (15). Decompose (�,T) as in (4) according 
to Rw� . Then, the distribution of ⟨X,w⟩ has an atom at zero of size 
p = �0

(
I −

(
−T00

)−1
T0+

)
e and a possibly defective absolute continuous part 

which is GMML (�,�
w� ,Tw� ) , where (�

w� ,Tw� ) is given in Theorem 1.

Proof  We have that

where �(u�) = diag (u�1 ,… , u�n) . Now splitting into blocks according to E+ and 
E0 , we see that

where

�
�
e−u⟨X,w⟩

�
= �

�
e−⟨X,uw⟩

�
(15)
= �(�(Ru�w�) − T)−1t

(5)
=q + �

w� (u�I − T
w� )−1tw� .

�
�
e−u⟨X,w⟩

�
= �

�
e−⟨X,uw⟩

�

= �(�(R(uw)�) − T)−1t

= �(�(Rw�)�(u�) − T)−1t,

�(�(Rw�)�(u�) − T)−1t = �

(
�(Rw�)+�(u

�)+ − T++ − T+0

−T0+ − T00

)−1

t

= (�+,�0)

(
A11 A12

A21 A22

)(
t+

t0

)
,
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Then,

Now inserting

we get

with

	�  ◻

From the previous results, we see that we have found a sub-class of multivariate 
matrix Mittag–Leffler distributions with explicit Laplace transform. This allows us 
to concentrate on this class, and to make the following definition.

Definition 3  Let X = (X1,… ,Xn) be a random vector. Then, we say that X has a 
multivariate matrix generalized Mittag–Leffler distribution if it has joint Laplace 
transform given by (15) and write

A11 =
(
�(Rw�)+�(u

�)+ − T++ − T+0(−T00)
−1
T0+

)−1

=
(
�(u�)+ − (�(Rw�)+)

−1
[
T++ + T+0(−T00)

−1
T0+

])−1
�(Rw�)−1

+

=
(
�(u�)+ − T

w�

)−1
�(Rw�)−1

+
,

A12 =
(
�(u�)+ − T

w�

)−1
�(Rw�)−1

+
T+0(−T00)

−1,

A21 = (−T00)
−1
T0+

(
�(u�)+ − T

w�

)−1
�(Rw�)−1

+
,

A22 = (−T00)
−1
(
I + T0+

(
�(u�)+ − T

w�

)−1
�(Rw�)−1

+
T+0(−T00)

−1
)
.

�+A11 + �0A21 = �
w�

(
�(u�)+ − T

w�

)−1
�(Rw�)−1

+
,

�+A12 + �0A22 = �0(−T00)
−1 + �

w�

(
�(u�)+ − T

w�

)−1
�(Rw�)−1

+
T+0(−T00)

−1.

(
t+

t0

)
= −Te =

(
−T++e − T+0e

−T0+e − T00e

)
,

(
�+A11 + �0A21

)
t+ +

(
�+A12 + �0A22

)
t0

= �0(I − (−T00)
−1
T0+)e + �

w�

(
�(u�)+ − T

w�

)−1
t
w�

= p + �
w�

(
�(u�)+ − T

w�

)−1
t
w�

t
w� = −T

w�e.

X ∼ GMML (�,�,T,R).
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The following result generalizes Theorem  3.6 of Albrecher et  al. (2019) to 
the multivariate case. In particular, it gives the probabilistic interpretation of the 
GMML class as a family of random vectors whose marginals are absorption times 
of randomly scaled, time-inhomogeneous Markov processes. The dependence of 
the corresponding Markov processes arises from the fact that they are all gen-
erated according to a reward structure on an underlying common Markov jump 
process.

Theorem 6  Let X = (X1,… ,Xn) ∼ GMML (�,�,T,R) . Then,

 where W1∕� = (W
1∕�1
1

,… ,W
1∕�n
n ) with W = (W1,… ,Wn) ∼ MPH ∗(�,T,R) [see 

(2)], and where S� = (S�1 ,… , S�n ) is a vector of independent stable random vari-
ables, each with Laplace transform exp(−u�i) . Here, ∙ refers to component-wise 
multiplication of vectors.

Proof  We observe that

which implies the desired representation.	�  ◻

Remark 8  From representation (16), we have that the marginals of any multivariate 
GMML distribution are regularly varying with indices �1,… , �n , all smaller than 1. 
Moreover, by the multivariate version of Breiman’s lemma (cf. Basrak et al. 2008) 
and the fact that multivariate phase-type distributions have moments of all orders, it 
follows that the tail-independence structure of the vector S� carries over to X . That 
is, the multivariate GMML family introduced in this paper has (very) heavy-tailed 
GMML marginals, but is tail-independent. As mentioned in the introduction, appli-
cation areas for such models are, for example, given in Resnick (2002).

A consequence of 𝛼i < 1 is that the mean does not exist. To alleviate this poten-
tial practical drawback, it was proposed in Albrecher et  al. (2019) to consider 
power-transformed variables in the univariate case. In the same way, we propose 
the following definition.

Definition 4  Let X ∼ GMML(�,�,T,R) . For � > 0 , we define

(16)X
d
=W

1∕� ∙ S� ,

𝔼(exp(−⟨u,W1∕� ∙ S�⟩)) = ∫
ℝ

n
+

𝔼(exp(−⟨u,w1∕� ∙ S�⟩)) dFW
(w)

= ∫
ℝ

n
+

exp(−[u
�1
1
w1 +⋯ + u�n

n
wn]) dFW

(w)

= ∫
ℝ

n
+

exp(−⟨u� ,w⟩) dF
W
(w)

= �(𝚫(Ru�) − T)−1t,
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and refer to it as the class of power multivariate MML distributions.

Under the power transform, the class is in general no longer closed under lin-
ear combinations. For fixed � , however, it possesses the following denseness prop-
erty [in contrast to distributions with Laplace transform (15)]. Here, ‘dense on ℝn

+
 ’ 

means dense in the sense of weak convergence among all distributions on ℝn
+
.

Theorem 7  (i) The class of GMML(�,�,T,R) variables is dense on ℝn
+
.

(ii) For any fixed � , the class of GMML1∕�(�,�,T,R) variables is dense on ℝn
+
.

(iii) For any fixed marginal tail indices � ∙ � = �−1 > 0, the class of
GMML1∕�(�,�,T,R) variables is dense on ℝn

+
.

Proof  (i) The statement is evident by noticing that we may choose � ≡ 1 and recall-
ing that the class of variables with Laplace transform (2) is dense on ℝn

+
.

(ii) Let 0 < �1 < �2 < ⋯ be any increasing and (entry-wise) diverging sequence 
of vectors and Y be an arbitrary random vector on ℝn

+
 . Let S� be as in Theorem 6 and 

notice that S�
1∕�n

→ 1 . In particular, S�
1∕�n

d
→ 1 . Moreover, we may choose an inde-

pendent sequence of vectors Wn with Laplace transforms of the form (2) such that 
W

1∕�n

n

d
−→Y  . Applying the continuous mapping theorem, and by the characterization 

of Theorem 6, the statement follows.
(iii) Similar to the previous case, let 0 < �1 < �2 < ⋯ be an increasing sequence 

of vectors, converging to 1 , and set �n = (� ∙ �n)
−1 . With S� as in Theorem 6, we 

have that S1∕�n

�n

d
−→1 . Choosing an independent sequence of vectors Wn with Laplace 

transforms of the form (2) and with W1∕�n

n

d
−→Y  , the proof is finished as before.	�  ◻

Remark 9  The above result shows how several classes of multivariate Mittag–Leffler 
distributions and their power transforms are dense in the set of all distributions of 
the n-dimensional positive orthant. However, since we are dealing with a tail-inde-
pendent model, the number of phases increases drastically when faced with the need 
to capture dependence above high thresholds. Heuristically, the tail dependence is 
only correctly modelled in the limit. This is in some way analogous to the fact that 
phase-type distributions are dense on all distributions on the positive real line, but 
they are all light-tailed (of exponential decay), and very large dimensions are needed 
for approximations of heavy-tailed distributions, cf. Bladt and Nielsen (2017).

5 � Special structures and examples

From the previous sections, it becomes clear that the tail behaviour of the GMML 
class is determined by the parameters �i (cf. Remark 8) and the dependence struc-
ture is mainly triggered by the parameters of the reward matrix R , as these deter-
mine joint contributions to the size of each component. The marginal behaviour 
and overall shape in the body of the distribution are then finally implied by the 

Y = X
1∕� ∼ GMML1∕�(�,�,T,R),
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structure of the phase-type components ( �,T ). In particular, the dimension p of 
the latter also determines the potential for possible multimodalities of the compo-
nents. In fact, Theorem 7 on the denseness of GMML1∕� distributions on ℝn

+
 relies 

[implicitly in part (i)] on the possibility of having arbitrarily large dimension p, 
a flexibility that is needed for modelling multiple modes, as the latter can require 
many phases. However, due to the possibly complex interaction of all parame-
ters, one cannot uniquely assign the role of each of the parameters to achieve 
a particular distributional behaviour or shape. Moreover, for arbitrary combina-
tions of parameters, it is not always possible to get an explicit expression for the 
density of a GMML distribution (a complication inherited from the phase-type 
distributions).

We now proceed to give an example of a sub-class that, however, does allow an 
explicit form. To that end, consider the special structure (6) and (7) for (�,T,R) , 
which in the exponential case led to the density (8),

This choice of (�,T,R) , when plugged into (15), results in the joint Laplace trans-
form of X ∼ GMML (�,�,T,R)

where we now use the shorthand notation � = (�,�,T,R) . For the resulting class of 
GMML distributions, we can derive joint and marginal density functions, but first 
we notice the following lemma.

Lemma 3 

Proof  Since � → �x�−1E�,�(−�x
�) is an analytic function, and a density as a func-

tion of x, we get that

	�  ◻

f (x1,… , xn;�,T,R) = �eC1x1D1e
C2x2D2 ⋯Dn−1e

CnxnDne.

(17)

LX(u;�) = �

⎛⎜⎜⎜⎜⎜⎝

u
�1
1
I − C1 − D1 0 ⋯ 0

0 u
�2
2
I − C2 − D2 ⋯ 0

0 0 u
�3
3
I − C3 ⋯ 0

⋮ ⋮ ⋮ ⋮⋮⋮ ⋮

0 0 0 ⋯ u
�n
n I − Cn

⎞⎟⎟⎟⎟⎟⎠

−1

⎛⎜⎜⎜⎜⎝

0

0

0

⋮

Dne

⎞⎟⎟⎟⎟⎠
,

∫
∞

0

x�−1E�,�(Tx
�) dx = −T−1.

∫
∞

0

x�−1E�,�(Tx
�) dx =∫

∞

0

x�−1
1

2� i ∫
�

E�,�(sx
�)(sI − T)−1 ds dx

=
1

2� i ∫
�

(
∫

∞

0

x�−1E�,�(sx
�) dx

)
(sI − T)−1 ds

=
1

2� i ∫
�

(−s−1)(sI − T)−1 ds

= − T
−1.
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Remark 10  The matrix U = −T−1 is the so-called Green matrix which has the fol-
lowing probabilistic interpretation: the element (i, j) of U is the expected time that 
the Markov jump process underlying a phase-type distribution with generator T 
spends in state j (prior to absorption) given that it starts in state i.

The main result of this section is as follows.

Theorem 8  The Laplace transform (17) can equivalently be written as

 The corresponding joint density is given by

For the i’th marginal distribution of Xi, we have

where

Proof  It is sufficient to prove the result for n = 2 . (18) follows from the general 
block diagonal inversion formula

Concerning (19), we have that

which is of the form (15).
The result on the marginal distributions follows from Lemma 3 and by using that 

(Ci + Di)e = 0 , implying that (−Ci)
−1Die = e.	�  ◻

(18)LX(u;�) = �

(
n∏
i=1

(u
�1
i
I − Ci)

−1
Di

)
e, u ∈ ℝ

n
+
.

(19)fX(x1,… , xn;�) = �

(
n∏
i=1

x
𝛼i−1

i
E𝛼i,𝛼i

(Cix
𝛼i
i
)Di

)
e, xi > 0, i = 1,… , n.

Xi ∼ MML (�i, � i,Ci)

� i = �

i−1∏
j=1

(−Cj)
−1
Dj.

(
A − B

0 C

)−1

=

(
A
−1

A
−1
BC

−1

0 C
−1

)
.

∫
∞

0 ∫
∞

0

e−s1x1−s2x2�x
�1
1
E�1,�1

(C1x
�1
1
)D1x

�2
2
E�2,�2

(C2x
�2
2
)D2e dx1 dx2

= ∫
∞

0

e−s1x1x
�1
1
�E�1,�1

(C1x
�1
1
) dx1D1 ∫

∞

0

e−s2x2x
�2
2
E�2,�2

(C2x
�2
2
)D2e dx2

= �(u
�1
1
I − C1)

−1
D1(u

�2
2
I − C2)

−1
D2e

= (�, 0)

(
u
�1
1
I − C1 − D1

0 u
�2
2
I − C2

)−1 (
0

D2e

)
,
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The previous result can be used in the construction of bivariate (or multivari-
ate) Mittag–Leffler distributions of a reasonably general type.

Example 1  (Bivariate Mittag–Leffler distribution) In this example, we construct a 
class of bivariate distributions with Mittag–Leffler distributed marginals. The start-
ing point is the construction of a bivariate exponential distribution underlying the 
MML. For details on this construction, we refer to Sect. 8.3.2 of Bladt and Nielsen 
(2017). Let m be a positive integer and

Then, for any initial distribution � = (�1,… ,�m) , the phase-type distribution 
PH (�, S) is simply an exponential distribution with intensity � . Similarly, if we let

and �̃ =
1

m
e =

(
1

m
,… ,

1

m

)
 , then PH (�̃, S̃) is again exponentially distributed with 

intensity � . Let P be a doubly stochastic matrix, i.e. its elements are nonnegative and

and define

Consider the reward matrix

Then, MPH ∗(e�
1
,T,R) is a bivariate exponential distribution. This class of bivariate 

exponential distributions is capable of achieving any feasible correlation (ranging 
from 1 − �2∕6 to 1) by choosing m sufficiently large and P adequately (see Bladt and 
Nielsen 2010). Independence is achieved for

S =

⎛
⎜⎜⎜⎜⎜⎜⎝

−m� (m − 1)� 0 … 0 0

0 −(m − 1)� (m − 2)� … 0 0

0 0 −(m − 2)� … 0 0

⋮ ⋮ v⋮ ⋱⋱ ⋮ ⋮

0 0 0 … −2� �

0 0 0 ⋯ 0 −�

⎞
⎟⎟⎟⎟⎟⎟⎠

.

S̃ =

⎛
⎜⎜⎜⎜⎜⎜⎝

−𝜇 𝜇 0 … 0 0

0 −2𝜇 2𝜇 … 0 0

0 0 −3𝜇 … 0 0

⋮ ⋮ ⋮ ⋱⋱ ⋮ ⋮

0 0 0 ⋯ −(m − 1)𝜇 (m − 1)𝜇

0 0 0 … 0 −m𝜇

⎞⎟⎟⎟⎟⎟⎟⎠

Pe = e and e
�
P = e

�,

T =

(
S 𝜆P

0 S̃

)
.

R =

(
e 0

0 e

)
.
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where E = {1}i,j=1,…,m is the matrix of ones, maximum negative (minimum) correla-
tion (up to order m) by

and maximum positive correlation for order up to m by

which is the anti-diagonal unit matrix, cf. He et al. (2012).
The corresponding GMML (�,�,T,R) then has a density f of the form

where as usual ei denotes the i’th Euclidian unit vector. The marginals are Mittag–
Leffler distributions with densities

for x > 0 , which follows directly from the invariance under different representations 
(parametrizations), or by simple integration and using Lemma 3. Note that the pre-
sent dependence structure has a very natural interpretation as a copula constructed 
in terms of combining marginal order statistics, cf. Baker (2008) and Bladt and 
Nielsen (2017 Sec. 8.3.2), here for Mittag–Leffler marginals.

We can write the expression (20) slightly more explicit. The eigenvalues of S are 
−m� , −(m − 1)�,..., −� . To the eigenvalue −�k, there corresponds an eigenvector 
v(k) = (v

(k)

1
,… , v(k)

n
) with

Similarly, S̃ has eigenvalues −�m,−�(m − 1),… ,−�, and to the eigenvalue −k�, 
there corresponds an eigenvector w(k) with

Considering v(k) and w(k) as column vectors, we form the matrices V = (v(1),… , v(m)) 
and W = (w(1),… ,w(m)) . Then, we may write

P =
1

m
E,

P = I

P = {�i,m−i+1},

(20)f (x1, x2;�) = m𝜆𝜇x
𝛼1−1

1
x
𝛼2−1

2
e
�
1
E𝛼1,𝛼1

(Sx
𝛼1
1
)PE𝛼2,𝛼2

(S̃x
𝛼2
2
)en, x1, x2 > 0,

fX1
(x;�1, �) = �x�1−1E�1,�1

(−�x�1−1) and fX2
(x;�2,�) = �x�2−1E�2,�2

(−�x�2−1),

v
(k)

1
= 1

v
(k)

i+1
=
(
1 −

k − 1

m − i

)
v
(k)

i
, i = 1,… ,m − 1.

w
(k)

1
=1

w
(k)

i+1
=
(
1 −

k

i

)
w
(k)

i
, i = 1,… ,m − 1.

E𝛼1,𝛼1
(Sx𝛼1 ) = V�

(
E𝛼1,𝛼1

(−m𝜆x𝜆1 ),… ,E𝛼1,𝛼1
(−𝜆x𝛼1 )

)
V

−1,

E𝛼2,𝛼2
(S̃x𝛼2 ) = W�

(
E𝛼2,𝛼2

(−m𝜇x𝛼2 ),… ,E𝛼1,𝛼1
(−𝜇x𝛼2 )

)
W

−1.
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Though the correlation between the Mittag–Leffler marginals is not defined (since 
moments of orders larger than � do not exist), some notion of dependence may be 
appreciated from the correlation structure of the underlying phase-type distribution.

In Fig. 1, we depict a bivariate Mittag–Leffler density along with simulated data 
for the parameters � = (0.6, 0.7) , m = 20 , � = 1 , � = 2 , and P is the identity matrix.

In Fig.  2, we use the same parameters but with P being the counter-identity 
matrix. As expected, the sign of the log-correlation is determined by the structure 

Fig. 1   Density and 1000 simulated data points from a bivariate ML distribution with negative log-corre-
lation (empirical correlation of −0.53)

Fig. 2   Density and 1000 simulated data points from a bivariate ML distribution with positive correlation 
(empirical correlation of 0.55)
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of the latter matrix. Notice that the number of effective parameters corresponding to 
each of the two proposed structures is five. ◻

Concerning the power MML with this structure, we have the following result.

Theorem  9  Assume that X has joint density (19). Then, Y = X
1∕� has the joint 

density

 and joint moments

 where 𝜈i𝛼i > 𝜃i > 0 , for i = 1, 2,… , n.

Proof  The form of the joint density is immediate. Concerning the form of the 
moments, it suffices to consider the case n = 2 . Using the decomposition (6), we get

where (W1,W2) has a bivariate phase-type distribution with joint density (8). Since

the result then follows from Lemma 1.

	�  ◻

Example 2  Consider the case of a bivariate MML distribution, �1 = �2 = 1 , 𝜈i𝛼i > 1 
and that C1 and C2 have the same dimension. (The latter can always be achieved by 
augmenting the smaller one.) Using the abbreviation

we get

fY (x1,… , xn;�,�) = �

(
n∏
i=1

𝜈ix
𝛼i𝜈i−1

i
E𝛼i,𝛼i

(Cix
𝛼i𝜈i
i

)Di

)
e, xi > 0, i = 1,… , n,

�

(
Y
�1
1
Y
�2
2
⋯Y�n

n

)

=

n∏
i=1

(
Γ(1 − �i∕(�i�i))Γ(1 + �i∕(�i�i))

Γ(1 − �i∕�i)

)
�

(
n∏
i=1

(−Ci)
−�i∕�i�i−1Di

)
e,

�(Y
�1
1
Y
�2
2
) = �

(
W

�1

�1�1

1
W

�2

�2�2

2
S

�1

�1

�1
S

�2

�2

�2

)

= �

(
W

�1

�1�1

1
W

�2

�2�2

2

)
�

(
S

�1

�1

�1

)
�

(
S

�2

�2

�2

)
,

�

(
S

�i

�i

�i

)
=

Γ
(
1 −

�i

�i�1

)

Γ
(
1 −

�i

�1

) ,

ci =
Γ(1 − 1∕(�i�i))Γ(1 + 1∕(�i�i))

Γ(1 − 1∕�i)
, i = 1, 2,
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If 𝜈i𝛼i > 2, we can calculate variances and correlation. Indeed, with

one has

from which the correlation coefficient is readily calculated.
In Fig. 3, we depict a bivariate density from a GMML 1∕�(�,�,T,R) distribution 

along with simulated data. The parameters are given by

and the phase-type component being of the feed-forward structure (6) and (7), with 
n = 2 , �1 = (1∕3, 1∕3, 1∕3) , �2 = 0,

�(Y1) = c1�(−C1)
−1∕(�1�1)−1D1e,

�(Y2) = c2�(−C1)
−1
D1(−C2)

−1∕(�1�1)−1D2e,

�(Y1Y2) = c1c2�(−C1)
−1∕(�1�1)−1D1(−C2)

−1∕(�2�2)−1D2e.

c�
i
=

Γ(1 − 2∕(�i�i))Γ(1 + 2∕(�i�i))

Γ(1 − 2∕�i)
, i = 1, 2,

�
(
Y2
1

)
= c�

1
�(−C1)

−2∕(�1�1)−1D1e

�
(
Y2
2

)
= c�

2
�(−C−1

1
D1)(−C1)

−2∕(�2�2)−1D2e

� = (0.6, 0.7), � = � ∙ � = (3, 3),

C1 = C2 =

⎛⎜⎜⎝

−10 0 0

0 − 1 0

0 0 − 1∕10

⎞⎟⎟⎠
, and D1 = −C1 =

⎛⎜⎜⎝

10 0 0

0 1 0

0 0 1∕10

⎞⎟⎟⎠
.

Fig. 3   Density and 1000 simulated data points from a power multivariate GMML distribution with posi-
tive correlation (true correlation of 0.35 and empirical of 0.37)
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Hence, both marginals are mixtures of power Mittag–Leffler distributions. The mix-
ing probabilities of the two distributions are also the same, (1/3, 1/3, 1/3), since the 
diagonal form of D1 ensures that the second mixture draws the same component as 
the first. The first marginal mixture distribution has a density given by

where �1 = 10, �2 = 1 and �3 = 1∕10 , while the second marginal density has the 
form

The reward matrix is

and Y1 and Y2, simply correspond to the aforementioned mixtures. The structure of 
D1 implies a strong positive correlation. For example, if Y1 is picked from the mix-
ture component with rate 10, then Y2 will be picked from the same component (but 
then drawn independently).

In Fig. 4, we use the same parameters, except for

(21)f1(x) =
5

3
x3

3∑
i=1

�i E 0.6,0.6(−�ix
3),

(22)f2(x) =
10

7
x3

3∑
i=1

�i E 0.7,0.7(−�ix
3).

R =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0

1 0

1 0

0 1

0 1

0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

Fig. 4   Density and 1000 simulated data points from a power multivariate GMML distribution with nega-
tive correlation (true correlation of −0.32 and empirical of −0.33)
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Here, the correlation between Y1 and Y2 will be negative: if Yi is drawn from the 
component with rate 10, then Yj will be drawn from a component with rate 0.1, i ≠ j . 
The marginal distributions are again given by (21) and (22) since the mixing prob-
abilities are all equal. We observe how the sign of the correlation is affected by the 
structure of the matrix D1 , and the fact that the matrices Ci are no longer of Erlang 
structure, the effect is qualitatively opposite to that of the bivariate ML case. One 
also sees that the class provides quite some flexibility in terms of the shape of the 
joint density function.

Remark 11  Dependence may often be constructed by introducing certain structures 
into the intensity matrices like in Example 1. More generally, dependence between 
several random variables of MPH∗ type may be constructed using the so-called 
Baker copula (Baker 2008), where order statistics are used and any feasible correla-
tion structure can be obtained.

6 � Conclusion

This paper introduces a class GMML of multivariate distributions with matrix Mit-
tag–Leffler distributed marginals. With a construction essentially based on the mul-
tivariate phase-type distribution, the GMML class remains a flexible and tractable 
dense class of distributions maintaining a number of closed form properties. Two 
important sub-classes are considered, which lead to explicit formulas for distribu-
tional properties such as densities and fractional moments. This makes it an attrac-
tive candidate for the modelling of both theoretical and practical aspects of multivar-
iate heavy-tailed risks, in situations with tail independence. The present construction 
cannot be extended to tail-dependent scenarios, so that other approaches will be 
needed for the latter, which will be an interesting topic for future research.
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