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Abstract
Quantification of uncertainty of a technical system is often based on a surrogate 
model of a corresponding simulation model. In any application, the simulation 
model will not describe the reality perfectly, and consequently the surrogate model 
will be imperfect. In this article, we combine observed data from the technical sys-
tem with simulated data from the imperfect simulation model in order to estimate 
an improved surrogate model consisting of multilayer feedforward neural networks, 
and we show that under suitable assumptions, this estimate is able to circumvent the 
curse of dimensionality. Based on this improved surrogate model, we show a rate of 
the convergence result for density estimates. The finite sample size performance of 
the estimates is illustrated by applying them to simulated data. The practical useful-
ness of the newly proposed estimates is demonstrated by using them to predict the 
uncertainty of a lateral vibration attenuation system with piezo-elastic supports.

Keywords Curse of dimensionality · Density estimation · Imperfect models · L1 
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1 Introduction

1.1  An example

In this article, we develop new methods for the statistical inference in connection 
with complex technical systems. As an example, we consider the lateral vibration 
attenuation system with piezo-elastic supports described in Fig. 1.

This system consists of a beam with circular cross section embedded in two 
piezo-elastic supports A and B where support A is used for lateral beam vibration 
excitation and B support is used for lateral beam vibration attenuation, as pro-
posed in Götz et al. (2016). The two piezo-elastic supports A and B are located 
at the beam’s end, and each consists of one elastic membrane-like spring element 
made of spring steel, two piezoelectric stack transducers arranged orthogonally to 
each other and mechanically prestressed with disk springs as well as the relatively 
stiff axial extension made of hardened steel that connects the piezoelectric trans-
ducers with the beam. For vibration attenuation in support B, optimally tuned 
electrical shunt circuits are connected to the piezoelectric transducers.

Our aim is to predict the maximal amplitude of the vibration occurring in an 
experiment with this attenuation system. If we construct such attenuation sys-
tems several times, the constructed attenuation systems will be different due to 
variations in the parts used in the construction (e.g., the height or the stiffness of 
the used membrane) or in the construction process, and consequently the results 
which we measure in experiments with the systems will vary. For example, build-
ing such systems ten times and measuring the maximal vibration amplitude in 
an experiment with each of the built systems, we got the following ten values in 
[
m

s2
∕V]:

Fig. 1  A CAD model of the lateral vibration attenuation system with piezo-elastic supports and a sec-
tional view of one of the piezo-elastic supports, cf. Li et al. (2017)
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We assume in the sequel that y1,… , y10 are independent realizations of a real-valued 
random variable Y, and in order to get information about the distribution of Y we 
try to estimate the density g ∶ ℝ → ℝ of Y with respect to the Lebesgue measure 
(which we assume to exist).

The classical statistical approach of doing this is to assume that Y is, e.g., normally 
distributed, to estimate its mean and its variance by maximum likelihood and to use 
the density of the corresponding normal distribution as an estimate of the density of 
Y. For the data in (1), this results in the blue curve in Fig. 2. However, the maximum 
vibration amplitudes represent extreme values of the lateral beam–column vibration 
transfer behavior. According to Choi et al. (2007), the distribution of extreme values is 
characterized by a non-symmetric distribution about the most likely value. Thus, this 
approach seems to be unpromising.

The standard approach in modern statistics would be to use a nonparametric esti-
mate of the density of Y, e.g., the classical kernel density estimate of Rosenblatt (1956) 
and Parzen (1962)

(1)

y1 = 14.50, y2 = 14.17, y3 = 14.37, y4 = 14.16, y5 = 14.28, y6 = 13.51,

y7 = 14.73, y8 = 13.21, y9 = 13.05, y10 = 16.26.

(2)ĝY ,n(y) =
1

n ⋅ hn
⋅

n∑
i=1

K

(
y − Yi

hn

)
,
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Fig. 2  A parametric (dashed black line) and a nonparametric (dotted black line) estimate of the density 
of the data (1). A surrogate estimate on experimental data (8) (dash-dotted black line) and a surrogate 
estimate on computer simulated data (5) (gray solid line). The below in this article introduced new esti-
mate (solid black line) and additionally the data set (1) indicated on the x-axis.
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which we apply in the above formula to random variables Y1,… , Yn which are inde-
pendent and identically distributed as Y. Here, K ∶ ℝ

d
→ ℝ (so-called kernel, which 

is assumed to be a density) and hn > 0 (so-called bandwidth) are parameters of 
the estimate. For example, computing this kernel density estimate with the routine 
ksdensity() in MATLAB results in the red curve in Fig. 2.

The obvious drawback of the first approach is that the error of this parametric 
estimate might be rather large in case that the true density of Y is not the density of 
a normal distribution, in particular if it cannot be approximated well by any such 
density. However, due to the small sample size in this example it is not clear that the 
second approach, i.e., the nonparametric density estimate, yields an estimate which 
is better than the parametric estimate. So in general neither of these two approaches 
will lead to satisfying results.

Unfortunately, it is not really possible to increase the sample size 10 of the data 
(1) in such a way that a nonparametric estimate seems promising, since experiments 
with the above attenuation system (in particular, the construction and replacement 
of the membrane-like spring elements) are extremely time-consuming. What we 
do instead in the sequel is to use some knowledge outside of the data (e.g., knowl-
edge from engineering science about attenuation systems) in order to improve our 
estimation.

Often this is done in the framework of Bayesian statistics, where some kind of a 
priori distribution describing the system under consideration is assumed to be given, 
and under the assumption that this is indeed true, estimates are constructed which 
achieve good results even for very small sample sizes. However, this is an exam-
ple of the saying “We buy information with assumptions” (Coombs 1964), which 
of course might lead to wrong information in the case of wrong assumptions. And 
since it is not obvious how to transform the knowledge in engineering science into 
assumptions about an a priori distribution, we will not use this approach.

Instead, we will use the following knowledge in engineering science in order to 
construct an improved estimate: It is known that five parameters of the membrane 
in the attenuation system vary during the construction of the attenuation system 
and influence the maximal vibration amplitude: the lateral stiffness in direction of 
y ( klat,y ) and in direction of z ( klat,z ), the rotatory stiffness in direction of y ( krot,y ) 
and in direction of z ( krot,z ), and the height of the membrane ( hx ). For given values 
of these five parameters it is possible to compute in a physical model of the attenu-
ation system the corresponding maximal vibration amplitude. In order to generate 
values of these five parameters we need to determine their distributions. Therefore, 
we measured the corresponding parameters for the ten built systems. As a result we 
got the data in Table 1.

We assume that the four different stiffness parameters as well as the height 
property are multivariate normally distributed and estimate their distribution with 
a maximum likelihood estimate. By this assumption, we have specified the distri-
bution of the input variable X, and thus, the computer program m ∶ ℝ

d
→ ℝ can 

be evaluated at values of X, where the distribution of m(X) is an approximation 
of the maximal vibration amplitude Y occurring in experiments with the attenu-
ation system. Later on, we assume that the computer model’s approximational 
performance gets better for an increasing sample size. To achieve this behavior in 
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an application, one could use a subsample for model calibration or one could also 
calibrate a model with more parameters, i.e., increase the model complexity.

In this stochastic model of our attenuation system, we can generate independ-
ent data Xn+1,… ,Xn+Ln

 , compute m(Xn+1),… ,m(Xn+Ln
) and define a kernel den-

sity estimate by

However, the evaluation of the computer program for our technical system will often 
be rather time-consuming and consequently Ln (although much larger than n) might 
not be really large. One possibility to circumvent this problem is to define an esti-
mate of g on the basis of the data

by estimating in a first step a surrogate

of m and by defining in a second step the corresponding surrogate density estimate 
via

Computing such an surrogate density estimate results in the yellow line in Fig. 2. 
Alternatively, one can also ignore the simulation model completely and can use 
instead the data

in order to construct an estimate

ĝLn(y) =
1

Ln ⋅ hLn

⋅

Ln∑
i=1

K

(
y − m(Xn+i)

hLn

)
.

(3)(Xn+1,m(Xn+1)),… , (Xn+Ln
,m(Xn+Ln

)),Xn+Ln+1
,… ,Xn+Ln+Nn

(4)
m(X,m(X)),Ln

(⋅) = m(X,m(X)),Ln
(⋅, (Xn+1,m(Xn+1)),… , (Xn+Ln

,m(Xn+Ln
))) ∶ ℝ

d
→ ℝ

(5)ĝ(X,m(X)),Ln (y) =
1

Nn ⋅ hNn

⋅

Nn∑
i=1

K

(
y − m(X,m(X)),Ln

(Xn+Ln+i
)

hNn

)
.

(6)(X1, Y1),… , (Xn, Yn),Xn+Ln+1
,… ,Xn+Ln+Nn

Table 1  Measured data for the ten built systems

The values of krot,y and krot,z are given in [Nm/rad] , the values of klat,y and klat,z are given in [N/m], the val-
ues of hx are given in [m], and the values of y are given in [ m

s2
∕V]

1 2 3 4 5 6 7 8 9 10

krot,y × 102 1.31 1.34 1.31 1.23 1.14 1.29 1.35 1.28 1.04 1.20
krot,z × 102 1.31 1.28 1.43 1.25 1.30 1.34 1.22 1.16 1.18 1.11

klat,y × 107 3.27 3.28 3.35 3.29 3.22 3.26 3.19 3.54 3.21 3.42
klat,z × 107 3.07 3.22 3.29 3.25 3.30 3.18 3.16 3.51 3.37 3.44

hx × 10−4 6.79 6.77 6.82 6.80 6.79 6.76 6.81 6.74 6.68 6.84

y × 101 1.45 1.42 1.44 1.42 1.43 1.35 1.47 1.32 1.31 1.63
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of m∗(x) = �{Y|X = x} and can define the corresponding surrogate density estimate 
by

Computing such an surrogate density estimate results in the green line in Fig. 2.
The main question which we want to investigate theoretically in this paper is 

whether there exist situations in which suitably defined estimates based on the com-
plete data

(where n, Ln,Nn ∈ ℕ ) achieve simultaneously better rate of the convergence results 
than the estimates (2), (5) and (8).

1.2  Mathematical setting

The mathematical setting which we consider is as follows: Let (X,  Y), (X1, Y1) , 
(X2, Y2) , ... be independent and identically distributed random variables with val-
ues in ℝd ×ℝ , and let m ∶ ℝ

d
→ ℝ be a measurable function. Here, Y describes 

the outcome of an experiment with the technical system, and our aim is to predict 
the density g of Y (w.r.t. the Lebesgue measure), which we assume to exist. The 
random vector X and the measurable function m describe our stochastic model of 
the technical system, and in this model we use m(X) as an approximation of Y. Let 
m∗(x) = �{Y|X = x} be the regression function of (X,  Y). In the sequel, we will 
assume that

is small, so that it is reasonable to try to approximate Y by some m̂n(X) . It is easy 
to see that by neglecting Yn+1.… , Yn+Ln+Nn

 and applying m to Xn+1,… ,Xn+Ln
, we 

get (9). Given the data (9), our goal is to construct an estimate of g.

1.3  Definition of a class of neural networks

In order to construct such an estimate, we proceed as follows: Let � ∶ ℝ → ℝ be a 
so-called squashing function, i.e., assume that � is monotonically increasing and sat-
isfies limx→−∞ �(x) = 0 and limx→∞ �(x) = 1 . In our applications in Sect. 3, we will 
use the so-called logistic squasher �(x) = 1∕(1 + exp(−x)) (x ∈ ℝ).

For M ∈ ℕ , d ∈ ℕ , d∗ ∈ {0,… , d} and Bn > 0 , we denote the set of all functions 
f ∶ ℝ

d
→ ℝ that satisfy

(7)m(X,Y),n(⋅) = m(X,Y),n(⋅, (X1, Y1),… , (Xn, Yn)) ∶ ℝ
d
→ ℝ

(8)ĝ(X,Y),n(y) =
1

Nn ⋅ hNn

⋅

Nn∑
i=1

K

(
y − m(X,Y),n(Xn+Ln+i

)

hNn

)
.

(9)
(X1, Y1),… , (Xn, Yn), (Xn+1,m(Xn+1)),… , (Xn+Ln

,m(Xn+Ln
)),

Xn+Ln+1
,… ,Xn+Ln+Nn

�
{|Y − m∗(X)|2}
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(x ∈ ℝ
d) for some �i, �i,j, �i,j,v ∈ ℝ , where

for all i ∈ {0, 1,… ,M} , j ∈ {0,… , 4d∗} and v ∈ {0,… , d} , by F(neural networks)

M,d,d∗,Bn
.

We will impose the following assumption [which was introduced in Kohler and 
Krzyżak (2017a) as an assumption which is realistic in connection with complex 
technical systems which are build in a modular way] on the functions which we 
want to approximate by neural networks:

Definition 1 Let d ∈ ℕ , d∗ ∈ {1,… , d} and m ∶ ℝ
d
→ ℝ . 

(a) We say that m satisfies a generalized hierarchical interaction model of order 
d∗ and level 0, if there exist a1,… , ad∗ ∈ ℝ

d and f ∶ ℝ
d∗

→ ℝ such that 

(b) We say that m satisfies a generalized hierarchical interaction model of 
order d∗ and level l + 1 , if there exist K ∈ ℕ , gk ∶ ℝ

d∗
→ ℝ (k = 1,… ,K) and 

f1,k,… , fd∗,k ∶ ℝ
d
→ ℝ (k = 1,… ,K) such that f1,k,… , fd∗,k (k = 1,… ,K) satisfy 

a generalized hierarchical interaction model of order d∗ and level l and 

Definition 2 Let p = k + � for some k ∈ ℕ0 and 0 < 𝛽 ≤ 1 , and let C > 0 . 

(a) We say that a function m ∶ ℝ
d
→ ℝ is (p,C)-smooth, if for every 

� = (�1,… , �d) ∈ ℕ
d
0
 with 

∑d

j=1
�j = k the partial derivative �km

�x
�1
1
…�x

�d
d

 exists and 
satisfies 

 for all x, z ∈ ℝ
d.

(b) We say that a generalized hierarchical interaction model is (p,C)-smooth, if 
all functions occurring in its definition are (p,C)-smooth.

The above-introduced class of functions is quite general, i.e., it includes a vari-
ety of more common function classes. To enable the reader a better understand-
ing, we will show how the  in Stone (1985) introduced additive model, which is 
defined by

f (x) =

M∑
i=1

�i ⋅ �

(
4d∗∑
j=1

�i,j ⋅ �

(
d∑

v=1

�i,j,v ⋅ x
(v) + �i,j,0

)
+ �i,0

)
+ �0

|�i| ≤ Bn, |�i,j| ≤ Bn, |�i,j,v| ≤ Bn

m(x) = f (aT
1
x,… , aT

d∗
x) for all x ∈ ℝ

d.

m(x) =

K∑
k=1

gk(f1,k(x),… , fd∗,k(x)) for all x ∈ ℝ
d.

�����
�km

�x
�1
1
… �x

�d
d

(x) −
�km

�x
�1
1
… �x

�d
d

(z)
�����
≤ C ⋅ ‖x − z‖�
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can be embedded in the above framework. Using the notation id ∶ ℝ
d
→ ℝ for the 

identity function and ei for the ith unit vector, we can rewrite the additive model as

where K = d , gi = m , fi,1 = d and ai = ei . This structure corresponds to the defini-
tion of a generalized hierarchical interaction model of order 1 and level 1. For more 
examples of classes of functions which can be expressed as a generalized hierarchi-
cal interaction model, we want to refer to Bauer and Kohler (2019).

We will use the following recursively defined classes of neural networks (with 
parameters K, M, d, d∗ ∈ ℕ and Bn > 0 ) in order to approximate functions which sat-
isfy a generalized hierarchical interaction model: For l = 0 , we define our space of hier-
archical neural networks by

For l > 0 , we define recursively

To give the reader an idea of a possible neural network defined as above, a pictorial 
description is given in Fig. 3. For more information about the topology of the net-
works, we want to refer the reader to Bauer and Kohler (2019).

1.4  Definition of the estimators

Given the data (9), we want to estimate the density g of Y. We start with defining a sur-
rogate estimate

of the function m. For this, we use a least squares estimate defined by

where K1,M1,n, d
∗ ∈ ℕ and B1,n > 0 are parameters of the estimate. For simplicity, 

we assume here and in the sequel that the minimum above indeed exists. When this 
is not the case, our theoretical results also hold for any estimate which minimizes the 
above empirical L2 risk up to a sufficiently small additional term (e.g., 1/n). In order 

m(xi,… , xd) = m1(x1) +⋯ + md(xd)

d∑
i=1

mi(x
(i)) =

d∑
i=1

mi(id(e
T
i
x)) =

K∑
i=1

gi(f1,i(a
T
i
x)),

H
(0)

K,M,d,d∗,Bn
= F

(neural networks)

M,d,d∗,Bn
.

(10)
H

(l)

K,M,d,d∗,Bn
=

{
h ∶ ℝ

d
→ ℝ, h(x) =

K∑
k=1

gk(f1,k(x),… , fd∗,k(x)) (x ∈ ℝ
d)

for some gk ∈ F
(neural networks)

M,d∗,d∗,Bn
and fj,k ∈ H

(l−1)

K,M,d,d∗,Bn

}
.

(11)mLn
(⋅) = mLn

(⋅, (Xn+1,m(Xn+1)),… , (Xn+Ln
,m(Xn+Ln

))) ∶ ℝ
d
→ ℝ

(12)m̃Ln
(⋅) = arg min

h∈H
(l)

K1,M1,n ,d,d
∗ ,B1,n

(
1

Ln

n+Ln∑
i=n+1

|h(Xi) − m(Xi)|2
)
,
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to be able to analyze the rate of the convergence of this estimate for an arbitrary dis-
tribution of X, we truncate this estimate at some height 𝛽 > 0 , i.e., we define

where

for z ∈ ℝ . (Here, we will assume later that |m(x)| ≤ � (x ∈ ℝ
d) holds.) Next we 

define an estimate of m∗ − mLn
 on the basis of the residuals

To do this, we define

for some weight w(n) ∈ [0, 1] and parameters K2,M2,n, d
∗ ∈ ℕ and B2,n > 0 and set

where c1 ≥ 1 and 𝛼n > 0 . Here, the additional function values of 
Xn+Ln+1

,… ,Xn+Ln+N1,n
 are compared with 0. This can be seen as a form of regulari-

zation, based on the assumption that the surrogate estimate mLn
 is almost perfect.

(13)mLn
(x) = T𝛽(m̃Ln

(x)) (x ∈ ℝ
d)

T𝛽(z) =

{
sign(z) ⋅ 𝛽 |z| > 𝛽

z otherwise

(14)𝜖i = Yi − mLn
(Xi) (i = 1,… , n).

(15)

m̃𝜖
n
(⋅) = arg min

h∈H
(l)

K2,M2,n ,d,d
∗ ,B2,n

(
w(n)

n

n∑
i=1

(𝜖i − h(Xi))
2 +

1 − w(n)

N1,n

N1,n∑
i=1

(0 − h(Xn+Ln+i
))2

)

(16)m̂𝜖
n
(x) = Tc1⋅𝛼n m̃

𝜖
n
(x) (x ∈ ℝ

d),

Fig. 3  An exemplary neural network of the type f (x) = ∑3

i=1
�i ⋅ �

�∑2

j=1
�i,j ⋅ �

�∑4

v=1
�i,j,v ⋅ x

(v) + �i,j,0

�
+ �i,0

�

+�0 , where all weights with an index containing 0 are neglected in the diagram
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We define our final surrogate model (X, m̂n(X)) for (X, Y) by

and estimate the density g of Y by applying a kernel density estimate to a sample of 
m̂n(X) . Therefore, we choose a kernel K ∶ ℝ → ℝ and a bandwidth hN2,n

> 0 and set

Remark 1 The parameters of the estimate depend on the distribution of (X, Y) and 
on m. In Sect. 3, we propose data-dependent choices for these parameters and inves-
tigate the finite sample size performance of the resulting estimate with the aid of 
simulated data.

1.5  Main results

In general, our error bounds are also applicable for finite n. But in order to simplify the 
presentation, we consider the case n → ∞ and assume that the distribution of (X, Y) 
and also the stochastic model (X, m(X)) change for increasing n such that Y − m∗(X) 
and the error m(X) − m∗(X) converge toward zero for increasing n. In order to reduce 
complexity in the notation, we write (X, Y) and m instead of (X(n), Y (n)) and m(n) , resp. 
The assumption that Y − m∗(X) converges toward zero is, in particular, satisfied in the 
noiseless case where Y = m∗(X).

Our main assumptions in our theoretical result are the following: We assume for 
some 𝛼n ≥ 𝛼∗

n
> 0 that

and that m ∶ ℝ
d
→ ℝ and the function

both satisfy a (p, C)-smooth generalized hierarchical interaction model of order d∗ 
and finite level l with p = q + s for some q ∈ ℕ0 and s ∈ (0, 1] . Under some minor 
additional assumptions and with properly chosen parameters, we are then able to 
show that our improved surrogate estimate satisfies

From this, we are able to conclude for �∗
n
 sufficiently small and Ln sufficiently large 

that the L1 error of our density estimate satisfies in case of a (r, C)-smooth density g

(17)m̂n(x) = mLn
(x) + m̂𝜖

n
(x) (x ∈ ℝ

d),

(18)ĝN2,n
(y) =

1

N2,n ⋅ hN2,n

⋅

N2,n∑
i=1

K

(
y − m̂n(Xn+Ln+i

)

hN2,n

)
.

�

{
|Y − m∗(X)|2

} ≤ (�∗
n
)2 and sup

x∈ℝd

|m(x) − m∗(x)| ≤ �n,

x ↦ �

{
1

�n
(Y − m(X))

|||X = x

}
=

1

�n
(m∗ − m)(x)

�
{|Y − m̂n(X)|2

} ≤ c2 ⋅max

{
(𝛼∗

n
)2, 𝛼2

n
⋅ (log n)3 ⋅ n

−
2p

2p+d∗ , (log Ln)
3
⋅ L

−
2p

2p+d∗

n

}
.
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In case �n ⋅ (log n)3∕2 → 0 (n → ∞) sufficiently fast, this rate of convergence con-
verges faster to zero than any of the rate of convergences

which we would expect for the estimates (2), (5) and (8), resp.
The finite sample size behavior of our estimates is illustrated by using simulated 

data, and we illustrate the usefulness of our newly proposed estimates for uncer-
tainty quantification by applying them in the application above.

1.6  Discussion of related results

Neural networks belong since many years to the most promising approaches in non-
parametric statistics in view of multivariate statistical applications, in particular 
in pattern recognition and in nonparametric regression [see, e.g., the monographs 
Hertz et al. (1991), Devroye et al. (1996), Anthony and Bartlett (1999), Györfi et al. 
(2002), Haykin (2008) and Ripley (2008)]. The new theoretical results in nonpar-
ametric regression show that neural networks with many hidden layer are able to 
circumvent under proper assumptions the so-called curse of dimensionality and 
achieve therefore good rate of the convergence results in high-dimensional estima-
tion problems (cf., Kohler and Krzyżak 2017a; Bauer and Kohler 2019; Schmidt-
Hieber 2017). Our results in this article demonstrate that the techniques introduced 
in these papers also lead to good theoretical results in uncertainty quantification.

Estimation of surrogate methods for uncertainty quantification based on neural 
networks has been proposed in Papadrakakis and Lagaros (2002), but the theoreti-
cal results for the proposed estimates have not been developed there. Other ways to 
estimate surrogate models have been introduced and investigated with the aid of the 
simulated and real data in connection with the quadratic response surfaces in Bucher 
and Bourgund (1990), Kim and Na (1997) and Das and Zheng (2000), in context 
of support vector machines in Hurtado (2004), Deheeger and Lemaire (2010) and 
Bourinet et al. (2011) and in context of kriging in Kaymaz (2005) and Bichon et al. 
(2008). See also Santner et al. (2003) and the literature cited therein for additional 
literature on the design and analysis of computer experiments.

Consistency and rate of convergence of density estimates based on surrogate 
models have been studied in Devroye et  al. (2013), Bott et  al. (2015) and Felber 
et al. (2015a). A method for the adaptive choice of the smoothing parameter of such 
estimates has been presented in Felber et al. (2015b).

In Bayesian analysis of computer experiments, Kennedy and O’Hagan (2001), 
Bayarri et al. (2007), Goh et al. (2013), Han et al. (2009), Higdon et al. (2013) and 
Wang et al. (2009) model the discrepancy between the computer experiments and 
the outcome of the technical system by a Gaussian process. Tuo and Wu (2015) 
pointed out that this approach might fail in case of an imperfect computer model, 

��
ℝ

|ĝN2,n
(y) − g(y)| dy ≤ c3 ⋅

(
𝛼n ⋅ (log n)

3∕2
⋅ n

−
p

2p+d∗

) r

r+1
.

(19)n
−

r

2r+1 , �
r

r+1

n and
(
n
−

p

2p+d∗

) r

r+1
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for which there exists no values of the parameters which fit the technical system 
perfectly and suggested and analyzed non-Bayesian methods for the choice of the 
parameters of such models. Related methods for the calibration of computer models 
have been considered in Wong et al. (2017). There the error of the resulting model 
was estimated by using bootstrap. Confidence intervals for quantiles based on data 
from imperfect simulation models have been derived in Kohler et al. (2018).

The definition of our improved surrogate model is motivated by Kohler and 
Krzyżak (2017b), where a result for smoothing spline estimates is shown. In this 
article, we extend this result from smoothing spline to least squares estimates and 
apply it to neural networks. The main advantage of our new results is that we are 
able to apply our method also successfully to high-dimensional settings, where 
smoothing spline estimates usually fail to deliver reasonable results because of the 
curse of dimensionality.

1.7  Notation

Throughout this paper, we use the following notation: ℕ , ℕ0 , ℝ and ℝ+ are the sets of 
positive integers, nonnegative integers, real numbers and nonnegative real numbers, 
respectively. For z ∈ ℝ , we denote the smallest integer greater than or equal to z by 
⌈z⌉ . For f ∶ ℝ

d
→ ℝ

is its supremum norm.
If X is a random variable, then �X is the corresponding distribution, i.e., the meas-

ure associated with the random variable.
Let D ⊆ ℝ

d and let f ∶ ℝ
d
→ ℝ be a real-valued function defined on ℝd . We 

write x = argminz∈D f (z) if minz∈D f (z) exists and if x satisfies

For 𝜖 > 0 , xn
1
= (x1,… , xn) ∈ (ℝd)n and a set F  of functions f ∶ ℝ

d
→ ℝ we define 

the L2 covering number N2(�,F, x
n
1
) as the minimal number l ∈ ℕ of functions 

g1,… , gl ∶ ℝ
d
→ ℝ which have the property

for each f ∈ F .

1.8  Outline

The outline of this paper is as follows: The main results are presented in Sect. 2 and 
proven in Sect. 4. The finite sample size performance of our estimates is illustrated 
in Sect. 3 by applying it to simulated and real data.

‖f‖∞ = sup
x∈ℝd

�f (x)�

x ∈ D and f (x) = min
z∈D

f (z).

(
min

j=1,…,l

1

n

n∑
i=1

|f (xi) − gj(xi)|2
)1∕2

≤ �
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2  Main results

In order to formulate our main result on the rate of convergence of our improved 
surrogate estimate, we need the following definition.

Definition 3 A nondecreasing and Lipschitz continuous function � ∶ ℝ → [0, 1] is 
called N-admissible, if the following conditions are satisfied. 

 (i) The function � is N + 1 times continuously differentiable with bounded deri-
vates.

 (ii) A point t� ∈ ℝ exists, where all derivates up to the order N of � are different 
from zero.

 (iii) If y > 0 , the relation |�(y) − 1| ≤ 1

y
 holds. If y < 0 , the relation |�(y)| ≤ 1

|y| 
holds.

It is easy to see that the logistic squasher �(x) = 1∕(1 + exp(−x)) is N-admissible 
for any N ∈ ℕ (cf., Bauer and Kohler (2019)).

Theorem  1 Let d, n, Ln ∈ ℕ with 2 ≤ n ≤ Ln and with nc4 ≤ Ln ≤ nc5 for some 
c4, c5 > 0 . Let (X, Y), (X1, Y1) , ...be independent and identically distributed ℝd ×ℝ

-valued random variables with �{|Y|} < ∞ and with supp(X) bounded. Let 
m∗(⋅) = �{Y|X = ⋅} be the regression function of (X, Y). Let C > 0 and let p = q + s 
for some q ∈ ℕ0 and s ∈ (0, 1] . Let m ∶ ℝ

d
→ ℝ be a measurable function, which 

satisfies a (p, C)-smooth generalized hierarchical interaction model of order d∗ and 
finite level l, and assume that in Definition 1(b) all partial derivates of order less 
than or equal to q of the functions gk, fj,k of this generalized hierarchical interaction 
model are bounded, i.e., assume that each such function f satisfies

and let all functions gk be Lipschitz continuous with Lipschitz constant L > 0 . 
Assume that for some 1 ≤ � ≤ n + Ln

Let 𝛼n > 𝛼∗
n
≥ 0 and assume

and assume furthermore that there exists K, 𝜎0 > 0 such that

(20)
max

j1,… , jd ∈ {0, 1,… , q}

j1 +…+ jd ≤ q

‖‖‖‖‖
�j1+…+jd f

�j1x(1) ⋯ �jd x(d)

‖‖‖‖‖∞
≤ c6,

(21)|m(x)| ≤ � (x ∈ ℝ
d).

(22)�

{
|Y − m∗(X)|2

} ≤ (�∗
n
)2 and �

{
|Y − m∗(X)|3

} ≤ (�∗
n
)3,
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and that the regression function �{ 1

�n
(Y − m(X))|X = x} =

1

�n
(m∗ − m)(x) satisfies a 

(p, C)-smooth generalized hierarchical interaction model of order d∗ and finite level 
l. Furthermore, assume that in Definition 1(b) all partial derivates of order less than 
or equal to q of the functions gk, fj,k of this generalized hierarchical interaction 
model are bounded, i.e., assume that each such function f satisfies (20), and let all 
functions gk be Lipschitz continuous with Lipschitz constant L > 0 . Assume

and

Define the estimate m̂n as in Sect. 1.4, where we choose K1 , d, and d∗ as in the defini-
tion of the generalized hierarchical interaction model for m and

and B1,n = L
c8
n  , where we choose K2 , d, and d∗ as in the definition of the gen-

eralized hierarchical interaction model for (m∗ − m)∕�n , N1,n,M2,n ∈ ℕ with 
M2,n ≤ N1,n∕ log(N1,n) and B2,n = nc8 , where � ∶ ℝ → [0, 1] is N-admissible accord-
ing to Definition  3 for some N ≥ q , and where we use some weight w(n) ∈ [0, 1] . 
Then, there exists constants c9,… , c14 ∈ ℝ+ such that

for n sufficiently large.
In particular, in case w(n) = 1 and M2,n = ⌈c15 ⋅ n

d∗

2p+d∗ ⌉ we get

for some c16 ∈ ℝ+ and n sufficiently large.

Theorem 1 implies the following corollary concerning the L1 error of the den-
sity estimate (18):

(23)K2
⋅

(
�

{
exp

((
Y − m∗(X)

�n ⋅ K

)2
)
||X
}

− 1

)
≤ �0 a.s.,

(24)sup
x∈ℝd

|m∗(x) − m(x)| ≤ �n

(25)
(
(log Ln)

3
⋅ L

−
2p

2p+d∗

n

)1∕3

≤ �n.

M1,n = ⌈c7 ⋅ L
d∗

2p+d∗

n ⌉

�
{|Y − m̂n(X)|2

}

≤ c9 ⋅ (𝛼
∗
n
)2 + c10 ⋅ 𝛼

2
n
⋅ (log n)3 ⋅M

−
2p

d∗

2,n
+ c11 ⋅ w

(n)
⋅ 𝛼2

n
⋅ (log n)3 ⋅

M2,n

n

+ c12 ⋅ (1 − w(n)) ⋅ 𝛼2
n
+ c13 ⋅ (logLn)

3
⋅ L

−
2p

2p+d∗

n + c14 ⋅
𝛼2
n

n
,

�
{|Y − m̂n(X)|2

} ≤ c16 ⋅max

{
(𝛼∗

n
)2, 𝛼2

n
⋅ (log n)3 ⋅ n

−
2p

2p+d∗ , (logLn)
3
⋅ L

−
2p

2p+d∗

n

}
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Corollary 1 Assume that the density g of Y is (r, C)-smooth for some r ∈ (0, 1] and 
that its support is compact. Let K ∶ ℝ → ℝ be a symmetric and bounded density 
which decreases monotonically on ℝ+ and define the estimate ĝN2,n

 as in Sect. 1.4, 
where m̂n is defined as in the end of Theorem  1. Assume that the assumptions of 
Theorem 1 are satisfied, and that, in addition,

holds. Set

and assume

Then, we have for some c18 ∈ ℝ+

for n sufficiently large.

Proof Lemma 1 in Bott et al. (2015) implies that for any z1, z2 ∈ ℝ, we have

Consequently,

satisfies

From this and standard bounds on the L1 error of kernel density estimates [cf., e.g., 
proof of Theorem 1 in Felber et al. (2015a)], we conclude

max

{
(�∗

n
)2, (log Ln)

3
⋅ L

−
2p

2p+d∗

n

}
≤ �2

n
⋅ (log n)3 ⋅ n

−
2p

2p+d∗

hNn,2
= c17 ⋅

(
�n ⋅ (log n)

3∕2
⋅ n

−
p

2p+d∗

) 1

r+1

N2,n ≥
(

n
p

2p+d∗

�n ⋅ (log n)
3∕2

) 2r+1

r+1

.

��
ℝ

|ĝN2,n
(y) − g(y)| dy ≤ c18 ⋅

(
𝛼n ⋅ (log n)

3∕2
⋅ n

−
p

2p+d∗

) r

r+1
,

�
|||||
K

(
y − z1

hn

)
− K

(
y − z2

hn

)|||||
dy ≤ 2 ⋅ K(0) ⋅ |z1 − z2|.

ĝY ,N2,n
(y) =

1

N2,n ⋅ hN2,n

⋅

N2,n∑
i=1

K

(
y − Yn+Ln+i

hN2,n

)

� |ĝN2,n
(y) − ĝY ,N2,n

(y)| dy ≤ 1

N2,n ⋅ hN2,n

⋅

N2,n∑
i=1

2 ⋅ K(0) ⋅ |m̂n(Xn+Ln+i
) − Yn+Ln+i|.
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Application of Theorem 1 yields the assertion.  ◻

Remark 2 As already mentioned in Sect. 1.5, we have that for �n → 0 (n → ∞) suf-
ficiently fast the nonasymptotic error bound in Corollary 1 converges faster to zero 
than any of the rate of convergences in (19) which we would expect for the estimates 
(2), (5) and (8), resp.

Remark 3 Since the rate of convergence in Corollary  1 does not depend on the 
dimension d of X, our newly proposed estimate is able to circumvent the curse of 
dimensionality under suitably assumptions on the structure of m.

3  Application to simulated and real data

In this section, we want to describe the implementation of our introduced surrogate 
estimation method and analyze the performance of the estimate by applying it to 
simulated and real data.

The surrogate estimate is defined by combining the least squares neural net-
work estimates mLn

 and m̂𝜖
n
 as described in Sect. 1.4. In both cases, we use multi-

layer feedforward neural networks; however, the network parameters are chosen dif-
ferently. For the estimate mLn

, we choose the parameter from the sets l ∈ {0, 1, 2} , 
K1 ∈ {1, 2} , d∗ ∈ {1,… , d} and M1,n ∈ {1,… , 5, 6, 16,… , 46} . For the estimate 
mLn

, the parameter selection is done data-dependent by a splitting of the sample, 
where we use ⌈ 2

3
⋅ Ln⌉ train data and Ln − ⌈ 2

3
⋅ Ln⌉ test data and we consider the 

parameter combination with the smallest empirical L2 risk evaluated on the test data. 
Since the data set (X1, Y1),… , (Xn, Yn) is considered rather small, we reduce the sets 
of possible parameters for m̂𝜖

n
 to l ∈ {0} , K2 ∈ {1} , d∗ ∈ {1, 2, 4} , M2,n ∈ {1, 3, 5} 

and the additional weighting parameter w is chosen from {0, 0.25,… , 1} . For the 
residual estimate, we select the parameter with a fivefold cross-validation. To solve 
the least squares problems in (12) and (15), we use the Levenberg–Marquardt algo-
rithm implemented in the MATLAB function lsqnonlin() to approximate their solu-
tion. For our density estimate, we use a sample of size N2,n of m̂n(X) and apply a 
standard kernel density estimate implemented in the MATLAB function ksdensity().

��
ℝ

|ĝN2,n
(y) − g(y)| dy

≤ ��
ℝ

|ĝN2,n
(y) − ĝY ,N2,n

(y)| dy + ��
ℝ

|ĝY ,N2,n
(y) − g(y)| dy

≤ 2 ⋅ K(0)

hN2,n

⋅ �
{|mn(X) − Y|} +

c19√
N2,n ⋅ hN2,n

+ c20 ⋅ h
r
N2,n

≤ 2 ⋅ K(0)

hN2,n

⋅

√
�
{|mn(X) − Y|2} +

c19√
N2,n ⋅ hN2,n

+ c20 ⋅ h
r
N2,n

.
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In the application on simulated data, we consider the following setting. We 
choose the independent random variable X as uniformly distributed on [0, 1]d and an 
error term � uniformly distributed on [−1, 1] such that X and � are independent. The 
dependent variable Y is defined by

for some m∗ ∶ ℝ
d
→ ℝ , a noise factor �∗ ∈ {0.05, 0.2} and 𝜆∗ > 0 selected as the 

empirical interquartile range of m∗(X) . We set

where �m ∈ {0.1, 0.2, 0.5}.
Let (X, Y), (X1, Y1), (X2, Y2)… be independent and identically distributed and ran-

dom variables. Our estimate gets

as data from our real technical system,

as data from our (imperfect) model and the additional X-values

We consider five different models with a constant deviation in the computer model. 
In each model, we use sample sizes n = 10 , Ln = 200 , N1,n = 200 and N2,n = 105 . 
The different functions used as m∗ are listed below.

As mentioned before, the parameter �∗ is chosen as the empirical interquartile 
range of m∗(X) calculated on 105 realizations of X. The used values are �∗

1
= 9.11 , 

�∗
2
= 5.68 , �∗

3
= 13.97 , �∗

4
= 1.77 and �∗

5
= 1.64.

The density of Y is the convolution of the density of m∗(X) and a uniform den-
sity. We do not try to compute its exact form, instead we compute it approximately 
by a kernel density estimate (as implemented in the MATLAB routine ksdensity()) 

Y = m∗(X) + �∗
⋅ �∗ ⋅ �

m(x) = m∗(x) + �m ⋅ �∗ (x ∈ ℝ
d)

(X1, Y1),… , (Xn, Yn)

(Xn+1,m(Xn+1)),… , (Xn+Ln
,m(Xn+Ln

))

Xn+Ln+1
,… ,Xn+Ln+Nn,1+Nn,2

.

m∗
1
(x) = cot

�
�

1 + exp
�
x2
1
+ 2 ⋅ x2 + sin(6 ⋅ x3

4
) − 3

�
�

+ exp
�
3 ⋅ x3 + 2 ⋅ x4 − 5 ⋅ x5 +

√
x6 + 0.9 ⋅ x7 + 0.1

�
(x ∈ [0, 1]7)

m∗
2
(x) =

2

x1 + 0.008
+ 3 ⋅ log(x7

2
⋅ x3 + 0.1) ⋅ x4 (x ∈ [0, 1]7)

m∗
3
(x) = 2 ⋅ log(x1 ⋅ x2 + 4 ⋅ x3 + � tan(x4)� + 0.1) + x4

3
⋅ x2

5
⋅ x6

− x4 ⋅ x7 + (3 ⋅ x2
8
+ x9 + 2)0.1+4⋅x

2
10 (x ∈ [0, 1]10)

m∗
4
(x) = x1 + tan(x2) + x3

3
+ log(x4 + 0.1) + 3 ⋅ x5 + x6 +

√
x7 + 0.1 (x ∈ [0, 1]7)

m∗
5
(x) = exp(‖x‖) (x ∈ [0, 1]7)
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applied to a sample of size 106 . In order to evaluate the performance of our density 
estimates, the result is treated as if it is the real density.

We compare our estimate (est. 4) with three other density estimates. The first 
one (est. 1) is a standard kernel density estimate applied to a sample of size n of Y, 
cf. (2). The estimates 2 and 3 are surrogate density estimates where the kernel den-
sity estimate of MATLAB is applied to a sample of size N2,n of the surrogate model. 
For the second estimate (est. 2), the surrogate model is chosen as a neural network 
trained on Ln realizations of (X, m(X)) , cf.  (5). For the third estimate (est. 3), the 
surrogate model is chosen as a neural network trained on n realizations of (X, Y) , 
cf. (8).

The estimates are compared by their L1 error. Therefore, we approximate the inte-
gral by a Riemann sum defined on an equidistant partition consisting of 104 subin-
tervals. Since we need to take the randomness of the L1 error into account, we repeat 
each simulation 50 times and report in Tables 2 and 3 the median (and in brackets 
the interquartile range) of the 50 L1 errors. 

Our newly proposed estimate outperforms the other three estimates in 22 of 30 
cases. In all cases if �m is sufficiently small, our estimate yields a smaller L1 error 
than estimates 1 and 3, where the biggest difference is in model four where it is 
eight times smaller. In any simulation except one, it is able to reduce the L1 error 
compared to the surrogate estimate on computer model data (est. 2). The resulting L1 

Table 2  Median (and 
interquartile range) of the 
L1 error of the four different 
estimates for the five different 
models with a constant error 
in the computer model and 5% 
noise

The error of the best estimator for each model is highlighted in bold

�∗ 5%

�
m

0.1 0.2 0.5

m∗
1

est. 1 0.704 (0.168) 0.704 (0.168) 0.704 (0.168)
est. 2 0.271 (0.043) 0.503 (0.077) 0.954 (0.085)
est. 3 0.998 (0.345) 0.998 (0.345) 0.998 (0.345)
est. 4 0.162 (0.134) 0.218 (0.136) 0.191 (0.166)

m∗
2

est. 1 0.525 (0.183) 0.525 (0.183) 0.525 (0.183)
est. 2 0.240 (0.919) 0.330 (0.820) 0.811 (0.782)
est. 3 1.086 (0.459) 1.086 (0.459) 1.086 (0.459)
est. 4 0.284 (0.957) 0.290 (0.866) 0.644 (0.984)

m∗
3

est. 1 0.786 (0.163) 0.786 (0.163) 0.786 (0.163)
est. 2 0.616 (0.460) 0.935 (0.124) 1.233 (0.263)
est. 3 1.472 (0.847) 1.472 (0.847) 1.472 (0.847)
est. 4 0.562 (0.606) 0.835 (0.595) 0.999 (0.590)

m∗
4

est. 1 0.329 (0.175) 0.329 (0.175) 0.329 (0.175)
est. 2 0.102 (0.016) 0.208 (0.015) 0.516 (0.015)
est. 3 0.878 (1.328) 0.878 (1.328) 0.878 (1.328)
est. 4 0.040 (0.029) 0.035 (0.018) 0.036 (0.022)

m∗
5

est. 1 0.317 (0.183) 0.317 (0.183) 0.317 (0.183)
est. 2 0.107 (0.035) 0.212 (0.032) 0.522 (0.031)
est. 3 0.836 (1.422) 0.836 (1.422) 0.836 (1.422)
est. 4 0.064 (0.031) 0.068 (0.050) 0.067 (0.050)
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error of estimate 3 is in any simulation higher than the error of the other three used 
estimates. We assume this is due to the complexity of the used functions m∗ and the 
small sample size of 10.

As discussed in Sect. 1.1 by assuming that the four stiffness properties as well as the 
height property are multivariate normally distributed and estimate their distribution we 
are able to generate values of the input parameter X. Thus, we apply the mlest() routine 
of the mvnmle package of the statistic software R on the data which we listed in Table 1 
to estimate the mean vector � and the covariance matrix Σ of �X and obtain as estimates

and

�̂� =
(
124.9572 125.8931 33046576 32834749 0.00678

)

Σ̂ =

⎛⎜⎜⎜⎜⎝

88.85741 32.74759 1595777 − 5647359 0.0001846703

32.74759 79.76893 − 2919445 − 6593387 0.0001762972

1595777 − 2919445 1.070764 × 1012 884544431242 − 14.19626

−5647359 − 6593387 8.845444 × 1011 1.5991 × 1012 − 32.52903

0.0001846703 0.0001762972 − 14.19626 − 32.52903 1.600001 × 10−9

⎞
⎟⎟⎟⎟⎠
.

Table 3  Median (and 
interquartile range) of the 
L1 error of the four different 
estimates for the five different 
models with a constant error in 
the computer model and 20% 
noise

The error of the best estimator for each model is highlighted in bold

�∗ 20%

�
m

0.1 0.2 0.5

m∗
1

est. 1 0.697 (0.241) 0.697 (0.241) 0.697 (0.241)
est. 2 0.272 (0.105) 0.470 (0.098) 0.934 (0.089)
est. 3 1.185 (0.604) 1.185 (0.604) 1.185 (0.604)
est. 4 0.245 (0.131) 0.272 (0.157) 0.216 (0.162)

m∗
2

est. 1 0.547 (0.181) 0.547 (0.181) 0.547 (0.181)
est. 2 0.233 (0.926) 0.315 (0.966) 0.694 (0.764)
est. 3 1.140 (0.401) 1.140 (0.401) 1.140 (0.401)
est. 4 0.272 (0.951) 0.296 (1.038) 0.625 (1.018)

m∗
3

est. 1 0.666 (0.217) 0.666 (0.217) 0.666 (0.217)
est. 2 0.579 (0.480) 0.844 (0.229) 1.212 (0.252)
est. 3 1.263 (0.832) 1.263 (0.832) 1.263 (0.832)
est. 4 0.573 (0.543) 0.776 (0.499) 0.999 (0.499)

m∗
4

est. 1 0.348 (0.219) 0.348 (0.219) 0.348 (0.219)
est. 2 0.105 (0.015) 0.209 (0.016) 0.513 (0.015)
est. 3 1.006 (1.057) 1.006 (1.057) 1.006 (1.057)
est. 4 0.055 (0.054) 0.055 (0.045) 0.049 (0.038)

m∗
5

est. 1 0.372 (0.196) 0.372 (0.196) 0.372 (0.196)
est. 2 0.110 (0.034) 0.207 (0.033) 0.518 (0.03)
est. 3 1.003 (1.062) 1.003 (1.062) 1.003 (1.062)
est. 4 0.079 (0.045) 0.085 (0.085) 0.082 (0.057)
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Then, we apply the four different estimates on the lateral vibration attenuation sys-
tem data. The results are illustrated in Fig. 2. The number of experimental data is 
equal to 10. To improve the stability of our estimate, we increase the sample sizes 
Ln and N1,n to 500. As discussed in the introduction, we assume that the distribution 
of the maximal vibration amplitude is characterized by a non-symmetric distribution 
about the most likely value. This characteristic is described by the estimate 2 and 
our estimate 4, whereas the estimate 4 predicts higher values. If one considers the 
experimental data, this is a plausible correction by the residual estimate m̂𝜖

n
.

In the article, we assume that the distribution of X is known, and thus, a sample of 
values identically distributed to X can be generated. In the application, this assumption 
is not satisfied. Instead, we estimated the distribution of X. Given the small sample size, 
it is plausible that this affects the quality of the estimate. In the following, we investi-
gate the influence of estimating the input distribution of X on the performance of the 
estimate for the first model m∗

1
 . We consider two cases. In the first one, we assume that 

X ≥ 0 . This assumption is often reasonable if its components represent some kind of 
experimental values, e.g., spring stiffnesses, drop heights, etc. Furthermore, we assume 
that X ∼ U([0, b]d) for some b ∈ ℝ+ . Then, we can estimate b by

and generate the independent and uniformly on U([0, b̂]d) distributed sample

Based on this sample, we can compute our estimate and compare it to the other esti-
mates. The results are shown in Table 4, where (est. 5) is the new estimate described 
above and (est. 2) is the surrogate estimate, trained and evaluated with data based on 
an estimated distribution.

In the second case, we assume that X ∼ U([a, b]) , where a, b ∈ ℝ
d . Then, a and 

b can be estimated component-wise by

and

Again, we can generate the sample  (27) and use it to compute our estimate. The 
results are shown in Table 5, where (est. 5) is the new estimate described above and 
(est. 2) is the surrogate estimate, trained and evaluated with data based on an esti-
mated distribution.

In both cases, the estimation of the input parameter should negatively affect 
the performance of the estimate. In the first case, it seems that the influence is 
too small compared to the interquartile range. Probably, that is because in the first 
cases we have 7 × 10 = 70 data points available to estimate b. In the second case, 

(26)b̂ = max
i∈{1,…,n}

max
j∈{1,…,d}

X
(j)

i

(27)X̄n+1,… , X̄n+Ln
, X̄n+Ln+1

,… , X̄n+Ln+Nn,1+Nn,2
.

(28)â(j) = min
i∈{1,…,n}

X
(j)

i

(29)b̂(j) = max
i∈{1,…,n}

X
(j)

i
.
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the estimation of the input distribution clearly affects the performance of estimate 
(est. 2) and our estimate (est. 5), but it still outperforms the other estimates.

Table 4  Median (and interquartile range) of the L1 error of the four different estimates for model 1 with 
a constant error in the computer model and 5 and 20% noise and estimated input distribution, where 
X ∼ U([0, b]d)

The error of the best estimator for each model is highlighted in bold

�∗ 5%

�
m

0.1 0.2 0.5

m∗
1

est. 1 0.633 (0.225) 0.633 (0.225) 0.633 (0.225)
est. 2 0.276 (0.036) 0.488 (0.022) 0.934 (0.031)
est. 3 0.795 (0.293) 0.795 (0.293) 0.795 (0.293)
est. 4 0.162 (0.134) 0.218 (0.136) 0.191 (0.166)
est. 5 0.199 (0.124) 0.208 (0.233) 0.187 (0.183)

�∗ 20%

�
m

0.1 0.2 0.5

m∗
1

est. 1 0.632 (0.169) 0.632 (0.169) 0.632 (0.169)
est. 2 0.248 (0.032) 0.444 (0.022) 0.910 (0.030)
est. 3 0.834 (0.326) 0.834 (0.326) 0.834 (0.326)
est. 4 0.245 (0.131) 0.272 (0.157) 0.216 (0.162)
est. 5 0.234 (0.041) 0.254 (0.194) 0.241 (0.141)

Table 5  Median (and interquartile range) of the L1 error of the four different estimates for model 1 with 
a constant error in the computer model and 5 and 20% noise and estimated input distribution, where 
X ∼ U([a, b])

The error of the best estimator for each model is highlighted in bold

�∗ 5%

�
m

0.1 0.2 0.5

m∗
1

est. 1 0.633 (0.225) 0.633 (0.225) 0.633 (0.225)
est. 2 0.438 (0.114) 0.666 (0.151) 1.049 (0.106)
est. 3 0.795 (0.293) 0.795 (0.293) 0.795 (0.293)
est. 4 0.162 (0.134) 0.218 (0.136) 0.191 (0.166)
est. 5 0.356 (0.200) 0.315 (0.242) 0.264 (0.157)

�∗ 20%

�
m

0.1 0.2 0.5

m∗
1

est. 1 0.632 (0.169) 0.632 (0.169) 0.632 (0.169)
est. 2 0.443 (0.218) 0.600 (0.125) 1.041 (0.077)
est. 3 0.834 (0.326) 0.834 (0.326) 0.834 (0.326)
est. 4 0.245 (0.131) 0.272 (0.157) 0.216 (0.162)
est. 5 0.388 (0.240) 0.432 (0.211) 0.372 (0.206)
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In the implementation, we neglected the truncation of the estimators mLn
 and 

m̂𝜖
n
 . To analyze the influence of the truncation, we want to compare the truncated 

estimate with the untruncated version for model 1. By (24) and the definition of m 
and m∗, we know that

It is easy to see that (21) only needs to hold for x ∈ supp(X) . We calculate an approx-
imation for � via Monte Carlo experiments where the value for � is determined as 
the maximum of 108 relaxations of 2 ⋅ |m∗(X)| + �m ⋅ �∗ , since it is an upper bound 
of 2 ⋅ |m(X)| . Furthermore, in  (16) we set c1 = 10 and calculate the truncated ver-
sion of the estimates (est. 2) and (est. 4) which we denote by (est. 2)(trunc) and (est. 
4)(trunc) . The results are shown in Table 6.

In all cases considered, not limiting the estimators will result in a deterioration 
of their performance.

4  Proofs

4.1  A general result on weighted generalized penalized least squares estimates

In the proof of Theorem  1, we will use an error bound for weighted generalized 
penalized least squares estimates, which will enable us to generalize the results 
in Kohler and Krzyżak (2017b) from smoothing spline estimates to least squares 
estimates.

(30)�n ≥ �m ⋅ �∗.

Table 6  Median (and interquartile range) of the L1 error of the truncated and untruncated version of the 
estimates 2 and 4 for model 1 with a constant error in the computer model and 5 and 20% noise

The error of the best estimator for each model is highlighted in bold

�∗ 5%

�
m

0.1 0.2 0.5

m∗
1

est. 2 0.288 (0.042) 0.499 (0.081) 0.922 (0.077)
est. 2 (trunc) 0.288 (0.042) 0.499 (0.081) 0.922 (0.077)
est. 4 0.201 (0.139) 0.211 (0.121) 0.205 (0.165)
est. 4 (trunc) 0.165 (0.140) 0.211 (0.121) 0.205 (0.165)

�∗ 20%

�
m

0.1 0.2 0.5

m∗
1

est. 2 0.266 (0.110) 0.488 (0.102) 0.921 (0.071)
est. 2 (trunc) 0.266 (0.110) 0.481 (0.105) 0.921 (0.071)
est. 4 0.241 (0.124) 0.281 (0.187) 0.290 (0.162)
est. 4 (trunc) 0.241 (0.124) 0.276 (0.193) 0.290 (0.162)
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Theorem 2 

Let d, n, Ln ∈ ℕ , w(n) ∈ [0, 1] with 2 ≤ n ≤ Ln and 1 ≤ � ≤ �n = n + Ln. Let (X,  Y), 
(X1, Y1) , ... be independent and identically distributed ℝd ×ℝ-valued random vari-
ables with �{|Y|} < ∞. Set m(x) = �{Y|X = x} and assume

Let Ȳ1,n,… , Ȳn+Ln,n be arbitrary ℝ-valued random variables satisfying

Let Fn be a set of functions and

be a penalty term for each f ∈ Fn. Define the estimate mn by

and

where

and

Assume

for some K, 𝜎0 > 0. Choose 𝛿k > 0 with �k → 0 (k → ∞) and �n ≥ �Ln, such that for 
all k ≥ n we have

for all � ≥ �k∕6, all g ∈ Fn, and

(31)|m(x)| ≤ � (x ∈ ℝ
d).

(32)max
i=1,…,n+Ln

�
{|Ȳi,n|3

} ≤ c21 < ∞.

pen2
n
(f ) ≥ 0

m̃n(⋅) = argmin
f∈Fn

(
n+Ln∑
i=1

wi ⋅ |f (Xi) − Ȳi,n|2 + pen2
n
(f )

)

mn(x) = T𝛽(m̃n(x)) (x ∈ ℝ
d),

w
i
=

w(n)

n
for i = 1,… , n

w
i
=

1 − w(n)

L
n

for i = n + 1,… , n + L
n
.

(33)K2
⋅

(
�

{
exp

(
(Y − m(X))2

K2

)
||X
}

− 1

)
≤ �2

0
a.s.

(34)𝛿k > c22 ⋅
𝛽2

k
,

(35)

√
k� ≥ c23 �

√
48�

�∕(12�0)

�
logN2

�
u, {T�n f − g ∶ f ∈ Fn,

1

k

k�
i=1

�T�n f (xi) − g(xi)�2 + pen2
n
(f ) ≤ 48 ⋅ �}, xk

1

��1∕2

du
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for all � ≥ �k and all x1,… , xk ∈ ℝ
d. Then, there exists constants c25, c26, c27 ∈ ℝ+ 

such that

Proof The proof follows by a generalization of the proof of Theorem 2 in Kohler 
and Krzyżak (2017b). A complete proof can be found in supplementary material. 
 ◻

4.1.1  Application to neural networks

In the following subsection, we want to introduce a corollary of Theorem 2, where 
we choose our function space as hierarchical neural networks as defined in Sect. 1.3.

Corollary 2 Let d, n,Ln ∈ ℕ , w(n) ∈ [0, 1] with 2 ≤ n ≤ Ln and 1 ≤ � ≤ n + Ln . Let 
(X, Y), (X1, Y1) , ... be independent and identically distributed ℝd ×ℝ-valued random 
variables with �{|Y|} < ∞ and with supp(X) bounded. Let m(⋅) = �{Y|X = ⋅} be 
the regression function, which satisfies a generalized hierarchical interaction model 
of order d∗ and finite level l and assume

Let Ȳ1,n,… , Ȳn+Ln,n be arbitrary ℝ-valued random variables satisfying

Assume

(36)

√
k�

�2
≥ c23 �

√
�

�∕(c24⋅�
2)

�
logN2

�
u, {(T� f − m)2 ∶ f ∈ Fn,

1

k

k�
i=1

�T� f (xi)

− m(xi)�2 ≤ �

�2
, pen2

n
(f ) ≤ �}, xk

1

��1∕2

du

�� |mn(x) − m(x)|2�X(dx)

≤ 9 ⋅ inf
f∈Fn

(
pen2

n
(f ) + � |f (x) − m(x)|2�X(dx)

)

+ c25 ⋅ w
(n)

⋅

(
𝛿n + �

{
1

n
⋅

n∑
i=1

|Ȳ1,n − Yi|2
})

+ c26 ⋅ (1 − w(n)) ⋅

(
𝛿Ln + �

{
1

Ln
⋅

n+Ln∑
i=n+1

|Ȳ1,n − Yi|2
})

+
c27

n
.

(37)|m(x)| ≤ � (x ∈ ℝ
d).

(38)max
i=1,…,n+Ln

�
{|Ȳi,n|3

} ≤ c28 < ∞.

(39)K2
⋅

(
�

{
exp

(
(Y − m(X))2

K2

)
||X
}

− 1

)
≤ �2

0
a.s.
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for some K, 𝜎0 > 0 . Let N ∈ ℕ0 and H(l)

K,Mn,d,d
∗,Bn

 be the set of hierarchical neural net-
works introduced in Sect. 1.3, where K, d, d∗ are chosen as in the definition of the 
generalized hierarchical interaction model for m, and where Mn ≤ nc29 , Bn = nc30 , 
and where � ∶ ℝ → ℝ is a Lipschitz continuous function with Lipschitz constant L, 
which satisfy

Define the estimate mn by

and

where

and

Then, there exists constants c31, c32, c33 ∈ ℝ+ such that

for n sufficiently large.

Proof Set pen2
n
(f ) = 0 and

(40)|�(x)| ≤ L ⋅max{|x|, 1} (x ∈ ℝ).

m̃n(⋅) = arg min
h∈H

(l)

K,Mn ,d,d
∗ ,Bn

(
n+Ln∑
i=1

wi ⋅ |h(Xi) − Ȳi,n|2
)

mn(x) = T𝛽(m̃n(x)) (x ∈ ℝ
d),

wi =
w(n)

n
for i = 1,… , n

wi =
1 − w(n)

Ln
for i = n + 1,… , n + Ln.

�� |mn(x) − m(x)|2�X(dx)

≤ 9 ⋅ inf
h∈H

(l)

K,Mn ,d,d
∗ ,Bn

(
� |h(x) − m(x)|2�X(dx)

)

+ c31 ⋅ w
(n)

⋅

(
log(n)

n
⋅Mn + �

{
1

n
⋅

n∑
i=1

|Ȳ1,n − Yi|2
})

+ c32 ⋅ (1 − w(n)) ⋅

(
log(Ln)

Ln
⋅Mn + �

{
1

Ln
⋅

n+Ln∑
i=n+1

|Ȳ1,n − Yi|2
})

+
c33

n
,

�k = c34 ⋅
log(k)

k
⋅Mn.
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We show that Theorem 2 is applicable by the assumptions of Corollary 2 and the 
choice of �k . First, we observe that

and

since 2 ≤ n ≤ Ln . In order to be able to apply Theorem 2, it suffices to show that (35) 
and (36) are fulfilled. First, we show that (36) holds. Since the values of the estimate 
on supp(X) will not change in case that we replace H(l)

K,Mn,d,d
∗,Bn

 by

in the definition of m̃n , it suffices to show that (36) holds for x1,… , xk ∈ supp(X) . 
Next we observe that using |a2 − b2|2 ≤ (|a| + |b|)2 ⋅ |a − b|2 (a, b ∈ ℝ) (which we 
apply with a = (T� f − m)(xi) and b = g(xi) , where g is approximating T� f − m ) and 
|m(x)| ≤ � (x ∈ ℝ

d), we get

for any x1,… , xk ∈ supp(X) , which implies

Using this, we see that for any � ≥ �k

𝛿k > c35 ⋅
𝛽2

k

�n = c36 ⋅
log(n)

n
⋅Mn ≥ c36 ⋅

log(Ln)

Ln
⋅Mn = �Ln ,

{
h ⋅ Isupp(X) ∶ h ∈ H

(l)

K,Mn,d,d
∗,Bn

}

(
1

k

k∑
i=1

|(T� f − m)2(xi) − g2(xi)|2
)1∕2

≤
(
1

k

k∑
i=1

(
|(T� f − m)(xi) − g(xi)|2 ⋅

(|(T� f − m)(xi)| + |g(xi)|
)2)

)1∕2

≤ 4 ⋅ � ⋅

(
1

k

k∑
i=1

|(T� f − m)(xi) − g(xi)|2
)1∕2

N2

(
u,
{
(T� f − m)2 ∶ f ∈ H

(l)

K,Mn,d,d
∗,Bn

}
, xk

1

)

≤ N2

(
u

4�
,
{
T� f − m ∶ f ∈ H

(l)

K,Mn,d,d
∗,Bn

}
, xk

1

)
.

�
√
�

�∕(c37⋅�
2)

�
logN2

�
u, {(T� f − m)2 ∶ f ∈ H

(l)

K,Mn,d,d
∗,Bn

}, xk
1

��1∕2

du

≤ �
√
�

�∕(c37⋅�
2)

�
logN2

�
u

4�
, {T� f − m ∶ f ∈ H

(l)

K,Mn,d,d
∗,Bn

}, xk
1

��1∕2

du
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which is bounded by

since

Set ak = kc40 . Applying Lemma 2 from Bauer and Kohler (2019) yields for any 
x1,… , xk ∈ [−ak, ak]

d

Since supp(X) is bounded, the relationship supp(X) ⊆ [−ak, ak]
d holds for k suffi-

ciently large. Combing the above results, we see that (36) is implied by

which in turn follows from � ≥ �k.
By the choice of �k, we have for any � ≥ �k∕6

Arguing as above, this implies that (35) holds. Consequently, Theorem 2 is applica-
ble which yields the assertion.  ◻

4.2  Proof of Theorem 1

Using the definition of m̂n , (a + b + c)2 ≤ 3a2 + 3b2 + 3c2 (a, b, c ∈ ℝ) and (22), we 
get

√
� ⋅

�
logN2

�c38
k
, {T� f − m ∶ f ∈ H

(l)

K,Mn,d,d
∗,Bn

}, xk
1

��1∕2

u

4�
≥ c38

k
for u ≥ �

c37 ⋅ �
2
≥ �k

c37 ⋅ �
2
≥ c39

c37 ⋅ k
.

log
(
N2

(c41
k
, {T� f − m ∶ f ∈ Fn}, x

k
1

)) ≤ c42 ⋅ log(k) ⋅Mn.

√
k ⋅ �

�2
≥ √

� ⋅
�
c42 ⋅ log(k) ⋅Mn

�1∕2

𝛿

12𝜎0
>

c43

k
.
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Hence, in order to prove the assertion it suffices to show

and

To proof inequality (41), we apply Corollary  2 with (X, Y) = (X,m(X)) , n = Ln , 
w(n) = 1 and Ȳi,Ln+L̄n = Yi = m(Xn+i) (i = 1,… , Ln) and suitably chosen ȲLn+1,Ln+L̄n , 
...,ȲLn+L̄n,Ln+L̄n and observe

for sufficiently large n. Next we want to derive a bound on the approximation error. 

Set aLn = (log Ln)
3

2⋅(N+q+3) and �Ln = (logLn)
3⋅(N+3)

N+q+3
⋅ L

−
2⋅(N+1)⋅p+2d∗

2p+d∗

n  and assume w.l.o.g. that 
supp(X) ⊆ [−aLn , aLn]

d . Using Theorem 3 in Bauer and Kohler (2019), we see that 
there exists a h∗ ∈ H

(l)

K1,M1,n,d
∗,d,B1,n

 and an exception set DLn
 with �X-measure of �Ln 

such that

�
{|Y − m̂n(X)|2

}

= �

{|||(Y − m∗(X)) + (m∗(X) − m(X) − m̂𝜖
n
(X)) + (m(X) − mLn

(X))
|||
2
}

≤ 3 ⋅ �
{
|Y − m∗(X)|2

}
+ 3 ⋅ �

{|||m
∗(X) − m(X) − m̂𝜖

n
(X)

|||
2
}

+ 3 ⋅ �

{|||m(X) − mLn
(X)

|||
2
}

≤ 3(𝛼∗
n
)2 + 3 ⋅ ��

|||m̂
𝜖

n
(x) − (m∗ − m)(x)

|||
2

�X(dx)

+ 3 ⋅ ��
|||mLn

(x) − m(x)
|||
2

�X(dx).

(41)��
|||mLn

(x) − m(x)
|||
2

�X(dx) ≤ c44 ⋅ log(Ln)
3
⋅ L

−
2p

2p+d∗

n

(42)

��
|||m̂

𝜖

n
(x) − (m∗ − m)(x)

|||
2

�X(dx)

≤ c45 ⋅ 𝛼
2
n
⋅ (log n)3 ⋅M

−
2p

d∗

2,n
+ c46 ⋅ w

(n)
⋅ 𝛼2

n
⋅ log(n) ⋅

M2,n

n

+ c47 ⋅ (1 − w(n)) ⋅ 𝛼2
n
+ c48 ⋅ (log Ln)

3
⋅ L

−
2p

2p+d∗

n + c49 ⋅
𝛼2
n

n
.

��
|||mLn

(x) − m(x)
|||
2

�X(dx)

≤ 9 ⋅ inf
h∈H

(l)

K1,M1,n ,d,d
∗ ,B1,n

(
� |h(x) − m(x)|2�X(dx)

)
+ c50 ⋅

log(Ln)

Ln
⋅M1,n +

c51

Ln

≤ 9 ⋅ inf
h∈H

(l)

K1,M1,n ,d,d
∗ ,B1,n

(
� |h(x) − m(x)|2�X(dx)

)
+ c52 ⋅ log(Ln) ⋅ L

−2p

2p+d∗

n ,
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where we have used that |m(x)| ≤ � ≤ c58 ⋅ a
q

Ln
⋅M

(d∗+N⋅p)∕d∗

1,n
.

In order to prove (42), we first observe that

and hence, m∗ − m is the regression function to (X, Y − m(X)) , and (m∗ − m)∕�n is 
the regression function to (X, (Y − m(X))∕�n) . Clearly,

It is easy to see that the definition of m̂𝜖
n
 implies

and

where

The assumptions in Theorem 1 together with (41) imply that we have

and

� |h∗(x) − m(x)|2 ⋅ IDc
Ln

(x) �X(dx) + � |h∗(x) − m(x)|2 ⋅ IDLn
(x) �X(dx)

≤ (
c53 ⋅ a

(N+q+3)

Ln
⋅M

−p∕d∗

1,n

)2

+
(
2 ⋅ c54 ⋅ a

q

Ln
⋅M

(d∗+N⋅p)∕d∗

1,n

)2

⋅ �Ln

≤ c55 ⋅ (log Ln)
3
⋅ L

−
2p

2p+d∗

n + c56 ⋅ (log Ln)
3q

N+q+3
⋅ L

2d∗+2N⋅p

2p+d∗

n ⋅ (log Ln)
3⋅(N+3)

N+q+3

⋅ L
−

2⋅(N+1)⋅p+2d∗

2p+d∗

n

≤ c57 ⋅ (log Ln)
3
⋅ L

−
2p

2p+d∗

n ,

�{Y − m(X)|X = x} = m∗(x) − m(x),

∫
|||m̂

𝜖
n
(x) − (m∗ − m)(x)

|||
2

�X(dx) = 𝛼2
n
⋅ ∫

||||
1

𝛼n
⋅ m̂𝜖

n
(x) −

1

𝛼n
⋅ (m∗ − m)(x)

||||
2

�X(dx).

1

𝛼n
⋅ m̂𝜖

n
(x) =

1

𝛼n
⋅ Tc1⋅𝛼n (m̃

𝜖
n
(x)) = Tc1

(
1

𝛼n
⋅ m̃𝜖

n
(x)

)
(x ∈ ℝ

d),

1

𝛼n
⋅ m̃

𝜖
n
(⋅) = arg min

h∈
1

𝛼n
H

(l)

K2,M2,n ,d
∗ ,d,B2,n

(
w
(n)

n

n∑
i=1

(
1

𝛼n
⋅ 𝜖i − h(Xi)

)2

+
1 − w(n)

N1,n

N1,n∑
i=1

(
0 − h(Xn+Ln+i

)
)2

)
,

1

�n
H

(l)

K2,M2,n,d,d
∗,B2,n

=
{
h∕�n ∶ h ∈ H

(l)

K2,M2,n,d
∗,d,B2,n

}
.

sup
x∈ℝd

|m∗(x) − m(x)| ≤ �n
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We consider

as an observation of (Yi − m(Xi))∕�n with an additional measurement error

(i = 1,… , n) . And we consider

as an observation of 1
�n

⋅ (Yn+Ln+i − m(Xn+Ln+i
)) with an additional measurement error

(i = 1,… ,N1,n).
From inequality (41), we can conclude

and the assumptions in Theorem 1 imply

max
i=1,…,n

�

������
Yi − mLn

(Xi)

�n

�����

3
�

≤ 9

�3
n

⋅

�
�
��Y − m∗(X)�3� + �

��m∗(X) − m(X)�3� + �
��m(X) − mLn

(X)�3��

≤ 9 ⋅

⎛
⎜⎜⎜⎜⎝

(�∗
n
)3

�3
n

+ 1 +

c59 ⋅

�
(logLn)

3
⋅ L

−
2p

2p+d∗

n

�

�3
n

⎞
⎟⎟⎟⎟⎠
≤ 18 + c59.

1

𝛼n
⋅ 𝜖i =

1

𝛼n
⋅ (Yi − mLn

(Xi)) =
1

𝛼n
⋅ (Yi − m(Xi)) +

1

𝛼n
⋅ (m(Xi) − mLn

(Xi))

1

�n
⋅ (m(Xi) − mLn

(Xi))

0 =
1

�n
⋅ (Yn+Ln+i − m(Xn+Ln+i

)) −
1

�n
⋅ (Yn+Ln+i − m(Xn+Ln+i

))

(−1) ⋅
1

�n
⋅ (Yn+Ln+i − m(Xn+Ln+i

))

�

{
1

n

n∑
i=1

||||
1

�n
⋅ (m(Xi) − mLn

(Xi))
||||
2
}

≤ 1

�2
n

⋅ ��
|||m(x) − mLn

(x)
|||
2

�X(dx)

≤ 1

�2
n

⋅ c60 ⋅ (log Ln)
3
⋅ L

−
2p

2p+d∗

n ,
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We observe that by dividing the function space H(l)

K2,M2,n,d,d
∗,B2,n

 by �n, we change the 
�i in the last level of the hierarchical neural network. Since 

�n ≥
(
(logLn)

3
⋅ L

−2p

2p+d∗

n

)1∕3

 and Ln ≤ nc4 , the �i are bounded by

Thus, in the proof of Corollary 2 the bound on the covering number holds. Applica-
tion of Corollary 2 yields

Analogously as before, we can bound the approximation error by using Theorem 3 
in Bauer and Kohler (2019) and can conclude

The above results imply (42) which implies the assertion.  ◻

�

{
1

N1,n

N1,n∑
i=1

||||
1

�n
⋅ (Yn+Ln+i − m(Xn+Ln+i

))
||||
2
}

≤ 2 ⋅ �

{
1

N1,n

N1,n∑
i=1

||||
1

�n
⋅ (Yn+Ln+i − m∗(Xn+Ln+i

))
||||
2
}

+ 2 ⋅ �

{
1

N1,n

N1,n∑
i=1

||||
1

�n
⋅ (m∗(Xn+Ln+i

) − m(Xn+Ln+i
))
||||
2
}

≤ 2 ⋅
(�∗

n
)2

�2
n

+ 2 ≤ 4.

1

�n
⋅ B2,n ≤ nc60 .

��
||||
1

𝛼n
⋅ m̂𝜖

n
(x) −

1

𝛼n
⋅ (m∗ − m)(x)

||||
2

�X(dx)

≤ 9 ⋅ inf
h∈

1

𝛼n
⋅H

(l)

K2,M2,n ,d,d
∗ ,B2,n

(
�

||||h(x) −
1

𝛼n
⋅ (m∗ − m)(x)

||||
2

�X(dx)

)

+ c61 ⋅ w
(n)

⋅

(
log(n) ⋅

M2,n

n
+

1

𝛼2
n

⋅ c62 ⋅ (logLn)
3
⋅ L

−
2p

2p+d∗

n

)

+ c63 ⋅ (1 − w(n)) ⋅

(
log(N1,n) ⋅

M2,n

N1,n

+ 4

)
+

c64

n
.

��
||||
1

𝛼n
⋅ m̂𝜖

n
(x) −

1

𝛼n
⋅ (m∗ − m)(x)
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2

�X(dx)

≤ c65 ⋅ (log n)
3
⋅M

−
2p
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(
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⋅ (logLn)
3
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