Estimation of an improved surrogate model in uncertainty quantification by neural networks

Benedict Götz ${ }^{1} \cdot$ Sebastian Kersting ${ }^{2} \cdot$ Michael Kohler 2

Received: 17 July 2018 / Published online: 29 February 2020
© The Institute of Statistical Mathematics, Tokyo 2020

Abstract

Quantification of uncertainty of a technical system is often based on a surrogate model of a corresponding simulation model. In any application, the simulation model will not describe the reality perfectly, and consequently the surrogate model will be imperfect. In this article, we combine observed data from the technical system with simulated data from the imperfect simulation model in order to estimate an improved surrogate model consisting of multilayer feedforward neural networks, and we show that under suitable assumptions, this estimate is able to circumvent the curse of dimensionality. Based on this improved surrogate model, we show a rate of the convergence result for density estimates. The finite sample size performance of the estimates is illustrated by applying them to simulated data. The practical usefulness of the newly proposed estimates is demonstrated by using them to predict the uncertainty of a lateral vibration attenuation system with piezo-elastic supports.

Keywords Curse of dimensionality • Density estimation • Imperfect models • L_{1} error • Neural networks • Surrogate models • Uncertainty quantification

[^0][^1]
1 Introduction

1.1 An example

In this article, we develop new methods for the statistical inference in connection with complex technical systems. As an example, we consider the lateral vibration attenuation system with piezo-elastic supports described in Fig. 1.

This system consists of a beam with circular cross section embedded in two piezo-elastic supports A and B where support A is used for lateral beam vibration excitation and B support is used for lateral beam vibration attenuation, as proposed in Götz et al. (2016). The two piezo-elastic supports A and B are located at the beam's end, and each consists of one elastic membrane-like spring element made of spring steel, two piezoelectric stack transducers arranged orthogonally to each other and mechanically prestressed with disk springs as well as the relatively stiff axial extension made of hardened steel that connects the piezoelectric transducers with the beam. For vibration attenuation in support B, optimally tuned electrical shunt circuits are connected to the piezoelectric transducers.

Our aim is to predict the maximal amplitude of the vibration occurring in an experiment with this attenuation system. If we construct such attenuation systems several times, the constructed attenuation systems will be different due to variations in the parts used in the construction (e.g., the height or the stiffness of the used membrane) or in the construction process, and consequently the results which we measure in experiments with the systems will vary. For example, building such systems ten times and measuring the maximal vibration amplitude in an experiment with each of the built systems, we got the following ten values in $\left[\frac{\mathrm{m}}{\mathrm{s}^{2}} / \mathrm{V}\right]$:

Fig. 1 A CAD model of the lateral vibration attenuation system with piezo-elastic supports and a sectional view of one of the piezo-elastic supports, cf. Li et al. (2017)

$$
\begin{array}{lllll}
y_{1}=14.50, & y_{2}=14.17, & y_{3}=14.37, & y_{4}=14.16, & y_{5}=14.28, \\
y_{7}=13.51, \tag{1}
\end{array}
$$

We assume in the sequel that y_{1}, \ldots, y_{10} are independent realizations of a real-valued random variable Y, and in order to get information about the distribution of Y we try to estimate the density $g: \mathbb{R} \rightarrow \mathbb{R}$ of Y with respect to the Lebesgue measure (which we assume to exist).

The classical statistical approach of doing this is to assume that Y is, e.g., normally distributed, to estimate its mean and its variance by maximum likelihood and to use the density of the corresponding normal distribution as an estimate of the density of Y. For the data in (1), this results in the blue curve in Fig. 2. However, the maximum vibration amplitudes represent extreme values of the lateral beam-column vibration transfer behavior. According to Choi et al. (2007), the distribution of extreme values is characterized by a non-symmetric distribution about the most likely value. Thus, this approach seems to be unpromising.

The standard approach in modern statistics would be to use a nonparametric estimate of the density of Y, e.g., the classical kernel density estimate of Rosenblatt (1956) and Parzen (1962)

$$
\begin{equation*}
\hat{g}_{Y, n}(y)=\frac{1}{n \cdot h_{n}} \cdot \sum_{i=1}^{n} K\left(\frac{y-Y_{i}}{h_{n}}\right), \tag{2}
\end{equation*}
$$

Fig. 2 A parametric (dashed black line) and a nonparametric (dotted black line) estimate of the density of the data (1). A surrogate estimate on experimental data (8) (dash-dotted black line) and a surrogate estimate on computer simulated data (5) (gray solid line). The below in this article introduced new estimate (solid black line) and additionally the data set (1) indicated on the x -axis.
which we apply in the above formula to random variables Y_{1}, \ldots, Y_{n} which are independent and identically distributed as Y. Here, $K: \mathbb{R}^{d} \rightarrow \mathbb{R}$ (so-called kernel, which is assumed to be a density) and $h_{n}>0$ (so-called bandwidth) are parameters of the estimate. For example, computing this kernel density estimate with the routine ksdensity() in MATLAB results in the red curve in Fig. 2.

The obvious drawback of the first approach is that the error of this parametric estimate might be rather large in case that the true density of Y is not the density of a normal distribution, in particular if it cannot be approximated well by any such density. However, due to the small sample size in this example it is not clear that the second approach, i.e., the nonparametric density estimate, yields an estimate which is better than the parametric estimate. So in general neither of these two approaches will lead to satisfying results.

Unfortunately, it is not really possible to increase the sample size 10 of the data (1) in such a way that a nonparametric estimate seems promising, since experiments with the above attenuation system (in particular, the construction and replacement of the membrane-like spring elements) are extremely time-consuming. What we do instead in the sequel is to use some knowledge outside of the data (e.g., knowledge from engineering science about attenuation systems) in order to improve our estimation.

Often this is done in the framework of Bayesian statistics, where some kind of a priori distribution describing the system under consideration is assumed to be given, and under the assumption that this is indeed true, estimates are constructed which achieve good results even for very small sample sizes. However, this is an example of the saying "We buy information with assumptions" (Coombs 1964), which of course might lead to wrong information in the case of wrong assumptions. And since it is not obvious how to transform the knowledge in engineering science into assumptions about an a priori distribution, we will not use this approach.

Instead, we will use the following knowledge in engineering science in order to construct an improved estimate: It is known that five parameters of the membrane in the attenuation system vary during the construction of the attenuation system and influence the maximal vibration amplitude: the lateral stiffness in direction of $y\left(k_{\text {lat }, y}\right)$ and in direction of $z\left(k_{\text {lat }, z}\right)$, the rotatory stiffness in direction of $y\left(k_{\text {rot }, y}\right)$ and in direction of $z\left(k_{\mathrm{rot}, z}\right)$, and the height of the membrane $\left(h_{x}\right)$. For given values of these five parameters it is possible to compute in a physical model of the attenuation system the corresponding maximal vibration amplitude. In order to generate values of these five parameters we need to determine their distributions. Therefore, we measured the corresponding parameters for the ten built systems. As a result we got the data in Table 1.

We assume that the four different stiffness parameters as well as the height property are multivariate normally distributed and estimate their distribution with a maximum likelihood estimate. By this assumption, we have specified the distribution of the input variable X, and thus, the computer program $m: \mathbb{R}^{d} \rightarrow \mathbb{R}$ can be evaluated at values of X, where the distribution of $m(X)$ is an approximation of the maximal vibration amplitude Y occurring in experiments with the attenuation system. Later on, we assume that the computer model's approximational performance gets better for an increasing sample size. To achieve this behavior in

Table 1 Measured data for the ten built systems

	1	2	3	4	5	6	7	8	9	10
$k_{\text {rot, } y} \times 10^{2}$	1.31	1.34	1.31	1.23	1.14	1.29	1.35	1.28	1.04	1.20
$k_{\text {rot }, z} \times 10^{2}$	1.31	1.28	1.43	1.25	1.30	1.34	1.22	1.16	1.18	1.11
$k_{\text {laty },} \times 10^{7}$	3.27	3.28	3.35	3.29	3.22	3.26	3.19	3.54	3.21	3.42
$k_{\text {lat, } z} \times 10^{7}$	3.07	3.22	3.29	3.25	3.30	3.18	3.16	3.51	3.37	3.44
$h_{x} \times 10^{-4}$	6.79	6.77	6.82	6.80	6.79	6.76	6.81	6.74	6.68	6.84
$y \times 10^{1}$	1.45	1.42	1.44	1.42	1.43	1.35	1.47	1.32	1.31	1.63

The values of $k_{\text {rot }, y}$ and $k_{\text {rot }, z}$ are given in [$\left.\mathrm{Nm} / \mathrm{rad}\right]$, the values of $k_{\text {lat }, y}$ and $k_{\text {lat }, z}$ are given in $[\mathrm{N} / \mathrm{m}]$, the values of h_{x} are given in [m], and the values of y are given in $\left[\frac{\mathrm{m}}{\mathrm{s}^{2}} / \mathrm{V}\right]$
an application, one could use a subsample for model calibration or one could also calibrate a model with more parameters, i.e., increase the model complexity.

In this stochastic model of our attenuation system, we can generate independent data $X_{n+1}, \ldots, X_{n+L_{n}}$, compute $m\left(X_{n+1}\right), \ldots, m\left(X_{n+L_{n}}\right)$ and define a kernel density estimate by

$$
\hat{g}_{L_{n}}(y)=\frac{1}{L_{n} \cdot h_{L_{n}}} \cdot \sum_{i=1}^{L_{n}} K\left(\frac{y-m\left(X_{n+i}\right)}{h_{L_{n}}}\right)
$$

However, the evaluation of the computer program for our technical system will often be rather time-consuming and consequently L_{n} (although much larger than n) might not be really large. One possibility to circumvent this problem is to define an estimate of g on the basis of the data

$$
\begin{equation*}
\left(X_{n+1}, m\left(X_{n+1}\right)\right), \ldots,\left(X_{n+L_{n}}, m\left(X_{n+L_{n}}\right)\right), X_{n+L_{n}+1}, \ldots, X_{n+L_{n}+N_{n}} \tag{3}
\end{equation*}
$$

by estimating in a first step a surrogate

$$
\begin{equation*}
m_{(X, m(X)), L_{n}}(\cdot)=m_{(X, m(X)), L_{n}}\left(\cdot,\left(X_{n+1}, m\left(X_{n+1}\right)\right), \ldots,\left(X_{n+L_{n}}, m\left(X_{n+L_{n}}\right)\right)\right): \mathbb{R}^{d} \rightarrow \mathbb{R} \tag{4}
\end{equation*}
$$

of m and by defining in a second step the corresponding surrogate density estimate via

$$
\begin{equation*}
\hat{g}_{(X, m(X)), L_{n}}(y)=\frac{1}{N_{n} \cdot h_{N_{n}}} \cdot \sum_{i=1}^{N_{n}} K\left(\frac{y-m_{(X, m(X)), L_{n}}\left(X_{n+L_{n}+i}\right)}{h_{N_{n}}}\right) . \tag{5}
\end{equation*}
$$

Computing such an surrogate density estimate results in the yellow line in Fig. 2. Alternatively, one can also ignore the simulation model completely and can use instead the data

$$
\begin{equation*}
\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right), X_{n+L_{n}+1}, \ldots, X_{n+L_{n}+N_{n}} \tag{6}
\end{equation*}
$$

in order to construct an estimate

$$
\begin{equation*}
m_{(X, Y), n}(\cdot)=m_{(X, Y), n}\left(\cdot,\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)\right): \mathbb{R}^{d} \rightarrow \mathbb{R} \tag{7}
\end{equation*}
$$

of $m^{*}(x)=\mathbf{E}\{Y \mid X=x\}$ and can define the corresponding surrogate density estimate by

$$
\begin{equation*}
\hat{g}_{(X, Y), n}(y)=\frac{1}{N_{n} \cdot h_{N_{n}}} \cdot \sum_{i=1}^{N_{n}} K\left(\frac{y-m_{(X, Y), n}\left(X_{n+L_{n}+i}\right)}{h_{N_{n}}}\right) . \tag{8}
\end{equation*}
$$

Computing such an surrogate density estimate results in the green line in Fig. 2.
The main question which we want to investigate theoretically in this paper is whether there exist situations in which suitably defined estimates based on the complete data

$$
\begin{align*}
& \left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right),\left(X_{n+1}, m\left(X_{n+1}\right)\right), \ldots,\left(X_{n+L_{n}}, m\left(X_{n+L_{n}}\right)\right), \\
& X_{n+L_{n}+1}, \ldots, X_{n+L_{n}+N_{n}} \tag{9}
\end{align*}
$$

(where $n, L_{n}, N_{n} \in \mathbb{N}$) achieve simultaneously better rate of the convergence results than the estimates (2), (5) and (8).

1.2 Mathematical setting

The mathematical setting which we consider is as follows: Let $(X, Y),\left(X_{1}, Y_{1}\right)$, $\left(X_{2}, Y_{2}\right), \ldots$ be independent and identically distributed random variables with values in $\mathbb{R}^{d} \times \mathbb{R}$, and let $m: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a measurable function. Here, Y describes the outcome of an experiment with the technical system, and our aim is to predict the density g of Y (w.r.t. the Lebesgue measure), which we assume to exist. The random vector X and the measurable function m describe our stochastic model of the technical system, and in this model we use $m(X)$ as an approximation of Y. Let $m^{*}(x)=\mathbf{E}\{Y \mid X=x\}$ be the regression function of (X, Y). In the sequel, we will assume that

$$
\mathbf{E}\left\{\left|Y-m^{*}(X)\right|^{2}\right\}
$$

is small, so that it is reasonable to try to approximate Y by some $\hat{m}_{n}(X)$. It is easy to see that by neglecting $Y_{n+1} \ldots, Y_{n+L_{n}+N_{n}}$ and applying m to $X_{n+1}, \ldots, X_{n+L_{n}}$, we get (9). Given the data (9), our goal is to construct an estimate of g.

1.3 Definition of a class of neural networks

In order to construct such an estimate, we proceed as follows: Let $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ be a so-called squashing function, i.e., assume that σ is monotonically increasing and satisfies $\lim _{x \rightarrow-\infty} \sigma(x)=0$ and $\lim _{x \rightarrow \infty} \sigma(x)=1$. In our applications in Sect. 3, we will use the so-called logistic squasher $\sigma(x)=1 /(1+\exp (-x))(x \in \mathbb{R})$.

For $M \in \mathbb{N}, d \in \mathbb{N}, d^{*} \in\{0, \ldots, d\}$ and $B_{n}>0$, we denote the set of all functions $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ that satisfy

$$
f(x)=\sum_{i=1}^{M} \mu_{i} \cdot \sigma\left(\sum_{j=1}^{4 d^{*}} \lambda_{i, j} \cdot \sigma\left(\sum_{v=1}^{d} \theta_{i, j, v} \cdot x^{(v)}+\theta_{i, j, 0}\right)+\lambda_{i, 0}\right)+\mu_{0}
$$

$\left(x \in \mathbb{R}^{d}\right)$ for some $\mu_{i}, \lambda_{i, j}, \theta_{i, j, v} \in \mathbb{R}$, where

$$
\left|\mu_{i}\right| \leq B_{n}, \quad\left|\lambda_{i, j}\right| \leq B_{n}, \quad\left|\theta_{i, j, v}\right| \leq B_{n}
$$

for all $i \in\{0,1, \ldots, M\}, j \in\left\{0, \ldots, 4 d^{*}\right\}$ and $v \in\{0, \ldots, d\}$, by $\mathcal{F}_{M, d, d^{*}, B_{n}}^{\text {(neurars }}$.
We will impose the following assumption [which was introduced in Kohler and Krzyżak (2017a) as an assumption which is realistic in connection with complex technical systems which are build in a modular way] on the functions which we want to approximate by neural networks:

Definition 1 Let $d \in \mathbb{N}, d^{*} \in\{1, \ldots, d\}$ and $m: \mathbb{R}^{d} \rightarrow \mathbb{R}$.
(a) We say that m satisfies a generalized hierarchical interaction model of order d^{*} and level 0 , if there exist $a_{1}, \ldots, a_{d^{*}} \in \mathbb{R}^{d}$ and $f: \mathbb{R}^{d^{*}} \rightarrow \mathbb{R}$ such that

$$
m(x)=f\left(a_{1}^{T} x, \ldots, a_{d^{*}}^{T} x\right) \quad \text { for all } x \in \mathbb{R}^{d}
$$

(b) We say that m satisfies a generalized hierarchical interaction model of order d^{*} and level $l+1$, if there exist $K \in \mathbb{N}, g_{k}: \mathbb{R}^{d^{*}} \rightarrow \mathbb{R}(k=1, \ldots, K)$ and $f_{1, k}, \ldots, f_{d^{*}, k}: \mathbb{R}^{d} \rightarrow \mathbb{R}(k=1, \ldots, K)$ such that $f_{1, k}, \ldots, f_{d^{*}, k}(k=1, \ldots, K)$ satisfy a generalized hierarchical interaction model of order d^{*} and level l and

$$
m(x)=\sum_{k=1}^{K} g_{k}\left(f_{1, k}(x), \ldots, f_{d^{*}, k}(x)\right) \quad \text { for all } x \in \mathbb{R}^{d}
$$

Definition 2 Let $p=k+\beta$ for some $k \in \mathbb{N}_{0}$ and $0<\beta \leq 1$, and let $C>0$.
(a) We say that a function $m: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is $(\boldsymbol{p}, \boldsymbol{C})$-smooth, if for every $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{N}_{0}^{d}$ with $\sum_{j=1}^{d} \alpha_{j}=k$ the partial derivative $\frac{\partial^{k} m}{\partial x_{1}^{\alpha_{1}} \ldots \partial x_{d}^{\alpha_{d}}}$ exists and satisfies

$$
\left|\frac{\partial^{k} m}{\partial x_{1}^{\alpha_{1}} \ldots \partial x_{d}^{\alpha_{d}}}(x)-\frac{\partial^{k} m}{\partial x_{1}^{\alpha_{1}} \ldots \partial x_{d}^{\alpha_{d}}}(z)\right| \leq C \cdot\|x-z\|^{\beta}
$$

for all $x, z \in \mathbb{R}^{d}$.
(b) We say that a generalized hierarchical interaction model is $(\boldsymbol{p}, \boldsymbol{C})$-smooth, if all functions occurring in its definition are $(\boldsymbol{p}, \boldsymbol{C})$-smooth.

The above-introduced class of functions is quite general, i.e., it includes a variety of more common function classes. To enable the reader a better understanding, we will show how the in Stone (1985) introduced additive model, which is defined by

$$
m\left(x_{i}, \ldots, x_{d}\right)=m_{1}\left(x_{1}\right)+\cdots+m_{d}\left(x_{d}\right)
$$

can be embedded in the above framework. Using the notation id : $\mathbb{R}^{d} \rightarrow \mathbb{R}$ for the identity function and e_{i} for the i th unit vector, we can rewrite the additive model as

$$
\sum_{i=1}^{d} m_{i}\left(x^{(i)}\right)=\sum_{i=1}^{d} m_{i}\left(\operatorname{id}\left(e_{i}^{T} x\right)\right)=\sum_{i=1}^{K} g_{i}\left(f_{1, i}\left(a_{i}^{T} x\right)\right)
$$

where $K=d, g_{i}=m, f_{i, 1}=d$ and $a_{i}=e_{i}$. This structure corresponds to the definition of a generalized hierarchical interaction model of order 1 and level 1. For more examples of classes of functions which can be expressed as a generalized hierarchical interaction model, we want to refer to Bauer and Kohler (2019).

We will use the following recursively defined classes of neural networks (with parameters $K, M, d, d^{*} \in \mathbb{N}$ and $B_{n}>0$) in order to approximate functions which satisfy a generalized hierarchical interaction model: For $l=0$, we define our space of hierarchical neural networks by

$$
\mathcal{H}_{K, M, d, d^{*}, B_{n}}^{(0)}=\mathcal{F}_{M, d, d^{*}, B_{n}}^{\text {(neural networks) }} .
$$

For $l>0$, we define recursively

$$
\begin{align*}
\mathcal{H}_{K, M, d, d^{*}, B_{n}}^{(l)}= & \left\{h: \mathbb{R}^{d} \rightarrow \mathbb{R}, h(x)=\sum_{k=1}^{K} g_{k}\left(f_{1, k}(x), \ldots, f_{d^{*}, k}(x)\right) \quad\left(x \in \mathbb{R}^{d}\right)\right. \tag{10}\\
& \text { for some } \left.g_{k} \in \mathcal{F}_{M, d^{*}, d^{*}, B_{n}}^{\text {(neural networks) }} \text { and } f_{j, k} \in \mathcal{H}_{K, M, d, d^{*}, B_{n}}^{(l-1)}\right\} .
\end{align*}
$$

To give the reader an idea of a possible neural network defined as above, a pictorial description is given in Fig. 3. For more information about the topology of the networks, we want to refer the reader to Bauer and Kohler (2019).

1.4 Definition of the estimators

Given the data (9), we want to estimate the density g of Y. We start with defining a surrogate estimate

$$
\begin{equation*}
m_{L_{n}}(\cdot)=m_{L_{n}}\left(\cdot,\left(X_{n+1}, m\left(X_{n+1}\right)\right), \ldots,\left(X_{n+L_{n}}, m\left(X_{n+L_{n}}\right)\right)\right): \mathbb{R}^{d} \rightarrow \mathbb{R} \tag{11}
\end{equation*}
$$

of the function m. For this, we use a least squares estimate defined by

$$
\begin{equation*}
\tilde{m}_{L_{n}}(\cdot)=\arg \min _{h \in \mathcal{H}_{K_{1}, M_{1, n}, d, d^{*} \cdot B_{1}, n}^{(t)}}\left(\frac{1}{L_{n}} \sum_{i=n+1}^{n+L_{n}}\left|h\left(X_{i}\right)-m\left(X_{i}\right)\right|^{2}\right), \tag{12}
\end{equation*}
$$

where $K_{1}, M_{1, n}, d^{*} \in \mathbb{N}$ and $B_{1, n}>0$ are parameters of the estimate. For simplicity, we assume here and in the sequel that the minimum above indeed exists. When this is not the case, our theoretical results also hold for any estimate which minimizes the above empirical L_{2} risk up to a sufficiently small additional term (e.g., $1 / n$). In order

Fig. 3 An exemplary neural network of the type $f(x)=\sum_{i=1}^{3} \mu_{i} \cdot \sigma\left(\sum_{j=1}^{2} \lambda_{i, j} \cdot \sigma\left(\sum_{v=1}^{4} \theta_{i, j, v} \cdot x^{(\nu)}+\theta_{i, j, 0}\right)+\lambda_{i, 0}\right)$ $+\mu_{0}$, where all weights with an index containing 0 are neglected in the diagram
to be able to analyze the rate of the convergence of this estimate for an arbitrary distribution of X, we truncate this estimate at some height $\beta>0$, i.e., we define

$$
\begin{equation*}
m_{L_{n}}(x)=T_{\beta}\left(\tilde{m}_{L_{n}}(x)\right) \quad\left(x \in \mathbb{R}^{d}\right) \tag{13}
\end{equation*}
$$

where

$$
T_{\beta}(z)= \begin{cases}\operatorname{sign}(z) \cdot \beta & |z|>\beta \\ z & \text { otherwise }\end{cases}
$$

for $z \in \mathbb{R}$. (Here, we will assume later that $|m(x)| \leq \beta\left(x \in \mathbb{R}^{d}\right)$ holds.) Next we define an estimate of $m^{*}-m_{L_{n}}$ on the basis of the residuals

$$
\begin{equation*}
\hat{\epsilon}_{i}=Y_{i}-m_{L_{n}}\left(X_{i}\right) \quad(i=1, \ldots, n) \tag{14}
\end{equation*}
$$

To do this, we define

$$
\begin{equation*}
\tilde{m}_{n}^{\hat{c}}(\cdot)=\arg \min _{h \in \mathcal{H}_{K_{2}, M_{2, n}, d d^{*}, B_{2, n}}^{(t)}}\left(\frac{w^{(n)}}{n} \sum_{i=1}^{n}\left(\hat{e}_{i}-h\left(X_{i}\right)\right)^{2}+\frac{1-w^{(n)}}{N_{1, n}} \sum_{i=1}^{N_{1, n}}\left(0-h\left(X_{n+L_{n}+i}\right)\right)^{2}\right) \tag{15}
\end{equation*}
$$

for some weight $w^{(n)} \in[0,1]$ and parameters $K_{2}, M_{2, n}, d^{*} \in \mathbb{N}$ and $B_{2, n}>0$ and set

$$
\begin{equation*}
\hat{m}_{n}^{\hat{\epsilon}}(x)=T_{c_{1} \cdot \alpha_{n}} \tilde{m}_{n}^{\hat{\epsilon}}(x) \quad\left(x \in \mathbb{R}^{d}\right) \tag{16}
\end{equation*}
$$

where $c_{1} \geq 1$ and $\alpha_{n}>0$. Here, the additional function values of $X_{n+L_{n}+1}, \ldots, X_{n+L_{n}+N_{1, n}}$ are compared with 0 . This can be seen as a form of regularization, based on the assumption that the surrogate estimate $m_{L_{n}}$ is almost perfect.

We define our final surrogate model $\left(X, \hat{m}_{n}(X)\right)$ for (X, Y) by

$$
\begin{equation*}
\hat{m}_{n}(x)=m_{L_{n}}(x)+\hat{m}_{n}^{\hat{\epsilon}}(x) \quad\left(x \in \mathbb{R}^{d}\right), \tag{17}
\end{equation*}
$$

and estimate the density g of Y by applying a kernel density estimate to a sample of $\hat{m}_{n}(X)$. Therefore, we choose a kernel $K: \mathbb{R} \rightarrow \mathbb{R}$ and a bandwidth $h_{N_{2, n}}>0$ and set

$$
\begin{equation*}
\hat{g}_{N_{2, n}}(y)=\frac{1}{N_{2, n} \cdot h_{N_{2, n}}} \cdot \sum_{i=1}^{N_{2, n}} K\left(\frac{y-\hat{m}_{n}\left(X_{n+L_{n}+i}\right)}{h_{N_{2, n}}}\right) . \tag{18}
\end{equation*}
$$

Remark 1 The parameters of the estimate depend on the distribution of (X, Y) and on m. In Sect. 3, we propose data-dependent choices for these parameters and investigate the finite sample size performance of the resulting estimate with the aid of simulated data.

1.5 Main results

In general, our error bounds are also applicable for finite n. But in order to simplify the presentation, we consider the case $n \rightarrow \infty$ and assume that the distribution of (X, Y) and also the stochastic model $(X, m(X))$ change for increasing n such that $Y-m^{*}(X)$ and the error $m(X)-m^{*}(X)$ converge toward zero for increasing n. In order to reduce complexity in the notation, we write (X, Y) and m instead of $\left(X^{(n)}, Y^{(n)}\right)$ and $m^{(n)}$, resp. The assumption that $Y-m^{*}(X)$ converges toward zero is, in particular, satisfied in the noiseless case where $Y=m^{*}(X)$.

Our main assumptions in our theoretical result are the following: We assume for some $\alpha_{n} \geq \alpha_{n}^{*}>0$ that

$$
\mathbf{E}\left\{\left|Y-m^{*}(X)\right|^{2}\right\} \leq\left(\alpha_{n}^{*}\right)^{2} \quad \text { and } \quad \sup _{x \in \mathbb{R}^{d}}\left|m(x)-m^{*}(x)\right| \leq \alpha_{n},
$$

and that $m: \mathbb{R}^{d} \rightarrow \mathbb{R}$ and the function

$$
x \mapsto \mathbf{E}\left\{\left.\frac{1}{\alpha_{n}}(Y-m(X)) \right\rvert\, X=x\right\}=\frac{1}{\alpha_{n}}\left(m^{*}-m\right)(x)
$$

both satisfy a (p, C)-smooth generalized hierarchical interaction model of order d^{*} and finite level l with $p=q+s$ for some $q \in \mathbb{N}_{0}$ and $s \in(0,1]$. Under some minor additional assumptions and with properly chosen parameters, we are then able to show that our improved surrogate estimate satisfies

$$
\mathbf{E}\left\{\left|Y-\hat{m}_{n}(X)\right|^{2}\right\} \leq c_{2} \cdot \max \left\{\left(\alpha_{n}^{*}\right)^{2}, \alpha_{n}^{2} \cdot(\log n)^{3} \cdot n^{-\frac{2 p}{2 p+d^{*}}},\left(\log L_{n}\right)^{3} \cdot L_{n}^{-\frac{2 p}{2 p+d^{*}}}\right\}
$$

From this, we are able to conclude for α_{n}^{*} sufficiently small and L_{n} sufficiently large that the L_{1} error of our density estimate satisfies in case of a (r, C)-smooth density g

$$
\mathbf{E} \int_{\mathbb{R}}\left|\hat{g}_{N_{2, n}}(y)-g(y)\right| \mathrm{d} y \leq c_{3} \cdot\left(\alpha_{n} \cdot(\log n)^{3 / 2} \cdot n^{-\frac{p}{2 p+d^{*}}}\right)^{\frac{r}{r+1}} .
$$

In case $\alpha_{n} \cdot(\log n)^{3 / 2} \rightarrow 0(n \rightarrow \infty)$ sufficiently fast, this rate of convergence converges faster to zero than any of the rate of convergences

$$
\begin{equation*}
n^{-\frac{r}{2 r+1}}, \quad \alpha_{n}^{\frac{r}{r+1}} \quad \text { and } \quad\left(n^{-\frac{p}{2 p+d^{*}}}\right)^{\frac{r}{r+1}} \tag{19}
\end{equation*}
$$

which we would expect for the estimates (2), (5) and (8), resp.
The finite sample size behavior of our estimates is illustrated by using simulated data, and we illustrate the usefulness of our newly proposed estimates for uncertainty quantification by applying them in the application above.

1.6 Discussion of related results

Neural networks belong since many years to the most promising approaches in nonparametric statistics in view of multivariate statistical applications, in particular in pattern recognition and in nonparametric regression [see, e.g., the monographs Hertz et al. (1991), Devroye et al. (1996), Anthony and Bartlett (1999), Györfi et al. (2002), Haykin (2008) and Ripley (2008)]. The new theoretical results in nonparametric regression show that neural networks with many hidden layer are able to circumvent under proper assumptions the so-called curse of dimensionality and achieve therefore good rate of the convergence results in high-dimensional estimation problems (cf., Kohler and Krzyżak 2017a; Bauer and Kohler 2019; SchmidtHieber 2017). Our results in this article demonstrate that the techniques introduced in these papers also lead to good theoretical results in uncertainty quantification.

Estimation of surrogate methods for uncertainty quantification based on neural networks has been proposed in Papadrakakis and Lagaros (2002), but the theoretical results for the proposed estimates have not been developed there. Other ways to estimate surrogate models have been introduced and investigated with the aid of the simulated and real data in connection with the quadratic response surfaces in Bucher and Bourgund (1990), Kim and Na (1997) and Das and Zheng (2000), in context of support vector machines in Hurtado (2004), Deheeger and Lemaire (2010) and Bourinet et al. (2011) and in context of kriging in Kaymaz (2005) and Bichon et al. (2008). See also Santner et al. (2003) and the literature cited therein for additional literature on the design and analysis of computer experiments.

Consistency and rate of convergence of density estimates based on surrogate models have been studied in Devroye et al. (2013), Bott et al. (2015) and Felber et al. (2015a). A method for the adaptive choice of the smoothing parameter of such estimates has been presented in Felber et al. (2015b).

In Bayesian analysis of computer experiments, Kennedy and O'Hagan (2001), Bayarri et al. (2007), Goh et al. (2013), Han et al. (2009), Higdon et al. (2013) and Wang et al. (2009) model the discrepancy between the computer experiments and the outcome of the technical system by a Gaussian process. Tuo and Wu (2015) pointed out that this approach might fail in case of an imperfect computer model,
for which there exists no values of the parameters which fit the technical system perfectly and suggested and analyzed non-Bayesian methods for the choice of the parameters of such models. Related methods for the calibration of computer models have been considered in Wong et al. (2017). There the error of the resulting model was estimated by using bootstrap. Confidence intervals for quantiles based on data from imperfect simulation models have been derived in Kohler et al. (2018).

The definition of our improved surrogate model is motivated by Kohler and Krzyżak (2017b), where a result for smoothing spline estimates is shown. In this article, we extend this result from smoothing spline to least squares estimates and apply it to neural networks. The main advantage of our new results is that we are able to apply our method also successfully to high-dimensional settings, where smoothing spline estimates usually fail to deliver reasonable results because of the curse of dimensionality.

1.7 Notation

Throughout this paper, we use the following notation: $\mathbb{N}, \mathbb{N}_{0}, \mathbb{R}$ and \mathbb{R}_{+}are the sets of positive integers, nonnegative integers, real numbers and nonnegative real numbers, respectively. For $z \in \mathbb{R}$, we denote the smallest integer greater than or equal to z by $\lceil z\rceil$. For $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$

$$
\|f\|_{\infty}=\sup _{x \in \mathbb{R}^{d}}|f(x)|
$$

is its supremum norm.
If X is a random variable, then \mathbf{P}_{X} is the corresponding distribution, i.e., the measure associated with the random variable.

Let $D \subseteq \mathbb{R}^{d}$ and let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a real-valued function defined on \mathbb{R}^{d}. We write $x=\arg \min _{z \in D} f(z)$ if $\min _{z \in \mathcal{D}} f(z)$ exists and if x satisfies

$$
x \in D \quad \text { and } \quad f(x)=\min _{z \in \mathcal{D}} f(z)
$$

For $\epsilon>0, x_{1}^{n}=\left(x_{1}, \ldots, x_{n}\right) \in\left(\mathbb{R}^{d}\right)^{n}$ and a set \mathcal{F} of functions $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ we define the L_{2} covering number $\mathcal{N}_{2}\left(\epsilon, \mathcal{F}, x_{1}^{n}\right)$ as the minimal number $l \in \mathbb{N}$ of functions $g_{1}, \ldots, g_{l}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ which have the property

$$
\left(\min _{j=1, \ldots, l} \frac{1}{n} \sum_{i=1}^{n}\left|f\left(x_{i}\right)-g_{j}\left(x_{i}\right)\right|^{2}\right)^{1 / 2} \leq \epsilon
$$

for each $f \in \mathcal{F}$.

1.8 Outline

The outline of this paper is as follows: The main results are presented in Sect. 2 and proven in Sect. 4. The finite sample size performance of our estimates is illustrated in Sect. 3 by applying it to simulated and real data.

2 Main results

In order to formulate our main result on the rate of convergence of our improved surrogate estimate, we need the following definition.

Definition 3 A nondecreasing and Lipschitz continuous function $\sigma: \mathbb{R} \rightarrow[0,1]$ is called N -admissible, if the following conditions are satisfied.
(i) The function σ is $N+1$ times continuously differentiable with bounded derivates.
(ii) A point $t_{\sigma} \in \mathbb{R}$ exists, where all derivates up to the order N of σ are different from zero.
(iii) If $y>0$, the relation $|\sigma(y)-1| \leq \frac{1}{y}$ holds. If $y<0$, the relation $|\sigma(y)| \leq \frac{1}{|y|}$ holds.

It is easy to see that the logistic squasher $\sigma(x)=1 /(1+\exp (-x))$ is N-admissible for any $N \in \mathbb{N}$ (cf., Bauer and Kohler (2019)).

Theorem 1 Let d, $n, L_{n} \in \mathbb{N}$ with $2 \leq n \leq L_{n}$ and with $n^{c_{4}} \leq L_{n} \leq n^{c_{5}}$ for some $c_{4}, c_{5}>0$. Let $(X, Y),\left(X_{1}, Y_{1}\right), \ldots$... independent and identically distributed $\mathbb{R}^{d} \times \mathbb{R}$ -valued random variables with $\mathbf{E}\{|Y|\}<\infty$ and with $\operatorname{supp}(X)$ bounded. Let $m^{*}(\cdot)=\mathbf{E}\{Y \mid X=\cdot\}$ be the regression function of (X, Y). Let $C>0$ and let $p=q+s$ for some $q \in \mathbb{N}_{0}$ and $s \in(0,1]$. Let $m: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a measurable function, which satisfies a (p, C)-smooth generalized hierarchical interaction model of order d^{*} and finite level l, and assume that in Definition 1(b) all partial derivates of order less than or equal to q of the functions $g_{k}, f_{j, k}$ of this generalized hierarchical interaction model are bounded, i.e., assume that each such function f satisfies

$$
\begin{equation*}
\max _{\substack{j_{1}, \ldots, j_{d} \in\{0,1, \ldots, q\} \\ j_{1}+\ldots+j_{d} \leq q}}\left\|\frac{\partial^{j_{1}+\ldots+j_{d} f}}{\partial^{j_{1} x^{(1)} \cdots \partial^{j_{d}} x^{(d)}}}\right\|_{\infty} \leq c_{6} \tag{20}
\end{equation*}
$$

and let all functions g_{k} be Lipschitz continuous with Lipschitz constant $L>0$. Assume that for some $1 \leq \beta \leq n+L_{n}$

$$
\begin{equation*}
|m(x)| \leq \beta \quad\left(x \in \mathbb{R}^{d}\right) \tag{21}
\end{equation*}
$$

Let $\alpha_{n}>\alpha_{n}^{*} \geq 0$ and assume

$$
\begin{equation*}
\mathbf{E}\left\{\left|Y-m^{*}(X)\right|^{2}\right\} \leq\left(\alpha_{n}^{*}\right)^{2} \quad \text { and } \quad \mathbf{E}\left\{\left|Y-m^{*}(X)\right|^{3}\right\} \leq\left(\alpha_{n}^{*}\right)^{3}, \tag{22}
\end{equation*}
$$

and assume furthermore that there exists $K, \sigma_{0}>0$ such that

$$
\begin{equation*}
K^{2} \cdot\left(\mathbf{E}\left\{\left.\exp \left(\left(\frac{Y-m^{*}(X)}{\alpha_{n} \cdot K}\right)^{2}\right) \right\rvert\, X\right\}-1\right) \leq \sigma_{0} \quad \text { a.s. } \tag{23}
\end{equation*}
$$

and that the regression function $\mathbf{E}\left\{\left.\frac{1}{\alpha_{n}}(Y-m(X)) \right\rvert\, X=x\right\}=\frac{1}{\alpha_{n}}\left(m^{*}-m\right)(x)$ satisfies a (p, C)-smooth generalized hierarchical interaction model of order d^{*} and finite level l. Furthermore, assume that in Definition $1(b)$ all partial derivates of order less than or equal to q of the functions $g_{k}, f_{j, k}$ of this generalized hierarchical interaction model are bounded, i.e., assume that each such function f satisfies (20), and let all functions g_{k} be Lipschitz continuous with Lipschitz constant $L>0$. Assume

$$
\begin{equation*}
\sup _{x \in \mathbb{R}^{d}}\left|m^{*}(x)-m(x)\right| \leq \alpha_{n} \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\left(\log L_{n}\right)^{3} \cdot L_{n}^{-\frac{2 p}{2 p+d^{*}}}\right)^{1 / 3} \leq \alpha_{n} \tag{25}
\end{equation*}
$$

Define the estimate \hat{m}_{n} as in Sect. 1.4, where we choose K_{1}, d, and d^{*} as in the definition of the generalized hierarchical interaction model for m and

$$
M_{1, n}=\left\lceil c_{7} \cdot L_{n}^{\frac{d^{*}}{2 p+d^{*}}}\right\rceil
$$

and $B_{1, n}=L_{n}^{c_{8}}$, where we choose K_{2}, d, and d^{*} as in the definition of the generalized hierarchical interaction model for $\left(m^{*}-m\right) / \alpha_{n}, N_{1, n}, M_{2, n} \in \mathbb{N}$ with $M_{2, n} \leq N_{1, n} / \log \left(N_{1, n}\right)$ and $B_{2, n}=n^{c_{8}}$, where $\sigma: \mathbb{R} \rightarrow[0,1]$ is N-admissible according to Definition 3 for some $N \geq q$, and where we use some weight $w^{(n)} \in[0,1]$. Then, there exists constants $c_{9}, \ldots, c_{14} \in \mathbb{R}_{+}$such that

$$
\begin{aligned}
& \mathbf{E}\left\{\left|Y-\hat{m}_{n}(X)\right|^{2}\right\} \\
& \quad \leq c_{9} \cdot\left(\alpha_{n}^{*}\right)^{2}+c_{10} \cdot \alpha_{n}^{2} \cdot(\log n)^{3} \cdot M_{2, n}^{-\frac{2 p}{d^{*}}}+c_{11} \cdot w^{(n)} \cdot \alpha_{n}^{2} \cdot(\log n)^{3} \cdot \frac{M_{2, n}}{n} \\
& \quad+c_{12} \cdot\left(1-w^{(n)}\right) \cdot \alpha_{n}^{2}+c_{13} \cdot\left(\log L_{n}\right)^{3} \cdot L_{n}^{-\frac{2 p}{2 p+d^{*}}}+c_{14} \cdot \frac{\alpha_{n}^{2}}{n},
\end{aligned}
$$

for n sufficiently large.
In particular, in case $w^{(n)}=1$ and $M_{2, n}=\left\lceil c_{15} \cdot n^{\frac{d^{*}}{2 p^{*}+d^{*}}}\right\rceil$ we get

$$
\mathbf{E}\left\{\left|Y-\hat{m}_{n}(X)\right|^{2}\right\} \leq c_{16} \cdot \max \left\{\left(\alpha_{n}^{*}\right)^{2}, \alpha_{n}^{2} \cdot(\log n)^{3} \cdot n^{-\frac{2 p}{2 p+d^{*}}},\left(\log L_{n}\right)^{3} \cdot L_{n}^{-\frac{2 p}{2 p+d^{*}}}\right\}
$$

for some $c_{16} \in \mathbb{R}_{+}$and n sufficiently large.
Theorem 1 implies the following corollary concerning the L_{1} error of the density estimate (18):

Corollary 1 Assume that the density g of Y is (r, C)-smooth for some $r \in(0,1]$ and that its support is compact. Let $K: \mathbb{R} \rightarrow \mathbb{R}$ be a symmetric and bounded density which decreases monotonically on \mathbb{R}_{+}and define the estimate $\hat{g}_{N_{2, n}}$ as in Sect. 1.4, where \hat{m}_{n} is defined as in the end of Theorem 1. Assume that the assumptions of Theorem 1 are satisfied, and that, in addition,

$$
\max \left\{\left(\alpha_{n}^{*}\right)^{2},\left(\log L_{n}\right)^{3} \cdot L_{n}^{-\frac{2 p}{2 p p+d^{*}}}\right\} \leq \alpha_{n}^{2} \cdot(\log n)^{3} \cdot n^{-\frac{2 p}{2 p+d^{*}}}
$$

holds. Set

$$
h_{N_{n, 2}}=c_{17} \cdot\left(\alpha_{n} \cdot(\log n)^{3 / 2} \cdot n^{-\frac{p}{2 p+d^{*}}}\right)^{\frac{1}{r+1}}
$$

and assume

$$
N_{2, n} \geq\left(\frac{n^{\frac{p}{2 p+d^{*}}}}{\alpha_{n} \cdot(\log n)^{3 / 2}}\right)^{\frac{2 r+1}{r+1}}
$$

Then, we have for some $c_{18} \in \mathbb{R}_{+}$

$$
\mathbf{E} \int_{\mathbb{R}}\left|\hat{g}_{N_{2, n}}(y)-g(y)\right| \mathrm{d} y \leq c_{18} \cdot\left(\alpha_{n} \cdot(\log n)^{3 / 2} \cdot n^{-\frac{p}{2 p+d^{*}}}\right)^{\frac{r}{r+1}},
$$

for n sufficiently large.
Proof Lemma 1 in Bott et al. (2015) implies that for any $z_{1}, z_{2} \in \mathbb{R}$, we have

$$
\int\left|K\left(\frac{y-z_{1}}{h_{n}}\right)-K\left(\frac{y-z_{2}}{h_{n}}\right)\right| \mathrm{d} y \leq 2 \cdot K(0) \cdot\left|z_{1}-z_{2}\right|
$$

Consequently,

$$
\hat{g}_{Y, N_{2, n}}(y)=\frac{1}{N_{2, n} \cdot h_{N_{2, n}}} \cdot \sum_{i=1}^{N_{2, n}} K\left(\frac{y-Y_{n+L_{n}+i}}{h_{N_{2, n}}}\right)
$$

satisfies

$$
\int\left|\hat{g}_{N_{2, n}}(y)-\hat{g}_{Y, N_{2, n}}(y)\right| \mathrm{d} y \leq \frac{1}{N_{2, n} \cdot h_{N_{2, n}}} \cdot \sum_{i=1}^{N_{2, n}} 2 \cdot K(0) \cdot\left|\hat{m}_{n}\left(X_{n+L_{n}+i}\right)-Y_{n+L_{n}+i}\right| .
$$

From this and standard bounds on the L_{1} error of kernel density estimates [cf., e.g., proof of Theorem 1 in Felber et al. (2015a)], we conclude

$$
\begin{aligned}
& \mathbf{E} \int_{\mathbb{R}}\left|\hat{g}_{N_{2, n}}(y)-g(y)\right| \mathrm{d} y \\
& \quad \leq \mathbf{E} \int_{\mathbb{R}}\left|\hat{g}_{N_{2, n}}(y)-\hat{g}_{Y, N_{2, n}}(y)\right| \mathrm{d} y+\mathbf{E} \int_{\mathbb{R}}\left|\hat{g}_{Y, N_{2, n}}(y)-g(y)\right| \mathrm{d} y \\
& \quad \leq \frac{2 \cdot K(0)}{h_{N_{2, n}}} \cdot \mathbf{E}\left\{\left|m_{n}(X)-Y\right|\right\}+\frac{c_{19}}{\sqrt{N_{2, n} \cdot h_{N_{2, n}}}}+c_{20} \cdot h_{N_{2, n}}^{r} \\
& \quad \leq \frac{2 \cdot K(0)}{h_{N_{2, n}}} \cdot \sqrt{\mathbf{E}\left\{\left|m_{n}(X)-Y\right|^{2}\right\}}+\frac{c_{19}}{\sqrt{N_{2, n} \cdot h_{N_{2, n}}}}+c_{20} \cdot h_{N_{2, n}}^{r} .
\end{aligned}
$$

Application of Theorem 1 yields the assertion.
Remark 2 As already mentioned in Sect. 1.5, we have that for $\alpha_{n} \rightarrow 0(n \rightarrow \infty)$ sufficiently fast the nonasymptotic error bound in Corollary 1 converges faster to zero than any of the rate of convergences in (19) which we would expect for the estimates (2), (5) and (8), resp.

Remark 3 Since the rate of convergence in Corollary 1 does not depend on the dimension d of X, our newly proposed estimate is able to circumvent the curse of dimensionality under suitably assumptions on the structure of m.

3 Application to simulated and real data

In this section, we want to describe the implementation of our introduced surrogate estimation method and analyze the performance of the estimate by applying it to simulated and real data.

The surrogate estimate is defined by combining the least squares neural network estimates $m_{L_{n}}$ and $\hat{m}_{n}^{\hat{e}}$ as described in Sect. 1.4. In both cases, we use multilayer feedforward neural networks; however, the network parameters are chosen differently. For the estimate $m_{L_{n}}$, we choose the parameter from the sets $l \in\{0,1,2\}$, $K_{1} \in\{1,2\}, d^{*} \in\{1, \ldots, d\}$ and $M_{1, n} \in\{1, \ldots, 5,6,16, \ldots, 46\}$. For the estimate $m_{L_{n}}$, the parameter selection is done data-dependent by a splitting of the sample, where we use $\left\lceil\frac{2}{3} \cdot L_{n}\right\rceil$ train data and $L_{n}-\left\lceil\frac{2}{3} \cdot L_{n}\right\rceil$ test data and we consider the parameter combination with the smallest empirical L_{2} risk evaluated on the test data. Since the data set $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ is considered rather small, we reduce the sets of possible parameters for \hat{m}_{n}^{ϵ} to $l \in\{0\}, K_{2} \in\{1\}, d^{*} \in\{1,2,4\}, M_{2, n} \in\{1,3,5\}$ and the additional weighting parameter w is chosen from $\{0,0.25, \ldots, 1\}$. For the residual estimate, we select the parameter with a fivefold cross-validation. To solve the least squares problems in (12) and (15), we use the Levenberg-Marquardt algorithm implemented in the MATLAB function lsqnonlin() to approximate their solution. For our density estimate, we use a sample of size $N_{2, n}$ of $\hat{m}_{n}(X)$ and apply a standard kernel density estimate implemented in the MATLAB function ksdensity().

In the application on simulated data, we consider the following setting. We choose the independent random variable X as uniformly distributed on $[0,1]^{d}$ and an error term ϵ uniformly distributed on $[-1,1]$ such that X and ϵ are independent. The dependent variable Y is defined by

$$
Y=m^{*}(X)+\sigma^{*} \cdot \lambda^{*} \cdot \epsilon
$$

for some $m^{*}: \mathbb{R}^{d} \rightarrow \mathbb{R}$, a noise factor $\sigma^{*} \in\{0.05,0.2\}$ and $\lambda^{*}>0$ selected as the empirical interquartile range of $m^{*}(X)$. We set

$$
m(x)=m^{*}(x)+\sigma_{m} \cdot \lambda^{*} \quad\left(x \in \mathbb{R}^{d}\right)
$$

where $\sigma_{m} \in\{0.1,0.2,0.5\}$.
Let $(X, Y),\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right) \ldots$ be independent and identically distributed and random variables. Our estimate gets

$$
\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)
$$

as data from our real technical system,

$$
\left(X_{n+1}, m\left(X_{n+1}\right)\right), \ldots,\left(X_{n+L_{n}}, m\left(X_{n+L_{n}}\right)\right)
$$

as data from our (imperfect) model and the additional X-values

$$
X_{n+L_{n}+1}, \ldots, X_{n+L_{n}+N_{n, 1}+N_{n, 2}} .
$$

We consider five different models with a constant deviation in the computer model. In each model, we use sample sizes $n=10, L_{n}=200, N_{1, n}=200$ and $N_{2, n}=10^{5}$. The different functions used as m^{*} are listed below.

$$
\begin{aligned}
m_{1}^{*}(x)= & \cot \left(\frac{\pi}{1+\exp \left(x_{1}^{2}+2 \cdot x_{2}+\sin \left(6 \cdot x_{4}^{3}\right)-3\right)}\right) \\
& +\exp \left(3 \cdot x_{3}+2 \cdot x_{4}-5 \cdot x_{5}+\sqrt{x_{6}+0.9 \cdot x_{7}+0.1}\right) \quad\left(x \in[0,1]^{7}\right) \\
m_{2}^{*}(x)= & \frac{2}{x_{1}+0.008}+3 \cdot \log \left(x_{2}^{7} \cdot x_{3}+0.1\right) \cdot x_{4} \quad\left(x \in[0,1]^{7}\right) \\
m_{3}^{*}(x)= & 2 \cdot \log \left(x_{1} \cdot x_{2}+4 \cdot x_{3}+\left|\tan \left(x_{4}\right)\right|+0.1\right)+x_{3}^{4} \cdot x_{5}^{2} \cdot x_{6} \\
& -x_{4} \cdot x_{7}+\left(3 \cdot x_{8}^{2}+x_{9}+2\right)^{0.1+4 \cdot x_{10}^{2}} \quad\left(x \in[0,1]^{10}\right) \\
m_{4}^{*}(x)= & x_{1}+\tan \left(x_{2}\right)+x_{3}^{3}+\log \left(x_{4}+0.1\right)+3 \cdot x_{5}+x_{6}+\sqrt{x_{7}+0.1} \quad\left(x \in[0,1]^{7}\right) \\
m_{5}^{*}(x)= & \exp (\|x\|) \quad\left(x \in[0,1]^{7}\right)
\end{aligned}
$$

As mentioned before, the parameter λ^{*} is chosen as the empirical interquartile range of $m^{*}(X)$ calculated on 10^{5} realizations of X. The used values are $\lambda_{1}^{*}=9.11$, $\lambda_{2}^{*}=5.68, \lambda_{3}^{*}=13.97, \lambda_{4}^{*}=1.77$ and $\lambda_{5}^{*}=1.64$.

The density of Y is the convolution of the density of $m^{*}(X)$ and a uniform density. We do not try to compute its exact form, instead we compute it approximately by a kernel density estimate (as implemented in the MATLAB routine ksdensity())
applied to a sample of size 10^{6}. In order to evaluate the performance of our density estimates, the result is treated as if it is the real density.

We compare our estimate (est. 4) with three other density estimates. The first one (est. 1) is a standard kernel density estimate applied to a sample of size n of Y, cf. (2). The estimates 2 and 3 are surrogate density estimates where the kernel density estimate of MATLAB is applied to a sample of size $N_{2, n}$ of the surrogate model. For the second estimate (est. 2), the surrogate model is chosen as a neural network trained on L_{n} realizations of $(X, m(X))$, cf. (5). For the third estimate (est. 3), the surrogate model is chosen as a neural network trained on n realizations of (X, Y), cf. (8).

The estimates are compared by their L_{1} error. Therefore, we approximate the integral by a Riemann sum defined on an equidistant partition consisting of 10^{4} subintervals. Since we need to take the randomness of the L_{1} error into account, we repeat each simulation 50 times and report in Tables 2 and 3 the median (and in brackets the interquartile range) of the $50 L_{1}$ errors.

Our newly proposed estimate outperforms the other three estimates in 22 of 30 cases. In all cases if σ_{m} is sufficiently small, our estimate yields a smaller L_{1} error than estimates 1 and 3 , where the biggest difference is in model four where it is eight times smaller. In any simulation except one, it is able to reduce the L_{1} error compared to the surrogate estimate on computer model data (est. 2). The resulting L_{1}

Table 2 Median (and interquartile range) of the L_{1} error of the four different estimates for the five different models with a constant error in the computer model and 5\% noise

	σ^{*}	5\%		
	σ_{m}	0.1	0.2	0.5
m_{1}^{*}	est. 1	0.704 (0.168)	0.704 (0.168)	0.704 (0.168)
	est. 2	0.271 (0.043)	0.503 (0.077)	0.954 (0.085)
	est. 3	0.998 (0.345)	0.998 (0.345)	0.998 (0.345)
	est. 4	0.162 (0.134)	0.218 (0.136)	0.191 (0.166)
m_{2}^{*}	est. 1	0.525 (0.183)	0.525 (0.183)	0.525 (0.183)
	est. 2	0.240 (0.919)	0.330 (0.820)	0.811 (0.782)
	est. 3	1.086 (0.459)	1.086 (0.459)	1.086 (0.459)
	est. 4	0.284 (0.957)	0.290 (0.866)	0.644 (0.984)
m_{3}^{*}	est. 1	0.786 (0.163)	0.786 (0.163)	0.786 (0.163)
	est. 2	0.616 (0.460)	0.935 (0.124)	1.233 (0.263)
	est. 3	1.472 (0.847)	1.472 (0.847)	1.472 (0.847)
	est. 4	0.562 (0.606)	0.835 (0.595)	0.999 (0.590)
m_{4}^{*}	est. 1	0.329 (0.175)	0.329 (0.175)	0.329 (0.175)
	est. 2	0.102 (0.016)	0.208 (0.015)	0.516 (0.015)
	est. 3	0.878 (1.328)	0.878 (1.328)	0.878 (1.328)
	est. 4	0.040 (0.029)	0.035 (0.018)	0.036 (0.022)
m_{5}^{*}	est. 1	0.317 (0.183)	0.317 (0.183)	0.317 (0.183)
	est. 2	0.107 (0.035)	0.212 (0.032)	0.522 (0.031)
	est. 3	0.836 (1.422)	0.836 (1.422)	0.836 (1.422)
	est. 4	0.064 (0.031)	0.068 (0.050)	0.067 (0.050)

[^2]Table 3 Median (and interquartile range) of the L_{1} error of the four different estimates for the five different models with a constant error in the computer model and 20\% noise

	σ^{*}	20\%		
	σ_{m}	0.1	0.2	0.5
m_{1}^{*}	est. 1	0.697 (0.241)	0.697 (0.241)	0.697 (0.241)
	est. 2	0.272 (0.105)	0.470 (0.098)	0.934 (0.089)
	est. 3	1.185 (0.604)	1.185 (0.604)	1.185 (0.604)
	est. 4	0.245 (0.131)	0.272 (0.157)	0.216 (0.162)
m_{2}^{*}	est. 1	0.547 (0.181)	0.547 (0.181)	0.547 (0.181)
	est. 2	0.233 (0.926)	0.315 (0.966)	0.694 (0.764)
	est. 3	1.140 (0.401)	1.140 (0.401)	1.140 (0.401)
	est. 4	0.272 (0.951)	0.296 (1.038)	0.625 (1.018)
m_{3}^{*}	est. 1	0.666 (0.217)	0.666 (0.217)	0.666 (0.217)
	est. 2	0.579 (0.480)	0.844 (0.229)	1.212 (0.252)
	est. 3	1.263 (0.832)	1.263 (0.832)	1.263 (0.832)
	est. 4	0.573 (0.543)	0.776 (0.499)	0.999 (0.499)
m_{4}^{*}	est. 1	0.348 (0.219)	0.348 (0.219)	0.348 (0.219)
	est. 2	0.105 (0.015)	0.209 (0.016)	0.513 (0.015)
	est. 3	1.006 (1.057)	1.006 (1.057)	1.006 (1.057)
	est. 4	0.055 (0.054)	0.055 (0.045)	0.049 (0.038)
m_{5}^{*}	est. 1	0.372 (0.196)	0.372 (0.196)	0.372 (0.196)
	est. 2	0.110 (0.034)	0.207 (0.033)	0.518 (0.03)
	est. 3	1.003 (1.062)	1.003 (1.062)	1.003 (1.062)
	est. 4	0.079 (0.045)	0.085 (0.085)	0.082 (0.057)

The error of the best estimator for each model is highlighted in bold
error of estimate 3 is in any simulation higher than the error of the other three used estimates. We assume this is due to the complexity of the used functions m^{*} and the small sample size of 10 .

As discussed in Sect. 1.1 by assuming that the four stiffness properties as well as the height property are multivariate normally distributed and estimate their distribution we are able to generate values of the input parameter X. Thus, we apply the $m l e s t()$ routine of the mvnmle package of the statistic software R on the data which we listed in Table 1 to estimate the mean vector μ and the covariance matrix Σ of \mathbf{P}_{X} and obtain as estimates

$$
\hat{\mu}=\left(\begin{array}{ll}
124.9572 & 125.8931 \\
33046576 & 32834749 \\
0.00678
\end{array}\right)
$$

and

$$
\hat{\Sigma}=\left(\begin{array}{ccccc}
88.85741 & 32.74759 & 1595777 & -5647359 & 0.0001846703 \\
32.74759 & 79.76893 & -2919445 & -6593387 & 0.0001762972 \\
1595777 & -2919445 & 1.070764 \times 10^{12} & 884544431242 & -14.19626 \\
-5647359 & -6593387 & 8.845444 \times 10^{11} & 1.5991 \times 10^{12} & -32.52903 \\
0.0001846703 & 0.0001762972 & -14.19626 & -32.52903 & 1.600001 \times 10^{-9}
\end{array}\right) .
$$

Then, we apply the four different estimates on the lateral vibration attenuation system data. The results are illustrated in Fig. 2. The number of experimental data is equal to 10 . To improve the stability of our estimate, we increase the sample sizes L_{n} and $N_{1, n}$ to 500. As discussed in the introduction, we assume that the distribution of the maximal vibration amplitude is characterized by a non-symmetric distribution about the most likely value. This characteristic is described by the estimate 2 and our estimate 4 , whereas the estimate 4 predicts higher values. If one considers the experimental data, this is a plausible correction by the residual estimate $\hat{m}_{n}^{\hat{e}}$.

In the article, we assume that the distribution of X is known, and thus, a sample of values identically distributed to X can be generated. In the application, this assumption is not satisfied. Instead, we estimated the distribution of X. Given the small sample size, it is plausible that this affects the quality of the estimate. In the following, we investigate the influence of estimating the input distribution of X on the performance of the estimate for the first model m_{1}^{*}. We consider two cases. In the first one, we assume that $X \geq 0$. This assumption is often reasonable if its components represent some kind of experimental values, e.g., spring stiffnesses, drop heights, etc. Furthermore, we assume that $X \sim U\left([0, b]^{d}\right)$ for some $b \in \mathbb{R}_{+}$. Then, we can estimate b by

$$
\begin{equation*}
\hat{b}=\max _{i \in\{1, \ldots, n\}} \max _{j \in\{1, \ldots, d\}} X_{i}^{(j)} \tag{26}
\end{equation*}
$$

and generate the independent and uniformly on $U\left([0, \hat{b}]^{d}\right)$ distributed sample

$$
\begin{equation*}
\bar{X}_{n+1}, \ldots, \bar{X}_{n+L_{n}}, \bar{X}_{n+L_{n}+1}, \ldots, \bar{X}_{n+L_{n}+N_{n, 1}+N_{n, 2}} . \tag{27}
\end{equation*}
$$

Based on this sample, we can compute our estimate and compare it to the other estimates. The results are shown in Table 4, where (est. 5) is the new estimate described above and (est. 2) is the surrogate estimate, trained and evaluated with data based on an estimated distribution.

In the second case, we assume that $X \sim U([a, b])$, where $a, b \in \mathbb{R}^{d}$. Then, a and b can be estimated component-wise by

$$
\begin{equation*}
\hat{a}^{(j)}=\min _{i \in\{1, \ldots, n\}} X_{i}^{(j)} \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{b}^{(j)}=\max _{i \in\{1, \ldots, n\}} X_{i}^{(j)} \tag{29}
\end{equation*}
$$

Again, we can generate the sample (27) and use it to compute our estimate. The results are shown in Table 5, where (est. 5) is the new estimate described above and (est. 2) is the surrogate estimate, trained and evaluated with data based on an estimated distribution.

In both cases, the estimation of the input parameter should negatively affect the performance of the estimate. In the first case, it seems that the influence is too small compared to the interquartile range. Probably, that is because in the first cases we have $7 \times 10=70$ data points available to estimate b. In the second case,

Table 4 Median (and interquartile range) of the L_{1} error of the four different estimates for model 1 with a constant error in the computer model and 5 and 20% noise and estimated input distribution, where $X \sim U\left([0, b]^{d}\right)$

	σ^{*}	5\%		
	σ_{m}	0.1	0.2	0.5
m_{1}^{*}	est. 1	0.633 (0.225)	0.633 (0.225)	0.633 (0.225)
	est. 2	0.276 (0.036)	0.488 (0.022)	0.934 (0.031)
	est. 3	0.795 (0.293)	0.795 (0.293)	0.795 (0.293)
	est. 4	0.162 (0.134)	0.218 (0.136)	0.191 (0.166)
	est. 5	0.199 (0.124)	0.208 (0.233)	0.187 (0.183)
	σ^{*}	20\%		
	σ_{m}	0.1	0.2	0.5
m_{1}^{*}	est. 1	0.632 (0.169)	0.632 (0.169)	0.632 (0.169)
	est. 2	0.248 (0.032)	0.444 (0.022)	0.910 (0.030)
	est. 3	0.834 (0.326)	0.834 (0.326)	0.834 (0.326)
	est. 4	0.245 (0.131)	0.272 (0.157)	0.216 (0.162)
	est. 5	0.234 (0.041)	0.254 (0.194)	0.241 (0.141)

The error of the best estimator for each model is highlighted in bold

Table 5 Median (and interquartile range) of the L_{1} error of the four different estimates for model 1 with a constant error in the computer model and 5 and 20% noise and estimated input distribution, where $X \sim U([a, b])$

	σ^{*}	5\%		
	σ_{m}	0.1	0.2	0.5
m_{1}^{*}	est. 1	0.633 (0.225)	0.633 (0.225)	0.633 (0.225)
	est. 2	0.438 (0.114)	0.666 (0.151)	1.049 (0.106)
	est. 3	0.795 (0.293)	0.795 (0.293)	0.795 (0.293)
	est. 4	0.162 (0.134)	0.218 (0.136)	0.191 (0.166)
	est. 5	0.356 (0.200)	0.315 (0.242)	0.264 (0.157)
	σ^{*}	20\%		
	σ_{m}	0.1	0.2	0.5
m_{1}^{*}	est. 1	0.632 (0.169)	0.632 (0.169)	0.632 (0.169)
	est. 2	0.443 (0.218)	0.600 (0.125)	1.041 (0.077)
	est. 3	0.834 (0.326)	0.834 (0.326)	0.834 (0.326)
	est. 4	0.245 (0.131)	0.272 (0.157)	0.216 (0.162)
	est. 5	0.388 (0.240)	0.432 (0.211)	0.372 (0.206)

The error of the best estimator for each model is highlighted in bold
the estimation of the input distribution clearly affects the performance of estimate (est. 2) and our estimate (est. 5), but it still outperforms the other estimates.

In the implementation, we neglected the truncation of the estimators $m_{L_{n}}$ and $\hat{m}_{n}^{\hat{\epsilon}}$. To analyze the influence of the truncation, we want to compare the truncated estimate with the untruncated version for model 1. By (24) and the definition of m and m^{*}, we know that

$$
\begin{equation*}
\alpha_{n} \geq \sigma_{m} \cdot \lambda^{*} \tag{30}
\end{equation*}
$$

It is easy to see that (21) only needs to hold for $x \in \operatorname{supp}(X)$. We calculate an approximation for β via Monte Carlo experiments where the value for β is determined as the maximum of 10^{8} relaxations of $2 \cdot\left|m^{*}(X)\right|+\sigma_{m} \cdot \lambda^{*}$, since it is an upper bound of $2 \cdot|m(X)|$. Furthermore, in (16) we set $c_{1}=10$ and calculate the truncated version of the estimates (est. 2) and (est. 4) which we denote by (est. 2) ${ }^{\text {(trunc) }}$ and (est. $4)^{(\text {trunc })}$. The results are shown in Table 6.

In all cases considered, not limiting the estimators will result in a deterioration of their performance.

4 Proofs

4.1 A general result on weighted generalized penalized least squares estimates

In the proof of Theorem 1, we will use an error bound for weighted generalized penalized least squares estimates, which will enable us to generalize the results in Kohler and Krzyżak (2017b) from smoothing spline estimates to least squares estimates.

Table 6 Median (and interquartile range) of the L_{1} error of the truncated and untruncated version of the estimates 2 and 4 for model 1 with a constant error in the computer model and 5 and 20% noise

	σ^{*}	5\%		
	σ_{m}	0.1	0.2	0.5
m_{1}^{*}	est. 2	0.288 (0.042)	0.499 (0.081)	0.922 (0.077)
	est. $2^{\text {(runc) }}$	0.288 (0.042)	0.499 (0.081)	0.922 (0.077)
	est. 4	0.201 (0.139)	0.211 (0.121)	0.205 (0.165)
	est. $4^{\text {(runc) }}$	0.165 (0.140)	0.211 (0.121)	0.205 (0.165)
	σ^{*}	20\%		
	σ_{m}	0.1	0.2	0.5
m_{1}^{*}	est. 2	0.266 (0.110)	0.488 (0.102)	0.921 (0.071)
	est. $2^{\text {(trunc) }}$	0.266 (0.110)	0.481 (0.105)	0.921 (0.071)
	est. 4	0.241 (0.124)	0.281 (0.187)	0.290 (0.162)
	est. $4^{\text {(runc) }}$	0.241 (0.124)	0.276 (0.193)	0.290 (0.162)

The error of the best estimator for each model is highlighted in bold

Springer

Theorem 2

Let $d, n, L_{n} \in \mathbb{N}, w^{(n)} \in[0,1]$ with $2 \leq n \leq L_{n}$ and $1 \leq \beta \leq \beta_{n}=n+L_{n}$. Let (X, Y), $\left(X_{1}, Y_{1}\right), \ldots$ be independent and identically distributed $\mathbb{R}^{d} \times \mathbb{R}$-valued random variables with $\mathbf{E}\{|Y|\}<\infty$. Set $m(x)=\mathbf{E}\{Y \mid X=x\}$ and assume

$$
\begin{equation*}
|m(x)| \leq \beta \quad\left(x \in \mathbb{R}^{d}\right) \tag{31}
\end{equation*}
$$

Let $\bar{Y}_{1, n}, \ldots, \bar{Y}_{n+L_{n}, n}$ be arbitrary \mathbb{R}-valued random variables satisfying

$$
\begin{equation*}
\max _{i=1, \ldots, n+L_{n}} \mathbf{E}\left\{\left|\bar{Y}_{i, n}\right|^{3}\right\} \leq c_{21}<\infty \tag{32}
\end{equation*}
$$

Let \mathcal{F}_{n} be a set of functions and

$$
\operatorname{pen}_{n}^{2}(f) \geq 0
$$

be a penalty term for each $f \in \mathcal{F}_{n}$. Define the estimate m_{n} by
and

$$
\tilde{m}_{n}(\cdot)=\arg \min _{f \in \mathcal{F}_{n}}\left(\sum_{i=1}^{n+L_{n}} w_{i} \cdot\left|f\left(X_{i}\right)-\bar{Y}_{i, n}\right|^{2}+p e n_{n}^{2}(f)\right)
$$

$$
m_{n}(x)=T_{\beta}\left(\tilde{m}_{n}(x)\right) \quad\left(x \in \mathbb{R}^{d}\right),
$$

where

$$
w_{i}=\frac{w^{(n)}}{n} \quad \text { for } i=1, \ldots, n
$$

and

$$
w_{i}=\frac{1-w^{(n)}}{L_{n}} \quad \text { for } i=n+1, \ldots, n+L_{n} .
$$

Assume

$$
\begin{equation*}
K^{2} \cdot\left(\mathbf{E}\left\{\left.\exp \left(\frac{(Y-m(X))^{2}}{K^{2}}\right) \right\rvert\, X\right\}-1\right) \leq \sigma_{0}^{2} \quad \text { a.s. } \tag{33}
\end{equation*}
$$

for some $K, \sigma_{0}>0$. Choose $\delta_{k}>0$ with $\delta_{k} \rightarrow 0(k \rightarrow \infty)$ and $\delta_{n} \geq \delta_{L_{n}}$, such that for all $k \geq n$ we have

$$
\begin{gather*}
\delta_{k}>c_{22} \cdot \frac{\beta^{2}}{k}, \tag{34}\\
\sqrt{k} \delta \geq c_{23} \int_{\delta /\left(12 \sigma_{0}\right)}^{\sqrt{48 \delta}}\left(\log \mathcal{N}_{2}\left(u,\left\{T_{\beta_{n}} f-g: f \in \mathcal{F}_{n}, \frac{1}{k} \sum_{i=1}^{k}\left|T_{\beta_{n}} f\left(x_{i}\right)-g\left(x_{i}\right)\right|^{2}+p e n_{n}^{2}(f) \leq 48 \cdot \delta\right\}, x_{1}^{k}\right)\right)^{1 / 2} \mathrm{~d} u \tag{35}
\end{gather*}
$$

for all $\delta \geq \delta_{k} / 6$, all $g \in \mathcal{F}_{n}$, and

$$
\begin{align*}
& \frac{\sqrt{k} \delta}{\beta^{2}} \geq c_{23} \int_{\delta /\left(c_{24} \cdot \beta^{2}\right)}^{\sqrt{\delta}}\left(\operatorname { l o g } \mathcal { N } _ { 2 } \left(u,\left\{\left(T_{\beta} f-m\right)^{2}: f \in \mathcal{F}_{n}, \left.\frac{1}{k} \sum_{i=1}^{k} \right\rvert\, T_{\beta} f\left(x_{i}\right)\right.\right.\right. \tag{36}\\
& \left.\left.\left.\quad-\left.m\left(x_{i}\right)\right|^{2} \leq \frac{\delta}{\beta^{2}}, p e n_{n}^{2}(f) \leq \delta\right\}, x_{1}^{k}\right)\right)^{1 / 2} \mathrm{~d} u
\end{align*}
$$

for all $\delta \geq \delta_{k}$ and all $x_{1}, \ldots, x_{k} \in \mathbb{R}^{d}$. Then, there exists constants $c_{25}, c_{26}, c_{27} \in \mathbb{R}_{+}$ such that

$$
\begin{aligned}
\mathbf{E} \int & \left|m_{n}(x)-m(x)\right|^{2} \mathbf{P}_{X}(\mathrm{~d} x) \\
\leq & 9 \cdot \inf _{f \in \mathcal{F}_{n}}\left(\operatorname{pen}_{n}^{2}(f)+\int|f(x)-m(x)|^{2} \mathbf{P}_{X}(\mathrm{~d} x)\right) \\
& +c_{25} \cdot w^{(n)} \cdot\left(\delta_{n}+\mathbf{E}\left\{\frac{1}{n} \cdot \sum_{i=1}^{n}\left|\bar{Y}_{1, n}-Y_{i}\right|^{2}\right\}\right) \\
& +c_{26} \cdot\left(1-w^{(n)}\right) \cdot\left(\delta_{L_{n}}+\mathbf{E}\left\{\frac{1}{L_{n}} \cdot \sum_{i=n+1}^{n+L_{n}}\left|\bar{Y}_{1, n}-Y_{i}\right|^{2}\right\}\right)+\frac{c_{27}}{n} .
\end{aligned}
$$

Proof The proof follows by a generalization of the proof of Theorem 2 in Kohler and Krzyżak (2017b). A complete proof can be found in supplementary material.

4.1.1 Application to neural networks

In the following subsection, we want to introduce a corollary of Theorem 2, where we choose our function space as hierarchical neural networks as defined in Sect. 1.3.

Corollary 2 Let $d, n, L_{n} \in \mathbb{N}$, $w^{(n)} \in[0,1]$ with $2 \leq n \leq L_{n}$ and $1 \leq \beta \leq n+L_{n}$. Let $(X, Y),\left(X_{1}, Y_{1}\right), \ldots$ be independent and identically distributed $\mathbb{R}^{d} \times \mathbb{R}$-valued random variables with $\mathbf{E}\{|Y|\}<\infty$ and with $\operatorname{supp}(X)$ bounded. Let $m(\cdot)=\mathbf{E}\{Y \mid X=\cdot\}$ be the regression function, which satisfies a generalized hierarchical interaction model of order d^{*} and finite level l and assume

$$
\begin{equation*}
|m(x)| \leq \beta \quad\left(x \in \mathbb{R}^{d}\right) \tag{37}
\end{equation*}
$$

Let $\bar{Y}_{1, n}, \ldots, \bar{Y}_{n+L_{n}, n}$ be arbitrary \mathbb{R}-valued random variables satisfying

$$
\begin{equation*}
\max _{i=1, \ldots, n+L_{n}} \mathbf{E}\left\{\left|\bar{Y}_{i, n}\right|^{3}\right\} \leq c_{28}<\infty \tag{38}
\end{equation*}
$$

Assume

$$
\begin{equation*}
K^{2} \cdot\left(\mathbf{E}\left\{\left.\exp \left(\frac{(Y-m(X))^{2}}{K^{2}}\right) \right\rvert\, X\right\}-1\right) \leq \sigma_{0}^{2} \quad \text { a.s. } \tag{39}
\end{equation*}
$$

for some $K, \sigma_{0}>0$. Let $N \in \mathbb{N}_{0}$ and $H_{K, M_{n}, d, d^{*}, B_{n}}^{(l)}$ be the set of hierarchical neural networks introduced in Sect. 1.3, where K, d, d^{*} are chosen as in the definition of the generalized hierarchical interaction model for m, and where $M_{n} \leq n^{c_{29}}, B_{n}=n^{c_{30}}$, and where $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ is a Lipschitz continuous function with Lipschitz constant L, which satisfy

$$
\begin{equation*}
|\sigma(x)| \leq L \cdot \max \{|x|, 1\} \quad(x \in \mathbb{R}) . \tag{40}
\end{equation*}
$$

Define the estimate m_{n} by

$$
\tilde{m}_{n}(\cdot)=\arg \min _{h \in \mathcal{H}_{K, k n}^{(1)}, d_{n}, d^{*}, B_{n}}\left(\sum_{i=1}^{n+L_{n}} w_{i} \cdot\left|h\left(X_{i}\right)-\bar{Y}_{i, n}\right|^{2}\right)
$$

and

$$
m_{n}(x)=T_{\beta}\left(\tilde{m}_{n}(x)\right) \quad\left(x \in \mathbb{R}^{d}\right),
$$

where

$$
w_{i}=\frac{w^{(n)}}{n} \quad \text { for } i=1, \ldots, n
$$

and

$$
w_{i}=\frac{1-w^{(n)}}{L_{n}} \quad \text { for } i=n+1, \ldots, n+L_{n} .
$$

Then, there exists constants $c_{31}, c_{32}, c_{33} \in \mathbb{R}_{+}$such that

$$
\begin{aligned}
& \mathbf{E} \int\left|m_{n}(x)-m(x)\right|^{2} \mathbf{P}_{X}(\mathrm{~d} x) \\
& \quad \leq 9 \cdot \inf _{h \in \mathcal{H}_{K, M_{n}, d, d^{*} \cdot B_{n}}^{(L)}}\left(\int|h(x)-m(x)|^{2} \mathbf{P}_{X}(\mathrm{~d} x)\right) \\
& \quad+c_{31} \cdot w^{(n)} \cdot\left(\frac{\log (n)}{n} \cdot M_{n}+\mathbf{E}\left\{\frac{1}{n} \cdot \sum_{i=1}^{n}\left|\bar{Y}_{1, n}-Y_{i}\right|^{2}\right\}\right) \\
& \quad+c_{32} \cdot\left(1-w^{(n)}\right) \cdot\left(\frac{\log \left(L_{n}\right)}{L_{n}} \cdot M_{n}+\mathbf{E}\left\{\frac{1}{L_{n}} \cdot \sum_{i=n+1}^{n+L_{n}}\left|\bar{Y}_{1, n}-Y_{i}\right|^{2}\right\}\right)+\frac{c_{33}}{n},
\end{aligned}
$$

for n sufficiently large.
Proof Set $\operatorname{pen}_{n}^{2}(f)=0$ and

$$
\delta_{k}=c_{34} \cdot \frac{\log (k)}{k} \cdot M_{n}
$$

We show that Theorem 2 is applicable by the assumptions of Corollary 2 and the choice of δ_{k}. First, we observe that

$$
\delta_{k}>c_{35} \cdot \frac{\beta^{2}}{k}
$$

and

$$
\delta_{n}=c_{36} \cdot \frac{\log (n)}{n} \cdot M_{n} \geq c_{36} \cdot \frac{\log \left(L_{n}\right)}{L_{n}} \cdot M_{n}=\delta_{L_{n}}
$$

since $2 \leq n \leq L_{n}$. In order to be able to apply Theorem 2, it suffices to show that (35) and (36) are fulfilled. First, we show that (36) holds. Since the values of the estimate on $\operatorname{supp}(X)$ will not change in case that we replace $\mathcal{H}_{K, M_{n}, d, d^{*}, B_{n}}^{(l)}$ by

$$
\left\{h \cdot I_{\operatorname{supp}(X)}: h \in \mathcal{H}_{K, M_{n}, d, d^{*}, B_{n}}^{(l)}\right\}
$$

in the definition of \tilde{m}_{n}, it suffices to show that (36) holds for $x_{1}, \ldots, x_{k} \in \operatorname{supp}(X)$. Next we observe that using $\left|a^{2}-b^{2}\right|^{2} \leq(|a|+|b|)^{2} \cdot|a-b|^{2}(a, b \in \mathbb{R})$ (which we apply with $a=\left(T_{\beta} f-m\right)\left(x_{i}\right)$ and $b=g\left(x_{i}\right)$, where g is approximating $\left.T_{\beta} f-m\right)$ and $|m(x)| \leq \beta\left(x \in \mathbb{R}^{d}\right)$, we get

$$
\begin{aligned}
& \left(\frac{1}{k} \sum_{i=1}^{k}\left|\left(T_{\beta} f-m\right)^{2}\left(x_{i}\right)-g^{2}\left(x_{i}\right)\right|^{2}\right)^{1 / 2} \\
& \quad \leq\left(\frac{1}{k} \sum_{i=1}^{k}\left(\left|\left(T_{\beta} f-m\right)\left(x_{i}\right)-g\left(x_{i}\right)\right|^{2} \cdot\left(\left|\left(T_{\beta} f-m\right)\left(x_{i}\right)\right|+\left|g\left(x_{i}\right)\right|\right)^{2}\right)\right)^{1 / 2} \\
& \quad \leq 4 \cdot \beta \cdot\left(\frac{1}{k} \sum_{i=1}^{k}\left|\left(T_{\beta} f-m\right)\left(x_{i}\right)-g\left(x_{i}\right)\right|^{2}\right)^{1 / 2}
\end{aligned}
$$

for any $x_{1}, \ldots, x_{k} \in \operatorname{supp}(X)$, which implies

$$
\begin{aligned}
& \mathcal{N}_{2}\left(u,\left\{\left(T_{\beta} f-m\right)^{2}: f \in \mathcal{H}_{K, M_{n}, d, d^{*}, B_{n}}^{(l)}\right\}, x_{1}^{k}\right) \\
& \quad \leq \mathcal{N}_{2}\left(\frac{u}{4 \beta},\left\{T_{\beta} f-m: f \in \mathcal{H}_{K, M_{n}, d, d^{*}, B_{n}}^{(l)}\right\}, x_{1}^{k}\right) .
\end{aligned}
$$

Using this, we see that for any $\delta \geq \delta_{k}$

$$
\begin{aligned}
& \int_{\delta /\left(c_{37} \cdot \beta^{2}\right)}^{\sqrt{\delta}}\left(\log \mathcal{N}_{2}\left(u,\left\{\left(T_{\beta} f-m\right)^{2}: f \in \mathcal{H}_{K, M_{n}, d, d^{*}, B_{n}}^{(l)}\right\}, x_{1}^{k}\right)\right)^{1 / 2} \mathrm{~d} u \\
& \quad \leq \int_{\delta /\left(c_{37} \cdot \beta^{2}\right)}^{\sqrt{\delta}}\left(\log \mathcal{N}_{2}\left(\frac{u}{4 \beta},\left\{T_{\beta} f-m: f \in \mathcal{H}_{K, M_{n}, d, d^{*}, B_{n}}^{(l)}\right\}, x_{1}^{k}\right)\right)^{1 / 2} \mathrm{~d} u
\end{aligned}
$$

which is bounded by

$$
\sqrt{\delta} \cdot\left(\log \mathcal{N}_{2}\left(\frac{c_{38}}{k},\left\{T_{\beta} f-m: f \in \mathcal{H}_{K, M_{n}, d, d^{*}, B_{n}}^{(l)}\right\}, x_{1}^{k}\right)\right)^{1 / 2}
$$

since

$$
\frac{u}{4 \beta} \geq \frac{c_{38}}{k} \quad \text { for } \quad u \geq \frac{\delta}{c_{37} \cdot \beta^{2}} \geq \frac{\delta_{k}}{c_{37} \cdot \beta^{2}} \geq \frac{c_{39}}{c_{37} \cdot k}
$$

Set $a_{k}=k^{c_{40}}$. Applying Lemma 2 from Bauer and Kohler (2019) yields for any $x_{1}, \ldots, x_{k} \in\left[-a_{k}, a_{k}\right]^{d}$

$$
\log \left(\mathcal{N}_{2}\left(\frac{c_{41}}{k},\left\{T_{\beta} f-m: f \in \mathcal{F}_{n}\right\}, x_{1}^{k}\right)\right) \leq c_{42} \cdot \log (k) \cdot M_{n}
$$

Since $\operatorname{supp}(X)$ is bounded, the relationship $\operatorname{supp}(X) \subseteq\left[-a_{k}, a_{k}\right]^{d}$ holds for k sufficiently large. Combing the above results, we see that (36) is implied by

$$
\frac{\sqrt{k} \cdot \delta}{\beta^{2}} \geq \sqrt{\delta} \cdot\left(c_{42} \cdot \log (k) \cdot M_{n}\right)^{1 / 2}
$$

which in turn follows from $\delta \geq \delta_{k}$.
By the choice of δ_{k}, we have for any $\delta \geq \delta_{k} / 6$

$$
\frac{\delta}{12 \sigma_{0}}>\frac{c_{43}}{k} .
$$

Arguing as above, this implies that (35) holds. Consequently, Theorem 2 is applicable which yields the assertion.

4.2 Proof of Theorem 1

Using the definition of $\hat{m}_{n},(a+b+c)^{2} \leq 3 a^{2}+3 b^{2}+3 c^{2}(a, b, c \in \mathbb{R})$ and (22), we get

$$
\begin{aligned}
& \mathbf{E}\left\{\left|Y-\hat{m}_{n}(X)\right|^{2}\right\} \\
&= \mathbf{E}\left\{\left|\left(Y-m^{*}(X)\right)+\left(m^{*}(X)-m(X)-\hat{m}_{n}^{\hat{e}}(X)\right)+\left(m(X)-m_{L_{n}}(X)\right)\right|^{2}\right\} \\
& \leq 3 \cdot \mathbf{E}\left\{\left|Y-m^{*}(X)\right|^{2}\right\}+3 \cdot \mathbf{E}\left\{\left|m^{*}(X)-m(X)-\hat{m}_{n}^{\hat{e}}(X)\right|^{2}\right\} \\
&+3 \cdot \mathbf{E}\left\{\left|m(X)-m_{L_{n}}(X)\right|^{2}\right\} \\
& \leq 3\left(\alpha_{n}^{*}\right)^{2}+3 \cdot \mathbf{E} \int\left|\hat{m}_{n}^{\hat{e}}(x)-\left(m^{*}-m\right)(x)\right|^{2} \mathbf{P}_{X}(\mathrm{~d} x) \\
&+3 \cdot \mathbf{E} \int\left|m_{L_{n}}(x)-m(x)\right|^{2} \mathbf{P}_{X}(\mathrm{~d} x) .
\end{aligned}
$$

Hence, in order to prove the assertion it suffices to show

$$
\begin{equation*}
\mathbf{E} \int\left|m_{L_{n}}(x)-m(x)\right|^{2} \mathbf{P}_{X}(\mathrm{~d} x) \leq c_{44} \cdot \log \left(L_{n}\right)^{3} \cdot L_{n}^{-\frac{2 p}{2 p+d^{*}}} \tag{41}
\end{equation*}
$$

and

$$
\begin{align*}
& \mathbf{E} \int\left|\hat{m}_{n}^{\hat{\epsilon}}(x)-\left(m^{*}-m\right)(x)\right|^{2} \mathbf{P}_{X}(\mathrm{~d} x) \\
& \quad \leq c_{45} \cdot \alpha_{n}^{2} \cdot(\log n)^{3} \cdot M_{2, n}^{-\frac{2 p}{d^{*}}}+c_{46} \cdot w^{(n)} \cdot \alpha_{n}^{2} \cdot \log (n) \cdot \frac{M_{2, n}}{n} \tag{42}\\
& \quad+c_{47} \cdot\left(1-w^{(n)}\right) \cdot \alpha_{n}^{2}+c_{48} \cdot\left(\log L_{n}\right)^{3} \cdot L_{n}^{-\frac{2 p}{2 p+d^{*}}}+c_{49} \cdot \frac{\alpha_{n}^{2}}{n} .
\end{align*}
$$

To proof inequality (41), we apply Corollary 2 with $(X, Y)=(X, m(X)), n=L_{n}$, $w^{(n)}=1$ and $\bar{Y}_{i, L_{n}+\bar{L}_{n}}=Y_{i}=m\left(X_{n+i}\right)\left(i=1, \ldots, L_{n}\right)$ and suitably chosen $\bar{Y}_{L_{n}+1, L_{n}+\bar{L}_{n}}$, $\ldots, \bar{Y}_{L_{n}+\bar{L}_{n}, L_{n}+\bar{L}_{n}}$ and observe

$$
\begin{aligned}
& \mathbf{E} \int\left|m_{L_{n}}(x)-m(x)\right|^{2} \mathbf{P}_{X}(\mathrm{~d} x) \\
& \quad \leq 9 \cdot \inf _{h \in \mathcal{H}_{K_{1}, M_{1, n}, d, d^{*} * B_{1, n}}^{(l)}}\left(\int|h(x)-m(x)|^{2} \mathbf{P}_{X}(\mathrm{~d} x)\right)+c_{50} \cdot \frac{\log \left(L_{n}\right)}{L_{n}} \cdot M_{1, n}+\frac{c_{51}}{L_{n}} \\
& \quad \leq 9 \cdot \inf _{h \in \mathcal{H}_{K_{1}, M_{1, n}, d^{*}, d^{*}, B_{1, n}}^{(1)}}\left(\int|h(x)-m(x)|^{2} \mathbf{P}_{X}(\mathrm{~d} x)\right)+c_{52} \cdot \log \left(L_{n}\right) \cdot L_{n}^{\frac{-2 p}{2 p+d^{*}}},
\end{aligned}
$$

for sufficiently large n. Next we want to derive a bound on the approximation error. Set $a_{L_{n}}=\left(\log L_{n}\right)^{\frac{3}{2 \cdot(N+q+3)}}$ and $\eta_{L_{n}}=\left(\log L_{n}\right)^{\frac{3 \cdot(N+3)}{N+q+3}} \cdot L_{n}^{-\frac{2 \cdot(N+1) \cdot p+2 d^{*}}{2 p+d^{*}}}$ and assume w.l.o.g. that $\operatorname{supp}(X) \subseteq\left[-a_{L_{n}}, a_{L_{n}}\right]^{d}$. Using Theorem 3 in Bauer and Kohler (2019), we see that there exists a $h^{*} \in \mathcal{H}_{K_{1}, M_{1, n}, d^{*}, d, B_{1, n}}^{(l)}$ and an exception set $D_{L_{n}}$ with $\mathbf{P}_{X^{-}}$-measure of $\eta_{L_{n}}$ such that

$$
\begin{aligned}
\int & \left|h^{*}(x)-m(x)\right|^{2} \cdot I_{D_{L_{n}}^{c}}(x) \mathbf{P}_{X}(\mathrm{~d} x)+\int\left|h^{*}(x)-m(x)\right|^{2} \cdot I_{D_{L_{n}}}(x) \mathbf{P}_{X}(\mathrm{~d} x) \\
\leq & \left(c_{53} \cdot a_{L_{n}}^{(N+q+3)} \cdot M_{1, n}^{-p / d^{*}}\right)^{2}+\left(2 \cdot c_{54} \cdot a_{L_{n}}^{q} \cdot M_{1, n}^{\left(d^{*}+N \cdot p\right) / d^{*}}\right)^{2} \cdot \eta_{L_{n}} \\
\leq & c_{55} \cdot\left(\log L_{n}\right)^{3} \cdot L_{n}^{-\frac{2 p}{2 p+d^{*}}}+c_{56} \cdot\left(\log L_{n}\right)^{\frac{3 q}{N+q+3}} \cdot L_{n}^{\frac{2 d^{*}+2 N \cdot p}{2 p+d^{*}}} \cdot\left(\log L_{n}\right)^{\frac{3 \cdot(N+3)}{N+q+3}} \\
& \cdot L_{n}^{-\frac{2 \cdot(N+1) \cdot p+2 d^{*}}{2 p+d^{d^{*}}}} \\
\leq & c_{57} \cdot\left(\log L_{n}\right)^{3} \cdot L_{n}^{-\frac{2 p}{2 p+d^{*}}}
\end{aligned}
$$

where we have used that $|m(x)| \leq \beta \leq c_{58} \cdot a_{L_{n}}^{q} \cdot M_{1, n}^{\left(d^{*}+N \cdot p\right) / d^{*}}$.
In order to prove (42), we first observe that

$$
\mathbf{E}\{Y-m(X) \mid X=x\}=m^{*}(x)-m(x),
$$

and hence, $m^{*}-m$ is the regression function to $(X, Y-m(X))$, and $\left(m^{*}-m\right) / \alpha_{n}$ is the regression function to $\left(X,(Y-m(X)) / \alpha_{n}\right)$. Clearly,

$$
\int\left|\hat{m}_{n}^{\hat{\epsilon}}(x)-\left(m^{*}-m\right)(x)\right|^{2} \mathbf{P}_{X}(\mathrm{~d} x)=\alpha_{n}^{2} \cdot \int\left|\frac{1}{\alpha_{n}} \cdot \hat{m}_{n}^{\hat{\epsilon}}(x)-\frac{1}{\alpha_{n}} \cdot\left(m^{*}-m\right)(x)\right|^{2} \mathbf{P}_{X}(\mathrm{~d} x)
$$

It is easy to see that the definition of $\hat{m}_{n}^{\hat{\epsilon}}$ implies

$$
\frac{1}{\alpha_{n}} \cdot \hat{m}_{n}^{\hat{e}}(x)=\frac{1}{\alpha_{n}} \cdot T_{c_{1} \cdot \alpha_{n}}\left(\tilde{m}_{n}^{\hat{\epsilon}}(x)\right)=T_{c_{1}}\left(\frac{1}{\alpha_{n}} \cdot \tilde{m}_{n}^{\hat{c}}(x)\right) \quad\left(x \in \mathbb{R}^{d}\right),
$$

and

$$
\left.\frac{1}{\alpha_{n}} \cdot \tilde{m}_{n}^{\hat{c}} \cdot \cdot\right)=\arg \min _{h \in \frac{1}{\alpha_{n}} H_{K_{2}, M_{2, n}, d^{*}, d, B_{2, n}}^{(1)}}\left(\frac{w^{(n)}}{n} \sum_{i=1}^{n}\left(\frac{1}{\alpha_{n}} \cdot \hat{\epsilon}_{i}-h\left(X_{i}\right)\right)^{2}+\frac{1-w^{(n)}}{N_{1, n}} \sum_{i=1}^{N_{1, n}}\left(0-h\left(X_{n+L_{n}+i}\right)\right)^{2}\right),
$$

where

$$
\frac{1}{\alpha_{n}} \mathcal{H}_{K_{2}, M_{2, n}, d, d^{*}, B_{2, n}}^{(l)}=\left\{h / \alpha_{n}: h \in \mathcal{H}_{K_{2}, M_{2, n}, d^{*}, d, B_{2, n}}^{(l)}\right\} .
$$

The assumptions in Theorem 1 together with (41) imply that we have

$$
\sup _{x \in \mathbb{R}^{d}}\left|m^{*}(x)-m(x)\right| \leq \alpha_{n}
$$

and

$$
\begin{aligned}
& \max _{i=1, \ldots, n} \mathbf{E}\left\{\left|\frac{Y_{i}-m_{L_{n}}\left(X_{i}\right)}{\alpha_{n}}\right|^{3}\right\} \\
& \quad \leq \frac{9}{\alpha_{n}^{3}} \cdot\left(\mathbf{E}\left\{\left|Y-m^{*}(X)\right|^{3}\right\}+\mathbf{E}\left\{\left|m^{*}(X)-m(X)\right|^{3}\right\}+\mathbf{E}\left\{\left|m(X)-m_{L_{n}}(X)\right|^{3}\right\}\right) \\
& \quad \leq 9 \cdot\left(\frac{\left(\alpha_{n}^{*}\right)^{3}}{\alpha_{n}^{3}}+1+\frac{c_{59} \cdot\left(\left(\log L_{n}\right)^{3} \cdot L_{n}^{-\frac{2 p}{2 p+d^{*}}}\right)}{\alpha_{n}^{3}}\right) \leq 18+c_{59} .
\end{aligned}
$$

We consider

$$
\frac{1}{\alpha_{n}} \cdot \hat{\epsilon}_{i}=\frac{1}{\alpha_{n}} \cdot\left(Y_{i}-m_{L_{n}}\left(X_{i}\right)\right)=\frac{1}{\alpha_{n}} \cdot\left(Y_{i}-m\left(X_{i}\right)\right)+\frac{1}{\alpha_{n}} \cdot\left(m\left(X_{i}\right)-m_{L_{n}}\left(X_{i}\right)\right)
$$

as an observation of $\left(Y_{i}-m\left(X_{i}\right)\right) / \alpha_{n}$ with an additional measurement error

$$
\frac{1}{\alpha_{n}} \cdot\left(m\left(X_{i}\right)-m_{L_{n}}\left(X_{i}\right)\right)
$$

$(i=1, \ldots, n)$. And we consider

$$
0=\frac{1}{\alpha_{n}} \cdot\left(Y_{n+L_{n}+i}-m\left(X_{n+L_{n}+i}\right)\right)-\frac{1}{\alpha_{n}} \cdot\left(Y_{n+L_{n}+i}-m\left(X_{n+L_{n}+i}\right)\right)
$$

as an observation of $\frac{1}{\alpha_{n}} \cdot\left(Y_{n+L_{n}+i}-m\left(X_{n+L_{n}+i}\right)\right)$ with an additional measurement error

$$
(-1) \cdot \frac{1}{\alpha_{n}} \cdot\left(Y_{n+L_{n}+i}-m\left(X_{n+L_{n}+i}\right)\right)
$$

$\left(i=1, \ldots, N_{1, n}\right)$.
From inequality (41), we can conclude

$$
\begin{aligned}
\mathbf{E}\left\{\frac{1}{n} \sum_{i=1}^{n}\left|\frac{1}{\alpha_{n}} \cdot\left(m\left(X_{i}\right)-m_{L_{n}}\left(X_{i}\right)\right)\right|^{2}\right\} & \leq \frac{1}{\alpha_{n}^{2}} \cdot \mathbf{E} \int\left|m(x)-m_{L_{n}}(x)\right|^{2} \mathbf{P}_{X}(\mathrm{~d} x) \\
& \leq \frac{1}{\alpha_{n}^{2}} \cdot c_{60} \cdot\left(\log L_{n}\right)^{3} \cdot L_{n}^{-\frac{2 p}{2 p+d^{*}}}
\end{aligned}
$$

and the assumptions in Theorem 1 imply

$$
\begin{aligned}
& \mathbf{E}\left\{\frac{1}{N_{1, n}} \sum_{i=1}^{N_{1, n}}\left|\frac{1}{\alpha_{n}} \cdot\left(Y_{n+L_{n}+i}-m\left(X_{n+L_{n}+i}\right)\right)\right|^{2}\right\} \\
& \quad \leq 2 \cdot \mathbf{E}\left\{\frac{1}{N_{1, n}} \sum_{i=1}^{N_{1, n}} \left\lvert\, \frac{1}{\alpha_{n}} \cdot\left(Y_{n+L_{n}+i}-\left.m^{*}\left(X_{n+L_{n}+i}\right)\right|^{2}\right\}\right.\right. \\
& \quad+2 \cdot \mathbf{E}\left\{\frac{1}{N_{1, n}} \sum_{i=1}^{N_{1, n}}\left|\frac{1}{\alpha_{n}} \cdot\left(m^{*}\left(X_{n+L_{n}+i}\right)-m\left(X_{n+L_{n}+i}\right)\right)\right|^{2}\right\} \\
& \quad \leq 2 \cdot \frac{\left(\alpha_{n}^{*}\right)^{2}}{\alpha_{n}^{2}}+2 \leq 4 .
\end{aligned}
$$

We observe that by dividing the function space $\mathcal{H}_{K_{2}, M_{2, n}, d, d^{*}, B_{2, n}}^{(l)}$ by α_{n}, we change the μ_{i} in the last level of the hierarchical neural network. Since $\alpha_{n} \geq\left(\left(\log L_{n}\right)^{3} \cdot L_{n}^{\frac{-2 p}{2 p+d^{*}}}\right)^{1 / 3}$ and $L_{n} \leq n^{c_{4}}$, the μ_{i} are bounded by

$$
\frac{1}{\alpha_{n}} \cdot B_{2, n} \leq n^{c_{60}} .
$$

Thus, in the proof of Corollary 2 the bound on the covering number holds. Application of Corollary 2 yields

$$
\begin{aligned}
& \mathbf{E} \int\left|\frac{1}{\alpha_{n}} \cdot \hat{m}_{n}^{\hat{\epsilon}}(x)-\frac{1}{\alpha_{n}} \cdot\left(m^{*}-m\right)(x)\right|^{2} \mathbf{P}_{X}(\mathrm{~d} x) \\
& \leq 9 \cdot \inf _{h \in \frac{1}{\alpha_{n}} \cdot \mathcal{H}_{K_{2}, M_{2, n}, d^{*} d^{*}, B_{2, n}}^{(n)}}\left(\int\left|h(x)-\frac{1}{\alpha_{n}} \cdot\left(m^{*}-m\right)(x)\right|^{2} \mathbf{P}_{X}(\mathrm{~d} x)\right) \\
&+c_{61} \cdot w^{(n)} \cdot\left(\log (n) \cdot \frac{M_{2, n}}{n}+\frac{1}{\alpha_{n}^{2}} \cdot c_{62} \cdot\left(\log L_{n}\right)^{3} \cdot L_{n}^{-\frac{2 p}{2 p+d^{*}}}\right) \\
&+c_{63} \cdot\left(1-w^{(n)}\right) \cdot\left(\log \left(N_{1, n}\right) \cdot \frac{M_{2, n}}{N_{1, n}}+4\right)+\frac{c_{64}}{n} .
\end{aligned}
$$

Analogously as before, we can bound the approximation error by using Theorem 3 in Bauer and Kohler (2019) and can conclude

$$
\begin{aligned}
& \mathbf{E} \int\left|\frac{1}{\alpha_{n}} \cdot \hat{m}_{n}^{\hat{\epsilon}}(x)-\frac{1}{\alpha_{n}} \cdot\left(m^{*}-m\right)(x)\right|^{2} \mathbf{P}_{X}(\mathrm{~d} x) \\
& \leq c_{65} \cdot(\log n)^{3} \cdot M_{2, n}^{-\frac{2 p}{d^{*}}}+c_{66} \cdot w^{(n)} \cdot\left(\log (n) \cdot \frac{M_{2, n}}{n}+\frac{1}{\alpha_{n}^{2}} \cdot\left(\log L_{n}\right)^{3} \cdot L_{n}^{-\frac{2 p}{2 p+d^{*}}}\right) \\
& \quad+c_{67} \cdot\left(1-w^{(n)}\right)+\frac{c_{68}}{n} .
\end{aligned}
$$

The above results imply (42) which implies the assertion.

Acknowledgements The authors would like to thank the German Research Foundation (DFG) for funding this project within the Collaborative Research Center 805. Furthermore, the authors would like to thank an anonymous Associate Editor and two anonymous referees for their invaluable comments improving an early version of this manuscript.

Compliance with Ethical Statement

Conflict of interest The authors declare that there is no conflict of interest.

References

Anthony, M., Bartlett, P. L. (1999). Neural networks and learning: Theoretical foundations. Cambridge: Cambridge University Press.
Bauer, B., Kohler, M. (2019). On deep learning as a remedy for the curse of dimensionality in nonparametric regression. The Annals of Statistics, 47, 2261-2285.
Bayarri, M. J., Berger, J. O., Cafeo, J., Garcia-Donato, G., Liu, F., Palomo, J., Parthasarathy, R. J., Paulo, R., Sacks, J., Walsh, D. (2007). Computer model validation with functional output. The Annals of Statistics, 35, 1874-1906.
Bichon, B., Eldred, M., Swiler, M., Mahadevan, S., McFarland, J. (2008). Efficient global reliability analysis for nonlinear implicit performance functions. AIAA Journal, 46, 2459-2468.
Bott, A. K., Felber, T., Kohler, M. (2015). Estimation of a density in a simulation model. Journal of Nonparametric Statistics, 27, 271-285.
Bourinet, J.-M., Deheeger, F., Lemaire, M. (2011). Assessing small failure probabilities by combined subset simulation and support vector machines. Structural Safety, 33, 343-353.
Bucher, C., Bourgund, U. (1990). A fast and efficient response surface approach for structural reliability problems. Structural Safety, 7, 57-66.
Choi, S.-K., Grandhi, R. V., Canfield, R. A. (2007). Reliability-based structural design. London: Springer.
Coombs, C. H. (1964). A theory of data. New York: Wiley.
Das, P.-K., Zheng, Y. (2000). Cumulative formation of response surface and its use in reliability analysis. Probabilistic Engineering Mechanics, 15, 309-315.
Deheeger, F., Lemaire, M. (2010). Support vector machines for efficient subset simulations: ${ }^{2}$ SMART method. In Proceedings of the 10th international conference on applications of statistics and probability in civil engineering (ICASP10), Tokyo, Japan.
Devroye, L., Felber, T., Kohler, M. (2013). Estimation of a density using real and artificial data. IEEE Transactions on Information Theory, 59(3), 1917-1928.
Devroye, L., Györfi, L., Lugosi, G. (1996). A probabilistic theory of pattern recognition. New York: Springer.
Felber, T., Kohler, M., Krzyżak, A. (2015a). Adaptive density estimation based on real and artificial data. Journal of Nonparametric Statistics, 27, 1-18.
Felber, T., Kohler, M., Krzyżak, A. (2015b). Density estimation with small measurement errors. IEEE Transactions on Information Theory, 61, 3446-3456.
Goh, J., Bingham, D., Holloway, J. P., Grosskopf, M. J., Kuranz, C. C., Rutter, E. (2013). Prediction and computer model calibration using outputs from mulitfidelity simulators. Technometrics, 55, 501-512.
Götz, B., Schaeffner, M., Platz, R., Melz, T. (2016). Lateral vibration attenuation of a beam with circular cross-section by a support with integrated piezoelectric transducers shunted to negative capacitances. Smart Materials and Structures, 25(9), 1-10.
Györfi, L., Kohler, M., Krzyżak, A., Walk, H. (2002). A distribution-free theory of nonparametric regression. New York: Springer.
Han, G., Santner, T. J., Rawlinson, J. J. (2009). Simultaneous determination of tuning and calibration parameters for computer experiments. Technometrics, 51, 464-474.
Haykin, S. O. (2008). Neural networks and learning machines3rd ed. New York: Prentice-Hall.
Hertz, J., Krogh, A., Palmer, R. G. (1991). Introduction to the theory of neural computation. Redwood City, CA: Addison-Wesley.

Higdon, D., Gattiker, J., Lawrence, E., Jackson, C., Tobis, M., Pratola, M., Habib, S., Heitmann, K., Price, S. (2013). Computer model calibration using the ensemble kalman filter. Technometrics, 55, 488-500.
Hurtado, J. (2004). Structural reliability—Statistical learning perspectives. Vol. 17 of Lecture Notes in Applied and Computational Mechanics. Berlin: Springer.
Kaymaz, I. (2005). Application of Kriging method to structural reliability problems. Strutural Safety, 27, 133-151.
Kennedy, M. C., O'Hagan, A. (2001). Bayesian calibration of computer models (with discussion). Journal of the Royal Statistical Society: Series B, 63, 425-464.
Kim, S.-H., Na, S.-W. (1997). Response surface method using vector projected sampling points. Structural Safety, 19, 3-19.
Kohler, M., Krzyżak, A. (2017a). Nonparametric regression based on hierarchical interaction models. IEEE Transaction on Information Theory, 63, 1620-1630.
Kohler, M., Krzyżak, A. (2017b). Improving a surrogate model in uncertainty quantification by real data. Submitted for publication.
Kohler, M., Krzyżak, A., Mallapur, S., Platz, R. (2018). Uncertainty quantification in case of imperfect models: A non-Bayesian approach. Scandinavian Journal of Statistics, 45(3), 729-752.
Li, S., Götz, B., Schaeffner, M., Platz, R. (2017). Approach to prove the efficiency of the Monte Carlo method combined with the elementary effect method to quantify uncertainty of a beam structure with piezo-elastic supports. In Proceedings of the 2nd international conference on uncertainty quantification in computational sciences and engineering (UNCECOMP 2017) (pp. 441-455).
Papadrakakis, M., Lagaros, N. (2002). Reliability-based structural optimization using neural networks and Monte Carlo simulation. Comput Methods Appl Mech Eng, 191, 3491-3507.
Parzen, E. (1962). On the estimation of a probability density function and the mode. Annals of Mathematical Statistics, 33, 1065-1076.
Ripley, B. D. (2008). Pattern recognition and neural networks. Cambridge: Cambridge University Press.
Rosenblatt, M. (1956). Remarks on some nonparametric estimates of a density function. Ann Math Stat, 27, 832-837.
Santner, T. J., Williams, B. J., Notz, W. I. (2003). The design and analysis of computer experiments. New York: Springer.
Schmidt-Hieber, J. (2017). Nonparametric regression using deep neural networks with ReLU activation function. arXiv:1708.06633v2.
Stone, C. J. (1985). Additive regression and other nonparametric models. Annals of Statistics, 13, 689-705.
Tuo, R., Wu, C. F. J. (2015). Efficient calibration for imperfect computer models. Annals of Statistics, 43, 2331-2352.
Wang, S., Chen, W., Tsui, K. L. (2009). Bayesian validation of computer models. Technometrics, 51, 439-451.
Wong, R. K. W., Storlie, C. B., Lee, T. C. M. (2017). A frequentist approach to computer model calibration. Journal of the Royal Statistical Society, Series B, 79, 635-648.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: Electronic supplementary material The online version of this article (https://doi.org/10.1007/s1046 3-020-00748-1) contains supplementary material, which is available to authorized users.

[^1]: * Sebastian Kersting
 kersting@mathematik.tu-darmstadt.de
 Benedict Götz
 goetz@szm.tu-darmstadt.de
 Michael Kohler
 kohler@mathematik.tu-darmstadt.de
 1 Fachgebiet Systemzuverlässigkeit, Adaptronik und Maschinenakustik SAM, Technische Universität Darmstadt, Magdalenenstr. 4, 64289 Darmstadt, Germany
 2 Fachbereich Mathematik, Technische Universität Darmstadt, Schlossgartenstr. 7, 64289 Darmstadt, Germany

[^2]: The error of the best estimator for each model is highlighted in bold

