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Abstract
We focus on valid definitions of p-values. A valid p-value (VpV) statistic can be used
to make a prefixed level-α decision. In this context, Kolmogorov–Smirnov goodness-
of-fit tests and the normal two-sample problem are considered. We examine an issue
regarding the goodness-of-fit testability based on a single observation. We exemplify
constructions of new test procedures, advocating practical reasons to implement VpV
mechanisms. The VpV framework induces an extension of the conventional expected
p-value (EPV) tool for measuring the performance of a test. Associating the EPV
concept with the receiver operating characteristic (ROC) curve methodology, a well-
established biostatistical approach, we propose a Youden’s index-based optimality
to derive critical values of tests. In these terms, the significance level α � 0.05 is
suggested. We introduce partial EPV’s to characterize properties of tests including
their unbiasedness. We provide the intrinsic relationship between the Bayes Factor
(BF) test statistic and the BF of test statistics.

Keywords AUC · Bayes Factor · Kolmogorov–Smirnov tests · Likelihood ratio ·
p-value · ROC curve · Pooled data · Single observation · Type I error rate · Youden’s
index

1 Introduction

A storm of favorable or critical publications regarding p-values-based procedures has
been observed in both the theoretical and applied literature.

Commonly, statistical testing procedures are designed to draw a conclusion (or
make an action) with respect to the binary decision of rejecting or not rejecting the
null hypothesis H0, depending on locations of the corresponding values of the observed
test statistics, i.e., detecting whether test statistics’ values belong to a fixed sphere or
interval. Oftentimes, p-values can serve as a data-driven approach for testing statisti-
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228 A. Vexler

cal hypotheses based on using the observed values of test statistics as the thresholds
in the theoretical probability of the Type I error. P-values can themselves also serve
as a summary type result based on data in that they provide meaningful data based
evidence about the null hypothesis. This principle simplifies and standardizes statis-
tical decision-making policies. In this manner, for example, different algorithms for
combining decision-making rules using their p-values as test statistics can be naturally
derived.

Data-driven research-oriented journals have started to alarm regarding critical issues
that have occurred in experimental studies where statistical decision-making proce-
dures have been involved and p-values-based conclusions have been misused and/or
misinterpreted. This has stimulated a storm of favorable or critical publications regard-
ing p-values-based procedures in both the theoretical and applied literature (e.g.,
Wasserstein and Lazar 2016; Ionides et al. 2017).

In this article, we indicate that proper uses of p-values depend on their structures that
can be built in differentmanners. Our aim is to describe the following specific areas: (1)
valid definitions of p-values in parametric and nonparametric settings; (2) examples
of new VpV-based test procedures that are reasonable to be implemented in practice;
(3) examination of the issue to test for goodness-of-fit based on a single observation
(the corresponding motivations are presented below); (4) revisiting the EPV concept
in order to attend to VpV’s and optimal selections of tests’ significance levels; (5)
proposing partial EPV’s to characterize properties of decision-making mechanisms;
and (6) demonstrating an interesting fact that the BF based on the BF test statistic
comes to be the BF.

In particular, we concentrate on tests in the presence of nuisance parameters. In
parametric statistical statements, Berger and Boos (1994) and then Silvapulle (1996)
studied testing problems related to a model with an unknown parameter, say θ , under
H0. In the frequentist hypothesis testing fashion, a test is deemed statistically sig-
nificant if the p-value is below some threshold known as the significance level, say
α ∈ [0, 1]. In this context, if θ were known, then the Type I error rate depends on
values of θ , and we can define the conventional p-value such that, under the null
hypothesis, Pr(p-value ≤ α|H0) ≤ α, for each α ∈ [0, 1]. When the value of θ is
unspecified, H0 is no longer simple; however, we aim to construct a p-value, preserv-
ing the property Pr(p-value ≤ α|H0) ≤ α that provides the corresponding test to
be a level-α test. In this case, a statistic “p-value” is called a valid p-value (VpV).
Note that if the VpV property is not deemed desirable, there are different ways to
handle the unknown θ , e.g., estimating values of θ or using posterior predictive p-
values (Bayarri and Berger 2000). We investigate the concept of VpV’s with respect
to nonparametric classicalKolmogorov–Smirnov (KS) tests for goodness-of-fit and the
normal two-sample problem. In this framework, we consider the problem of construct-
ing level-α goodness-of-fit tests based on KS measures of the discrepancy between a
single observed data point and the value expected under the null model. This issue is
not trivial and requires attention from both theoretical and experimental points of view
(see Sect. 2.1 for details). In this context, e.g., we can make mention of an outstanding
study of Portnoy (2019) related to problems of making statistical inference based on
a single observation.
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For example, in practice, the high cost associatedwithmeasuring biomarkers values
can significantly restrict further biostatistical applications. When analysis is restricted
by the high cost of assays, one can suggest applying an efficient pooling design for
collection of data (see, e.g., Vexler et al. 2008; Schisterman and Vexler 2008; Schis-
terman et al. 2011, for details). Pooled data can also be an organic output of a study.
In order to reduce the cost or labor intensiveness of a study, a pooling strategy may be
employed wherebym ≥ 2 individual specimens are physically combined into a single
“pooled” unit for analysis. Thus, applying pooling design provides a m-fold decrease
in the number of measured assays. Each pooled sample test result is assumed to be the
average of the individual unpooled samples. Then, commonly, pooled data consist of
a very limited number of observations. Commonly, in order to evaluate pooled data,
corresponding parametric assumptions are made. It is a practical issue to test for, e.g.,
exponentiality or normality using pooled data. For example, an efficient inference
can be provided using a single pooled observation, say X , if it is accepted that X is
normally distributed (Portnoy 2019).

It turns out that theVpVmethod can be a valuable tool in developing reasonable and
robust testing strategies that is exemplified in Sect. 2 via Monte Carlo experiments.

In general, the VpV is a function of the data and hence it is a random variable, which
toohas a probability distribution. In order to study the stochastic character ofVpV’s,we
advance the conventional expected p-value (EPV)-based measure of the performance
of a test. The stochastic aspect of the p-value has been well studied by Dempster and
Schatzoff (1965) who introduced the concept of the expected significance level under
the alternative. Sackrowitz and Samuel-Cahn (1999) developed the approach further
and renamed it as the EPV. The authors presented the great potential of using EPV’s
in various aspects of hypothesis testing.

Comparisons of different test procedures, e.g., the Wilcoxon rank-sum test versus
Student’s t-test, based on their statistical power are oftentimes problematic in terms of
deeming one method being the preferred test over a range of scenarios. One reason for
this issue to occur is that the comparison between two or more testing procedures is
dependent upon the choice of a pre-specified significance level α. One test procedure
may be more or less powerful than the other one depending on the choice of α (e.g.,
Vexler and Yu 2018). Alternatively, one can consider the EPV approach for comparing
test procedures. The EPV is related to the integrated power of a test via all possible
values of α ∈ [0, 1]. The EPV is one minus the expected power of a test, where the
expectation is with respect to an α level which is uniformly [0,1] distributed. Thus, the
performance of the test procedure can be evaluated globally using the EPV concept.
Smaller values of EPV show better test qualities in a universal fashion.

For example, let the random variable T represent a test statistic depending on data
X . Assume Fk defines the distribution function of T under the hypothesis Hk, k � 0, 1,
where the subscript k indicates the null (k � 0) and alternative (k � 1) hypotheses,
respectively. Given Fk is continuous, we can denote F−1

k to represent the inverse or
quantile function of Fk , such that Fk(F

−1
k (γ )) � γ , where 0 < γ < 1 and k � 0, 1. In

this setting, in order to concentrate upon the main issues, we will only focus on tests of
the form: the event T > C rejects H0, where C is a prefixed test threshold. When F0
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230 A. Vexler

is known, the p-value can be defined as 1− F0(T ). Then, the EPV, E{1 − F0(T )|H1},
is

EPV � Pr(T 0 ≥ T A), (1)

where independent random variables T 0 and T A are distributed according to F0 and
F1, respectively. The value of the 1-EPV can be expressed in the form of the statistical
power of a test through

EPV � Pr(T 0 ≥ T A) �
∫ ∞

−∞
Pr(T A ≤ t)dF0(t) �

∫ ∞

−∞
Pr

{
F0(T

A) ≤ F0(t)
}
dF0(t)

�
∫ 0

1
Pr

{
1 − F0(T

A) ≥ α
}
d(1 − α)

�
∫ 1

0

[
1 − Pr

{
1 − F0(T

A) ≤ α
}]

dα � 1 −
∫ 1

0
Pr(p-value ≤ α|H1)dα. (2)

Vexler et al. (2018) showed a strong association between the EPV concept and the
well-known receiver operating characteristic (ROC) curve methodology (e.g., Vexler
and Hutson 2018; Schisterman et al. 2005). Such a relationship between the EPV and
ROC curve comes in handy for assessing and visualizing the properties of various
decision-making procedures in the p-value-based context. This approach was suc-
cessfully applied to construct optimal multiple testing procedures (Vexler et al. 2018).
In Sect. 3.2 of the present article, the EPV/ROC technique is applied to propose a
Youden-type criterion for defining optimal tests’ critical values.

A wide spectrum of theoretical and applied papers has extensively discussed the
old school rule: reject H0 if p-value<0.05 (e.g., Benjamin et al. 2018; Wasserstein
and Lazar 2016). We advocate the choice of the significance level α � 0.05 using
Youden’s index and evaluating the likelihood ratio and Bayes Factor (BF)-type test
procedures. To this end, in particular, we show an intrinsic relationship between the
BF test statistic and the BF based on test statistics (Proposition 5).

In Sect. 3.3, following the ROC curve methodology, we consider a partial EPV
(pEPV) to evaluate properties of tests including their unbiasedness. We demonstrate
that the conventional power characterization of tests is a partial aspect of the present
EPV/ROC technique.

Section 4 is designed to provide several concluding remarks. We refer to the
Appendix for technical derivations and proofs.

2 Valid p-values

Suppose, in statistical analysis of data X , we wish to test H0 : X ∼ f0(x ; θ ) versus
H1 : X ∼ f1(x), where f0(x ; θ ) is a density function that is specified depending on
some unknown nuisance parameter θ , the alternative density function f1 �� f0 can be
assumed to be in an unknown form to state the problem in the nonparametric context.
For example, one can consider the goodness-of-fit statement H0 : X1 ∼ f0(x ; θ ) �
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Valid p-values and expectations of p-values revisited 231

θ exp(−θx), θ > 0, versus H1 : X1 is not exponentially distributed, when X consists
of n independent and identically distributed (iid) observations Xi > 0, i � 1, . . . , n.

Let a statistic T (θ ) based on X be developed to test for H0 versus H1. In this case,
T (θ ) can either contain θ or have a structure without θ . In order to focus on the main
issues, we assume the corresponding decision-making procedure can be expressed
in such a way that large values of a test statistic T (θ ) are evidence against the null
hypothesis H0. Redefine T (θ )’s distribution under Hk, k � 0, 1, by FT (θ),k . In this
framework, in general, we cannot use the p-value in the form

p(θ ) � 1 − FT (θ),0(T (θ )), (3)

since θ is unknown. For example, assuming that X contains iid observations Xi , i �
1, .., n, we have

p(θ ) �
∫

· · ·
∫

I {t(x1, . . . , xn ; θ ) ≥ Tobs(θ )}
n∏

i�1

f0(xi ; θ )dx1 . . . dxn,

where I is the indicator function, t(x1, . . . , xn ; θ ) has a form of the test statistic T (θ )
based on data (x1, . . . , xn) and Tobs(θ ) represents a value of T (θ ) computed using
underlying data (X1, . . . , Xn).

The conventional definition of the p-value is

pS � sup
θ∈Θ

p(θ ), (4)

where Θ represents the parameter space for θ (e.g., Lehmann and Romano 2006).
Unfortunately, definition (4) is of rather limited usefulness, since the need to compute
the supθ∈Θ has complicated the problem and, moreover, the supremum is oftentimes
too large (in several scenarios pS � 1) to provide a suitable criticism of the null
hypothesis (e.g., Bayarri and Berger 2000). In order to overcome this difficulty, Berger
and Boos (1994) and Silvapulle (1996) proposed to denote a valid p-value (VpV)
restricting the supremum to θ in a confidence set for θ . In this setting, let Cβ define a
1 − β confidence set for the nuisance parameter θ , under H0. Then, it is suggested to
state the VpV in the form

pC � sup
θ∈Cβ

p(θ ) + β. (5)

In this context, the term “valid p-value” signifies that a statistic p-value ∈ [0, 1] is
valid if

PrHo (p-value ≤ α) ≤ α, for each α ∈ [0, 1], (6)

where PrHk denotes the probability under Hk, k � 0, 1. This statement can be applied
in the common way to define a level-α decision-making procedure. We can decide to
reject H0 if and only if the corresponding VpV ≤ α, having the property (6). This
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232 A. Vexler

principle can simplify and standardize different statistical decision-making policies,
providing, e.g., easy strategies for combining test procedures, for example, via the
classical Bonferroni method.

P-values defined in (4) and (5) satisfy (6), since denoting the true but unknown θ

by θ0 and assuming β < α we obtain

PrH0(pS ≤ α) ≤ PrH0{p(θ0) ≤ α} � PrH0

{
FT (θ0),0(T (θ0)) ≥ 1 − α

} � α and

PrH0(pC ≤ α) � PrH0

(
pC ≤ α, θ0 ∈ Cβ

)
+ PrH0

(
pC ≤ α, θ0 /∈ Cβ

)
≤ PrH0

{
p(θ0) + β ≤ α, θ0 ∈ Cβ

}
+ PrH0

(
θ0 /∈ Cβ

)
≤ PrH0

{
p(θ0) ≤ α − β, θ0 ∈ Cβ

}
+ PrH0

(
θ0 /∈ Cβ

)
≤ PrH0{p(θ0) ≤ α − β} + β � α − β + β � α,

where it is used that supθ p(θ ) ≥ p(θ0) and p(θ0) is Unif[0,1] distributed under H0.
Unfortunately, concepts (4) and (5) cannot be applied to some testing problems.

This is exemplified in the following section. Note that, oftentimes, the approach of the
VpV is addressed by the statistical literature in parametric statistical analysis (e.g.,
Bayarri and Berger 2000; Berger and Boos 1994; Silvapulle 1996). In the following
sections, we consider the VpV approach in nonparametric and parametric settings.

2.1 Kolmogorov–Smirnov tests

In this section, we focus on the classical KS goodness-of-fit tests. The presented anal-
ysis is relatively clear and has the basic ingredients for more general cases. Consider
the scenario when a statistician is called upon to test some hypothesis about the dis-
tribution of a population. If the test is concerned with the agreement between the
distribution of a set of sample values and a theoretical distribution, we call it a “test
of goodness-of-fit.”

We begin with examining the goodness-of-fit test for exponentiality based on iid
data points X1, . . . , Xn . We wish to investigate compatibility of the model H0 : X1 ∼
f0(x ; θ ) � θ exp(−θx)I (x > 0), for some θ > 0, versus the model H1 : X1 is not
∼ f0(x ; θ ), for all θ > 0. In this case, the usual KS statistic has the form

Dn(θ ) � sup
0<u<∞

|1 − exp(−θu) − Fn(u; X)|, (7)

where Dn(θ ) measures the closeness between the H0-distribution function
1 − exp(−θu) and the sample (empirical) distribution function Fn(u; X ) �
n−1 ∑n

i�1 I (Xi ≤ u).
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Valid p-values and expectations of p-values revisited 233

It is well known that the distribution function PrH0{Dn(θ0) ≤ u| the true value of θ is θ0} is independent of θ0. Then, in this case, it
is clear that the p-value

p(θ ) � 1 − FDn (θ ),0(Dn(θ ))

�
∫

. . .

∫
I

{
sup

0<u<∞
|1 − exp(−θu) − Fn(u; x1, . . . , xn)|

≥ sup
0<u<∞

|1 − exp(−θu) − Fn(u; X1, . . . , Xn)|
}

n∏
i�1

f0(xi ; θ )dx1 . . . dxn

�
∫

. . .

∫
I

{
K Sn(x1, . . . , xn) ≥ sup

0<u<∞
|1 − exp(−θu) − Fn(u; X1, . . . , Xn)|

}

n∏
i�1

f0(xi ; θ )dx1 . . . dxn � 1 − FK Sn ,0(Dn(θ )),

where the statistic K Sn(x1, . . . , xn) based on iid random variables x1, . . . , xn is dis-
tributed independently of θ ’s values under H0 (see, e.g., Wang et al. 2003, for details).
Thus, the VpV’s by (5) and (6) can be computed as

pS � 1 − FK Sn ,0

(
inf

0<θ<∞ Dn(θ )

)
and pC � 1 − FK Sn ,0

(
inf

0<θ∈Cβ

Dn(θ )

)
+ β. (8)

The following propositions show that when we observe only one single data point
(n � 1) the KS approach is not useful in the context of the VpV method.

Proposition 1 Assume we observe only X � X1 > 0. Then, the statistic pS is inde-
pendent of the data and satisfies pS � 1 − FK Sn ,0

(0.5) � 1.

In order to apply pC obtained in (8), we denote the maximum H0-likelihood ratio
confidence interval for θ in the form

Cβ �
[
θ : θ̂ exp

(
−θ̂X1

)
{θ exp(−θX1)}−1 < Aβ

]
,

where the maximum H0-likelihood estimator θ̂ of θ is 1/X1 and the threshold Aβ

satisfies

PrH0

{
θ0 ∈ Cβ | the true value of θ is θ0

}
� Pr

{
(θ0x)

−1 exp(θ0x − 1) < Aβ | x ∼ Exp(θ0)
}

� 1 − β.

In this case, we have the following result.

Proposition 2 Assume we observe only X � X1 > 0. Then, the statistic pC is inde-
pendent of the data and satisfies pC � 1− FK Sn ,0

(0.5)+β � 1+β, for β ∈ (0, 0.75).
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234 A. Vexler

The following arguments show that the issue addressed by Propositions 1 and 2 is
not trivial. The problem of making statistical inference based on a single observation
has been extensively dealt with in the literature (e.g., Portnoy 2019). This issue can be
considered in both the theoretical and the practical aspects. For example, assume that
we survey a statistic X , which is a function of unobserved variables η1, . . . , ηN , and
it is anticipated that X has an asymptotic distribution, say, Υ , as N → ∞ (relevant
examples related to biological markers evaluations can be found in Sect. 1 and Vexler
and Hutson 2018: Section 2.4.6). In this case, the problem of investigating compati-
bility of the model H0 : X ∼ Υ with the observed data point X , for a fixed N , can
be in effect. Someone can propose to test for exponentiality, using the procedure of
the form: reject the null hypothesis when X ≥ C , where C is a test threshold. This
procedure can be relatively powerful in many scenarios based on different underlying
data distributions. However, it turns out that, in this statement of problem, we cannot
define the VpV and control the Type I error rate of the decision-making mechanism.
Note that, in practice, in order to test for the composite hypothesis of exponentiality,
the statistical literature suggests to transform observations X1, . . . , Xn , for example,
applying X1n/

∑n
i�1 Xi , . . . , Xnn/

∑n
i�1 Xi (e.g., Henze and Meintanis 2005). It is

clear that we cannot use such invariant (with respect to the parameter θ ) transforma-
tions when n � 1.

The above analysis can be adapted to treat different KS type procedures. Consider,
for example, the problem of testing for normality based on iid data points X1, . . . , Xn :
H0 : X1 ∼ N (θ, 1), for some θ , versus H1 : X1 is not ∼ N (θ, 1), for all θ . In this
case, the KS statistic is

Dn(θ ) � sup
−∞<u<∞

∣∣∣∣
∫ u

−∞
exp

(
−(z − θ )2/2

)
dz/(2π)1/2 − Fn(u)

∣∣∣∣
with Fn(u) � n−1

∑n

i�1
I (Xi ≤ u), (9)

and then

pS � 1 − FK Sn ,0

(
inf−∞<θ<∞ Dn(θ )

)
and pC � 1 − FK Sn ,0

(
inf

θ∈Cβ

Dn(θ )

)
+ β,

(10)

where FK Sn ,0
is the H0-distribution function of the statistic

sup
−∞<u<∞

∣∣∣∣
∫ u

−∞
exp

(
−(z − θ )2/2

)
dz/(2π)1/2 − n−1

∑n

i�1
I (xi ≤ u)

∣∣∣∣

based on iid random variables x1, . . . , xn from N (θ, 1) and FK Sn ,0
is independent of

θ ’s values; Cβ defines a corresponding 1−β confidence set for the parameter θ under
H0.

In this framework, Proposition 3 below displays that the classical KS approach
cannot provide VpV’s<1 when we observe only one single data point (n � 1).
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Proposition 3 Assume we observe only X � X1 > 0. Then, the statistics pS and pC
are independent of the data and satisfy pS � 1− FK Sn ,0

(0.5) � 1, pC � 1− FK Sn ,0

(0.5) + β � 1 + β, where Cβ � {
θ : exp

(
(X1 − θ)2/2

)
< Aβ

}
with Aβ : PrH0{

θ0 ∈ Cβ | the true value of θ is θ0
} � 1 − β is the maximum H0-likelihood ratio

confidence interval for θ .

Suppose the problem is that of testing H0 : X1, . . . , Xn ∼ N (0, θ2), for some
θ > 0, versus H1 : X1, . . . , Xn are not N (0, θ2) distributed, for all θ > 0. In this
scenario, the KS statistic is

Dn(θ ) � sup
−∞<u<∞

∣∣∣∣
∫ u/θ

−∞
exp

(
−z2/2

)
dz/(2π)1/2 − Fn(u)

∣∣∣∣,

and (8) defines the VpV when FK Sn ,0
is the H0-distribution function of the above

statistic Dn(θ ) based on iid random variables x1, . . . , xn from N (0, θ2), FK Sn ,0
is

independent of θ ’s values. Then, one can prove the following result.

Proposition 4 Assume we observe only X � X1 > 0. Then, the statistics pS and pC
are independent of the data and we have, for all β ∈ (0, 1),

pS � 1 − FK Sn ,0(0.5) � 1, pC � 1 − FK Sn ,0

(
D1

(∫ u0

−∞
exp

(
−z2/2

)
dz/(2π)1/2

))
+ β ≥ 1,

where the maximum H0-likelihood ratio confidence interval for θ has the form

Cβ �
{
θ : θ |X1|−1 exp

(
|X1|2

(
2θ2

)−1 − 0.5

)
< Aβ

}
,

the threshold Aβ satisfies Pr
{
η−1/2 exp(η/2 − 1/2) > Aβ

} � β with η that is a
random variable from the χ2

1 distribution, and 0 < u0 < 1 is a root of the equation
u−1 exp

(
u2/2 − 1/2

) � Aβ .

2.1.1 Monte Carlo examples

We evaluated the power of the pS and pC -based tests (reject H0 if pk ≤ α, k � S,C)
for H0 : X1, . . . , Xn ∼ N (0, θ2), for some θ > 0, versus H1 : X1, . . . , Xn are not
N (0, θ2) distributed, for all θ > 0, at α � 0.05, in theMonte Carlo (MC) manner. The
VpV, pC , was defined using β � 0.0005 and the maximum likelihood ratio interval

Cβ �
{
θ > 0 : θn

(∑n
i�1 X

2
i /n

)−n/2
exp

((
2θ2

)−1 ∑n
i�1 X

2
i − 0.5n

)
< Aβ

}
, where

the threshold Aβ satisfies Pr
{
(η/n)−n/2 exp(η/2 − n/2) > Aβ

} � β with η that is a
random variable from the χ2

n distribution. We only exemplify several scenarios where
the power of the pS/pc-based tests is compared with that of the Shapiro–Wilk test
for normality combined with the one sample t-test for EX1 � 0 in the Bonferroni
fashion (the notationSWtdenotes this composite test). In the considerednonparametric
framework, there are not most powerful decision-making mechanisms. Our aim is
to demonstrate cases when the pS/pc-based tests outperform the classical powerful
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236 A. Vexler

Table 1 The Monte Carlo powers
of the tests

Test pS pC SWt pS pC SWt

Design (A) (B)

n � 7 0.7987 0.8186 0.6204 0.9276 0.9526 0.7193

n � 8 0.9626 0.9660 0.7922 0.9823 0.9908 0.8629

n � 10 0.9963 0.9995 0.9874 0.9993 0.9999 0.9970

Design (C) (D)

n � 7 0.6926 0.7035 0.6315 0.7923 0.8186 0.6153

n � 8 0.8355 0.8459 0.7977 0.9398 0.9717 0.7914

n � 10 0.9641 0.9758 0.9703 0.9952 0.9992 0.9875

Design (F) n � 7 (F) n � 20

0.7676 0.7911 0.6735 0.9947 0.9974 0.9822

SWt procedure. The following scenarios of source distributions were treated: (A)
Xi � ξi − 0.03, ξi ∼ Gamma(1, 2); (B) Xi � ξi − exp(3), ξi ∼ LogN (5, 1);
(C) Xi � ξi − 0.45, ξi ∼ χ2

3 ; (D) Xi � ξi − 0.3, ξi ∼ Weibull(1, 5); (F) Xi �
ξi/ηi − exp(3)/2, ξi ∼ LogN (5, 1) ηi ∼ N (2, 1) (this case is similar to (B), but
E(Xi ) does not exist in statement (F)), i � 1, . . . , n. At each baseline distribution,
the MC experiments were replicated 25,000 times to generate underlying data points
(X1, . . . , Xn). Table 1 presents the computed MC powers.

We should note that, for relative large sample sizes, we do not suggest to apply
the pS/pc-based tests in many scenarios with different underlying data distributions.
For example, when n � 50 and Xi ∼ Cauchy(location � 0, scale � 1/2),
i � 1, . . . , n, the pS/pc-based tests and SWt showed powers of 0.06, 0.85 and 0.99,
respectively.

2.2 The normal two-sample problem

In a similar manner to Section 3 of Berger and Boos (1994) and Section 3.2 of
Sackrowitz and Samuel-Cahn (1999), we consider a pedagogical example related
to the following scenario. Let X1, . . . , Xn be iid N

(
μ1, σ

2
)
and Y1, . . . ,Ym be iid

N
(
μ2, σ

2
)
, independent of the X’s. We focus on testing H0 : μ1 � μ2 versus

H1 : μ1 > μ2. If σ 2 were known, then we could use the t-test statistic

T (σ ) � (
X̄ − Ȳ

)
/
{
σ(n + m)1/2(nm)−1/2

}
, X̄ �

∑n

i�1
Xi/n, Ȳ �

∑m

i�1
Yi/m,

computing the p-value p(σ ) � 1 − FT (σ ),0(T (σ )).

It is clear that FT (σ ),0(u) � Φ(u), where Φ(u) � ∫ u
−∞ exp

(−z2/2
)
dz/(2π)1/2.

Then, we can define

pS � 1 − Φ

(
inf
σ>0

T (σ )

)
and pC � 1 − Φ

(
inf

σ∈Cβ

T (σ )

)
+ β,

where Cβ is the maximum H0-likelihood ratio confidence interval for σ ,
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Cβ �
[
σ : σ N (

σ̂N
)−N exp

{(
2σ 2

)−1 N∑
i�1

(
Zi − Z̄

)2 − 0.5N

}
< Aβ

]
,

(Z1, . . . , ZN ) � (X1, . . . , Xn,Y1, . . . ,Ym), Z̄ � ∑N
i�1 Zi/N ,

(
σ̂N

)2 �∑N
i�1

(
Zi − Z̄

)2
/N , N � n + m; the threshold Aβ satisfies

Pr

⎡
⎣

{
N−1

∑N

i�1

(
zi − N−1

∑N

i�1
zi

)2
}−N/2

exp

{
0.5

∑N

i�1

(
zi − N−1

∑N

i�1
zi

)2

− 0.5N

}
> Aβ

⎤
⎦ � β

with iid random variables z1, . . . , zN ∼ N (0, 1). Note that the statistic T (σ ) con-
tains the nuisance parameter σ and does not include μ1, μ2. Then, we do not
consider Cβ using μ � μ1 � μ2 instead of Z̄ , defining, for example, pC � supμ{
supθ∈Cβ

p(θ ) + β
}
.

In the case of X̄ ≤ Ȳ , we have inf
σ>0

T (σ ) � −∞ and then pS � 1, whereas

when X̄ > Ȳ we have inf
σ>0

T (σ ) � 0 obtaining pS � 0.5. Therefore, in this example,

pS ≥ 0.5, although valid, is useless.
The above analysis leads to pC � 1−Φ

(
T

(
σLβ

)
I
(
X̄ ≤ Ȳ

)
+ T

(
σUβ

)
I
(
X̄ > Ȳ

))
+

β, where σLβ and σUβ are the lower and upper endpoints of Cβ . (Values of σLβ and
σUβ can be accurately calculated numerically.) So we can propose the VpV-based test
strategy: reject the null hypothesis if and only if pC ≤ α at a desired user-specified
significance level α.

2.2.1 Monte Carlo examples

As mentioned above, the example considered in Sect. 2.2 is called as “Pedagogical,”
since, in practice, it is very difficult to compete against the well-known two-sample
Student’s t-test. For example, we used 150,000 MC replications of X1, . . . , X10 ∼
N (0.7, 1) and Y1, . . . ,Y15 ∼ N (0, 1), obtaining the MC powers 0.105 and 0.323
of the pC (β � 0.005)-based test and Student’s t-test, respectively, at α � 0.05.
Suppose an investigator anticipate X1, . . . , Xn ∼ N

(
μ1, σ

2
)
and Y1, . . . ,Ym ∼ N(

μ2, σ
2
)
. However, real data correspond to the scenario: X1, . . . , X10 ∼ N

(
0, 22

)
and

Y1, . . . ,Y15 ∼ N (0, 1). In this case, the experimental study shows theMCType I error
rates 0.008 and 0.076 of the pC -based test and Student’s t-test, respectively, at expected
α � 0.05. Certainly, if it would be known that var(X1) �� var(Y1), Welch’s t-test could
be suggested to be applied. Defining Xi � 1 − ξi , ξi ∼ Exp(1), i � 1, . . . , 10 and
Y1, . . . ,Y15 ∼ N (0, 1) in the simulation study, we calculated the MC Type I error
rates 0.004, 0.065 and 0.080 of the pc-based test, Student’s t-test and Welch’s t-test,
respectively, at α � 0.05. Then, it seems to be reasonable that, when “E(X) � E(Y )”
type conservatism is deemed desirable, to implement the pc-based test.

Note that, in the experiments above, we used themaximum H0-likelihood ratio con-
fidence interval for σ , anticipating good properties of this likelihood based approach,
in the parametric setting. One can simplify the pc-based test, considering Cβ � C ′ �{
σ 2 : 0 ≤ σ 2 ≤ ∑N

i�1

(
Zi − Z̄

)2
/γβ

}
, where γβ is the 100β percentile of a χ2

(N−1)
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distribution with N − 1 degrees of freedom. In this case, we observed outputs that
were similar to those shown above. For example, in the scenarios examined above: (1)
Xi ∼ N (0.7, 1), Y j ∼ N (0, 1) and (2) Xi � 1 − ξi , ξi ∼ Exp(1), Y j ∼ N (0, 1),
1 ≤ i ≤ 10, 1 ≤ j ≤ 15, the MC powers of the corresponding pC -based test with C ′
were calculated as 0.114 and 0.005, respectively.

2.3 Remarks

(1) In the frequentist perspective, the meaning of the VpV’s is straightforward. Indeed,
definitions (4) and (5) can be regarded as conservative. In general, the statistics exten-
sively evaluated in Bayarri and Berger (2000), e.g.,

∫
p(θ )π (θ )dθ , where π (θ ) is a

prior distribution for θ , are not VpV’s. In Sects. 2.1 and 2.2, we demonstrateMC exper-
iments to provide a practical implementation of the VpV’s. (2) In contrast to Bayarri
and Berger (2000), we consider test statistics that can contain unknown parameters. In
this case, the VpV’s convert the decision-making procedures into useful mechanisms
based on the rule: reject H0 if the corresponding VpV ≤ α.

3 Expected p-values

3.1 Expected valid p-values

Consider first the composite null hypotheses stated in Sect. 2. In general, expected
VpV’s have forms that can be different from those investigated in Sackrowitz and
Samuel-Cahn (1999). The use of (4) and (5) leads to the EPV’s expressions

EPVS � E

{
sup
θ∈Θ

p(θ )|H1

}
and EPVC � E

{
sup
θ∈Cβ

p(θ )|H1

}
+ β.

Suppose the problem is to evaluate the KS goodness-of-fit tests. Then, we have

EPVS � 1 − E

{
FK Sn ,0

(
inf
θ∈Θ

Dn(θ )

)
|H1

}
� Pr

(
T 0
S ≥ T A

S

)
and

EPVC � 1 − E

{
FK Sn ,0

(
inf

θ∈Cβ

Dn(θ )

)
|H1

}
+ β � Pr

(
T 0
C ≥ T A

C

)
+ β,

where random variables T 0
S , T A

S , T 0
C and T A

C are independent, T 0
S and T 0

C are
FK Sn ,0

-distributed, T A
S and T A

C are distributed as the statistics infθ∈Θ Dn(θ ) and
infθ∈Cβ Dn(θ ), respectively, under H1; FK Sn ,0

and Cβ are defined corresponding to
the statements considered in Sect. 2.1.

In the framework of the normal two-sample problem (Sect. 2.2), we can determine

EPVC � 1 − E
{
Φ

(
T

(
σLβ

)
I
(
X̄ ≤ Ȳ

)
+ T

(
σUβ

)
I
(
X̄ > Ȳ

))|H1
}
+ β � Pr

(
T 0
C ≥ T A

C

)
+ β,
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Table 2 The Monte Carlo EPV’s
of the tests

EPVS EPVC EPVS EPVC

Design (A) (B)

n � 7 0.0456 0.0408 0.0407 0.0354

n � 8 0.0280 0.0251 0.0243 0.0210

n � 10 0.0105 0.0095 0.0087 0.0077

Design (C) (D)

n � 7 0.0566 0.0503 0.0468 0.0409

n � 8 0.0367 0.0326 0.0287 0.0249

n � 10 0.0157 0.0140 0.0110 0.0096

where random variables T 0
C ∼ N (0, 1) and T A

C are independent, T A
C is distributed

as the statistic T
(
σLβ

)
I
(
X̄ ≤ Ȳ

)
+ T

(
σUβ

)
I
(
X̄ > Ȳ

)
based on {X1, . . . , Xn ∼ N(

μ1, σ
2
)
,Y1, . . . ,Ym ∼ N

(
μ2, σ

2
)}

with μ1 > μ2.
By virtue of the property of expectation of a positive random variable, we have E

(pk |H1) � ∫ 1
0 {1 − Pr(pk ≤ α|H1)}dα, k � S,C , and therefore, EPVS and EPVC are

associated with the integrated power of the tests. The quantities EPVS and EPVC rep-
resent one minus the expected power of the corresponding tests, where the expectation
is with respect to an α level which is uniformly [0,1] distributed.

In a similar manner to computing the conventional test power functions, in order to
obtain values of EPVS and EPVC , the alternative hypothesis H1 should be specified.

3.1.1 Monte Carlo examples

In order to exemplify the EPVS and EPVC concepts, we used the MC setting shown
in Sect. 2.1.1 regarding the experimental evaluations of the pS and pC -based tests for
H0 : Xi ∼ N (0, θ2), for some θ > 0, i � 1, . . . , n. The designs (A), (B), (C) and (D)
considered in Table 1 were performed. Table 2 displays the MC estimated EPV’s.

Thus, in the EPVcontext, the pC -approach is somewhat better than the pS-approach
(EPVC < EPVS) in the studied scenarios. Table 2 shows that the KS policies discrim-
inate alternative (B) from the model H0 better than alternatives (A), (C) and (D),
whereas (C) is a “worse” scenario in this study.

3.2 Why does the significance level˛ be 5%? AYouden’s index-based approach

As introduced in Sect. 1, the EPV concept can be treated in light of the ROC curve
methodology. Youden’s index is often used in conjunction with the ROC curve tech-
nique as a summary measure of the ROC curve (e.g., Schisterman et al. 2005). It both
measures the effectiveness of a diagnostic marker and enables the selection of an opti-
mal threshold value (cutoff point) for the biomarker. Youden’s index, say J , is related
to the point on the ROC curve which is farthest from line of equality (diagonal line).
That is to say, assuming, without loss of generality, that Z1, . . . , Zn and V1, . . . , Vm
are iid observations fromdiseased and non-diseased populations, respectively, we have
J � max−∞<c<∞{Pr(Z1 ≥ c) + Pr(V1 ≤ c) − 1}.

123



240 A. Vexler

In this context, we consider a scenario in which n data points X1, . . . , Xn are
distributed according to the joint density function f (x1, . . . , xn), where x1, . . . , xn
are arguments of f . In general, the observations do not need to represent values of iid
random variables. We would like to classify X1, . . . , Xn corresponding to hypotheses
of the following form: H0: {Xi , i � 1, . . . , n} are from a joint density function f0,
versus H1: {Xi , i � 1, . . . , n} are from a joint density function f1. We then define the
likelihood ratio (LR) as LRn � f1(X1, . . . , Xn)/ f0(X1, . . . , Xn).

The LR test-based decision rule is to reject H0 if and only if LRn ≥ C , where C is
a pre-specified test threshold that does not depend on the observations.

In this case, we have EPV � Pr(T 0 ≥ T A), where independent random variables
T 0 and T A are distributed as LRn under H0 and H1, respectively. Then Youden’s
approach suggests to find values of C that maximize Pr(T 0 < C) + Pr(T A ≥ C) �∫ C
0 fLR,0(u)du + 1 − ∫ C

0 fLR,1(u)du, where fLR,k(u) defines the density function of
the LR test statistic LRn under the hypothesis Hk, k � 0, 1. Vexler and Hutson (2018)
showed the following result.

(R1) For all u > 0, fLR,1(u) � u fLR,0(u).

This implies Pr(T 0 < C) + Pr(T A ≥ C) � ∫ C
0 fLR,0(u)du + 1 − ∫ C

0 u fLR,0(u)du
and hence

d
{
Pr(T 0 < C) + Pr(T A ≥ C)

}
/dC � fLR,0(C) − C fLR,0(C) � 0

gives the optimal test threshold C � 1.
The practice of considering normally distributed data when optimal properties of

statistical procedures are investigated has historically been common in research (e.g.,
Fisher 1922). Let X1, . . . , Xn be iid N

(
μ, σ 2

)
and H0 state μ � 0 against H1:

μ � δ �� 0. We have LRn � exp
(
δ
∑n

i�1 Xi/σ
2 − δ2n/(2σ 2)

)
and then the Type I

error rate is Pr
(
2δ−1 ∑n

i�1 Xi > n|H0
)
, when C � 1. Following an usual method for

evaluating tests’ efficiencies (e.g., Lazar and Mykland 1998), we set δ � τσn−1/2.
It turns out that, for |τ | > 3.3 (δ ≈ ± three sigma ×n−1/2), the Type I error rate is
smaller than α � 0.05. The “three-sigma” component involved in this analysis can be
associated with the so-called three-sigma rule of thumb that expresses a conventional
heuristic that nearly all values are taken to lie within three standard deviations of the
mean. Three-sigma limit is a statistical calculation that refers to data within three
standard deviations from a mean. For example, in business applications, three sigma
refers to processes that operate efficiently and produce items of the highest quality.
In this context, e.g., one can refer to well-established statistical procedures based on
Shewhart charts.

One can also observe that Pr
(
2δ−1 ∑n

i�1 Xi > n|H0
) ≤ 0.05, when δ ≈ σ and

n ≥ 11 (n ≥ 11 is a reasonable sample size). Designing a statistical study, it is rational
to require that cases with |E(X |H1) − E(X |H0)|≥ σ could be detected by the test
procedure. It turns out that requesting n ≥ 11 observations for the study, we could
provide the optimal decision-making procedure and control the Type I error rate to
be<5%, even when |E(X |H1) − E(X |H0)|� σ .
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Note, for example, that, if δ�τσn−1/2 and τ>0, Pr(2δ−1 ∑n
i�1 Xi > n|H0) �1−

Pr(σ−1 ∑n
i�1 Xi/n1/2 < τ/2|H0) � 1−∫ τ/2

−∞ exp(− u2
2 )du/(2π ) which equals

approximately to 0.049, when τ � 3.3. In this case, the power Pr(
2δ−1 ∑n

i�1 Xi > n|H1
)

is 1 − ∫ −τ/2
−∞ exp

(−u2/2
)
du/(2π ) ≈ 0.95. Then,

the difference “Power –Type I error” is 0.95–0.049 ≈ 0.9. Assume,
e.g., we select a test threshold C ′ such that Pr

(
LRn > C ′|H0

) �Pr(
σ−1 ∑n

i�1 Xi/n1/2 > τ/2 + log(C ′)/τ |H0
) � 0.01 with τ � 3.3, i.e., C ′ � 9.4.

Then, we have Pr
(
LRn > C ′|H1

) � 0.83 and the corresponding difference is
0.83–0.01 � 0.82.

Result (R1) shown above can be extended in order to deal with a situation in which,
under H1, n data points X1, . . . , Xn are distributed according to the joint density
function f1(x1, . . . , xn ; θ ) with unknown parameter θ . Let π (θ ) represent a prior
distribution for θ under the alternative hypothesis, satisfying

∫
π (θ )dθ � 1. Using the

Bayes Factor (BF) methodology (e.g., Vexler and Hutson 2018), we define the test
statistic

Bn �
∫

f1(X1, . . . , Xn ; θ )π (θ )dθ/ f0(X1, . . . , Xn).

Proposition 5 For all u > 0,
∫

fB,1(u)π (θ )dθ � u fB,0(u), where fB,k is the density
function of the test statistic Bn under the hypothesis Hk, k � 0, 1.

The interesting fact is that the BF,
∫

fB,1(Bn)π (θ )dθ/ fB,0(Bn), based on the BF,
Bn , comes to be the BF, Bn , i.e.,

∫
fB,1(Bn)π (θ )dθ/ fB,0(Bn) � Bn .

In Youden’s manner, we select a value of the test threshold C , maximizing

Pr(Bn < C |H0) +
∫

Pr(Bn ≥ C |H1)π (θ)dθ �
∫ C

0
fB,0(u)du + 1 −

∫ ∫ C

0
fB,1(u)duπ (θ)dθ

�
∫ C

0
fB,0(u)du + 1 −

∫ C

0

∫
fB,1(u)π (θ)dθdu.

Proposition 5 yields Pr(Bn < C |H0)+
∫
Pr(Bn ≥ C |H1)π (θ )dθ � ∫ C

0 fB,0(u)du+

1 − ∫ C
0 u fB,0(u)du.

Therefore, we obtain C � 1 that maximizes Pr(Bn < C |H0) +∫
Pr(Bn ≥ C |H1)π (θ )dθ .
Note that the BF-based decisionmaking procedure can be asymptotically (n → ∞)

associated with the corresponding maximum likelihood ratio test (Vexler and Hutson
2018).

3.2.1 Monte Carlo experiments

In a parallel with the likelihood ratio test based on normally distributed observations
evaluated in Sect. 3.2, we consider experimentally the following nonparametric exam-
ples.Assumewewould like to test for normality iid observations X1, . . . , Xn , using the
Shapiro–Wilk test. Under the alternative hypothesis, we define Xi � ξi + 3.3n−0.5ηi ,
ξi ∼ N (0, 1), ηi ∼ LogN (0, 1.32), i � 1, . . . , n. Generating 100,000 samples of
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X1, . . . , Xn with n � 100, for α � 0.3, 0.1, 0.05, 0.01, we obtained the differences
“MC Power-Type I error (α)” as 0.6584, 0.8248, 0.8558 and 0.8450, respectively. In
a similar manner, we examined the case with n � 150, obtaining the differences as
0.6696, 0.8419, 0.8764, 0.8644. Thus, it seems that α � 0.05 is a reasonable selection
in these cases. (This conclusions was also confirmed for different distributions of ηi .)

In the Monte Carlo fashion shown above, we examined the Wilcoxon rank-sum
test based on Xi � ξi + 3.3n−0.5, ξi ∼ N (0, 1), i � 1, . . . , 100. In this case, the
differences “MC Power-Type I error (α)” had the values 0.6850, 0.8295, 0.8437 and
0.7127 corresponding toα � 0.3, 0.1, 0.05, 0.01.Applying Xi � ξi+3.3n−0.5π/30.5,
ξi ∼ Logistic(0, 1), sd(ξi ) � 3−0.5π, i � 1, .., 100, the differences were obtained
as 0.6917, 0.8619, 0.8781 and 0.7728.

3.3 Partial expected p-values

Expression (2) of the EPV considers the weight of the significance level α from 0 to
1. It may appear to suffer from the defect of assigning most of its weight to relatively
uninteresting values of α not typically used in practice, e.g., α ≥ 0.1. Alternatively,
we can use the concept of the partial area under the summary ROC curve (AUC) from
the ROC methodology to focus on significance levels of α in a specific interesting
range by considering the partial expected p-value (pEPV):

pE PV � 1 −
∫ αU

0
Pr(p-value ≤ α|H1)dα � 1 −

∫ αU

0
Pr

{
1 − F0(T

A) ≤ α
}
dα

� 1 +
∫ αU

0
Pr

{
F0(T

A) ≥ 1 − α
}
d(1 − α) � 1 +

∫ 1−αU

1
Pr

{
F0(T

A) ≥ z
}
dz

� 1 −
∫ 1

1−αU

Pr
{
F0(T

A) ≥ z
}
dz

� 1 −
∫ ∞

F−1
0 (1−αU )

Pr
{
F0(T

A) ≥ F0(t)
}
dF0(t) � 1 −

∫ ∞

F−1
0 (1−αU )

Pr
{
T A ≥ t

}
dF0(t)

� 1 − Pr
{
T A ≥ T 0, T 0 ≥ F−1

0 (1 − αU )
}

at a fixed upper levelαU ≤ 1. In general, one can define the function pE PV (αL , αU )�
1−∫ αU

αL
Pr{p-value ≤ u|H1}du and focus on d{−pE PV (0, α)}/dα. Then, in this case,

d{−pE PV (0, α)}/dα implies the power at a significance level of α.
An essential property of efficient statistical tests is unbiasedness (Lehmann and

Romano 2006). An unbiased statistical test satisfies the rule Pr(reject H0|H0) ≤ α

and Pr(reject H0|H1) ≥ α. In parallel with this definition, it is natural to consider
the inequality pE PV (0, α) ≤ 1 − ∫ α

0 Pr(p-value ≤ u|H0)du � 1 − α2/2, since
p-value ∼ Uniform[0, 1] under H0 (i.e., Pr{p-value ≤ u|H0} � u, u ∈ [0, 1]) and
we assume H1 �� H0. In this case,

d{pE PV (0, α)}/dα � −Pr(reject H0|H0 is not true) and d
(
1 − α2/2

)
/dα � −α.

However, it is clear that the requirement pE PV (0, α) ≤ 1−α2/2 isweaker than that of
Pr(p-value < α|H1) ≥ α. Then, the EPV-based concept can extend the conventional
power characterization of tests.
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Indeed if, for all α > 0, Pr(p-value < α|H0 is not true) ≥ α, then pE PV (0, α) ≤
1 − α2/2. Assume we have a test statistic T . To analyze a relationship between the
condition pE PV (0, α) ≤ 1 − α2/2 and the power PrH1 (p-value < α), we present
the following proposition.

Proposition 6 The inequality pE PV (0, α) ≤ 1 − α2/2 implies

Pr(p-value < α|H1) ≥ 0.5α + 0.5α fT ,1(Cα)/ fT ,0(Cα),

where Cα is the level-α critical value, Cα � F−1
0 (1 − α), of T and fT ,1/ fT ,0 is the

likelihood ratio.

For example, when T � LRn , Propositions 5 and 6 provide Pr(p-value < α|H1) ≥
0.5α + 0.5αCα . Taking into account the results shown in Sect. 3.2, it is reasonable to
set α : Cα � 1. In this case, we conclude Pr(p-value < α|H1) ≥ α.

In the scenario, where X1, . . . , Xn are distributed according to f1(x1, . . . , xn ; θ ),
under H1, we define the partial expected p-value as pE PVπ (αL , αU ) � 1 −∫ ∫ αU

αL
Pr{p-value ≤ u|H1}du π (θ )dθ. In a similar manner to Proposition 6, we have

that pE PVπ (0, α) ≤ 1 − α2/2 implies the inequality
∫
Pr(p-value < α|H1)π

(θ)dθ ≥ 0.5α + 0.5α
∫

fT ,1(Cα)π(θ)dθ/ fT ,0(Cα). Using the BF, T � Bn , by virtue
of Proposition 5, we obtain

∫
Pr(p-value < α|H1)π(θ)dθ ≥ 0.5α + 0.5αCα that is∫

Pr(p-value < α|H1)π(θ)dθ ≥ α, when α : Cα � 1.

4 Concluding remarks

In this article, we have focused on the principle that proper uses of p-values are
subject to what investigators could expect from these statistics. Toward this end, the
valid statements of p-values and their stochastic aspect have been treated. We have
considered the VpV concept in the testing scenarios when composite null models are
stated. In this context, we have evaluated the KS goodness-of-fit tests and the normal
two-sample problem.

We have examined the problem of the goodness-of-fit testability based on a single
observation. It turns out that the KS approach is not helpful for obtaining goodness-of-
fit level-α tests based on one data point, in many situations. In general, the problem can
be formulated as follows: if someone has k observations, can then these data points
be tested for being from an assumed distribution function with h ≤ k parameters?
Further studies are needed to evaluate this framework.

In order to briefly illustrate a practical implementation of the VpV methods, we
have exemplified constructions of new test procedures. Although the VpV-based tests
are conservative, they can be suggested for practical use when underlying data are
relatively small.

Attending to theVpV framework, we have advanced the conventional EPVmeasure
of the performance of a test. The expected VpV is shown to be one minus the expected
power of a test. We have proposed a Youden’s index-based principle to define critical
values of decision making procedures. In these terms, the significance level α �
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0.05 can be suggested, in many decision-making scenarios. In light of an ROC curve
analysis, we introduce partial EPV’s to characterize properties of tests including their
unbiasedness.

The present article has displayed a small portion of research in theVpV’s and EPV’s
fields. We hope to rekindle a research interest in valid constructions of p-values and
evaluations of the stochastic behavior and properties of p-values related to parametric
and nonparametric procedures.
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Appendix

Proof of Proposition 1 Consider, for u > 0,

D(u) � |1 − exp(−θu) − I (X1 ≤ u)| � |1 − exp(−θu)|I (X1 > u) + |− exp(−θu)|I (X1 ≤ u)

� {1 − exp(−θu)}I (X1 > u) + exp(−θu)I (X1 ≤ u),

where the function 1− exp(−θu) increases and the function exp(−θu) decreases with
respect to u > 0. Then, the function D(u) increases, for u < X1, and decreases, for
u ≥ X1. Thus,

D1(θ ) � sup
0<u<∞

D(u) � max{1 − exp(−θX1), exp(−θX1)}.

Assume 1 − exp(−θX1) < exp(−θX1). In this case, θ < log(2)/X1 and D1(θ ) �
exp(−θX1) that is a decreasing function with respect to θ. Assume 1− exp(−θX1) ≥
exp(−θX1). In this case, θ ≥ log(2)/X1 and D1(θ ) � 1 − exp(−θX1) that is an
increasing function with respect to θ. Thus, D1(θ ) decreases, for θ < log(2)/X1, and
increases, for θ ≥ log(2)/X1. That is,we conclude that inf D1(θ ) � D1(log(2)/X1) �
0.5. By virtue of (8), the proof is complete. �

Proof of Proposition 2 Define the notation H0(θ0) to indicate the hypothesis H0 when
the true value of θ is θ0. Now, we will obtain bounds related to the interval Cβ .
The function u−1 exp(u − 1), u > 0, has a global minimum at u � 1. Then,
the threshold Aβ satisfies Aβ > 1, in order to provide a solution of PrH0(θ0){
(θ0X1)

−1 exp(θ0X1 − 1) < Aβ

} � 1 − β. Let 0 < u0 < 1 < u1 be roots of the
equation u−1 exp(u − 1) � Aβ . The roots 0 < u0 < 1 < u1 exist, since Aβ > 1 and
the function u−1 exp(u − 1) monotonically decreases, for 0 < u ≤ 1, and increases,
for u > 1. This behavior of the function u−1 exp(u − 1) can be used to show that

β � PrH0(θ0)

{
(θ0X1)

−1 exp(θ0X1 − 1) > Aβ

}

� PrH0(θ0)

{
(θ0X1)

−1 exp(θ0X1 − 1) > Aβ, θ0X1 ≤ 1
}
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Fig. 1 The values of u0 (solid lines) and u1 (dashed lines), which satisfy (11), plotted against β ∈ (0, 1).
The dotted lines show log(2)

+ PrH0(θ0)

{
(θ0X1)

−1 exp(θ0X1 − 1) > Aβ, θ0X1 > 1
}

� PrH0(θ0){θ0X1 < u0, θ0X1 ≤ 1} + PrH0(θ0){θ0X1 > u1, θ0X1 > 1}
� PrH0(θ0){θ0X1 < u0} + PrH0(θ0){θ0X1 > u1}
� FX1∼θ0 exp(−θ0x),0(u0/θ0) + 1 − FX1∼θ0 exp(−θ0x),0(u1/θ0)

� 1 − exp(−u0) + exp(−u1).

This defines the system of equations

1 − exp(−u0) + exp(−u1) � β and (u0)
−1 exp(−u0) � (u1)

−1 exp(−u1). (11)

Then, given β, one can derive values of u0 and u1 that do not depend on values of θ and
provide PrH0(θ0){u0 < θ0X1 < u1} � 1 − β. Figure 1 presents numerical solutions
of (11), depending on β ∈ (0, 1). Then, we have log(2) ∈ (u0, u1), for β ≤ 0.75.
According to the proof of Proposition 1, inf0<θ<∞ D1(θ ) � D1(log(2)/X1) � 0.5.
That is, infθ∈Cβ D1(θ ) � infu0<θX1<u1 D1(θ ) � D1(log(2)/X1) � 0.5, for β ≤ 0.75.
By virtue of (8), this completes the proof. �

Proof of Proposition 3 It is clear that

D1(θ ) � max
{
FX1,0(X1), 1 − FX1,0(X1)

}
, FX1,0(u) �

∫ u

−∞
exp

(
−(z − θ)2/2

)
dz/(2π)1/2.

Assume FX1,0(X1) ≥ 1 − FX1,0(X1), i.e., FX1,0(X1) ≥ 1/2. In this case, FX1,0

(X1) � (2π)−1/2 ∫ X1−θ

−∞ exp
(−z2/2

)
dz, where θ ≤ X1, and then D1(θ ) � FX1,0
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(X1) is a decreasing function with respect to θ. Assume FX1,0(X1) < 1− FX1,0(X1),
i.e., FX1,0(X1) < 1/2. In this case, θ > X1 and D1(θ ) � 1−FX1,0(X1) increases with
respect to θ. Thus, inf−∞<θ<∞ D1(θ ) � D1(X1) � 0.5. The point θ � X1 belongs
to the interval Cβ � {

θ : exp
(
(X1 − θ)2/2

)
< Aβ

}
. Therefore, infθ∈Cβ D1(θ ) � D1

(X1) � 0.5. The proof is complete. �

Proof of Proposition 4 We have

D1(θ) � max
{
FX1,0(X1), 1 − FX1,0(X1)

}
, FX1,0(u) �

∫ u/θ

−∞
exp

(−z2/2
)
dz/(2π)1/2.

If X1 > 0, then FX1,0(X1) > 1/2 and FX1,0(X1) > 1− FX1,0(X1). In this case, since
D1(θ ) � FX1,0(X1) is a decreasing functionwith respect to θ > 0, inf0<θ<∞ D1(θ ) �
D1(∞) � 0.5.

If X1 < 0, then D1(θ ) � 1 − FX1,0(X1) is a decreasing function with respect to
θ > 0, and inf0<θ<∞ D1(θ ) � D1(∞) � 0.5.

Now, we consider pC . Note that since the function u−1/2 exp(u/2 − 1/2), u >

0, has a global minimum at u � 1, in order to provide a solution of Pr{
η−1/2 exp(η/2 − 1/2) > Aβ

} � β, where η ∼ χ2
1 , the threshold Aβ should sat-

isfy Aβ > 1. Thus, we have 0 < u0 < 1 < u1 that are roots of the equation u−1 exp(
u2/2 − 1/2

) � Aβ and

Cβ � {
θ > 0 : θ |X1|−1 exp

(|X1|2/
(
2θ2

) − 0.5
)

< Aβ

} � {θ > 0 : u0 < |X1|/θ < u1}.

According to the above proof scheme, D1(θ ) is a decreasing function with respect
to θ > 0 and then we obtain pC � 1 − FK Sn ,0

(D1(|X1|/u0)) + β, for θ ∈ Cβ , where

D1(|X1|/u0) �
∫ u0

−∞
exp

(
−z2/2

)
dz/(2π)1/2 I (X1 ≥ 0)

+

{
1 −

∫ −u0

−∞
exp

(
−z2/2

)
dz/(2π)1/2

}
I (X1 < 0),

since D1(θ ) � max
{
FX1,0(X1), 1 − FX1,0(X1)

}
. The distribution function∫ u

−∞ exp
(−z2/2

)
dz/(2π)1/2 � 1 − ∫ −u

−∞ exp
(−z2/2

)
dz/(2π)1/2 is symmetric. This

implies

D1(|X1|/u0) �
∫ u0

−∞
exp

(
−z2/2

)
dz/(2π)1/2.

Now, one can easily use a simple R Code (R Development Core Team 2002)
to compute the accurate Monte Carlo approximations to pC � 1 − FK Sn ,0(
D1

(∫ u0
−∞ exp(−z2/2)dz/(2π )1/2

))
+ β, showing that pC ≥ 1 increases when β

increases. The proof is complete. �

Proof of Proposition 5 Consider, for non-random variables u and s, the probability
∫

Pr{u − s ≤ Bn ≤ u|H1}π (θ )dθ �
∫

E[I {u − s ≤ Bn ≤ u}|H1]π (θ )dθ
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�
∫ [∫

I {u − s ≤ Bn ≤ u} f1(x1, . . . , xn ; θ )dx1 . . . dxn

]
π (θ )dθ

�
∫

I {u − s ≤ Bn ≤ u}
[∫

f1(x1, . . . , xn ; θ )π (θ )dθ

]
dx1 . . . dxn

�
∫

I {u − s ≤ Bn ≤ u}
[∫

f1(x1, . . . , xn ; θ )

f0(x1, . . . , xn)
π (θ )dθ

]
f0(x1, . . . , xn)dx1 . . . dxn

�
∫

I {u − s ≤ Bn ≤ u}(Bn) f0.

This implies the inequalities
∫

Pr{u − s ≤ Bn ≤ u|H1}π (θ )dθ ≤
∫

I {u − s ≤ Bn ≤ u}(u) f0

� u Pr{u − s ≤ Bn ≤ u|H0} and∫
Pr{u − s ≤ Bn ≤ u|H1}π (θ )dθ ≥

∫
I {u − s ≤ Bn ≤ u}(u − s) f0

� (u − s) Pr{u − s ≤ Bn ≤ u|H0}.

Dividing these inequalities by s and employing s → 0, we obtain Proposition 5. �

Proof of Proposition 6 Define the power function g(u) � Pr(p-value < u|H1).
We have

∫ α

0 g(u)du ≥ α2/2, where
∫ α

0 g(u)du � g(u)u|u�α
u�0 − ∫ α

0 uw(u)du,
w(u) � dg(u)/du. Since g(u) � Pr

{
1 − FT ,0(T ) < u|H1

} � 1 −
Pr

{
T < F−1

T ,0(1 − u)|H1

}
� 1 − FT ,1

(
F−1
T ,0(1 − u)

)
, we obtain w(u) �

fT ,1(Cu)/ fT ,0(Cu) with Cu � F−1
T ,0(1 − u). It is clear that when u ↗, the corre-

sponding critical values Cu ↘ and then the likelihood ratio fT ,1(Cu)/ fT ,0(Cu) ↘.
This implies α2/2 ≤ ∫ α

0 g(u)du � g(α)α − ∫ α

0 uw(u)du ≤ g(α)α − w(α)
∫ α

0 udu
that completes the proof. �
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