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Abstract
To classify a vast amount of strata or subsamples with unknown families of distri-
butions according to their strata-means, a clustering approach is developed based on
pairwise L1 regularized empirical likelihood. Under such a clustering approach, all
possible contradictory conclusions are ruled out automatically. On the contrary, the
decision rules based on many existing pairwise comparison procedures can generate
contradictory results.Moreover, under certainmild conditions, the proposed clustering
method enjoys the consistency property that with probability going to one, all strata
are classified correctly. An exterior point algorithm is presented for the clustering. The
applications of the proposed methods are demonstrated using stock market data and
microarray data of breast cancer patients.

Keywords Clustering · Empirical likelihood · Exterior point algorithm · Pairwise
mean comparison · Pairwise L1 regularization

1 Introduction

The idea of L1 regularization on the pairwise differences has been introduced in Pan
et al. (2013) and Xie et al. (2008) for the clustering problems and in Zhu and Qu
(2018) for the clustering of longitudinal curves. This paper generalizes such an idea
from the clustering of observations from a sample to the clustering of strata-means
from a population. To allow greater degree of robustness, the family of distribution
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of the strata is not specified and the nonparametric empirical likelihood approach
of Owen (1988) is adopted. In particular, consider the following two scenarios, (1)
one-population case where the strata are classified according to the means and (2)
two-population case where the strata are classified according to the population effects
on the strata. In both medicine studies and social studies, it is interesting to classify
age groups (strata) according to the sizes of the gender (population) effects.

Similar types of problems have been studied in the literature ofmultiple comparison
and pairwise comparison and have found important applications in biology, social
studies, and psychology, to name a few, Agresti et al. (2008), Gelman et al. (2012),
Geman et al. (2004), and Lin et al. (2014). It is interesting to note that both clustering
and pairwise comparison aim at determining if pairs of strata sharing the same mean
though there are some philosophical differences. Classical multiple comparison and
pairwise comparison methods, including Bonferroni’s method in Bonferroni (1936),
Tukey’s method in Tukey (1949), and Duncan’s multiple range procedure in Duncan
(1955), are summarized in Dmitrienko et al. (2009), Miller (1981) and Hochberg and
Tamhane (1987).

There is a clear difference between the clustering approach and the multiple com-
parison approach. Clustering approach can never generate contradictory conclusions.
On the other hand,most existingmultiple comparison (including pairwise comparison)
methods are unable to rule out the possibility of concluding, e.g., μ1 = μ2, μ2 = μ3
but μ1 �= μ3, where μ1, μ2, μ3 are the strata-means. Though the concepts of coher-
ence and consonance are introduced in the literature, e.g., Gabriel (1969), Sonnemann
(2008), Zhao et al. (2010), Romano et al. (2011), possibility of drawing contradictory
conclusions cannot be completely ruled out.

For the clustering problems, the pairwise L1 penalty is applicable easily to any kinds
of objective functions including the empirical likelihood discussed in this paper and the
likelihood function as discussed in Pan et al. (2013), Xie et al. (2008), and Zhu and Qu
(2018). On the contrary, there is a lack of literature discussing the multiple comparison
methods under empirical likelihood approach. Though the empirical likelihood ratio
test has been extensively studied in the literature, e.g., Qin and Lawless (1994), to the
best of our knowledge, all these methods involve only one hypothesis. For example,
Jing (1995) and Tsao and Wu (2006) study the empirical likelihood version two-
sample mean test. Wu and Yan (2012) propose a weighted two-sample empirical
likelihood method to test the difference of two-population means. Liu et al. (2008)
constructs empirical likelihoodmethod for themean test of two d-dimensional samples
that is done traditionally using Hotellings’ T statistic. Cao and Van Keilegom (2006)
develop an empirical likelihood-based test on the equality of the distributions of two
populations.

To worst the situation, most existing multiple comparison methods rely heavily on
model assumptions. For example, Tukey’s method requires homogeneity of variance
and normally distributed observations. The methods described in Geman et al. (2004)
and Lin et al. (2014) are nonparametric. However, Geman et al. (2004) is designed
specifically for the pairwise comparisonof gene-expression-level data. It is not trivial to
extend this method to the general pairwise comparison problems. The recent work Lin
et al. (2014) focuses on the categorical data generated from multinomial distribution.
To obtain a more general approach of nonparametric approach of pairwise difference
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Clustering of subsample means 137

estimation, it is interesting to consider the empirical likelihood approach where each
observed value constitutes one category.

The regularized likelihood (or penalized likelihood) has been widely studied in
the context of regression analysis, e.g., Tibshirani (1996), Fan and Li (2001), Fan
and Peng (2004), Fan and Lv (2010), Fu (1998), and Tibshirani and Taylor (2011).
Moreover, the application of penalized empirical likelihood to regression analysis is
also discussed in Tang and Leng (2010). In spite of these, its application to pairwise
difference estimation is limited.

It is illustrated in this paper that the pairwise L1 regularized empirical likelihood
approach allows us to control familywise error rate at a fixed level of say, 0.05. It is
also interesting that when the sample size is large, it is possible to achieve consistency
that all strata are classified correctly with high probability.

The rest of this article is organized as follows. In Sect. 2, the penalized estimation
problem is described under empirical likelihood approach. In Sect. 3, the algorithm
for solving penalized empirical likelihood maximization problem is presented. The
consistency theory is established in Sect. 4. Simulation and real data examples are
presented in Sects. 5 and 6, respectively, followed by the concluding remarks in Sect. 7,
where possible extensions of the proposed method are discussed. The technical proofs
are given in “Appendix.”

2 Strata-mean clustering via regularized empirical likelihood

In this section, the ideas of pairwise L1 regularized empirical likelihood are demon-
strated under two scenarios, (1) one-population case where the strata are classified
according to the strata-means and (2) two-population case where the strata are classi-
fied according to sizes of the population effects.

2.1 L1 regularized empirical likelihood estimation

First, consider the one-population case. Suppose that there are m independent strata
of the same population. Denote the mean from a collection of independent random
vectors {Xik}nik=1 of the i-th strata by μi , where i = 1, . . . ,m. We are interested in
sparse estimation ofμi −μ j . Thismeans that zeros are preferred. Let xi1, xi2, . . . , xini
be the observations in the i-th strata. For simplicity, assume that there is no tie in the
data. Let pi = (pi1, . . . , pini ) and pik = Pr(Xik = xik | strata i) fulfilling both
0 < pik < 1 and

∑ni
k=1 pik = 1. For the i-th strata, the empirical log-likelihood is

li (pi ) =
ni∑

k=1

log(pik).

Let

l(p1, . . . , pm) =
m∑

i=1

ni∑

k=1

log(pik)

123
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be the joint empirical log-likelihood function. Now, we propose to maximize the
following regularized empirical likelihood function

Q(p1, . . . , pm) = l(p1, . . . , pm) − λ
∑

1≤i< j≤m

wi j |μi − μ j |, (1)

subjected to the constraints

ni∑

k=1

pik = 1 and
ni∑

k=1

pik Xik = μi , i = 1, . . . ,m,

where λ > 0 is a tuning parameter and w = (wi j ) is a weight matrix that can be
either fixed or computed from the data. Ifwi j = 1 is chosen, the resulting pairwise L1
penalty is a special case of the generalized Lasso in Tibshirani and Taylor (2011) and
Zhang and Zhang (2012). In the context of regression analysis, it is well-documented
(see, e.g., Zou 2006) that the Lasso shrinkage produces biased estimates when the
coefficients are large. To reduce the bias of the Lasso and obtain a faster and more
accurate algorithm, adaptive Lasso with weights wi j = 1∣

∣μ̃i−μ̃ j

∣
∣2

can be used, where

μ̃i , i = 1, 2, . . . ,m denote the initial estimates, for example, the sample means of the
strata. The tuning parameter λ controls the errors in the test procedure. The choice of
λ will be discussed later on in Sect. 2.2. Note that due to the non-differentiability of
the L1 penalty, exact zero is allowed in the solution.

The same idea can be extended to the two-population cases. Let μ
(1)
i and μ

(2)
i be

the means of i-th strata from populations 1 and 2, respectively. We are interested
in identifying strata-pairs (i, j) for which there are significant differences (μ

(2)
i −

μ
(1)
i )−(μ

(2)
j −μ

(1)
j ). Consider the reparameterization ai = μ

(2)
i −μ

(1)
i . The penalized

empirical log-likelihood function can be chosen as

m∑

i=1

n(1)
i∑

k=1

log
(
p(1)
ik

)
+

m∑

i=1

n(2)
i∑

k=1

log
(
p(2)
ik

)
− λ

∑

1≤i< j≤m

wi j |ai − a j |, (2)

subject to the constraints

n(1)
i∑

k=1

p(1)
ik = 1;

n(2)
i∑

k=1

p(2)
ik = 1;

n(2)
i∑

k=1

x (2)
ik p(2)

ik −
n(1)
i∑

k=1

x (1)
ik p(1)

ik = ai ,

for i = 1, . . . ,m.

2.2 Familywise error rate and Bayesian information criterion

Both familywise error rate (FWER) and Bayesian information criterion (BIC) can be
employed to choose the tuning parameter λ.
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Clustering of subsample means 139

References on FWER and multiple comparison can be found in Hochberg and
Tamhane (1987) and Dmitrienko et al. (2009). It is common to control FWER at a pre-
specified level ofα, say, 0.05. However, due to the lack of explicit formula, we consider
a bootstrapping approach of approximating FWER. See Efron and Tibshirani (1993)
and Kleinman and Huang (2016) for the applications of bootstrapping methods to the
multiple comparison. One can choose λ through simple grid-point search so that the
bootstrap FWER is approximately 0.05. The bootstrap FWER can be obtained through
the following steps:

1. Pool the data of all m-strata together. Re-sample from the pooled data without
replacement.

2. Check if the number of detected cluster is greater than 1.
3. Repeat Step 1 and 2. The estimated FWER is the proportion of detecting more

than one cluster.

Alternative to FWER, the concept of information criterion developed in model
comparison and regression analysis is applicable too. Let S(λ) = {S1, . . . , Sc} be the
partition of {1, 2, . . . ,m} obtained from the regularized estimation with λ. For the
one-population problem, consider the following two definitions of BIC

BIC1(λ) = −2Q( p̂1, . . . , p̂m) + log(log(m)) ·
c∑

s=1

log

⎛

⎝
∑

i∈Ss
ni

⎞

⎠ ,

BIC2(λ) = −2Q( p̂1, . . . , p̂m) + log(m) ·
c∑

s=1

log

⎛

⎝
∑

i∈Ss
ni

⎞

⎠ ,

where p̂i = ( p̂i1, . . . , p̂ini ), i = 1, . . . ,m are maximum regularized empirical likeli-
hood estimator with tuning parameter λ. Choose λ so that BIC is minimized. Optimal
λ can be obtained via grid-point search. For the two-population problems, one can
replace ni by n(1)

i + n(2)
i .

The term log(log(m)) in BIC1 is adapted from the information criterion of Leng
and Tang (2012) in the context of regression analysis. Similar definitions have also
been discussed in the works, e.g., Fan and Tang (2013), Leng and Tang (2012), Wang
et al. (2009), and Wang and Leng (2007). Moreover, Variyath et al. (2010) study the
information criterion under empirical likelihood. Since the strata clustering problem
can be reformulated as regularized likelihood estimation problem, it is reasonable to
expect that the concepts of information criterion developed in regression analysis are
also applicable.Our simulation experiences thatwill be discussed inSect. 5 suggest that
the greater penalty term log(m) in BIC2 results in better performance of classification.

3 Algorithm

In this section, an iterative algorithm is presented to obtain the regularized estimation
described in Sect. 2.
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Pan et al. (2013) andMarchetti and Zhou (2014) propose algorithms for the cluster-
ing analysis. Comparing to the clustering analysis problem, the regularized empirical
likelihood estimation involves additional constraints including

ni∑

k=1

xik − μi

ni + ηi (xik − μi )
= 0.

It is illustrated that some ideas of exterior point algorithm can be introduced to the
so-called coordinate-wise algorithm of Pan et al. (2013), also Wu and Lange (2008),
and Friedman et al. (2007).

3.1 One-populationm-strata case

Let μ = (μ1, . . . , μm)′ be the unknown parameters and η = (η1, . . . , ηm)′ be the
Lagrange multipliers. The optimization problem of log-empirical likelihood (1) is
equivalent to the optimization problem of

Q(μ, η) = −
m∑

i=1

ni∑

k=1

log
(
ni + ηi (xik − μi )

)
− λ

∑

1≤i< j≤m

wi j
∣
∣μi − μ j

∣
∣, (3)

subjected to the constraints

ni∑

k=1

xik − μi

ni + ηi (xik − μi )
= 0, i = 1, . . . ,m.

Consider the unconstrained minimization problem of

Q∗(τ, θ) =
m∑

i=1

fi (τi ) + β

2

∑

i< j

(μi − μ j − θi j )
2 + λ

∑

i< j

wi j
∣
∣θi j
∣
∣. (4)

where τi = (μi , ηi )
T and

fi (τi ) =
ni∑

k=1

log (ni + ηi (xik − μi )) + β

2

( ni∑

k=1

xik − μi

ni + ηi (xik − μi )

)2

for i = 1, . . . ,m. When β → ∞, the solution to (4) approaches the solution to the
original problem (3). The algorithm is as follows.
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Step 1: Set β = 1.
Step 2: Fix τi , i = 1, . . . ,m and update θi j . Set

θ
(new)
i j =

⎧
⎪⎪⎨

⎪⎪⎩

μ
(new)
i − μ

(new)
j − λwi j

β
if μ

(new)
i − μ

(new)
j >

λwi j
β

,

μ
(new)
i − μ

(new)
j + λwi j

β
if μ

(new)
i − μ

(new)
j < −λwi j

β
,

0 if μ
(new)
i − μ

(new)
j ∈

[
−λwi j

β
,

λwi j
β

]
.

Step 3: Fix all θi j and update τ1, . . . , τm at the same time. Here, Newton iteration
can be performed on the function

Q∗∗∗(τ, θ) =
m∑

i=1

fi (τi ) + β

2

∑

i< j

(μi − μ j − θi j )
2. (5)

The formulas of fi (τi ) and their derivatives are given in “Appendix.”
Step 4: Repeat steps 2 and 3 until converges.
Step 5: Increase β by doubling its current value.
Step 6: Repeat steps 2 and 5 until converges.

Note that Step 3 can be implementedwith complexity O(m). The inverse ofHessian
matrix can be expanded as

H−1 = (D − βAAT )−1 = D−1 + D−1A

(
1

β
I − AT D−1A

)−1

AT D−1, (6)

where D is 2m-by-2m diagonal matrix with all the entries are 	2
τi ,τi

fi + B and

Ei =
[
1 0
0 0

]

with i = 1, . . . ,m; A =
⎡

⎢
⎣

E1
...

Em

⎤

⎥
⎦

2m×2

; B =
[

β · m 0
0 0

]

.

Similar formula as (6) is used by some authors in the context of factor analysis, e.g.,
Lawley and Maxwell (1971) and Ng et al. (2015).

The tuning parameter λ is further obtained by a grid-point search with log-scale.
BIC(λ) is computed after minimizing Q∗(τ, θ). Note that the computational burden
of step 2 is O(m2). However, Newton step can be designed to be O(mn). Therefore,
the algorithm has iterative O(mmax{m, n}) complexity.
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3.2 Two-populationm-strata case

For the two-population cases, the constrained optimization problem is equivalent to
minimizing

m∑

i=1

n(1)
i∑

k=1

log
(
n(1)
i + ηi (x

(1)
ik − μ

(1)
i )
)

+
n(2)
∑

i=1

n(2)
i∑

k=1

log
(
n(2)
i + ηi (μ

(1)
i − x (2)

ik + ai )
)

+λ
∑

i< j

wi j |θi j |, (7)

subjected to the constraints

n(1)
i∑

k=1

x (1)
ik − μ

(1)
i

n(1)
i + ηi

(
x (1)
ik − μ

(1)
i

) = 0 and

n(2)
i∑

k=1

μ
(1)
i − x (2)

ik + ai

n(2)
i + ηi

(
μ

(1)
i − x (2)

ik + ai
) = 0.

Similar to the one-population cases discussed in Sect. 3.1, the optimization problem
for the two-population cases is equivalent to the unconstrained minimization problem
of the objective function

Q∗(τ, θ) =
m∑

i=1

fi (τi ) + β

2

∑

i< j

(ai − a j − θi j )
2 + λ

∑

i< j

wi j
∣
∣θi j
∣
∣, (8)

where τi = (μ
(1)
i , ηi , ai )T and

fi (τi ) =
n(1)
i∑

k=1

log
(
n(1)
i + ηi

(
x (1)
ik − μ

(1)
i

))
+

n(2)
i∑

k=1

log
(
n(2)
i + ηi

(
μ

(1)
i − x (2)

ik + ai
))

+β

2

⎛

⎜
⎝

n(1)
i∑

k=1

x (1)
ik − μ

(1)
i

n(1)
i + ηi

(
x (1)
ik − μ

(1)
i

)

⎞

⎟
⎠

2

+ β

2

⎛

⎜
⎝

n(2)
i∑

k=1

μ
(1)
i − x (2)

ik + ai

n(2)
i + ηi

(
μ

(1)
i − x (2)

ik + ai
)

⎞

⎟
⎠

2

,

for i = 1, . . . ,m.
Procedure to solve (8) is similar that in Sect. 3.1, but with the following changes,

Ei =
⎡

⎣
1 0 0
0 0 0
0 0 0

⎤

⎦ for i = 1, . . . ,m; η =
⎡

⎣
β · m 0 0
0 0 0
0 0 0

⎤

⎦
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and the updating formula for the elements of matrix θ ,

θ
(new)
i j =

⎧
⎪⎪⎨

⎪⎪⎩

a(new)
i − a(new)

j − λwi j
β

if a(new)
i − a(new)

j >
λwi j

β
,

a(new)
i − a(new)

j + λwi j
β

if a(new)
i − a(new)

j < −λwi j
β

,

0 if a(new)
i − a(new)

j ∈
[
−λwi j

β
,

λwi j
β

]
.

4 Consistency theory

First, some notation is introduced. For simplicity, consider only the balanced cases, i.e.,
n1 = n2 = · · · = nm = n for the one-population problem and n(1)

1 = n(1)
2 = · · · =

n(1)
m = n(2)

1 = n(2)
2 = · · · = n(2)

m = n for the two-population problem. Both m and n
are allowed going to infinity. The results presented in this section can be generalized
easily to the unbalanced cases if the ratio between maximum and minimum sample
sizes is bounded above and below by nonzero constants.

For the one-population cases, without loss of generality suppose that the strata
indexes 1, 2, . . . ,m have been rearranged so that the true means are

μ0
1 = μ0

2 = · · · = μ0
b1 < μ0

b1+1 = μ0
b1+2 = · · · = μ0

b2 < · · ·
< μ0

bc−1+1 = μ0
bc−1+2 = · · · = μ0

bc ,

where c is true number of clusters and 0 = b0 < b1 < b2 < · · · < bc = m. Set
m1 = b1,m2 = b2 − b1, . . . ,mc = bc − bc−1. For the two-population cases, one can
replace the notation μ by a.

Convention 1 Let ηi (μi ) be defined implicitly via

n∑

k=1

xik − μi

n + ηi (xik − μi )
= 0.

Let u(s)
n , s = 1, . . . , c be a sequence of constants so that

max
i=bs−1+1,...,bs

n−1/2ηi

(
μ0

(s)

)
≤ Op

(
u(s)
n

)
,

max
i=bs−1+1,...,bs

n−1 sup
μ∈�

∣
∣
∣
∣
d

dμi
ηi

(
μ0

(s)

)∣∣
∣
∣ ≤ Op

(
u(s)
n

)
,

and

max
i, j=bs−1+1,...,bs

n−1/2 sup
μ∈�

∣
∣
∣
∣
d

dμi
ηi (μ) − d

dμi
η j (μ)

∣
∣
∣
∣ ≤ Op

(
u(s)
n

)
.

The sequence u(s)
n can be bounded using extreme-value-distribution theory, see

for example (Fisher and Tippett, 1928; Gnedenko, 1943). In the special cases where
Z1, Z2, . . . , Zm are independent N (0, 1) random variables,McCormick (1980) shows
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that maxi |Zi | = Op(
√
2 logm). In the general cases where finite moment of order

δ > 0 exists, the inequality

max
i

|Zi | ≤
(

m∑

i=1

|Zi |δ
)1/δ

can also be used to obtain the bound u(s)
n .

Theorem 1 Let� ⊂ Rm be a compact set containingμ0 as an interior point. Suppose
that c is finite. Consider the following conditions.

(A1) For s = 1, 2, . . . , c, the weights wi j satisfy

max
i, j=bs−1+1,...,bs

⎧
⎨

⎩
w−1
i j

∑

t �=s

bt∑

e=bt−1+1

|wie − w je|
⎫
⎬

⎭
= op(m),

max
i, j=bs−1+1,...,bs

⎧
⎨

⎩

∑

t �=s

bt∑

e=bt−1+1

|wie|
⎫
⎬

⎭
= Op(m).

(A2) λmn−1 → 0 and λn−1/2 min1≤s≤c{ms/u
(s)
n } → ∞,

(A3) mini, j {|μ0
i − μ0

j |, |μ0
i − μ0

j | �= 0} > C for some constant C > 0.

Then, with probability going to one, for sufficiently large β, we have

(i) for all s = 1, 2, . . . , c,maxi, j=bs−1+1,...,bs |μ̂i − μ̂ j | ≤ λ/β,
(ii) θ̂i j = 0 if μ0

i = μ0
j , 1 ≤ i < j ≤ m and θ̂i j = μ0

i − μ0
j + o(1) otherwise.

(iii) for all i = 1, 2, . . . ,m, |μ̂i − μ0
i | = o(1).

Here, o(1) in (ii) and (iii) can further be bounded by ε + λ/β and ε, respectively,
where ε is any quantity dominating max{(mn)−1/2, λmn−1}.

In the limiting case β = ∞, result (i) becomes

(i’) for all s = 1, 2, . . . , c,maxi, j=bs−1+1,...,bs |μ̂i − μ̂ j | = 0.

The proofs will be given in “Appendix.” In the LASSO cases wi j = 1, clearly,

max
i, j=bs−1+1,...,bs

⎧
⎨

⎩
w−1
i j

∑

t �=s

bt∑

e=bt−1+1

|wie − w je|
⎫
⎬

⎭
= 0,

max
i, j=bs−1+1,...,bs

⎧
⎨

⎩

∑

t �=s

bt∑

e=bt−1+1

|wie|
⎫
⎬

⎭
= m.

Thus, Condition (A1) holds. Condition (A2) gives the range of λ so that consistency
of the test holds. Condition (A3) requires that the pairwise difference is not too small
to be detected.

We have similar results for the two-population cases.
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Theorem 2 Let� ∈ Rm be a compact set containing a0 as an interior point. Consider
the same conditions as Theorem 1. Then, with probability going to one, we have

(i) for all s = 1, 2, . . . , c,maxi, j=bs−1+1,...,bs |âi − â j | ≤ λ/β

(ii) θ̂i j = 0 if a0i = a0j , 1 ≤ i < j ≤ m and θ̂i j = a0i − a0j + o(1) otherwise.

(iii) for all i = 1, 2, . . . ,m, |âi − a0i | = o(1).

In the limiting case β = ∞, result (i) becomes

(i’) for all s = 1, 2, . . . , c,maxi, j=bs−1+1,...,bs |âi − â j | = 0.

The proofs of Theorem 2 are very similar to those of Theorem 1 and are omitted
for brevity.

5 Simulation studies

Simulation studies are conduced in this section to evaluate the finite-sample perfor-
mance of the proposed strata clustering method. One-population m-strata problem is
investigated in Example 1, and two-population counterpart is discussed in Example 2.

All experiments in the examples are repeated for 100 times. The performances are
measured in terms of two criteria. The first one is the mean misclassification, i.e., the
proportion of correct conclusions among m(m − 1)/2 hypotheses. The second one is
Cs, s = 1, 2, . . . , c, the cumulated number of strata of the first biggest s clusters.

Each simulated data are tested using the following three different choices of λ that
based on BIC1, BIC2, and FWER, respectively. The FWER is controlled at the level
of 0.05 using the method as described in Sect. 2.2.

Example 1 Consider one-population problems with two cases: balanced data and
unbalanced data.

Balanced data cases:We assume that all the strata have the same sample size. Under
this assumption, the influences of model, strata-variance, number of true clusters, and
distances between cluster means are evaluated. Twomodels are compared, Chi-square
distribution χ2

μ, and Gamma distribution �(α = μ2/υ, β = μ/υ) with variances
υ fixed at 1, 2, 3, 4. Note that Chi-square distribution is a special case of Gamma
distribution with mean-dependent variance. Consider two levels for the number of
strata, m = 40, 200 and four levels of strata-sample size n, 20, 50, 100, 500. In
the simulation, each cluster contains equal number of strata. The detailed results are
reported in Tables 1, 2, 3, 4, 5, and 6.

Tables 1 and 2 summarize the results of misclassification for Chi-square distributed
and Gamma distributed (with υ = 1) data, respectively. Three different simulation
settings are used, one cluster with mean 4, two clusters with means 4 and 8, and four
clusters with means 3, 5, 7, 9. In general, all three criteria BIC1, BIC2, and FWER
perform similarly well under the large sample size case n = 500. It can be observed
that for small sample cases, BIC2 and FWER tend to perform better than BIC1, par-
ticularly in the one-cluster cases. In addition, the misclassification tends to be smaller
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Table 1 Misclassification rate for Chi-square distribution

m n Cluster’s means BIC1 BIC2 FWER

40 20 4 0.4367436 0.05130769 0.0025

(4, 8) 0.1870897 0.0665 0.02317949

(3, 5, 7, 9) 0.1732179 0.1712436 0.1857949

50 4 0.2549872 0.006397436 0.005

(4, 8) 0.07524359 0.007602564 0.009871795

(3, 5, 7, 9) 0.09183333 0.07003846 0.06597436

100 4 0.1790128 0.000474359 0.002

(4, 8) 0.02544872 0.0009102564 0.006948718

(3, 5, 7, 9) 0.04015385 0.01952564 0.03453846

500 4 0.06002564 0.006794872 0.0015

(4, 8) 0.008448718 0.002282051 0.0110641

(3, 5, 7, 9) 0.004358974 0.001602564 0.02916667

200 20 4 0.8168121 0.0006984925 4e−04

(4, 8) 0.3328648 0.05642111 0.01423769

(3, 5, 7, 9) 0.2055156 0.1834151 0.2677653

50 4 0.5475382 0.000601005 2e−04

(4, 8) 0.09393015 0.006221608 0.003516583

(3, 5, 7, 9) 0.1195603 0.07835829 0.05212362

100 4 0.3462849 0.001373869 5e−04

(4, 8) 0.02475528 0.002126633 0.002432161

(3, 5, 7, 9) 0.03880804 0.01506533 0.01520704

500 4 0.06885678 0.0003040201 2e−04

(4, 8) 0.003083417 0.0006251256 0.002234673

(3, 5, 7, 9) 0.02048241 0.0004623116 0.006120101

under the fixed-variance Gamma cases. This suggests differences between varying-
variance cases and fixed-variance cases. Table 3 compares Gamma distributions fixed
at different levels of variance. It can be seen that misclassification rates for both BIC1
and BIC2 increase as the variance increases. However, BIC2 always gives smaller
misclassification than BIC1. To summarize, the variance of the distribution plays an
important role to the finite-sample performance of the classification. Therefore, a good
control of the variance is essential to the good performance.

Table 4 shows the influence of the distances between cluster means. In the cases
where the cluster means are closer to each other, the misclassification rates are higher
when the sample size is small under both large and small variance cases.

Tables 5 and 6 show Cs, s = 1, 2, . . . , c, the cumulative proportion of strata of
the first s clusters. In the ideal cases without misclassification, C1 = 100% for one-
cluster cases, (C1 = 50%,C2 = 100%) for two-cluster cases, and (C1 = 25%,C2 =
50%,C3 = 75%,C4 = 100%) for the four-cluster cases. It can be seen that for
both m = 40 and m = 200 cases, the misclassification decreases as the sample size
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Table 2 Misclassification rate for Gamma distribution with υ = 1

m n Cluster’s means BIC1 BIC2 FWER

40 20 4 0.4746923 0.02161538 0.034

(4, 8) 0.1462051 0.004602564 0.03101282

(3, 5, 7, 9) 0.05211538 0.007230769 0.1952179

50 4 0.2456026 0.007166667 0.04567949

(4, 8) 0.06691026 0.002961538 0.03623077

(3, 5, 7, 9) 0.01202564 0.001653846 0.08307692

100 4 0.1712949 0.002871795 5e−04

(4, 8) 0.03139744 0.0007435897 0.005282051

(3, 5, 7, 9) 0.005602564 2.564103e−05 0.03297436

500 4 0.03264103 0.00825641 0

(4, 8) 0.01879487 0.005679487 0.0007307692

(3, 5, 7, 9) 0.002692308 0.0005641026 0.004269231

200 20 4 0.7277704 0.004079899 3e−04

(4, 8) 0.3047025 0.002030151 0.01598291

(3, 5, 7, 9) 0.07890251 0.004747236 0.2043121

50 4 0.4124578 0.0005864322 0

(4, 8) 0.140096 0.0005929648 0.003317588

(3, 5, 7, 9) 0.007459296 0.0006080402 0.06458844

100 4 0.1362683 0.0009899497 0.01403719

(4, 8) 0.07299849 0.0002909548 0.01018543

(3, 5, 7, 9) 0.004992462 0.0003050251 0.01538191

500 4 0.009832663 0.0006944724 0

(4, 8) 0.03094472 0.0004276382 0.003073367

(3, 5, 7, 9) 0.003395477 0.0001979899 0.006879397

increases. In the one-cluster cases, the cumulative proportionsCs of FWER are always
closer to the ideal proportion than those of BIC1 and BIC2. However, the performances
of BIC1 and BIC2 are comparable to that of FWER.

Unbalanced data cases: To see the influence of the unbalanced strata-sample sizes
on the performance of the proposed method, the strata-sample sizes are generated
randomly from uniform distributions with ranges (20, 40), (90, 110), (190, 210),
respectively. The data are generated from the Chi-square distribution, and two levels
m = 40, 100 are considered for the number of strata. The settings of the cluster means
are the same as those in Case 1. The results are summarized in Table 7. It is clear from
the table that the proposed clusteringmethod is also applicable to the unbalanced cases.
Similar to the results of the balanced cases in Table 1, the two criteria BIC2, FWER
outperform BIC1 in general. However, BIC2 tends to have less misclassification in the
small strata-sample-size cases.

Example 2 In the second example, consider two-population problems. In both pop-
ulations, there are m-strata with sample sizes n(1) in Population One and n(2) in
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Table 4 Misclassification rate for Gamma distribution with different sample means

m n Cluster’s means ν = 1 ν = 3

BIC1 BIC2 BIC1 BIC2

40 20 (1, 1.5, 2, 2.5) 0.2002692 0.2033462 0.2684487 0.3165641

(3, 4.5, 6, 7.5) 0.05761538 0.01602564 0.1162821 0.09348718

100 (1, 1.5, 2, 2.5) 0.04974359 0.03205128 0.1576795 0.1598846

(3, 4.5, 6, 7.5) 0.007653846 0.0005641026 0.01528205 0.002846154

200 20 (1, 1.5, 2, 2.5) 0.2199281 0.2110307 0.2535035 0.2603392

(3, 4.5, 6, 7.5) 0.0956201 0.01124623 0.1585779 0.09236482

100 (1, 1.5, 2, 2.5) 0.0744593 0.03372312 0.1876482 0.1654226

(3, 4.5, 6, 7.5) 0.004465829 0.0005065327 0.01231508 0.00278995

Population Two. The strata-means in Population One are sampled from {3, 5, 7, 9}
randomly. The differences ai are then added to the strata-means of Population
Two. In the simulation, each cluster contains equal number of strata. Within the
same cluster, ai are the same but μi are allowed different. Consider two levels of
number of strata, m = 40, 200 and six settings of sample sizes, (n(1), n(2)) =
(25, 25); (25, 50); (25, 100); (50, 50); (50, 100); (100, 100). ThevarianceofGamma
distribution υ is set to 1.

Here, we only demonstrate the misclassification results of Gamma distribution with
υ = 1. The results are summarized in Table 8. The findings about the influences of
model, strata-variance, number of true clusters, and distances between cluster means
are similar to those in Example 1 and are not included for brevity. This example further
confirms that the proposed penalized empirical likelihood method can be applied to
the two-population m-strata classification problems.

6 Real data example

To demonstrate the applications of the regularized empirical likelihood method to
the strata classification problems, we consider the following three datasets: chronic
myelogenous leukemia survival data fromHehlmann et al. (1994), APPL (Apple) daily
stock price data fromYear 1981 to Year 2017 available at Yahoo finance, and the breast
cancer data in Van’t Veer et al. (2002). In the first two examples, both one-population
m-strata problem and two-population m-strata problem are studied. The last example
is a two-population m-strata problem. These three examples cover small m = 3 case,
medium m = 37 case, and large m case. For the large m case, m = 24,480 and a
splitting strategy is adopted so that each estimation involves only < 300 strata.

6.1 Chronic myelogenous leukemia survival data

This is a smallm example. The original data contain 507 observations on the 7 variables
(see Hehlmann et al. (1994) for details). Here, the variables “treatment,” “gender,” and
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Table 7 Misclassification rate for Chi-square distributed unbalanced data

m Range of n Cluster’s means BIC1 BIC2 FWER

40 (20, 40) 4 0.4135385 0.02601285 0.01569231

(4, 8) 0.144 0.07302564 0.2457051

(3, 5, 7, 9) 0.1374231 0.1355513 0.2061282

(90, 110) 4 0.1269615 0.03821795 0.01070513

(4, 8) 0.03244872 0.001692308 0.02278205

(3, 5, 7, 9) 0.03779487 0.02491026 0.03094872

(190, 210) 4 0.1423846 5e−04 0.004423077

(4, 8) 0.02784615 0.004923077 0.01953846

(3, 5, 7, 9) 0.01152564 0.004474359 0.009602564

100 (20, 40) 4 0.5886242 0.02130707 0.0163899

(4, 8) 0.2065495 0.0858101 0.2341374

(3, 5, 7, 9) 0.1513556 0.1437556 0.2038465

(90, 110) 4 0.2954929 0.04849495 0.001775758

(4, 8) 0.04690909 0.02019798 0.01463838

(3, 5, 7, 9) 0.04308081 0.02912929 0.02160202

(190, 210) 4 0.2896646 0.008967677 0.001981818

(4, 8) 0.0223899 0.003919192 0.006410101

(3, 5, 7, 9) 0.01474141 0.00420404 0.004072727

“time survival” are considered. There is a total of three treatment groups. In the original
data, the sample sizes of these three treatment groups are inbalanced. For simplicity,
the data are truncated randomly so that each of m = 3 treatment groups consists of
n = 120 observations.

One-population m-strata problem: The objective is to compare the mean survival
time of three treatments for chronic myelogenous leukemia. The penalized empirical
likelihood method is applied. To chose the penalized parameter, we here take the grid-
points for λ with log-scale as 0.001, 0.0021, 0.0046, 0.01, 0.021, 0.046, 0.1, 0.215,
0.464, 1, respectively. The detailed results are reported in Table 9.

Table 8 shows the detected cluster treatments after using our new clusteringmethod.
The second and third treatment share the same mean survival time of patients while
that of the first treatment is different.

Two-population m-strata problem: The objective is to compare gender effect on
the survival time under different treatments. Female is Population 1, and Male is
Population 2. In this case, the three treatments are classified according to the additional
gender effects on top of the treatment effects. To perform the estimation, λ is selected
using the same grid-points as in the one-population m-strata case. It is interesting that
the estimate suggests that there is only one cluster and thus, gender effects are similar
under the three treatments.
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Table 8 Misclassification rate for Example 2 Gamma with fixed variance

m (n1, n2) Cluster’s means BIC1 BIC2 FWER

40 (25, 25) 0 0.2191795 0.01175641 0

(0, 4) 0.06938462 0.000474359 0.0004871795

(0, 2, 4, 6) 0.03048718 0.005628205 0.01048718

(25, 50) 0 0.1597179 0.001846154 0

(0, 4) 0.04874359 0.0005128205 0.002192308

(0, 2, 4, 6) 0.02653846 0.001794872 0.007192308

(25, 100) 0 0.1352179 5e−04 0

(0, 4) 0.02783333 0.0002564103 0.001461538

(0, 2, 4, 6) 0.01602564 0.002833333 0.003538462

(50, 50) 0 0.1163846 0.006974359 0

(0, 4) 0.04230769 0 0.0002435897

(0, 2, 4, 6) 0.01519231 0.001769231 0.004320513

(50, 100) 0 0.1002692 0 0

(0, 4) 0.02435897 0 0.0002435897

(0, 2, 4, 6) 0.005269231 0.0004615385 0.006128205

(100, 100) 0 0.05388462 0.001423077 0

(0, 4) 0.02155128 0 0.0002435897

(0, 2, 4, 6) 0.005217949 0.0002307692 0.003064103

200 (25, 25) 0 0.01700201 0.001559799 0

(0, 4) 0.02635176 0.001421608 4.974874e−05

(0, 2, 4, 6) 0.04450503 0.1834151 0.001914573

(25, 50) 0 0.006042211 0.0002994975 0

(0, 4) 0.01439296 0.0006909548 0

(0, 2, 4, 6) 0.005829146 0.00218593 0.0008849246

(25, 100) 0 0.006146734 0.0005959799 0

(0, 4) 0.01159648 0.0002005025 0.0002487437

(0, 2, 4, 6) 0.01647236 0.003116583 0.001758794

(50, 50) 0 0.004151256 1.005025e−06 0

(0, 4) 0.00869799 0 0

(0, 2, 4, 6) 0.01774221 0.001542211 0.0006633166

(50, 100) 0 0.002882915 1e−04 0

(0, 4) 0.005376884 0.0001979899 9.949749e−05

(0, 2, 4, 6) 0.004946734 0.0008115578 0.0008592965

(100, 100) 0 0.001592462 0 0

(0, 4) 0.002837688 9.899497e−05 4.974874e−05

(0, 2, 4, 6) 0.002842211 0.0001708543 0.000638191

Table 9 Detected cluster
treatments Label of clusters 1 2

Number of treatments 2 1
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Table 10 Detected cluster absolute returns of years

Label of clusters 1 2 3 4 5 6 7 8 9

Number of abs returns by year 1 2 5 11 8 2 4 3 1

Fig. 1 Box plot for comparison average of absolute returns between clusters

6.2 Structural change andMonday effect in the stockmarket

Consider a mediumm case withm = 37. The APPL (Apple) stock price data are used.
Case 1: Compare average daily absolute return of APPL (Apple) stock year by year

from 1981 to 2017. Note that one year is considered as one group (strata) and the
number of groups is m = 37. All groups share the same sample size. The absolute
returns are computed as | log(St/St−1)|, where St refers to the stock price at time t . It is
well-known among econometricians that financial data undergo regime switching and
the stock returns are not identically distributed, see Andreou and Ghysels (2002). It is
also a styled fact that the volatility exhibits certain time-varying pattern as described in
the well-known autoregressive conditional heteroscedasticity (ARCH) model. In this
example, the absolute returns are used to describe the volatility. Unlike the model-
based methods that rely on the ARCH model and its variants, the proposed clustering
method provides a non-model-based approach of studying heteroscedasticity in the
financial market. The results are given in Table 9. Table 10 shows the classification
of years using regularized empirical likelihood comparison method. Nine clusters are
detected. Figures 1 and 2 show further details.
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Fig. 2 Data arranged using Heatmap

Case 2: Consider a two-population m-strata problem. The Monday effect on APPL
stock is studied year by year. Note that, one year is considered as one group (strata) and
the absolute returns are the data. The purpose is to identify years with extraordinary
Monday effects. Monday effect means that the Monday returns (close Friday to close
Monday) are different from the returns on other days. There are many studies on the
Monday effect in the financial markets. Some show that the Monday effect in the US
stock market occurs strongly during the 1980’s, see, e.g., French (1980), Rogalski
(1984), etc. However, some recent works present evidence that Monday returns are
not significantly different from returns during the rest of the week, see, e.g., Coutts
and Hayes (1999), Steeley (2001), etc.

In order to illustrate the application of the regularized empirical likelihood approach
and compare the conclusions of the above-mentioned works, we set Monday as Pop-
ulation 1 and other days of week (Tue,Wed,Thu,Fri) as Population 2. The finding is
similar to those in Coutts and Hayes (1999). There is noMonday effect on APPL stock
absolute returns year by year from the year 1981 to year 2017. 37 years share the same
average absolute returns.
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6.3 Microarray data of breast cancer patients

In this example, the breast cancer data in Van’t Veer et al. (2002) are considered. The
concepts of pairwise gene comparison are also used in Geman et al. (2004).

The data consist of gene expression profiles measured in 78 primary breast cancers
cases: 34 from patients who developed distant metastases within 5 years (Population
One) and 44 from patients who continued to be disease-free after a period of at least
5 years (Population Two). All patients were lymph node negative, and under 55 years
of age at diagnosis. Profiles were obtained using Hu25K microarrays comprised of
G = 24,480 human probe sequences.

In this real data example, we try to identify genes that can serve as indicators for
distinguishing “good prognosis” from “poor prognosis” (long and short interval to
distant metastases). By using the proposed regularized empirical likelihood method,
the genes are classified according to the gene-expression-level-difference between two
populations. Below, the notation μ refers to the gene-expression levels. The penalty
takes the form

λ
∑

i< j

∣
∣μ

(1)
i − μ

(1)
j − μ

(2)
i + μ

(2)
j

∣
∣.

Consider reparameterization, ai = μ
(1)
i − μ

(2)
i . Then, the penalty can be written as

λ
∑

i< j

∣
∣ai − a j

∣
∣.

Genes belonging to the cluster with greatest absolute ai are identified.
To avoid the heavy computation, we use the proposed regularized empirical likeli-

hood method in Sect. 2.1 together with the following data-splitting strategy:

– Step 1:We randomly split the breast cancer data into sub-data containing 200 genes
each. For each sub-data, we do clustering and identify the genes not belonging to
the biggest cluster. It is found that in all sub-data, there is one single cluster
containing the majority of the genes.

– Step 2: For the out-genes identified in Step 1, do another clustering.

After the above procedure, we get 15 different clusters of genes, excluding the
biggest clusters in Step 1. Among these 15 clusters, the biggest cluster contains 247
genes while the smallest cluster contains 1 gene. The detailed classification results
are shown in Table 11. Figure 2 shows the box plot for mean-gene-expression-level
differences in the 15 clusters, where the x-axis values are the sorted according to the
ascending order of the means differences. In Fig. 2, the ranges of the 15 clusters do
not overlap each other, suggesting significant differences between genes in different
clusters. The gene from Cluster 15 (named SFRS2) shows greatest difference between
the two populations (Fig. 3).
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Table 11 Detected cluster genes

Number of clusters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of genes 1 1 1 13 2 2 247 23 4 1 1 1 2 1 1

Fig. 3 Box plot for comparison average of means between clusters

7 Conclusion

It is illustrated that the strata clustering problem can be reformulated as pairwise L1
regularized estimation problem and the robustness can be achieved by using non-
parametric empirical likelihood approach. One of the advantages is that contradictory
conclusion can never be occurred under the proposed method. The proposed method
allows one to control FWER and achieve consistency via BIC. Moreover, when the
sample size is large, it is possible that all strata are classified correctly with probability
going to one, see Theorems 1 and 2.

It is an interesting future research direction to study the influence of the dependence
structure between the strata. This can further improve the applications in genetics and
medicine where genes (strata) are known to be dependent on each other. Another
interesting extension of the proposed approach is to explore the link between the new
method and existing multiple comparisons methods under high-dimensional settings.
It is also an interesting research direction is to establish formal asymptotic theory for
the BIC for pairwise comparisons and strata clustering.
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A Calculation of derivatives in Sect. 3.2

In this section, the formulas necessary to the computations in Step 3 of the algorithm
in Sect. 3.2 are provided.

Step 3: Fix all θi j update τ1, . . . , τm at the same time. Use Newton method to solve
unconstrained minimization problem

Q∗∗∗(τ, θ) =
m∑

i=1

fi (τi ) + β

2

∑

i< j

(ai − a j − θi j )
2.

Gradient of Q∗∗∗:

	τi Q
∗∗∗ = ∂ fi (τi )

∂τi
+ β

m∑

i< j

(ai − a j − θi j ).

Let fi = k1i + g1i + k2i + g2i , where

k1i =
n(1)
∑

j=1

log
(
n(1) + ηi (x

(1)
i j − μ

(1)
i )
)

,

k2i =
n(2)
∑

j=1

log
(
n(2) + ηi (μ

(1)
i − x (2)

i j + ai )
)

,

g1i = β

2
h21i ; h1i =

ni∑

j=1

n(1)
(
x (1)
i j − μ

(1)
i

)

n(1) + ηi

(
x (1)
i j − μ

(1)
i

) ,

g2i = β

2
h22i ; h2i =

ni∑

j=1

n(2)
(
μ

(1)
i − x (2)

i j + ai
)

n(2) + ηi

(
μ

(1)
i − x (2)

i j + ai
) .

Then, 	 fi = (v1, v2, v3). The derivatives of fi are as follows,

v1 = ∂ fi

∂μ
(1)
i

= βh1i
∂h1i

∂μ
(1)
i

−
n(1)
∑

j=1

ηi

n(1) + ηi

(
x (1)
i j − μ

(1)
i

)

+βh2i
∂h2i

∂μ
(1)
i

+
n(2)
∑

j=1

ηi

n(2) + ηi

(
μ

(1)
i − x (2)

i j + ai
) ,
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v2 = ∂ fi
∂ηi

= h1i + βh1i
∂h1i
∂ηi

+ h2i + βh2i
∂h2i
∂ηi

,

v3 = ∂ fi
∂ai

= ∂k2i
∂ai

+ ∂g2i
∂ai

=
n(2)
∑

j=1

ηi

n(2) + ηi

(
μ

(1)
i − x (2)

i j + ai
) + βh2i

∂h2i
∂ai

,

and

∂h1i
∂ηi

= −n(1)
n(1)
∑

j=1

⎛

⎝

(
x (1)
i j − μ

(1)
i

)

n(1) + ηi

(
x (1)
i j − μ

(1)
i

)

⎞

⎠

2

,

∂h1i

∂μ
(1)
i

= −
n(1)
∑

j=1

(
n(1)
)2

(
n(1) + ηi

(
x (1)
i j − μ

(1)
i

))2 ,

∂h2i
∂ai

= ∂h2i

∂μ
(1)
i

=
n(2)
∑

j=1

(
n(2)
)2

(
n(2) + ηi

(
μ

(1)
i − x (2)

i j + ai
))2 ,

∂h2i
∂ηi

= −
ni∑

j=1

n(2)

⎛

⎝
μ

(1)
i − x (2)

i j + ai

n(2) + ηi

(
μ

(1)
i − x (2)

i j + ai
)

⎞

⎠

2

.

Hessian matrix of Q∗∗∗.

	2Q∗∗∗
τi ,τi

= ∂2 fi (τi )

∂τ 2i
+ β(m − 1), 	2Q∗∗∗

τi ,τ j
= −β, for i �= j,

∂2 fi
∂a2i

= ∂2k2i
∂a2i

+ ∂2g2i
∂a2i

= −
n(2)
∑

j=1

(
ηi

n(2) + ηi (μ
(1)
i − x (2)

i j + ai )

)2

+β

((
∂h2i
∂ai

)2

+ h2
∂2h2i
∂a2i

)

,

∂2 fi
∂η2i

= ∂h1i
∂ηi

+ β

((
∂h1i
∂ηi

)2

+ h1i
∂2h1i
∂η2i

)

+ ∂h2i
∂ηi

+β

((
∂h2i
∂ηi

)2

+ h2i
∂2h2i
∂η2i

)

,

∂2 fi

∂(μ
(1)
i )2

= −
n(1)
∑

j=1

(
ηi

n(1) + ηi (x
(1)
i j − μ

(1)
i )

)2

+ β

⎛

⎝

(
∂h1i

∂μ
(1)
i

)2

+ h1i
∂2h1i

∂(μ
(1)
i )2

⎞

⎠

−
n(2)
∑

j=1

(
ηi

n(2) + ηi (μ
(1)
i − x (2)

i j + ai )

)2

+ β

⎛

⎝

(
∂h2i

∂μ
(1)
i

)2

+ h2i
∂2h2i

∂(μ
(1)
i )2

⎞

⎠ ,
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∂2 fi
∂ai∂ηi

= ∂h2i
∂ai

+ β

(
∂h2i
∂ηi

· ∂h2i
∂ai

+ h2
∂2h2

∂ai∂ηi

)

,

∂2 fi

∂ai∂μ
(1)
i

= −
n(2)
∑

j=1

(
ηi

n(2) + ηi (μ
(1)
i − x (2)

i j + ai )

)2

+ β

(
∂h2i

∂μ
(1)
i

· ∂h2i
∂ai

+ h2
∂2h2i

∂ai∂μ
(1)
i

)

,

∂2 fi

∂ηi∂μ
(1)
i

= ∂h1i

∂μ
(1)
i

+ β

(
∂h1i

∂μ
(1)
i

· ∂h1i
∂ηi

+ h1i
∂2h1i

∂ηi∂μ
(1)
i

)

+ ∂h2i

∂μ
(1)
i

+β

(
∂h2i

∂μ
(1)
i

· ∂h2i
∂ηi

+ h2i
∂2h2i

∂ηi∂μ
(1)
i

)

,

where

∂2h1i
∂a2i

= ∂2h1i

∂ai∂μ
(1)
i

= 0,

∂2h1i
∂η2i

= 2n(1)
n(1)
∑

j=1

⎛

⎝
x (1)
i j − μ

(1)
i

n(1) + ηi

(
x (1)
i j − μ

(1)
i

)

⎞

⎠

3

,

∂2h1i
∂(μi )2

= −2(n(1))2
n(1)
∑

j=1

ηi
(
n(1) + ηi

(
x (1)
i j − μ

(1)
i

))3 ,

∂2h1i

∂ηi∂μ
(1)
i

= 2(n(1))2
n(1)
∑

j=1

(x (1)
i j − μ

(1)
i )

(
n(1) + ηi

(
x (1)
i j − μ

(1)
i

))3 ,

∂2h2i
∂a2i

= ∂2h2i

∂
(
μ

(1)
i

)2 = −2(n(2))2
n(2)
∑

j=1

ηi
(
n(2) + ηi

(
μ

(1)
i − x (2)

i j + ai
))3 ,

∂2h2i
∂η2i

= 2n(2)
n(2)
∑

j=1

⎛

⎝
μ

(1)
i − x (2)

i j + ai

n(2) + ηi

(
μ

(1)
i − x (2)

i j + ai
)

⎞

⎠

3

,

∂2h2i
∂ai∂ηi

= ∂2h2i

∂ηi∂μ
(1)
i

= −2(n(2))2
n(2)
∑

j=1

(μ
(1)
i − x (2)

i j + ai )
(
n(2) + ηi

(
μ

(1)
i − x (2)

i j + ai
))3 ,

∂2h2i

∂ai∂μ
(1)
i

= −2(n(2))2
n(2)
∑

j=1

ηi
(
n(2) + ηi

(
μ

(1)
i − x (2)

i j + ai
))3 .

123



Clustering of subsample means 165

B Proofs of main theorems

B.1 Notation

The following conventions are used throughout the proof. Let ε > 0 and ε2 > 0 be
some chosen infinitesimal quantities so that

(B1) ε  ε2,

(B2) ε2  (mn)−1/2,

(B3) ε2  λmn−1.

Choose β so that

(B4) β mini,�

{
∑n

j=1

(
xi j−μi

n+η(μi )(xi j−μi )

)2
}

> 1, β  mn, and λβ  n2u(s)
n ε2

(min1≤s≤c ms)
−2.

Some notation is introduced. Let μ† = (μ(1), . . . , μ(c)) be c-dimensional vector
and μ = (μ1, . . . , μm) be m-dimensional vector. Let μ̄(s) = m−1

s
∑bs

bs−1+1 μi and

μ̄ = (μ̄(1), . . . , μ̄(1), . . . , μ̄(c), . . . , μ̄(c)).

Define

Q∗∗(μ, θ) =
m∑

i=1

�i (μi ) + β

2

∑

i< j

(μi − μ j − θi j ) + λ
∑

i< j

wi j |θi j |,

L†(μ†) =
c∑

s=1

�(s)(μ(s)),

Q†(μ†) =
c∑

s=1

�(s)(μ(s)) + λ
∑

s<t

⎛

⎝
bs∑

i=bs−1+1

bt∑

j=bt−1+1

wi j

⎞

⎠ |μ(s) − μ(t)|, (9)

where �i (μi ) = ∑ni
k=1 log (n + ηi (μi )(xik − μi )) and �(s)(μ(s)) = ∑bs

i=bs−1+1
�i (μ(s)). Denote

μ̂† = (μ(1), . . . , μ(c)) = argminQ†(μ†) and

μ̂†† = (μ(1), . . . , μ(1), . . . , μ(c), . . . , μ(c)).

Lemma 3 guarantees the existence of μ̂†. Moreover, Lemma 1 suggests that �i (μi ) =
minη fi (η, μ) if β is sufficiently large.

B.2 Proof of Theorem 1 and Theorem 2

The proof of Theorem 2 is similar to that of Theorem 1 so that the proof is omitted.
In what follows, we establish Theorem 1. By Lemma 1, optimizing Q∗(η, μ, θ) is
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equivalent to optimizing Q∗∗(μ, θ). It can be checked that fixed μ, Q∗∗(μ, θ) is
optimized at

θi j (μ) =
{
0, when |μi − μ j | ≤ λwi j/β,

μi − μ j − λwi j
β

sgn(μi − μ j ), otherwise.

Define

θ∗
i j (μ) =

{
0, when μ0

i = μ0
j ,

μi − μ j − λwi j
β

sgn(μi − μ j ), otherwise.

In what follows, we show that minμ∈� Q∗∗(μ, θ∗(μ)) exists in an infinitesimal
neighborhood around μ̂†† and such a solution fulfills |μ̂i − μ̂ j | ≤ λ(min{wi j : μ0

i =
μ0

j })/β for all i, j belonging to the same “true cluster” with probability going to one.
If these are so, the solution to minμ∈� Q∗∗(μ, θ∗(μ)) solves minμ∈� Q∗∗(μ, θ(μ))

too.
To establish the existence of minμ∈� Q∗∗(μ, θ∗(μ)). Consider the neighborhood

N =
{
μ : |μi − μ̄i | ≤ ε and |μ̄i − μ̂

††
i | ≤ ε, i = 1, 2, . . . ,m

}
.

See “AppendixB.1” for the definitionof ε. SinceN is compact,minμ∈N Q∗∗(μ, θ∗(μ))

must exists. It suffices to show that Q∗∗(μ, θ∗(μ)) > Q∗∗(μ̂††, θ∗(μ̂††)) for all
boundary points ofN with probability going to one. If this is so, the minimum cannot
be attained on the boundary and therefore must be an interior point. Consequently, the
local minimum appears inside N . Under condition (A3), when μ ∈ N ,

Q∗∗(μ, θ∗(μ)) = K +
m∑

i=1

�i (μi ) + β

2

c∑

s=1

∑

bs−1+1≤i< j≤bs

(μi − μ j )
2

+λ
∑

s<t

⎛

⎝
bs∑

i=bs−1+1

bt∑

j=bt−1+1

wi j (μ j − μi )

⎞

⎠

= K + Q1(μ) + Q2(μ) + Q3(μ), (10)

where

K = − λ2

2β

∑

s<t

⎛

⎝
bs∑

i=bs−1+1

bt∑

j=bt−1+1

w2
i j

⎞

⎠

is a constant. Consider the approximation

Q1(μ) + Q3(μ) ≈ Q1(μ̂
††) + Q3(μ̂

††) + (Q3(μ) − Q3(μ̂
††)) + ∇Q1(μ̂

††)

·(μ − μ̂††) + (μ − μ̂††)T∇2Q1(μ̂
††) · (μ − μ̂††).
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Under conditions (A1), Lemma 2 suggests that

∇Q1(μ̂
††) · (μ − μ̂††) ≤ Op(mnε2ε)

and
|Q3(μ) − Q3(μ̂

††)| ≤ Op(λm
2ε).

There are two types of boundary points on ∂N , (i) |μi − μ̄i | = ε for some i and
|μ̄i − μ̂

††
i | ≤ ε for all i and (ii) |μi − μ̄i | ≤ ε for all i and |μ̄i − μ̂

††
i | = ε for some i .

For type (i) boundary points, |μi −μ j | > ε for some i �= j . Without loss of generality,
assume that |μ1 − μ2| > ε. Then, Q2(μ) ≥ β(μ1 − μ2)

2/2 = Op(βε2). Conditions
(B1) and (B3) guarantee that the positive definite term Q2(μ) is dominating. For type
(ii) boundary points, |μ̄i − μ̂

††
i | = ε for some i . Note that μ̄i − μ̂

††
i share a common

value within the same cluster. Then,

‖μ − μ̂††‖2 ≥ ‖μ − μ̄‖2 = Op(mε2)

and
(μ − μ̂††)T∇2Q1(μ̂

††) · (μ − μ̂††) ≥ Op(mnε2).

Conditions (B1) and (B3) guarantee that the positive definite term (μ−μ̂††)T∇2Q1(μ̂
††)

dominates all other terms excepting Q2(μ). Moreover, the quantity Q2(μ) is always
positive. This completes the existence proof.

Next, we show with probability going to one that the solution to Q∗∗(μ, θ∗(μ))

fulfills |μ̂i − μ̂ j | ≤ λ/β for all i, j = bs−1 + 1, . . . , bs within the same cluster
s from 1, 2, . . . , c. Note that by the definition of N , the function Q∗∗(μ, θ∗(μ)) is
differentiable if Condition (A3) holds and λ/β → 0. Then,

∇μi Q
∗∗(μi , θ

∗(μi )) = ∇μi Q1(μi ) + ∇μi Q2(μi ) + ∇μi Q3(μi )

= ∇μi �i (μi ) + β

bs∑

i< j=bs−1+1

(μi − μ j ) − λ
∑

s<t

bt∑

j=bt−1+1

wi j ,

for i = bs−1 + 1, . . . , bs and s = 1, . . . , c. Consider μ̂i , the minimizer of
Q∗∗(μi , θ

∗(μi )). Suppose that i belongs to the s-th cluster. By Taylor expansion,
it holds that

0 = ∇μi Q
∗∗(μi , θ

∗(μi ))

∣
∣
∣
∣
μi=μ̂i

≈ ∇μi �i

(
μ̂
††
i

)
+ Hi

(
μ̂i − μ̂

††
i

)

+β

bs∑

i< j=bs−1+1

(
μ̂i − μ̂

††
i − μ̂ j + μ̂

††
j

)
− λ

∑

t �=s

bt∑

e=bt−1+1

wie,
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where Hi = ∇2Q∗∗(μ̂††
i , θ∗(μ̂††

i )). The bias |μ̂ − μ̂††| can therefore be established
as follows,

μ̂ − μ̂†† =

⎛

⎜
⎜
⎜
⎝

H1 0 · · · 0
0 H2 · · · 0
...

. . .
...

0 0 · · · Hc

⎞

⎟
⎟
⎟
⎠

−1⎛

⎜
⎜
⎜
⎝

P1 − G1
P2 − G2

...

Pc − Gc

⎞

⎟
⎟
⎟
⎠

whereDs = diag(Hbs−1+1, . . . , Hbs )+msβIms ,Hs = Ds+msβIms −β1ms1
T
ms

,Gs =
(
Gbs−1+1, . . . ,Gbs

)
for s = 1, . . . , c,Gi = ∇�(μ̂

††
i ) for i = 1, 2, . . . ,m,Ps =

(
Pbs−1+1, . . . , Pbs

)
for s = 1, . . . , c and Pi = λ

∑
t �=s
∑bt

e=bt−1+1 wie for i =
bs−1 + 1, . . . , bs .

Consider the matrix inverse formula

H−1
s = (Ds − β1ms1

T
ms

)−1 = D−1
s + D−1

s 1ms

(
1

β
− 1Tms

D−1
s 1ms

)−1

1Tms
D−1

s .

Then,

μ̂s − μ̂††
s = D−1

s (Ps − Gs) + D−1
s 1ms

(
1

β
− 1Tms

D−1
s 1ms

)−1

1Tms
D−1

s (Ps − Gs).

It can be easily seen that

D−1
s =

⎛

⎜
⎜
⎝

1
Hbs−1+1+msβ

· · · 0

...
. . .

...

0 · · · 1
Hbs+msβ

⎞

⎟
⎟
⎠ , D−1

s 1ms =

⎛

⎜
⎜
⎝

1
Hbs−1+1+msβ

...
1

Hbs+msβ

⎞

⎟
⎟
⎠

and

1Tms
D−1

s 1ms =
bs∑

i=bs−1+1

1

Hi + msβ
.

Note that msβ eventually dominates all Hbi . By Lemma 2,

1

β
− 1Tms

D−1
s 1ms = 1

β
−

bs∑

i=bs−1+1

1

Hi + msβ
= 1

β
− 1

msβ

bs∑

i=bs−1+1

1

1 + Hi
msβ

= 1

β
− 1

msβ

bs∑

i=bs−1+1

(

1 − Hi

msβ
+ H2

i

m2
sβ

2 − · · ·
)

≈ 1

m2
sβ

2

bs∑

i=bs−1+1

Hi = Op

(
n

msβ2

)

.
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From the first-order condition of Q†(·),∑bs
i=bs−1+1(Pi − Gi ) = 0. In addition,

Pi
Hi + msβ

= Op

(
λmε2

msβ

)

and
Gi

Hi + msβ
= Op

(
nε2

msβ

)

.

Hence, under Condition (B3),

1Tms
D−1

s (Ps − Gs) =
bs∑

i=bs−1+1

Pi − Gi

Hi + msβ

≈ 1

m2
sβ

2

bs∑

i=bs−1+1

Hi (Pi − Gi )

= Op

(

max

{
λmn

msβ2 ; n2ε2
msβ2

})

= Op

(
n2ε2
msβ2

)

.

Since both A1 =
(
1
β

− 1Tms
D−1
s 1ms

)−1
and A2 = 1Tms

D−1
s (Ps − Gs) are constants,

for i, j belonging to the same cluster,

|μ̂i − μ̂ j | ≈ Pi − Gi

Hi + msβ
− Pj − G j

Hj + msβ
+
(

1

Hi + msβ
− 1

Hj + msβ

)

· A1 · A2.

Under Condition A1, we see that |Pi − Pj | = op(λmwi j ). Under assumption mβ 
maxi Hi , Taylor expansion yields

1

Hi + msβ
− 1

Hj + msβ
= 1

msβ

(
1

1 + Hi
msβ

)

− 1

msβ

⎛

⎝ 1

1 + Hj
msβ

⎞

⎠

= 1

msβ

(

1 − Hi

msβ
+ o(1)

)

− 1

msβ

(

1 − Hj

msβ
+ o(1)

)

≈ 1

m2
sβ

2 (Hi − Hj ) = Op

(
nu(s)

n

m2
sβ

2

)

,

Pi
Hi + msβ

− Pj

Hj + msβ
= Pi

msβ

(
1

1 + Hi
msβ

)

− Pj

msβ

⎛

⎝ 1

1 + Hj
msβ

⎞

⎠

≈ Pi
msβ

(

1 − Hi

msβ
+ H2

i

m2
sβ

2

)

− Pj

msβ

(

1 − Hj

msβ
+ H2

j

m2
sβ

2

)
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≈ 1

msβ
(Pi − Pj ) − 1

m2
sβ

2 (Pi Hi − Pj Hj )

≈ op

(
λmwi j

msβ

)

+ op

(
λmnu(s)

n

m2
sβ

2

)

,

Gi

Hi + msβ
− G j

Hj + msβ
= Op

(√
nu(s)

n + √
nu(s)

n ε2

msβ

)

.

This implies that when λβ  n2u(s)
n ε2m−2

s and β  mnu(s)
n m−2

s , it holds that |μ̂i −
μ̂ j | = op

(
λwi j

β

)
. This completes the proof of (i).

Using the same technique developed for the proof of (i) and from the definition of
compact set N , (ii) and (iii) hold. ��

B.3 Technical Lemmas

Lemma 1 Under assumption (B4), ηi (μi ) minimizes fi (ηi , μi ) for all μi ∈ R and
fi (ηi (μi ), μi ) = �(μi ). Let (μ̂, θ̂ ) be the local minimizer of the function Q∗∗(μ, θ).
Then, (η(μ̂), μ̂) is a local minimizer of Q∗(η, μ, θ) too, or equivalently,

(μ̂, θ̂ ) = argmin
μ, θ

Q∗∗(μ, θ) = argmin
μ,θ

min
η

Q∗(η, μ, θ).

Proof Clearly, when ηi = ηi (μi ), we have hi = 0. From “Appendix A,”

∂ fi
∂ηi

= hi + βhi
∂hi
∂ηi

= 0 and
∂2 fi
∂η2i

= ∂hi
∂ηi

+ β

(
∂hi
∂ηi

)2

.

Then, for any fixed μ, fi (as a function of ηi ) is convex when ∂hi/∂ηi < −1/β,
or equivalently when (B4) holds. Consequently, ηi (μi ) = argminηi

fi (ηi , μi ). It is
obvious that fi (ηi (μi ), μi ) = �(μi ) because hi = 0. The desired results follow
immediately. ��
Lemma 2 Let μ̂i be a consistent estimator ofμ0

i . Suppose that an infinitesimal compact
set N ⊂ R contains both μ0

i and μ̂i as interior points. Then,

d

dμi
fi (ηi (μ̂i ), μ̂i ) = Op

(
max

{
n1/2, n

(
μ̂i − μ0

i

)})

and

inf
μ∈N

d2

dμ2
i

fi (ηi (μi ), μi )

is bounded below by some positive Op(n) quantity.
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Proof Since

n∑

j=1

1

n + ηi (μi )(xi j − μi )
= 1 and

n∑

j=1

xi j − μi

n + ηi (μi )(xi j − μi )
= 0,

it can be verified after some algebraic manipulations that

d

dμi
fi (ηi (μi ), μi ) = −

n∑

j=1

ηi (μi )

n + ηi (μi )(xi j − μi )
+

n∑

j=1

xi j − μi

n + ηi (μi )(xi j − μi )

dη

dμ

= −ηi (μi ),

d2

dμ2
i

fi (ηi (μi ), μi ) = − d

dμi
ηi (μi ) = n

[
n∑

k=1

(
xik − μi

n + ηi (μi )(xik − μi )

)2
]−1

[
n∑

k=1

(
1

n + ηi (μi )(xik − μi )

)2
]

.

As shown in Owen (2001), d
dμi

fi (ηi (μ0
i ), μ

0
i ) = Op(n1/2) and ηi (μ

0
i ) = Op(n1/2),

then using Taylor expansion, we have

ηi (μ̂i ) ≈ ηi

(
μ0
i

)
−
(
μ̂i − μ0

i

) dηi (μi )

dμi

∣
∣
∣
∣
μi=μ0

i

≈ ηi

(
μ0
i

)
−
(
μ̂i − μ0

i

) n∑

j=1

n

n + ηi
(
μ0
i

) (
xi j − μ0

i

)

= Op(n
1/2) + n

(
μ̂i − μ0

i

)
= Op

(
max

{
n1/2, n

(
μ̂i − μ0

i

)})
.

Next, we give a lower bound of d2

dμ2
i
fi (η(μi ), μi ). Note that

∑n
k=1 p

2
i ≥ 1/n subjected

to the constraint
∑n

k=1 pi . Therefore,

n∑

k=1

(
1

n + ηi (xik − μi )

)2

≥ 1

n
.

Suppose thatμi belongs to an infinitesimal set containingμ0
i as interior point. Consider

the approximation

ηi (μi ) ≈ n
∑n

k=1(xik − μi )
∑n

k=1(xik − μi )2
.
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It is not difficult to see that

n∑

k=1

(
xik − μi

n + ηi (xik − μi )

)2

= 1

n2

n∑

k=1

(xik − μi )
2
{

1 − 2

n
(xik − μi )ηi (μi ) + · · ·

}

= Op(n
−1).

Then, the second-order derivative is bounded below by some positive Op(n)

quantity. ��
Lemma 3 The objective function (9) admits a local solution in the interior of the ball

B =
{

(μ(1), . . . , μ(c)) :
c∑

s=1

(
μ(s) − μ0

(s)

)2 ≤ ε22

}

with probability going to one. See Convention A1 for the definition of ε2.

Proof Since B is compact, there must be a minimum within B. To complete the
proof, we show with probability going to one that on the boundary ∂B, we have
Q†(μ(1), . . . , μ(c)) > Q†(μ0

(1), . . . , μ
0
(c)). Then, such a minimum must not be

attained on the boundary. There must be a local minimum in the interior ofB. Consider
the approximation

Q†(μ(1), . . . , μ(c)) − Q†
(
μ0

(1), . . . , μ
0
(c)

)

=
(
μ(1) − μ0

(1), . . . , μ(c) − μ0
(c)

)
· ∇L†

(
μ0

(1), . . . , μ
0
(c)

)

+
(
μ(1) − μ0

(1), . . . , μ(c) − μ0
(c)

)T ∇2L†
(
μ0

(1), . . . , μ
0
(c)

)

(
μ(1) − μ0

(1), . . . , μ(c) − μ0
(c)

)
+ λ

∑

s<t

⎛

⎝
bs∑

i=bs−1+1

bt∑

j=bt−1+1

wi j

⎞

⎠

(
|μ(s) − μ(t)| − |μ0

(s) − μ0
(t)|
)

= R1 + R2 + R3.

From Condition (A1) and Lemma 2, R1 ≤ Op((mn)1/2ε2), R2 ≥ Op(mnε22), and
R3 ≤ Op(λm2ε2). Conditions (B2)–(B3) guarantee that the positive term R2 domi-
nates both R1 and R3 and thus R1 + R2 + R3 > 0. ��

References

Agresti, A., Bini, M., Bertaccini, B., Ryu, E. (2008). Simultaneous confidence interval for comparing
binomial parameters. Biometrics, 64, 1270–1275.

Andreou, E., Ghysels, E. (2002). Detecting multiple breaks in financial market volatility dynamics. Journal
of Applied Econometrics, 17, 579–600.

123



Clustering of subsample means 173

Bonferroni, C. E. (1936). Teoria statistica delle classi e calcolo delle probabilita Pubblicazioni. del R Istituto
Superiore di Scienze Economiche e Commerciali di Firenze, 8, 3–62.

Cao, R., Van Keilegom, I. (2006). Empirical likelihood tests for two-sample problems via nonparametric
density estimation. The Canadian Journal of Statistics, 34, 61–77.

Coutts, J. A., Hayes, P. A. (1999). The weekend effect, the stock exchange account and the financial times
industrial ordinary shares index: 1987–1994. Applied Financial Economics, 9, 67–71.

Dmitrienko, A., Tamhane, A., Bretz, F. (2009).Multiple testing problems in pharmaceutical statistics. Boca
Raton: Chapman and Hall/CRC Press.

Duncan, D. B. (1955). Multiple range and multiple F tests. Biometrics, 11, 1–42.
Efron, B., Tibshirani, R. J. (1993). An introduction to the bootstrap. New York: Chapman and Hall.
Fan, J., Li, R. (2001). Variable selection via non concave penalized likelihood and its oracle properties.

Journal of American Statistical Association, 96, 1348–1360.
Fan, J., Lv, J. (2010). A selective overview of variable selection in high dimensional feature space. Statistica

Sinica, 20, 101–148.
Fan, J., Peng, H. (2004). On nonconcave penalized likelihood with diverging number of parameters. The

Annals of Statistics, 32, 928–961.
Fan, Y., Tang, C. Y. (2013). Tuning parameter selection in high dimensional penalized likelihood. The

Annals of Statistics, 38, 3567–3604.
Fisher, R., Tippett, L. H. C. (1928). Limiting forms of the frequency distribution of largest or smallest

member of a sample. In Proceedings of the Cambridge philosophical society (Vol. 24, pp. 180–190).
French, K. (1980). Stock returns and the weekend effect. Journal of Financial Economics, 8, 59–69.
Friedman, J., Hastie, T., Hofling, H., Tibshirani, R. (2007). Pathwise coordinate optimization. Annals of

Applied Statistics, 2, 302–332.
Fu, W. J. (1998). Penalized regression: The bridge versus the LASSO. Journal of Computational and

Graphical Statistics, 7, 397–416.
Gabriel, K. (1969). Simultaneous test procedures—Some theory of multiple comparisons. The Annals of

Mathematical Statistics, 40, 224–250.
Gelman, A., Hill, J., Yajima, M. (2012). Why we (usually) don’t have to worry about multiple comparisons.

Journal of Research on Educational Effectiveness, 5, 189–211.
Geman, D., d’Avignon, C., Winslow, R. (2004). Classifying gene expression profiles from pairwise mRNA

comparisons. Statistical Applications in Genetics and Molecular Biology, 3(1), 1–19.
Gnedenko, B. V. (1943). Sur la distribution limite du terme d’une série aléatoire. Annals of Mathematics,

44, 423–453.
Hehlmann, R., Heimpel, H., Hasford, J., Kolb, H. J., Pralle, H., Hossfeld, D. K., Queisser, W., Loeffler,

H., Hochhaus, A., Heinze, B. (1994). Randomized comparison of interferon-alpha with busulfan and
hydroxyurea in chronic myelogenous leukemia. The German CML study group. Blood, 84(12), 4064–
4077.

Hochberg, Y., Tamhane, A. C. (1987). Multiple comparison procedures. New York: Wiley.
Jing, B. Y. (1995). Two-sample empirical likelihood method. Statistics & Probability Letters, 24, 315–319.
Kleinman, K., Huang, S. S. (2016). Calculating power by bootstrap, with an application to cluster-

randomized trials. The Journal for Electronic Health Data and Methods, 4, 1202.
Lawley, D. N.,Maxwell, A. E. (1971).Factor analysis as a statistical method. NewYork: American Elsevier

Publisher Company.
Leng, C., Tang, C. Y. (2012). Penalized empirical likelihood and growing dimensional general estimating

equations. Biometrika, 99, 703–716.
Lin, Y. Q., Cheung, S. H., Poon, W. Y., Lu, T. Y. (2014). Pairwise comparisons with ordered categorical

data. Statistics in Medicine, 32, 3192–3205.
Liu, Y., Zou, C., Zhang, R. (2008). Empirical likelihood for the two-sample mean problem. Statistics &

Probability Letters, 78, 548–556.
Marchetti, Y., Zhou, Q. (2014). Solution path clustering with adaptive concave penalty. Electronic Journal

of Statistics, 8, 1569–1603.
McCormick,W. P. (1980).Weak convergence for themaxima of stationaryGaussian processes using random

normalization. Annals of Probability, 8, 483–497.
Miller, R. (1981). Simultaneous statistical inference. New York: Springer.
Ng, C. T., Yau, C. Y., Chan, N. H. (2015). Likelihood inference for high-dimensional factor analysis of time

series with applications in finance. Journal of Computational and Graphical Statistics, 24, 866–884.

123



174 Q. Van Nong, C. T. Ng

Owen, A. B. (1988). Empirical likelihood ratio confidence intervals for a single functional. Biometrika, 75,
237–249.

Owen, A. B. (2001). Empirical likelihood. New York: Chapman & Hall/CRC.
Pan, W., Shen, X., Liu, B. (2013). Cluster analysis: Unsupervised learning via supervised learning with a

non-convex penalty. Journal of Machine Learning Research, 14, 1865–1889.
Qin, J., Lawless, J. F. (1994). Empirical likelihood and general estimating equations.TheAnnals of Statistics,

22, 300–325.
Rogalski,R. J. (1984).Newfindings regardingday-of-the-week returns over trading andnon-tradingperiods:

A note. The Journal of Finance, 39, 1603–1614.
Romano, J. P., Shaikh, A., Wolf, M. (2011). Consonance and the closure method in multiple testing. The

International Journal of Biostatistics, 7(1), 1–25.
Sonnemann, E. (2008). General solutions to multiple testing problems. Biometrical Journal, 50, 641–656.

(translationwithminor corrections of the original article Sonnemann, E. (1982). Allgemeine Lösungen
multipler Testprobleme. EDV in Medizin und Biologie 13, 120–128 by Helmut Finner).

Steeley, J. M. (2001). A note on information seasonality and the disappearance of the weekend effect in the
UK stock market. Journal of Banking and Finance, 25, 1941–1956.

Tang, C. Y., Leng, C. (2010). Penalized high-dimensional empirical likelihood. Biometrika, 97, 905–920.
Tibshirani, R. (1996). Regression shrinkage and selection via the LASSO. Journal of the Royal Statistical

Society, Series B, 58, 267–288.
Tibshirani, R. J., Taylor, J. (2011). The solution path of the generalized lasso. Annals of Statistics, 39,

1335–1371.
Tsao,M.,Wu,C. (2006). Empirical likelihood inference for a commonmean in the presence of heteroscedas-

ticity. The Canadian Journal of Statistics, 34, 45–59.
Tukey, J. (1949). Comparing individual means in the analysis of variance. Biometrics, 5(2), 99–114.
Van’t Veer, L. J., Dai, H., VanDeVijver,M. J., He, Y. D., Hart, A. A.,Mao,M., et al. (2002). Gene expression

profiling predicts clinical outcome of breast cancer. Nature, 415(6871), 530–536.
Variyath, A. M., Chen, J., Abraham, B. (2010). Empirical likelihood based variable selection. Journal of

Statistical Planning and Inference, 140, 971–981.
Wang, H., Leng, C. (2007). Unified LASSO estimation via least squares approximation. Journal of the

American Statistical Association, 101, 1418–1429.
Wang, H., Li, B., Leng, C. (2009). Shrinkage tuning parameter selection with a diverging number of

parameters. Journal of Royal Statistical Society, B, 71, 671–683.
Wu, C., Yan, Y. (2012). Empirical likelihood inference for two-sample problems. Statistics and Its Interface,

5, 345–354.
Wu, T. T., Lange, K. (2008). Coordinate descent algorithms for lasso penalized regression.Annals of Applied

Statistics, 2, 224–244.
Xie, B., Pan, W., Shen, X. (2008). Penalized model-based clustering with cluster-specific diagonal covari-

ance matrices and grouped variables. Electronic Journal of Statistics, 2, 168–212.
Zhang, C. H., Zhang, T. (2012). A general framework of dual certificate analysis for structured sparse

recovery problems. ArXiv, e-prints. arXiv:1201.3302.
Zhao, H., Wang, B., Cui, X. (2010). General solutions to consistency problems in multiple hypothesis

testing. Biometrical Journal, 52, 735–746.
Zhu, X., Qu, A. (2018). Cluster analysis of longitudinal profiles with subgroups. Electronic Journal of

Statistics, 12, 171–193.
Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of American Statistical Association,

101, 1418–1429.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/1201.3302

	Clustering of subsample means based on pairwise L1 regularized empirical likelihood
	Abstract
	1 Introduction
	2 Strata-mean clustering via regularized empirical likelihood
	2.1 L1 regularized empirical likelihood estimation
	2.2 Familywise error rate and Bayesian information criterion
	3 Algorithm
	3.1 One-population m-strata case
	3.2 Two-population m-strata case

	4 Consistency theory
	5 Simulation studies

	6 Real data example
	6.1 Chronic myelogenous leukemia survival data
	6.2 Structural change and Monday effect in the stock market
	6.3 Microarray data of breast cancer patients

	7 Conclusion
	Acknowledgements
	A Calculation of derivatives in Sect. 3.2
	B Proofs of main theorems
	B.1 Notation
	B.2 Proof of Theorem 1 and Theorem 2
	B.3 Technical Lemmas
	References





