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I congratulate Professor West for his 2018 Akaike Memorial Lecture Award and
for articulately synthesizing recent research in this unified treatment of the “decou-
ple/recouple” framework. For readers who learned Bayesian dynamic models from
West and Harrison (1997), the motivation and multivariate extensions of univariate
dynamic linear models (DLMs) are familiar. The current focus on modeling sparse
cross-series structure for scaling posterior computations to high dimensions is a wel-
come addendum.

A current challenge in Bayesian analysis is to scale models and computational pro-
cedures to meet the demands of increasingly large and complex data without sacrificing
fundamentals of applied statistics. Physical, social, and economic sciences rely heav-
ily on statistical models that are richly structured, interpretable, and reliably quantify
uncertainty. There is great value to science in models that are both interpretable and
scalable. In this regard, the decouple/recouple framework is an important contribution
for modeling large collections of time series.

The computational gains of the decouple/recouple framework are achieved by
exploiting sparse cross-series structure. At each time ¢, it is assumed that series j
has a known set of simultaneous parents, denoted sp(j) < {1 : g}\{j}. In the
SGDLM setting, the observation of series j at time ¢ is modeled as the composi-
tion of regressions on series-specific covariates x; , and simultaneous parental series
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The y; ; state vector is augmented by zeros to form the jth row in matrix I';, which
encodes the joint collection of simultaneous parent relationships across all series at
time ¢. In I';, the jkth element is nonzero if yi , is a parent of y; ,, and the analysis
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Fig. 1 Mixture prior distribution with a N(0,1) component a point mass at zero (left) and spike and slab
prior (right)

assumes independent Gaussian prior distributions for each nonzero coefficient. The
prior distribution is then

Vida ~ Ny, o) Lkespiy) + (1 = Likesp(ny) S0(¥jk). when j # k. (2)

While practical computational considerations in the SGDLM framework require
that the set of simultaneous parents is either known or estimated with a heuristic
algorithm (Gruber and West 2017), modeling the probability that series  is included in
sp(j) sheds light on connections between the decouple/recouple framework and other
well-known variable selection methods. In addition, it points to interesting directions
of future research. Suppose a model extension where P(k € sp(j)) = 7 is the prior
probability that series k is in sp(j). Then, the prior distribution for state variable y; x ,
would be a mixture

Vika ~ TN (my, 02) + (1 = )80 (j k) 3)

where one component is the standard N (m,,, af) prior when k € sp(j) and the other
is a point mass at zero when k ¢ sp(j). This scenario is illustrated in Fig. 1 (left).

An interesting direction of future research is to relax the assumption that y; x ; = 0
whenk ¢ sp(j)andintroduce a Gaussian noise centered at zero instead. The exact zero
that encodes sparse structure is elegant; however, there may be further computational
gains to be achieved by allowing contributions from series that are approximately
rather than exactly zero. In this spike and slab type setting (George and McCulloch
1993), the prior for each y; i, is a mixture of two Gaussian distributions, the original
Gaussian component and a Gaussian component tightly concentrated around zero
[Fig. 1 (right)]. When utilizing simultaneous values from other time series y;,j),r as
regressors, choosing which series to include in sp(j) is a dynamic variable selection
problem, and Rockova and McAlinn (2017) utilize the spike and slab prior to model
dynamic sparse structure.
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While Professor West makes it clear that, in the present work, the use of graphical
structure is a means to improve forecast performance in multivariate time series and
not a key inference goal, there are applications where inferring parental relationships
in cross-series structure is important. One example is managing the risk of contagion
in financial crises. Given a large collection of real-time stock price data for system-
ically important financial institutions, inferring simultaneous parents of individual
institutions (Wells Fargo, for example) is useful to both regulators and policymak-
ers. Learning simultaneous parents is especially important when designing market
interventions to prevent (or halt) contagion. Rather than making investments in all
systemically important banks, as the Federal Reserve did in the financial crisis of
2008, a central bank could make targeted investments in the few firms that are simul-
taneous parents to many other institutions.
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