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Abstract
The author focuses on the “decoupling and recoupling” idea that can critically increase
both computational and forecasting efficiencies in practical problems for economic
and financial data. My discussion is twofold. First, I briefly describe the idea with an
example of time-varying vector autoregressions, which are widely used in the context.
Second, I highlight the issue of how to assess patterns of simultaneous relationships.
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1 Introduction

I thank the author for a great discussion of recent advances in Bayesian multivariate
time-series modeling strategies with several relevant and practical examples in eco-
nomics and financial data problems. I believe that his comprehensive description of
key model structure and methods as well as notes on challenges and opportunities
are all beneficial to readers. One of the main focuses in the paper is the decoupling
and recoupling idea for estimating and forecasting multivariate time-series models.
For high-dimensional problems, in particular, the idea is one of the strengths of the
Bayesian approach. To review it, I briefly describe an example of time-varying vector
autoregressions (TV-VAR) and see how the idea is applied to the model in a practi-
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cal setting. Then, I discuss the issue of simultaneous relationships that is one of the
important aspects in the decoupling and recoupling strategy.

2 An example: time-varying vector autoregressions

The VAR models have been popular workhorses in macro- and financial economet-
rics, and the time-varying versions, TV-VARmodels, have become quite popular since
Primiceri (2005) developed a seminal form of the TV-VAR with stochastic volatility.
Yet, the model structure itself was not new: it simply forms a traditional dynamic
linear model (e.g., West and Harrison 1997). The Primiceri’s model, specialized for
an analysis with macroeconomic variables, fits a variety of contexts well, in partic-
ular, fiscal and monetary policy discussions (see also Nakajima 2011). In financial
econometrics, Diebold and Yilmaz (2009) exploit the VAR model to assess spillover
effects among financial variables such as stock price and exchange rates, and Geraci
and Gnabo (2018) extend the framework with the TV-VAR.

Define a response yt , (t = 1, 2, . . .), as the q × 1 vector. The TV-VAR(p) model
forms

Atyt =
p∑

j=1

F j tyt− j + εt , εt ∼ N (0,Λt ),

whereF j t is the q×q matrix of lag coefficients, andΛt is the q×q diagonal volatility
matrix with i th diagonal element denoted by σ 2

i t . Note that the model can include
time-varying intercepts and regression components with other explanatory variables,
although these additional ingredients do not change the following discussion.

TheAt is the q×q matrix that defines simultaneous relationship among q variables,
which is analogous to simultaneous parents and parental predictors in the author’s
discussion. With the diagonal structure of Λt , the At defines patterns of contempora-
neous dependencies among the responses {y1t , . . . , yqt }. For identification, the model
requires at least q(q − 1)/2 elements in the off-diagonal part of At set to be zero.

A typical assumption for the contemporaneous structure in macroeconomic and
financial variable data contexts is a triangular matrix:

At =

⎛

⎜⎜⎜⎜⎝

1 0 · · · 0

− a21t
. . .

. . .
...

...
. . .

. . . 0
− aq1t · · · − aq,q−1,t 1

⎞

⎟⎟⎟⎟⎠
.

This leads to an implied reduced model form:

yt =
p∑

j=1

B j tyt− j + νt , νt ∼ N (0,Σ t ), (1)
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where B j t = A−1
t F j t , for j = 1 : p, and Σ t = A−1

t ΛtA′
t
−1. We can see that the

variance matrix of the innovation, Σ t , forms a Cholesky-style decomposition with
At and Λt . This restricts q(q − 1)/2 elements in At to be zero, and so requires no
additional constraints for identification. The parental predictors of DDNMs (in Section
3) have the same structure as the contemporaneous relationship relies on only one side
(upper or lower) of the triangular part in At . The discussion of the DDNMs assumes
more sparse structure as q increases, i.e., most of ai j t ’s are potentially zero.

A decoupling step is implemented by recasting the model as a triangular set of
univariate dynamic regressions:

y1t = b′
1txt−1 + ε1t ,

y2t = a21t y1t + b′
2txt−1 + ε2t ,

y3t = a31t y1t + a32t y2t + b′
3txt−1 + ε3t ,

...
...

yqt = aq1t y1t + · · · + aq,q−1,t yq−1,t + b′
qtxt−1 + εqt ,

where xt−1 is the pq × 1 vector of lagged responses, defined by x′
t−1 = (y′

t−1, . . . ,

y′
t−p); bi t is the corresponding vector that consists of lag coefficient elements inB j t ’s;
and εi t ∼ N (0, σ 2

i t ), for i = 1 : q. The key technical benefit is Cov(εi t , ε js) = 0,
for i �= j as well as for all t, s. Under conditionally independent priors over the
coefficient processes and parameters, the model structure enables us to estimate q
univariate dynamic regression models separately, and in parallel. Gains in computa-
tional efficiency are relevant, in particular as q increases, i.e., in higher-dimensional
problems.

Then, posterior estimates from the decoupling step are fed into the recoupling step
for forecasting and decisions. The recoupledmodel is basically based onEq. (1), where
the At elements link (“cross-talk”) contemporaneous relationships among the yit .
Sequential forecasting and intervention analyses are straightforward with the reduced
form equations.

3 Contemporaneous relationship

As discussed by the author in the paper, the ordering of the responses in yt , and more
generally, the structure of At can be the issue. As far as an interest in forecasting is
concerned, ordering is almost irrelevant because a predictive distribution relies only
on the resulting covariance matrix Σ t in Eq. (1). However, some other analysis such
as intervention and impulse response analysis may suffer from the issue.

There are mainly three formal approaches to address the structure of At . One way
is a use of economic theory or “prior” based on economic reasonings. In macroe-
conomics, the Cholesky-style decomposition has been widely used with the ordering
determined based on some economic reasoning (Sims 1980). For example, the interest
rate is often placed last in the ordering as changes in the interest rate reflect contem-
poraneous changes in other macroeconomic variables such as output and inflation
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rate. Christiano et al. (1999) propose a block recursive approach that restricts several
elements in the triangular part to be zero.

The second approach is based on model fit and forecasting performance: one exam-
ple is described in the SGDLM application (in Section 4.6). This gives an “optimal”
pattern of the simultaneous parents in terms of forecasting, while some priors or con-
straints may be required if q is quite large. The example in the paper sets |pa( j)| = 20,
for q = 401, assuming relatively few series have conditional contemporaneous rela-
tionships with others. The third approach is a full analysis, searching for the best
patterns of the simultaneous parents over all the possible combinations. When q is
small, it is possible to implement even if At is time varying (see e.g., Nakajima and
West 2013, 2015). However, if q is large, it would be almost infeasible due to the
computational burden in practice. Finally, a mixture of the theory-based approach and
more data-based approaches could be suitable depending on data and context.

References

Christiano, L. J., Eichenbaum, M., Evans, C. L. (1999). Monetary policy shocks: What have we learned
and to what end? In J. B. Taylor & M. Woodford (Eds.), Handbook of macroeconomics, Vol. 1A, pp.
65–148. Amsterdam: Elsevier Science.

Diebold, F. X., Yilmaz, K. (2009).Measuring financial asset return and volatility spillovers, with application
to global equity markets. Economic Journal, 119, 158–171.

Geraci, M. V., Gnabo, J. Y. (2018). Measuring interconnectedness between financial institutions with
Bayesian time-varying vector autoregressions. Journal of Financial and Quantitative Analysis, 53,
1371–1390.

Nakajima, J. (2011). Time-varying parameterVARmodelwith stochastic volatility: An overview ofmethod-
ology and empirical applications. Monetary and Economic Studies, 29, 107–142.

Nakajima, J., West, M. (2013). Bayesian analysis of latent threshold dynamic models. Journal of Business
and Economic Statistics, 31, 151–164.

Nakajima, J., West, M. (2015). Dynamic network signal processing using latent threshold models. Digital
Signal Processing, 47, 5–16.

Primiceri, G. E. (2005). Time varying structural vector autoregressions and monetary policy. Review of
Economic Studies, 72, 821–852.

Sims, C. A. (1980). Macroeconomics and reality. Econometrica, 48, 1–48.
West, M., Harrison, P. J. (1997). Bayesian forecasting and dynamic models, 2nd edn. New York: Springer.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Discussion of ``Bayesian forecasting of multivariate time series: scalability, structure uncertainty and decisions''
	Abstract
	1 Introduction
	2 An example: time-varying vector autoregressions
	3 Contemporaneous relationship
	References




