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Abstract
I discuss recent research advances in Bayesian state-space modeling of multivariate
time series. A main focus is on the “decouple/recouple” concept that enables applica-
tion of state-space models to increasingly large-scale data, applying to continuous or
discrete time series outcomes. Applied motivations come from areas such as financial
and commercial forecasting and dynamic network studies. Explicit forecasting and
decision goals are often paramount and should factor into model assessment and com-
parison, a perspective that is highlighted. The AkaikeMemorial Lecture is a context to
reflect on the contributions of Hirotugu Akaike and to promote new areas of research.
In this spirit, this paper aims to promote new research on foundations of statistics
and decision analysis, as well as on further modeling, algorithmic and computational
innovation in dynamic models for increasingly complex and challenging problems in
multivariate time series analysis and forecasting.

Keywords Bayesian forecasting · Bayesian model emulation · Decision-guided
model assessment · Decouple/recouple · Dynamic dependency networks · Integer
count time series · Multi-scale models · Network flows · Simultaneous graphical
dynamic models · Time series monitoring

1 Introduction

Hirotugu Akaike was a seminal contributor to statistical science in its core concep-
tual bases, in methodology and in applications. I overview some recent developments
in two areas in which Akaike was an innovator: statistical time series modeling and
statistical model assessment (e.g., Akaike 1974, 1978, 1979, 1981; Parzen et al.
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2 M. West

1998). These continue to be challenging areas in basic statistical research as well as
in expanding applications. I highlight recent developments that address statistical and
computational scalability of multivariate dynamic models, and questions of evaluat-
ing and comparing models in the contexts of explicit forecasting and decision goals.
The content is selective, focused on Bayesian methodology emerging in response to
challenges in core and growing areas of time series applications.

Several classes of models are noted. In each, advances have used variants of the
“decouple/recouple” concept to: (a) defineflexible dynamicmodels for individual, uni-
variate series; (b) ensure flexibility and relevance of cross-series structures to define
coherent multivariate dynamic models; (c) maximally exploit simple, analytic compu-
tations for sequential model fitting (forward filtering) and forecasting; and (d) enable
scalability of resulting algorithms and computations for model fitting, forecasting and
use. Model classes include dynamic dependency network models (Sect. 3) and the
more general simultaneous dynamic graphical models (Sect. 4). These define flexibil-
ity and scalability for conditionally linear dynamic models and address, in particular,
concerns for improved multivariate volatility modeling. Further classes of models
are scalable, structured multivariate and multi-scale approaches for forecasting dis-
crete/count time series (Sect. 5), and new classes of dynamic models for complicated
and interacting flows of traffic in networks of various kinds (Sect. 6). In each of these
areas of recent modeling innovation, specific problems defining applied motivation
are noted. These include problems of time series monitoring in areas including studies
of dynamic flows on Internet networks, problems of forecasting with decision goals
such as in commercial sales and macroeconomic policy contexts, and problems of
financial time series forecasting for portfolio decisions.

Following discussion of background andmultivariateBayesian time series literature
in Sect. 2, Sects. 3–6 each contact one of the noted model classes, with comments on
conceptual innovation linked to decouple/recouple strategies to address the challenges
of scalability and modeling flexibility. Contact is also made with questions of model
comparisons and evaluation in the contexts of specific applications, with the example
areas noted representing ranges of applied fields for which the models and methods
are increasingly relevant as time series data scales increase. Each section ends with
some comments on open questions, challenges and hints for future research directions
linked to the specific models and applied contexts of the section.

2 Background and perspectives

2.1 Multivariate time series and dynamic models

Multivariate dynamic linear models (DLMs) with conditionally Gaussian structures
remain at the heart of many applications (West and Harrison 1997, chap. 16; Prado
and West 2010, chaps. 8–10; West 2013). In such contexts, denote by yt a q-vector
time series over equally spaced discrete time t where each element y j,t follows a
univariate DLM: y j,t = F′

j,tθ j,t + ν j,t with known dynamic regression vector F j,t ,

latent state vector θ j,t and zero-mean, conditionally normal observation errors ν j,t

with, generally, time-varying variances. The state vector evolves via a conditionally
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Bayesian forecasting of multivariate time series 3

linear, Gaussian evolution equation θ j,t = G j,tθ j,t−1 + ω j,t with known transition
matrix G j,t and zero-mean, Gaussian evolution errors (innovations) ω j,t . The usual
assumptions include mutual independence of the error series and their conditional
independence on past and current states. Discount factors are standard in structuring
variance matrices of the evolution errors and dynamics in variances of observation
errors, a.k.a. volatilities. See Chapter 4 in West and Harrison 1997; Prado and West
2010 for complete details. In general, F j,t may contain constants, predictor variables,
lagged values of the time series and latent factors that are also modeled. In the latter
case, resulting dynamic latent factor models are not amenable to analytic forward
filtering and forecasting computations; computationally intensive methods including
Markov chain Monte Carlo (MCMC) are needed.

Some multivariate models central to applied work just couple together this set
of univariate DLMs. Consider special cases when F j,t = Ft and G j,t = Gt for all
j = 1 : q, so the DLMs share common regression vectors and evolution matrices. This
defines the class of common components, or exchangeable time series models (Prado
andWest 2010, chap. 10) with yt = F′

t�t +νt where�t = [θ1,t , . . . , θq,t ] and where
νt is the q-vector of the observation errors. The state evolution becomes a matrix sys-
tem for�t with conditional matrix-normal structure. Special cases include traditional
time-varying vector autoregressions (TV-VAR) when Ft includes lagged values of the
y j,t (Kitagawa and Gersch 1996; Prado and West 2010, chap. 9). A critical feature
is that these models allow coupling via a volatility matrix V (νt ) = �t to represent
dynamics in cross-series relationships through a role in the matrix-normal evolution
of�t as well as in individual volatilities. The standard multivariate discount volatility
model underlies the class of dynamic inverse Wishart models for �t , akin to random
walks on the implied precisionmatrices�t = �−1

t . Importantly, the resulting analysis
for forward filtering and forecasting is easy. Prior and posterior distributions for �t as
it changes over time are inverseWishart, enabling efficient sequential analysis, and ret-
rospective analysis exploits this for simple posterior sampling over historical periods.
Alternative multivariate volatility models—such as various multivariate GARCH and
others—are, in contrast, often difficult to interpret and challenging to fit and obviate
analytic sequential learning and analysis. Though the dynamicWishart/common com-
ponents model comes with constraints (noted below), it remains a central workhorse
model for monitoring, adapting to and—in short-term forecasting—exploiting time
variation in multivariate relationships in relatively low-dimensional series.

2.2 Parameter sparsity and dynamic graphical model structuring

Interest develops in scaling to higher dimensions q, particularly in areas such as
financial time series. A main concern with multivariate volatility models is/was that
of over-parametrization of variance matrices �t = �−1

t , whether time varying or
not. One natural development to address this was the adaptation of ideas of Bayesian
graphical modeling (Jones et al. 2005; Jones and West 2005). A conditional normal
model in which each �t has zeros in some off-diagonal elements reflects conditional
independence structures among the series visualized in an undirected graph: pairs of
variables (nodes) are conditionally dependent given all other variables if, and only
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4 M. West

Fig. 1 Time series of monthly% financial returns on a set of q = 30 Vanguardmutual funds over a period of
years indicated. The series represent 18 activelymanaged funds and 12 index funds that are, in principle, less
expensive for an investor. High dependence across returns series is clear, suggesting that model parameter
dimension reduction—such as offered by graphical model structuring of precision matrices �t—is worth
exploring

if, they have edges between them in the graph. The binary adjacency matrix of the
graph is a visual of this. Consider the q = 30 series of monthly returns on a set of
Vanguardmutual funds in Fig. 1 as an example; viewing the image in Fig. 2 as if it were
purely white/black, it represents the adjacency matrix of a graph corresponding to off-
diagonal zeros in�t . The image indicates strong sparsity representing a small number
of nonzero elements; this means significant conditional independence structure and
constraints leading to parameter dimension reduction in �t .

Advances in dynamic modeling extending theory of hyper-inverse Wishart distri-
butions for (decomposable) graphical models (Jones et al. 2005) represented the first
practical use of graphical models for parameter dimension reduction. One of the key
features of such extensions is that the analytically tractable forward filtering, forecast-
ing and retrospective posterior sampling methodology is maintained for these models
conditional on any specified set of conditional independence relationships, i.e., on
any specified graph G (Carvalho and West 2007a, b; Carvalho et al. 2007). Examples
in these papers prove the principle and highlight practical advances in methodology.
First, sparsity is often supported by time series data, and forecast accuracy is often
improved as a result when using graphs G that are sparse and that the data support.
Second, decisions based on data-relevant sparse models are often superior—in terms
of realized outcomes—to those of the over-parametrized traditional full models, i.e.,
models with a complete graph and no zeros in �t . The statistical intuition that com-
plicated patterns of covariances across series—and their changes over time—can be
parsimoniously represented with often far fewer parameters than the full model allows
is repeatedly borne out in empirical studies in financial portfolio analyses, economet-
ric and other applications (e.g., Carvalho and West 2007b; Reeson et al. 2009; Wang
andWest 2009;Wang 2010;Wang et al. 2011). More recent extensions—that integrate
thesemodels into larger Bayesian analyses withMCMC-based variable selection ideas
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Bayesian forecasting of multivariate time series 5

Fig. 2 Image of posterior probabilities of pairwise edge inclusion in the adjacency matrix of the graph
underlying the dynamic precision structure of a multivariate volatility model for 30 monthly Vanguard fund
return times series. The scale runs from 0 (white) to 1 (black) with increasing intermediate gray shades.
The horizontal and vertical lines separate the funds into the set of 18 managed funds (above/left) and index
funds (below/right). Funds are ordered within each category so that most of the high probability edges
cluster near the diagonal. The figure indicates very concentrated posterior probabilities with multiple edges
clearly in and many others excluded, and a strong level of sparsity

and others (e.g.,Ahelegbey et al. 2016a, b; Bianchi et al. 2019)—continue to show the
benefits of sparse dynamic graphical model structuring.

2.3 Model evaluation, comparison, selection and combination

Graphically structured extensions of multivariate state-space models come with sig-
nificant computational challenges unless q is rather small. Since G becomes a choice,
there is a need to evaluate and explore models indexed by G. Some of the above refer-
ences use MCMC methods in which G is an effective parameter, but these are simply
not attractive beyond rather low dimensions. As detailed and exemplified in Jones
et al. (2005), for example, MCMC can be effective in models with q ∼ 20 or less with
decomposable graphical models, but simply infeasible computationally—in terms of
convergence—as q increases further. The MCMC approach is simply very poorly
developed in any serious applied sense in more general, non-decomposable graph-
ical models, to date; examples in Jones et al. (2005) showcase the issues arising
with MCMC in even low dimensions (q ∼ 15 or less) for the general case. One
response to these latter issues has been the development of alternative computational
strategies using stochastic search to more swiftly find and evaluate large numbers
of models/graphs G. The most effective, to date, builds on shotgun stochastic search
concepts (e.g., Jones et al. 2005; Hans et al. 2007a, b; Scott and Carvalho 2008; Wang
2015). This approach uses a defined score to evaluate a specific model based on one
graph G and then explore sets of “similar” graphs that differ in terms of a small num-
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6 M. West

ber of edges in/out. This process is sequentially repeated to move around the space of
models/graphs, guided by the model scores, and can exploit parallelization to enable
swift exploration of large numbers of more highly scoring graphs.

Write Dt for all observed data at time t and all other information—including val-
ues of all predictors, discount factors, interventions or changes to model structure,
future values of exogenous predictors—relevant to forecasting. The canonical sta-
tistical score of G based on data over t = 1 : n is the marginal likelihood value
p(y1 : n|G,D0) = ∏

t=1 : n p(yt |G,Dt−1). At time n, evaluating this score across
graphs G1, . . . ,Gk with specified prior probabilities leads—by Bayes’ theorem—to
posteriormodel probabilities over these k graphs at this time t .With this score, stochas-
tic search methods evaluate the posterior over graphs conditional on those found in
the search. Inferences and predictions can be defined by model averaging across the
graphs in the traditional way (West and Harrison 1997, chap. 12; Prado and West
2010, chaps. 12). The image in Fig. 2 shows partial results of this from one analysis
of the Vanguard funds. This simple model used constitutes a local level with discount-
based volatility on any graph G (precisely as in other examples in (Prado and West
2010, sects. 10.4 & 10.5). The figure shows a high level of implied sparsity in �t with
strong signals about nonzero/zero entries.

Traditional model scoring via AIC, BIC and variants (Akaike 1974, 1978, 1979,
1981; Konishi and Kitagawa 2007, and references therein Prado and West 2010, sect.
2.3.4) define approximations to log marginal likelihoods. As with full Bayesian anal-
ysis based on implied model probabilities, these statistical metrics score models based
on one-step ahead forecasting accuracy: The overall score from n observations is
the product of realized values of one-step forecast densities. This clearly demarks
the applied relevance of this score. If the view is that a specific “true” data generating
process is within the span of a set of selectedmodelsG1, . . . ,Gk, posteriormodel prob-
abilities will indicate which are “nearest” to the data; for large n, they will concentrate
on one “Kullback-Leibler” nearest model (West and Harrison 1997, sect. 12.2). This
is relevant in contexts where the graphical structure is regarded as of inherent interest
and one goal is to identify data-supported graphs (e.g., Tank et al. 2015, and references
therein).

However, more often than not in applications, the role of G is as a nuisance param-
eter and a route to potentially improve accuracy and robustness in forecasting and
resulting decisions. That posterior model probabilities ultimately degenerate is a neg-
ative in many contexts and is contrary to the state-space perspective that changes are
expected over time—changes in relevant model structures as well as state vectors
and volatility matrices within any model structure. Further, models scoring highly in
one-step forecasting may be poor for longer-term forecasting and decisions reliant on
forecasts. While these points have been recognized in recent literature, formal adop-
tion of model evaluation based on other metrics is not yet mainstream. In an extended
class of multivariate dynamic models, Nakajima and West (2013a) and Nakajima and
West (2013b) focused on comparing models based on h-step ahead forecast accuracy
using horizon-specific model scores: time aggregates of evaluated predictive densities
p(yt+h−1|G,Dt−1). It is natural to consider extensions to score full path forecasts over
times t : t + h − 1 based on time aggregates of p(yt : t+h−1|G,Dt−1) (Lavine et al.
2019). Similar ideas underlie model comparisons for multi-step forecasting in differ-
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Bayesian forecasting of multivariate time series 7

Fig. 3 Image formatted as in Fig. 2. Now, the 0–1 (white–gray–black) scale indicates frequency of pairwise
edge inclusion across 1000 graphical models identified in stochastic search over graphs guided by a chosen
portfolio allocation decision analysis. These 1000 graphs were those—out of many millions evaluated—
generating the highest returns over a test time period. Funds are reordered within each of the two categories
so that most of the high probability edges cluster near the diagonal. The figure indicates somewhat different
structure and a higher level of sparsity than that in Fig. 2

ent contexts in McAlinn and West (2019) and McAlinn et al. (2019), where models
rebuilt for specific forecast horizons are shown to be superior to using one model for
all horizons, whatever the model selection/assessment method.

Extending this point, models scoring highly on statistical metrics may or may not
be optimal for specific decisions reliant on forecasts. While it is typical to proceed this
traditional way, increasing attention is needed on decision-guided model selection. An
empirical example in sequential portfolio analysis of the Vanguard mutual fund series
highlights this. Using the same model as underlies the statistical summaries on sparse
structure in �t in Fig. 2, stochastic search analysis over graphs G was rerun guided by
a portfolio metric rather than the conditional posterior model probabilities. For one
standard target portfolio loss function, portfolios were optimized and returns realized
over the timeperiod, and the score used is simply the overall realized return.Comparing
sets of highprobabilitymodelswith sets of highportfolio returnmodels leads to general
findings consistent with expectations. Models with higher posterior probability are
sparse, with typically 20–30% of edges representing nonzero off-diagonal (and of
course time-varying) precision elements; these models tend to generate ranges of
realized returns at low-to-medium portfolio risk levels. Models with higher realized
returns are also sparse and generally somewhat sparser, and some of the highest return
models have rather low risk.

Figure 3 shows relative frequencies of edge inclusion across a large number of
high scoring portfolio graphs. This appears sparser than in Fig. 2 and has a distinct
feature in that one series (US Growth listed last in the first group of managed funds)
has a large number of edges to other funds; this series is a “hub” in these top-scoring
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8 M. West

graphs. Model search on posterior model probabilities identifies graphs that represent
the complex patterns of collinearities among the series over time in different ways.
Typically, “small” dependencies can be represented in multiple ways; hence, the pos-
terior over graphs will tend to identify more candidate edges for inclusion. In contrast,
the portfolio decision-guided analysis finds value in sparser graphs with this hub-like
structure that is able to generate even weak dependencies among funds other than the
hub fund via the one degree of separation feature. One notable result is that the condi-
tional dependence structure among the index funds (lower right in the figures) appears
much sparser under decision-guided analysis than under statistical analysis. Across
top graphs in terms of portfolios, the US Growth hub fund is a dominant parental
predictor for index funds; Fig. 3 shows that the set of index funds are rendered almost
completely mutually independent conditional on the US Growth fund. This is quite
different to the structure across most highly probably models exhibited in Fig. 2.

While in this applied context the structure of relevant graphs is not of primary
interest compared to finding good models for portfolio outcomes, this rationalization
of differences is illuminating. The example underscores the point that—whether in
time series or other contexts—forecasting and/or decision goals should play central
roles in model evaluation and comparison.

2.4 Challenges and opportunities

Graphical modeling to introduce sparsity—hence parsimony and potential improved
forecasting and decisions—is seeing increased use in time series as referenced ear-
lier. However, several issues in existing model classes limit modeling flexibility and
scalability.With studies in 10s to several 100s of series in areas of finance andmacroe-
conomics becoming routine, some specific issues are noted.

Common components models—including the key class of models with TV-VAR
components—are constrained by the common Ft ,Gt structure and hence increasingly
inflexible in higher dimensions. Then, parameter dimension is a challenge. A TV-
VAR(p) component implies Ft includes pq lagged values yt−1 : t−p, indicating the
issue. Dimension is a key issue with respect to the use of hyper-inverse Wishart (and
Wishart) models, due to their inherent inflexibility beyond low dimensions. The single
degree-of-freedom parameter of such models applies to all elements of the volatility
matrix, obviating customization of practical importance. Larger values of q make
search over graphical models increasingly computationally challenging.

Some of these problems are addressed using more complex models with MCMC
and related methods for model fitting. Models with dynamic latent factors, Bayesian
model selection priors for elements of state vectors (e.g., subset TV-VARcomponents),
and involving “dynamic sparsity” are examples (e.g., Aguilar et al. 1999; Aguilar and
West 2000; Prado et al. 2006; Lopes and Carvalho 2007; Del Negro and Otrok 2008;
Koop and Korobilis 2010; Carvalho et al. 2011; Koop and Korobilis 2013; Nakajima
and West 2013a, b; Zhou et al. 2014; Nakajima and West 2015; Ahelegbey et al.
2016a, b; Kastner et al. 2017; Nakajima and West 2017; Bianchi et al. 2019; McAlinn
and West 2019; McAlinn et al. 2019, and many others). However, one of our earlier
noted desiderata is to enable scaling and modeling flexibility in a sequential analysis
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Bayesian forecasting of multivariate time series 9

format, which conflicts with increasingly large-scale MCMCmethods: Such methods
are often inherently challenging to tune and run, and application in a sequential context
requires repeat MCMC analysis each time point.

3 Dynamic dependence networkmodels

3.1 Background

Dynamic dependence networkmodels (DDNMs) as in Zhao et al. (2016) nucleated the
concept of decouple/recouple that has since been more broadly developed. DDNMs
define coherent multivariate dynamic models via coupling of sets of customized uni-
variate DLMs. While the DDNM terminology is new, the basic ideas and strategy
are much older and have their bases in traditional recursive systems of structural
(and/or simultaneous) equation models in econometrics (e.g.,Bodkin et al. 1991, and
references therein). At one level, DDNMs extend this traditional thinking to time-
varying parameter/state-space models within the Bayesian framework. Connecting to
more recent studies, DDNM structure has a core acyclic directed graphical compo-
nent that links across series at each time t to define an overall multivariate (volatility)
model, indirectly generating a full class of dynamic models for �t in the above nota-
tion. DDNMs thus extend earlier multiregression dynamic models that involve acyclic
directed graphical components (Queen and Smith 1993; Queen 1994; Queen et al.
2008; Anacleto et al. 2013; Costa et al. 2015).

Series ordering means that these are Cholesky-style volatility models (e.g., Smith
and Kohn 2002; Primiceri 2005; Shirota et al. 2017; Lopes et al. 2018). The resulting
triangular system of univariate models can be decoupled for forward filtering and then
recoupled using theory and direct simulation for coherent forecasting and decisions.
In elaborate extensions of DDNMs to incorporate dynamic latent factors and other
components, the utility has been evidenced in a range of applications (e.g., Nakajima
and West 2013a, b, 2015, 2017; Zhou et al. 2014; Irie and West 2019).

3.2 DDNM structure

As in Sect. 2.1, take univariate DLMs y j,t = F′
j,tθ j,t + ν j,t under the usual assump-

tions. In a DDNM, the regression vectors and state vectors are conformably partitioned
as F′

j,t = (x′
j,t , y

′
pa( j),t ) and θ ′

j,t = (φ′
j,t , γ

′
j,t ). Here, x j,t has elements such as con-

stants, predictor variables relevant to series j, lagged values of any of the q series,
and so forth; φ j,t is the corresponding state vector of dynamic coefficients on these
predictors. Choices are customizable to series j and, while each model will tend to
have a small number of predictors in F j,t , there is full flexibility to vary choices across
series. Then, pa( j) ⊆ { j + 1 : q} is an index set selecting some (typically, a few) of
the concurrent values of other series as parental predictors of y j,t . The series order
is important; only series h with h > j can be parental predictors. In graph-theoretic
terminology, any series h ∈ pa( j) is a parent of j , while j is a child of h. The
modeling point is clear: If I could know the values of other series at future time t , I
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10 M. West

Fig. 4 DDNM for daily prices of international currencies (FX) relative to the US dollar. In order from
top-down: The univariate DLM for the Singapore dollar (SGD) relies on SGD-specific predictors x1,t and
volatility λ1,t , along with parental predictors given by the contemporaneous values of prices of the Swiss
franc (CHF) and the British pound (GBP); that for the Swiss franc has specific predictors x2,t and the
Japanese yen, British pound and Euro as parents. Further down the list, the potential parental predictors are
more and more restricted, with the final series j = q, here the EURO, having no parents

would presumably choose some of them to use to aid in predicting y j,t ; while this is
a theoretical construct, it reduces to a practicable model as noted below. Then, γ j,t
is the state vector of coefficients on parental predictors of y j,t . Third, the random
error terms ν j,t are assumed independent over j and t , with ν j,t ∼ N (0, 1/λ j,t ) with
time-varying precision λ j,t . Figure 4 shows an illustration of the structure.

For each series y j,t = μ j,t + y′
pa( j),tγ j,t + ν j,t where μ j,t = x′

j,tφ j,t . With μt =
(μ1,t , . . . , μq,t )

′ and νt = (ν1,t , . . . , νq,t )
′, the multivariate model has structural form

yt = μt +
tyt +νt where 
t is the strict upper triangular matrix with above diagonal
rows extending the γ ′

j,t padded with zeros; that is, row j of 
t has nonzero elements
taken from γ j,t in the columns corresponding to indices in pa( j). With increasing
dimension q, models will involve relatively small parental sets so that 
t is sparse.
The reduced form of the model is yt = αt + N (Atμt ,�t ) where At = (I− 
t )

−1 so
that the mean and precision of yt are

Atμt = μt + 
tμt + 
2
t μt + · · · + 


q−1
t μt ,

�t = �−1
t = (I − 
t )

′�t (I − 
t ) = �t − {
′
t�t + �t
t } + 
′

t�
t (1)

where �t = diag(λ1,t , . . . , λq,t ). The mean vector Atμt shows cross talk through the
At matrix: Series-specific forecast components μ j,t can have filtered impact on series
earlier in the ordering based on parental sets. In Fig. 4, series-specific predictions
of CHF and GBP impact predictions of SGD directly through the terms from the
first row of 
tμt ; parental predictors have a first-order effect. Then, series-specific
predictions of EURO also impact predictions of SGD through the 
2

t μt term—EURO
is a grandparental predictor of SGD though not a parent. Typically, higher powers of
t
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Bayesian forecasting of multivariate time series 11

decay to zero quickly (and 

q
t = 0 always) so that higher-order inheritances become

negligible; low-order terms can be very practically important. For the precision matrix
�t , Eq. (1) shows first that nonzero off-diagonal elements are contributed by the term

′
t�t +�t
t ; element� j,h,t = �h, j,t �= 0 if either j ∈ pa(h) or h ∈ pa( j). Second,

the term 
′
t�
t contributes nonzero values to elements � j,h,t if series j, h are each

elements of pa(k) for some other series k; this relates to moralization of directed
graphs, adding edges between cases in which j, h are neither parents of the other but
share a relationship through common child series in the DDNM.

3.3 Filtering and forecasting: decouple/recouple in DDNMs

In addition to the ability to customize individual DLMs, DDNMs allow sequential
analysis to be decoupled—enabling fast, parallel processing—and then recoupled
for forecasting and decisions. The recoupled model gives joint p.d.f. for yt in com-
positional form

∏
j=1 : q p(y j,t |ypa( j),t , θ j,t , λ j,t ,Dt−1) which is just the product

of normals
∏

j=1 : q N (y j,t |F′
j,tθ j,t , 1/λ j,t ) where N (·|·, ·) is the normal p.d.f. For

sequential updating, this gives the time t likelihood function for θ1 : q,t , λ1 : q,t ; inde-
pendent conjugate priors across series are conjugate and lead to independent posteriors.
Using discount factor DLMs, standard forward filtering analysis propagates prior
and posterior distributions for (θ j,t , λ j,t ) over time using standard normal/inverse
gamma distribution theory (Prado andWest 2010, chap. 4) independently across series.
Sequential filtering is analytic and scales linearly in q.

Forecasting involves recoupling and, due to the roles of parental predictors and that
practicable models often involve lagged elements of y∗ in x j,t , is effectively accessed
via direct simulation. Zhao et al. (2016) discuss recursive analytic computation of
k-step ahead mean vectors and variance matrices—as well as precision matrices—
but full inferences and decisions will often require going beyond these partial and
marginal summaries, so simulation is preferred. The ordered structure of a DDNM
means that simulations are performed recursively using the implicit compositional
representation. At time t, the normal/inverse gamma posterior p(θq,t , λq,t |Dt ) is triv-
ially sampled to generate samples from p(θq,t+1, λq,t+1|Dt ) and then p(yq,t+1|Dt ).

Simulated yq,t+1 values are then passed up to the models for other series j < q for
which they are required as parental predictors. Moving to series q − 1, the process is
repeated to generate yq−1,t values and, as a result, samples from p(yq−1 : q,t+1|Dt ).

Recursing leads to full Monte Carlo samples drawn directly from p(yt+1|Dt ).Moving
two steps ahead, on each Monte Carlo sampled vector yt+1 this process is repeated
with posteriors for DLM states and volatilities conditioned on those values and time
index incremented by 1. This results in sampled yt+2 vectors jointly with the condi-
tioning vales at t + 1, hence samples from p(yt+1 : t+2|Dt ). Continue this process to
k-steps ahead to generate full Monte Carlo samples of the path of the series into the
future, i.e., generating from p(yt+1 : t+k |Dt ). Importantly, the analysis is as scalable
as theoretically possible; the computational burden scales as the product of q and the
chosen Monte Carlo sample size and can exploit partial parallelization.
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3.4 Perspectives onmodel structure uncertainty

Examples in Zhao et al. (2016) with q = 13 financial time series illustrate the analysis,
with foci on one-step and five-step forecasting and resulting portfolio analyses. There
the univariate DLM for series j has a local level and some lagged values of series
j only, representing custom time-varying autoregressive (TVAR) predictors for each
series. The model specification relies on a number of parameters and hence there are
model structure uncertainty questions. WriteM j for a set of |M j | candidate models
for series j, with elements Mr

j indexed by specific models r ∈ {1 : |M j |}. In Zhao
et al. (2016), eachMr

j involved one choice of the TVAR order for series j, one value
of each of a set of discount factors (one for each of φ j,t , γ j,t , λ j,t ) from a finite grid of
values, and one choice of the parental set pa( j) fromall possibilities. Importantly, each
of these is series specific and the model evaluation and comparison questions can thus
be decoupled and addressed using training data to explore, compare and score models.
Critically for scalability, decoupling means that this involves a total of

∑
j=1 : q |M j |

models for the full vector series, whereas a direct multivariate analysis would involve
a much more substantial set of

∏
j=1 : q |M j | models; for even relatively small q and

practical models, this is a major computational advance.
A main interest in Zhao et al. (2016) was on forecasting for portfolios, and the

benefits of use of DDNMs are illustrated there. Scoring models on portfolio outcomes
is key, but that paper also considers comparisons with traditional Bayesianmodel scor-
ing via posterior model probabilities. One interest was to evaluate discount-weighted
marginal likelihoods and resulting modified model probabilities that, at each time
point, are based implicitly on exponentially down-weighting contributions from past
data. This acts to avoid model probabilities degenerating and has the flavor of rep-
resenting stochastic changes over time in model space. Specifically, a model power
discount factor α ∈ (0, 1] modifies the time n marginal likelihood on M to give log
score

∑
t=1 : n αn−t log(p(yt |M,Dt−1)). In terms of model probabilities at time t,

the implication is that Pr(M|Dt ) ∝ Pr(M|Dt−1)
α p(yt |M,Dt−1), i.e., a modified

form of Bayes’ theorem that “flattens” the prior probabilities over models using the
α power prior to updating via the current marginal likelihood contribution. At α = 1,
this is the usual marginal likelihood. Otherwise, smaller values of α discount history
in weighting models currently and allow for adaptation over time in model space if
the data suggest that different models are more relevant over different periods of time.
Examples in Zhao et al. (2016) highlight this; in more volatile periods of time (includ-
ing the great recessionary years 2008–2010), models with lower discount factors on
state vectors and volatilities tend to be preferred for some series, while preference for
higher values and, in some cases, higher TVAR order increases in more stable periods.
That study also highlights the implications for identifying relevant parental sets for
each series and how that changes through time.

Zhao et al. (2016) show this modified model weighting can yield major benefits.
Short- and longer-term forecast accuracy is generally improved with α < 1, but
the analysis becomes over-adaptive as α is reduced further. In comparison, portfo-
lio outcomes—in terms of both realized returns and risk measures—are significantly
improved with α just slightly less than 1—but clearly lower than 1—but deteriorate
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for lower values. The power discounting idea (Xie 2012; Zhao et al. 2016) was used
historically in Bayesian forecasting ( West and Harrison 1989a, p.445) and has more
recently received attention linking to parallel historical literature where discount fac-
tors are called “forgetting” factors (Raftery et al. 2010; Koop and Korobilis 2013). The
basic idea and implementation are simple; in terms of a marginal broadening of per-
spectives on model structure uncertainty and model weighting, this power discounting
is a trivial technical step and can yield substantial practical benefits.

3.5 Challenges and opportunities

Scaling DDNMs to increasingly large problems exacerbates the issue of model struc-
ture uncertainty. An holistic view necessitates demanding computation for search over
spaces of models. DDNMs contribute a major advance in reducing the dimension of
model space and open the opportunity formethods such as variants of stochastic search
to be applied in parallel to sets of decoupled univariate DLMs. Nevertheless, scaling
to 00s or 000s of series challenges any such approach.

DDNMs require a specified order of the q series. This is a decision made to struc-
ture the model, but is otherwise typically not of primary interest. It is not typically a
choice to be regarded as a “parameter” and, in some applications, should be regarded
as part of the substantive specification. For example, with lower-dimensional series
in macroeconomic and financial applications, the ordering may reflect economic rea-
soning and theory, as I (with others) have emphasized in related work (e.g., Primiceri
2005; Nakajima and West 2013a, b; Zhou et al. 2014).

Theoretically, series order is irrelevant to predictions as they rely only on the result-
ing precision matrices (and regression components) that are order-free. Practically, of
course, the specification of priors and specific computational methods rely on the cho-
sen ordering and so prediction results will vary under different orders. There are then
questions of more formal approaches to defining ordering(s) for evaluation, and a need
to consider approaches to relaxing the requirement for ordering to begin.

4 Simultaneous graphical dynamic linear models

4.1 SGDLM context and structure

As introduced in Gruber and West (2016), SGDLMs generalize DDNMs by allowing
any series to be a contemporaneous predictor of any other. To reflect this, the parental
set for series j is now termed a set of simultaneous parents, denoted by sp( j) ⊆
{1 : q\ j}, with the same DLM model forms, i.e., y j,t = F′

j,tθ j,t + ν j,t = x′
j,tφ j,t +

y′
sp( j),tγ j,t + ν j,t and other assumptions unchanged. Figure 5 shows an example to
compare with Fig. 4; directed edges can point down as well as up the list of series—
model structure is series order independent and the directed graphical structure is no
longer necessarily acyclic as a result. The implied joint distributions are as in DDNMs
but now 
t—while generally still sparse and with diagonal zeros—does not need
to be upper triangular. This resolves the main constraint on DDNMs while leaving
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Fig. 5 Schematic of SGDLM for FX time series to compare with the DDNM in Fig. 4

Fig. 6 Left: Indicator of simultaneous parents in an example SGDLM with q = 100; nonzero elements in
each row of 
t are shaded. Center: Implied nonzero/zero pattern in precision matrix �t . Right: Implied
nonzero/zero pattern in prediction cross talk matrix At = (I − 
t )

−1

the overall structural form of the model unchanged. DDNMs are special cases when
sp( j) = pa( j) and 
t is upper triangular. The reduced form of the full multivariate
model is yt = αt + N (Atμt ,�t ) with prediction cross talk matrix At = (I − 
t )

−1;
the mean vector and precision matrix are as in eqn. (1), but now the equation forAtμt
is extended to including sums of terms 
k

t μt for k ≥ q. In general, sparse 
t implies
that this infinite series converges as the higher-order terms quickly become negligible.
Cross talk is induced among series as in DDNMs, as is graphical model structure of
�t in cases of high enough levels of sparsity of parental sets sp( j) and hence of 
t ;
see Fig. 6 for illustration.

4.2 Recoupling for forecasting in SGDLMs

Prediction of future states and volatilities uses simulation in the decoupled DLMs;
these are then recoupled to full joint forecast distributions to simulate the multivari-
ate outcomes. At time t − 1, the SGDLM analysis (Gruber and West 2016, 2017)
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Fig. 7 Decoupled DLM simulations followed by recoupling for forecasting in SGDLMs

constrains the prior p(θ1 : q,t , λ1 : q,t |Dt−1) as a product of conjugate normal/inverse
gamma forms for the {θ j,t , λ j,t } across series. These are exact in DDNM special cases
and (typically highly) accurate approximations in sparse SGDLMs otherwise. These
priors are easily simulated (in parallel) to computeMonte Carlo samples of the implied
Atμt ,�t ; sampling the full one-step predictive distribution to generate synthetic yt
follows trivially. Each sampled set of states and volatilities underlies conditional sam-
pling of those at the next time point, hence samples of yt+1. This process is recursed
into the future to generate Monte Carlo samples from predictive distributions over
multi-steps ahead; see Fig. 7. This involves only direct simulation, so is efficient and
scales linearly in q as in simpler DDNMs.

4.3 Decouple/recouple for filtering in SGDLMs

The recoupled SGLM no longer defines a compositional representation of the condi-
tional p.d.f. for yt given all model quantities (unless 
t is diagonal). The p.d.f. is now
|I−
t |+ ∏

j=1 : q N (y j,t |F′
j,tθ j,t , 1/λ j,t )where |∗|+ is the absolute valueof the deter-

minant of the matrix argument ∗. Independent normal/inverse gamma priors for the
{θ j,t , λ j,t } imply a joint posterior proportional to |I−
t |+ ∏

j=1 : q g j (θ j,t , λ j,t |Dt )

where the g j (·|·) are the normal/inverse gamma posteriors from each of the decoupled
DLMs. The one-step filtering update is only partly decoupled; the determinant factor
recouples across series, involving (only) state elements related to parental sets. For
sequential filtering to lead to decoupled conjugate forms at the next time point, this
posterior must be approximated by a product of normal/inverse gammas. In practical
contexts with larger q, the sp( j) will be small sets and so 
t will be rather sparse;
increasing sparsity means that |I − 
t |+ will be closer to 1. Hence, the posterior will
be almost decoupled and close to a product of conjugate forms. This insight underlies
an analysis strategy (Gruber and West 2016, 2017) that uses importance sampling
for Monte Carlo evaluation of the joint (recoupled) time t posterior, followed by a
variational Bayes’ mapping to decoupled conjugate forms.
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Fig. 8 Filtering updates in SGDLMs. The coupled joint posterior p(θ1:q,t , λ1:q,t |Dt ) is evaluated by
importance sampling and then decoupled using variational Bayes to define decoupled conjugate form
posteriors for the states and volatilities in each univariate model

The posterior proportional to |I− 
t |+ ∏
j=1 : q g j (θ j,t , λ j,t |Dt ) defines a perfect

context for importance sampling (IS) Monte Carlo when—as is typical in practice—
the determinant term is expected to be relatively modest in its contribution. Taking the
product of the g j (·|·) terms as the importance sampler yields normalized IS weights
proportional to |I − 
t |+ at sampled values of 
t . In sparse cases, these weights will
vary around 1, but tend to be close to 1; in special cases of DDNMs, they are exactly 1
and IS is exact random sampling. Hence, posterior inference at time t can be efficiently
based on IS sample and weights and monitored through standard metrics such as the
effective sample size ESS = 1/

∑
i=1 : I w2

i,t where wi,t represents the IS weight on
each Monte Carlo sample i = 1 : I . To complete the time t update and define decou-
pled conjugate form posteriors across the series requires an approximation step. This
is done via a variational Bayes (VB) method that approximates the posterior IS sample
by a product of normal/inverse gamma forms—amean field approximation—bymini-
mizing the Kullback–Leibler (KL) divergence of the approximation from the IS-based
posterior; see Fig. 8. This is a context where the optimization is easily computed and,
again in cases of sparse 
t , will tend to be very effective and only a modest modifi-
cation of the product of the g j (·|·) terms. Examples in Gruber and West (2016) and
Gruber and West (2017) bear this out in studies with up to q = 401 series in financial
forecasting and portfolio analysis.

4.4 Entropy-basedmodel assessment andmonitoring

Examples referenced above demonstrate scalability and efficiency of SGDLManalysis
(with parallel implementations— Gruber 2019) and improvements in forecasting and
decisions relative to standard models. Examples include q = 401 series of daily
stock prices on companies in the S&P index along with the index itself. The ability
to customize individual DLMs improves characterization of short-term changes and
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Fig. 9 Trajectories of the daily entropy index Kt in SGDLManalysis of q = 401 S&P series, and theweekly
St. Louis Federal Reserve Bank Financial Stress Index, over 2005–2013 with four key periods indicated. A:
Aug 2007 events including the UK government intervention on Northern Rock bank, generatingmajor news
related to the subprime loan crisis; B: Oct 2008 US loans “buy-back” events and the National Economic
Stimulus Act; C: Mar 2010 initial responses by the European Central Bank to the “Eurozone crisis”; D:
Aug 2011 US credit downgraded by S&P

series-specific volatility, and selection of the sp( j) defines adaptation to dynamics in
structure across subsets of series that improves portfolio outcomes across a range of
models and portfolio utility functions.

Those examples also highlight sequential monitoring to assess efficacy of the IS/VB
analysis. At each time t , denote by Et the evaluated ESS for IS recoupling and by
Kt the minimized KL divergence in VB decoupling. These are inversely related: IS
weights closer to uniform lead to high Et and low Kt ; Gruber and West (2016)
discuss theoretical relationships and emphasize monitoring. If a period of low Kt

breaks down to higher values, then recent data indicate changes that may be due to
increased volatility in some series or changes in cross-series relationships. This calls
for intervention to modify the model through changes to current posteriors, discount
factors and/or parental sets. Simply running the analysis on one model class but with
no such intervention (Gruber and West 2017, as in) gives a benchmark analysis; over
a long period of days, the resulting Kt series is shown in Fig. 9.

Figure 9 shows context and comparison with a major financial risk index—the
St. Louis Federal Reserve Bank Financial Stress Index (Kliesen and Smith 2010)—
widely regarded as local predictor of risk in the global financial systems. Comparison
with the Kt “Entropy Index” is striking. As a purely statistical index based on stock
price data rather than themacroeconomic andFXdata of theSt. Loius index, Kt mirrors
the St. Louis index but shows the ability to lead, increasing more rapidly in periods of
growing financial stress. This is partly responding to changes in relationships across
subsets of series that are substantial enough to impact the IS/VB quality and signal
caution, and that Kt is a daily measure while the St. Louis index is weekly. Routine
use of the entropy index as a monitor on model adequacy is recommended.
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Fig. 10 Realized one-step forecast c.d.f. values for three stocks. Left: without recoupling; Right: with
recoupling. Recoupling induces a more uniform distribution consistent with model adequacy

4.5 Evaluation and highlight of the role of recoupling

Questions arise as to whether the IS/VB analysis can be dropped without loss when

t is very sparse. In the S&P analysis (Gruber and West 2017), the 401-dimensional
model is very sparse; |sp( j)| = 20 for each j so that 95% of entries in 
t are zero.
Thus, the decoupled analysis can be expected to be close to that of a DDNM. One
assessment of whether this is tenable is based on one-step forecast accuracy. In any
model, for each series j and time t , let u j,t = P(y j,t |Dt−1) be the realized value
of the one-step-ahead forecast c.d.f. The more adequate the model, the closer the
u j,t to resembling U (0, 1) samples; if the model generates the data, the u j,t will be
theoretically U (0, 1). From the SGDLM analysis noted, Fig. 10 shows histograms
of the u j,t over the several years for three chosen series. The figure also shows such
histograms based on analysis that simply ignores the IS/VB decouple/recouple steps.
This indicates improvements in that the c.d.f. “residuals” are closer to uniform with
recoupling. These examples are quite typical of the 401 series; evidently, recoupling
is practically critical even in very sparse (non-triangular) models.

4.6 Perspectives onmodel structure uncertainty in prediction

SGDLManalysis faces the same challenges of parameter and parental set specification
as in the special case of DDNMs. Scaling presses the questions of how to assess and
modify the sp( j) over time, in particular. Viewing these as parameters for extended
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model uncertainty analysis leads to enormous model spaces and is simply untenable
computationally.More importantly, inference onparental setmembership—i.e.,model
structure “identification”—is rarely a goal. As Gruber and West (2016) and Gruber
and West (2017) exemplify, a more rational view is that parental sets are choices
to be made based on forecast accuracy and decision outcomes. Often I am not at all
interested in “learning” these aspects ofmodel structure—Iwant good choices in terms
of forecast and decision outcomes.With q evenmoderately large, each series j may be
adequately and equally well predicted using one of many possible small parental sets,
especially in contexts such as ours of high levels of (dynamic) interdependencies. Any
one such choice is preferable to weighting and aggregating a large number since small
differences across them simply contribute noise; hence, I focus on “representative”
parental sets to use as a routine, with sequential monitoring over time to continually
assess adequacy and respond to changes by intervention to modify the parental sets.

Gruber andWest (2017) developed a Bayesian decision analysis-inspired approach
in which sp( j) has three subsets: a “core set,” a “warm-up” set and a “cool-down”
set. A simple Wishart discount model is run alongside the SGDLM to identify series
not currently in sp( j) for potential inclusion in the warm-up set. Based on posterior
summaries in the Wishart model at each time t , one such series is added to the warm-
up subset of sp( j). Also at each t , one series in the current cool-down subset is
moved out of sp( j) and series in the warm-up subset is considered to be moved to
the core subset based on current posterior assessment of predictive relationships with
series j . Evolving the model over time allows for learning on state elements related
to new parental series added, and adaptation for the existing parents removed. This
nicely enables smooth changes in structure over time via the warm-up and cool-down
periods for potential parental predictors, avoiding the need for abrupt changes and
model refitting with updated parental sets.

Figure 11 shows an illustration with series j the stock price of company 3M;
analysis used |pa( j)| = 20. Several series are in sp( j) over the entire period. Others
come in/out once or twice but are clearly relevant over time; some enter for short
periods, replacingothers.Relatively fewof the 400possible parental series are involved
across the years. The names of series shown in the figure are of no primary interest.
Viewing the names indicates how challenging it would be to create a serious contextual
interpretation; but, we have little interest in that, as the parents simply aid in predicting
3M price changes while contributing to quantifying multivariate structure in �t , its
dynamics and implications for portfolio decisions, per analysis goals.

4.7 Challenges and opportunities

As discussed in Sect. 4.6, the very major challenge is that of addressing the huge
model structure uncertainty problem consistent with the desiderata of (i) scalability
with q, and (b) maintaining tractability and efficiency of the sequential filtering and
forecasting analysis. Routine model averaging is untenable computationally and, in
any case, addresses what is often a non-problem. Outcomes in specific forecasting
and/or decision analyses should guide thinking about new ways to address this. The
specific Bayesian hot-spot technique exemplified is a step in that direction, though
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Fig. 11 Parental inclusion for 3M SGDLM. Dark shading predictor stocks included as core simultaneous
parents; Light shading: stocks in warm-up and cool-down sets; White stocks not included

somewhat ad hoc in its current implementation. Research questions relate to broader
issues of model evaluation, combination and selection and may be addressed based on
related developments in other areas such as Bayesian predictive synthesis (McAlinn
and West 2019; McAlinn et al. 2019) and other methods emerging based on decision
perspectives (e.g., Walker et al. 2001; Clyde and Iversen 2013; McAlinn et al. 2018;
Yao et al. 2018). Opportunities for theoretical research are clear, but the challenges of
effective and scalable computation remain major.

A perhaps subtle aspect of evaluation of the full multivariate dynamic model is that,
while some progress can be made at the level of each univariate series (e.g., training
data to select discount factors) much assessment of forecast and decision outcomes
can only be done with the recoupled multivariate model. This should be an additional
guiding concern for new approaches.

SGDLMs involve flexible and adaptive models for stochastic volatility at the level
of each univariate time series. Explaining (and, in the short term, predicting) volatility
of a single series through the simultaneous parental concept is of inherent interest in
itself. Then, the ability to coherently adapt the selection of parental predictors—via
the Bayesian hot spot as reviewed in Sect. 4.6 or perhaps other methods—opens up
new opportunities for univariate model advancement.

There is potential for more aggressive development of the IS/VB-based ESS/KL
measures of model adequacy with practical import. As exemplified, the Kt entropy
index relates to the entire model—all states and volatilities across the q series. KL
divergence on any subset of this large space can be easily computed and, in fact,
relates to opportunities to improve the IS accuracy on reduced dimensions. This opens
up the potential to explore ranges of entropy indices for subsets of series, e.g., the
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set of industrial stocks, the set of financial/banking stocks, etc., separately. Changes
observed in the overall Kt may be reflected in states and volatilities for just some but
not all stocks or sectors, impacting the overall measure and obscuring the fact that
some or many components of the model may be stable. At such times, intervention to
adapt models may then be focused and restricted to only the relevant subsets of the
multivariate series.

5 Count time series: scalable multi-scale forecasting

5.1 Context and univariate dynamic models of nonnegative counts

Across various areas of application, challenges arise in problems of monitoring and
forecasting discrete time series, and notably many related time series of counts. These
are increasingly common in areas such as consumer behavior in a range of socioeco-
nomic contexts, various natural and biological systems, and commercial and economic
problems of analysis and forecasting of discrete outcomes (e.g., Cargnoni et al. 1997;
Yelland 2009; Terui and Ban 2014; Chen and Lee 2017; Aktekin et al. 2018; Glynn
et al. 2019). Often, there are questions of modeling simultaneously at different scales
as well as of integrating information across series and scales (West and Harrison 1997;
Ferreira et al. 2006, chapter 16 of). The recent, general state-spacemodels of Berry and
West (2019) and Berry et al. (2019) focus on such contexts under our desiderata: defin-
ing flexible, customizable models for decoupled univariate series, ensuring relevant
and coherent cross-series relationships when recoupled, and maintaining scalability
and computational efficiency in sequential analysis and forecasting. The theory and
methodology of such models are applicable in many fields and define new research
directions and opportunities in addressing large-scale, complex and dynamic discrete
data-generating systems.

New classes of dynamic generalized linear models (DGLMs,West et al. 1985;West
andHarrison 1997, chapter 14) include dynamic countmixturemodels (DCMM, Berry
and West 2019) and extensions to dynamic binary cascade models (DBCM, Berry
et al. 2019). These exploit coupled dynamicmodels for binary and Poisson outcomes in
structured ways. Critical advances for univariate count time series modeling include
the use of time-specific random effects to capture over-dispersion, and customized
“binary cascade” ideas for predicting clustered count outcomes and extremes. These
developments are exemplified in forecasting customer demand and sales time series in
these papers, but are of course of much broader import. I focus here on the multi-scale
structure and use simple conditional Poisson DGLMs as examples. Each time series
y j,t ∼ Po(μ j,t )with log link log(μt ) = F′

j,tθ j,t where state vectors θ j,t follow linear
Markov evolution models—independently across j—as in DLMs. Decoupled, we use
the traditional sequential filtering and forecasting analysis exploiting (highly accurate
and efficient) coupled variational Bayes/linear Bayes computations (West et al. 1985;
West and Harrison 1997; Triantafyllopoulos 2009). Conditional on the F j,t , analyses
are decoupled across series.
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5.2 Common dynamic latent factors andmulti-scale decouple/recouple

Many multivariate series share common patterns for which hierarchical or traditional
dynamic latent factor models would be first considerations. Integrating hierarchical
structure into dynamic modeling has seen some development (e.g., Gamerman and
Migon1993;Cargnoni et al. 1997; Ferreira et al. 1997), but application quickly requires
intense computation such as MCMC and obviates efficient sequential analysis and
scaling to higher dimensions with more structure across series. The same issues arise
with dynamic latent factor models, Gaussian or otherwise (e.g., Lopes and Carvalho
2007; Carvalho et al. 2011; Nakajima and West 2013b; Kastner et al. 2017; Nakajima
andWest 2017;McAlinn et al. 2019). The newmulti-scale approach of Berry andWest
(2019) resolves this with novel Bayesian model structures that define latent factor
models but maintain fast sequential analysis and scalability. The ideas are general
and apply to all dynamic models, but are highlighted here in the conditional Poisson
DGLMs. Suppose that series j has F′

j,t = (x′
j,t ,φ

′
t ) where x j,t include series j-

specific predictors and φt represents a vector of dynamic latent factors impacting all
series. The state vectors are conformably partitioned: θ ′

j,t = (γ ′
j,t ,β

′
j,t ) where β j,t

allows for diversity of the impact of the latent factors across series.
Denote by M j the DGLM for series j . With independent priors on states across

series and conditional on latent factors φt : t+h over h steps ahead, analyses are decou-
pled: forward filtering and forecasting for the M j are parallel and efficient. The
multi-scale concept involves an external or “higher level/aggregate” model M0 to
infer and predict the latent factor process, based on “top-down” philosophy (West
and Harrison 1997, section 16.3). That is, M0 defines a current posterior predictive
distribution for φt : t+h that feeds each of theM j with values for their individual fore-
casting and updating. Technically, this uses forward simulation:M0 generates Monte
Carlo samples of latent factors, and for every such sample, each of the decoupled
M j directly updates and forecasts. In this way, informed predictions of latent fac-
tor processes from M0 lead to fully probabilistic inferences at the micro/decoupled
series level, and within each there is an explicit accounting for uncertainties about the
common features φt : t+h in the resulting series-specific analyses.

5.3 Application contexts, model comparison and forecast evaluation

Supermarket sales forecasting examples (Berry and West 2019; Berry et al. 2019)
involve thousands of individual items across many stores, emphasizing needs for effi-
ciency and scalability of analyses. The focus is on daily transactions and sales data in
each store: for each item, and overmultiple days ahead to inform diverse end-user deci-
sions in supply chain management and at the store management level. Models involve
item-level price and promotion predictors, as well as critical day-of-week seasonal
effects. The new univariate models allow for diverse levels of sales, over-dispersion
via dynamic randomeffects, sporadic sales patterns of items via dynamic zero-inflation
components and rare sales events at higher levels. Daily seasonal patterns are a main
focus for the new multi-scale approach. In any store, the “traffic” of, for example, the
overall number of customers buying some kind of pasta product is a key predictor of
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Fig. 12 Sales data on two pasta items in one store over 365 days, taken from a large case study in Berry
et al. (2019). Daily data are +; black lines indicate item-specific day-of-week seasonal structure, while the
gray line is that from an aggregate model M0. Item-specific effects appear as stochastic variations on the
latter, underscoring interest in information sharing via a multi-scale analysis. Diverse levels and patterns
of stochastic variation apparent are typical across many items; item A is at high levels, item B lower with
multiple zeros. This requires customized components in each of the decoupled univariate dynamic models,
while improved forecasts are achieved via multi-scale recoupling

sales of any specific pasta item; hence, an aggregate-level M0 of total sales—across
all pasta items—is expected to define more accurate evaluation and prediction of the
seasonal effects for any one specific item than would be achievable using only day on
that item. Figure 12 displays two example sales series; these illustrate commonalities
as well as noisy, series-specific day-of-week structure and other effects (e.g., of prices
and promotions). Given very noisy data per series but inherently common day-of-week
traffic patterns, this is an ideal context for the top-down, multi-scale decouple/recouple
strategy.

Results in Berry et al. (2019) demonstrate advances in statistical model assess-
ments and in terms of measures of practical relevance in the consumer demand and
sales context. A key point here is that the very extensive evaluations reported tar-
get both statistical and contextual concerns: (a) broad statistical evaluations include
assessments of frequency calibration (for binary and discrete count outcomes) and
coverage (of Bayesian predictive distributions), and their comparisons across models;
(b) broad contextual evaluations explore ranges of metrics to evaluate specific models
and compare across models—metrics based on loss functions such as mean absolute
deviation, mean absolute percentage error and others that are industry/application-
specific and bear on practical end-user decisions. These studies represent a focused
context for advancing the main theme that model evaluation should be arbitrated in
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the contexts of specific and explicit forecast and decision goals in the use of the mod-
els. Purely statistical evaluations are required as sanity checks on statistical model
adequacy, but only as precursors to the defining concerns in applying models.

5.4 Challenges and opportunities

The DCMM and DBCM frameworks define opportunities for applications in numer-
ous areas—such of monitoring and forecasting in marketing and consumer behavior
contexts, epidemiological studies and others where counts arise from underlying com-
plex, compound and time-varying processes. In future applications, the shared latent
factor processes will be multivariate, with dimensions reflecting different ways in
which series are conceptually related. The new multi-scale modeling concept and its
decouple/recouple analysis open up potential to apply to many areas in which there
are tangible aggregate-level or other external information sources that generate infor-
mation relative to aspects of the common patterns/shared structure in multiple series.
One of the challenges is that, in a given applied context, there may be multiple such
aggregate/higher-level abstractions, so that technical model developments will be of
interest to extend the analysis to integrate inferences (in terms of “top-down projec-
tions”) from two or more external models. A further challenge and opportunity relates
to the question of maintaining faith with the desiderata of fast and scalable compu-
tation; the approaches to date involve extensive—though direct—simulation in M0
of the latent factors φt for projection to the micro-level models M j . In extensions
with multiple higher-level models, and with increasing numbers q of the univariate
series within each of which concomitant simulations will be needed, this will become
a computational challenge and limitation. New theory and methodology to address
these coupled issues in scalability are of interest.

6 Multivariate count series: network flowmonitoring

6.1 Dynamic network context and DGLMs for flows

Related areas of large-scale count time series concern flows of “traffic” in various
kinds of networks. This topic is significantly expanding with increasingly large-scale
data in Internet and social network contexts, and with regard to physical network flow
problems.Bayesianmodels have been developed for network tomography andphysical
traffic flow forecasting (e.g., Tebaldi and West 1998; Congdon 2000; Tebaldi et al.
2002;Anacleto et al. 2013; Jandarov et al. 2014;Hazelton 2015), but increasingly large
dynamic network flow problems require new modeling approaches. I contact recent
innovations that address: (a) scaling of flexible and adaptive models for analysis of
large networks to characterize the inherent variability and stochastic structure in flows
between nodes, and into/out of networks; (b) evaluation of formal statistical metrics to
monitor dynamic network flows and signal/allow for informed interventions to adapt
models in times of signaled change or anomalies; and (c) evaluation of inferences on
subtle aspects of dynamics in network structure related to node-specific and node-node
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Fig. 13 Network schematic and notation for flows at time t

interactions over time that also scale with network dimension. These goals interact
with the core desiderata detailed earlier of statistical and computational efficiency,
and scalability of Bayesian analysis, with the extension of doubly-indexed count time
series: Now, yi, j,t labels the count of traffic (cars, commuters, IP addresses or other
units) “flowing” from a node i to a node j in a defined network on I nodes in time
interval t − 1 → t ; node index 0 represents “outside” the network as in Fig. 13.

In dynamic network studies of various kinds, forecasting may be of interest but is
often not the primary objective. More typically, the goals are to characterize normal
patterns of stochastic variation in flows, monitor and adapt models to respond to
changes over time, and inform decisions based on signals about patterns of changes.
Networks are increasingly large; Internet and social networks can involve hundreds
or thousands of nodes and are effectively unbounded in any practical sense from the
viewpoint of statistical modeling. The conceptual and technical innovations in Chen
et al. (2018) and Chen et al. (2019) define flexible multivariate models exploiting two
developments of the decouple/recouple concept—these advance the ability to address
the above concerns in a scalable Bayesian framework.

6.2 Decouple/recouple for dynamic network flows

Dynamic models in Chen et al. (2018) and Chen et al. (2019) use flexible, efficient
Poisson DGLMs for in-flows to the network y0,i,t independently across nodes i =
1 : I . Within-network flows are inherently conditionally multinomial, i.e., yi,0 : I ,t is
multinomial based on the current “occupancy” ni,t−1 of node i at time t . The first
use of decoupling is to break the multinomial into a set of I Poissons, taking yi, j,t ∼
Po(mi,tφi, j,t ) where log(φi, j,t ) = Fi, j,tθ i, j,t defines a Poisson DGLM with state
vector θ i, j,t .The termmi,t = ni,t−1/ni,t−2 is an offset to adjust for varying occupancy
levels. With independence across nodes, this yields a set of I + 1 Poisson DGLMs
per node that are decoupled for online learning about underlying state vectors. Thus,
fast, parallel analysis yields posterior inferences on the φi, j,t ; Fig. 14a comes from an
example discussed further in Section 6.4. Via decoupled posterior simulation, these
are trivially mapped to implied transition probabilities in the node- and time-specific
multinomials implied, i.e., for each node i , the probabilities φi, j,t/

∑
j=0 : I φi, j,t on

j = 0 : I .
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6.3 Recoupling for Bayesianmodel emulation

The second use of recoupling defines an approach Bayesian to “model emulation”
(e.g., Liu and West 2009; Irie and West 2019) in the dynamic context. While the
decoupled DGLMs run independently, they are able to map relationships across sets
of nodes as they changeover time.Usingposterior samples of trajectories of the full sets
of φi, j,t , we are able to emulate inferences in a more structured model that explicitly
involves node–node dependencies. Specifically, the so-called dynamic gravity models
(DGMs) of Chen et al. (2018) and Chen et al. (2019) extend prior ideas of two-way
modeling in networks and other areas (e.g., West 1994; Sen and Smith 1995; Congdon
2000) to a rich class of dynamic interaction structures. The set of modified Poisson
rates are mapped to a DGM via φi, j,t = μtαi,tβ j,tγi, j,t where: (i) μt is an overall
network flow intensity process over time, (ii)αi,t is a node i-specific “origin (outflow)”
process, (iii) β j,t is a node j-specific “destination (inflow)” process, and (iv) γi, j,t
is a node i → j affinity (interaction)” process. Subject to trivial aliasing constraints
(fixing geometric means of main and interaction effects at 1), this is an invertible map
between the flexible decoupled system of models and the DGM effect processes.

6.4 Application context and onlinemodel monitoring for intervention

InChen et al. (2019), flowdata record visitors (IP addresses) to nodes (web “domains”)
of the Fox News Web site. A network of I = 237 nodes illustrates analysis scalabil-
ity (over 56,000 node–node series). Counts are for five-minute intervals, and key
examples use data on September 17, 2015; see Fig. 14 looking at flows from node
i =“Games/Online Games” and j =“Games/Computer & Video Games,” with raw
flow counts in frame (a). There are no relevant additional covariates available, so
the univariate Poisson DGLMs are taken as local linear trend models, with two-
dimensional state vectors representing local level and gradient at each time (West
and Harrison 1997, chapt. 7). While this is a flexible model for adapting to changes
in the φi, j,t over time as governed by model discount factors, it is critical to contin-
uously monitor model adequacy over time in view of the potential for periods when
flows represent departure from the model, e.g., sudden unpredicted bursts of traffic or
unusual decreases of traffic over a short period based on news or other external events
not available to the model. This aspect of model evaluation is routine in many other
areas of Bayesian time series, and there are a range of technical approaches.

Effective, tractable and computationally simple methods of Bayesian model mon-
itoring and adaptation are based on sequential Bayes’ factors as tracking signals in a
decision analysis context (West and Harrison 1986, 1997 chapt. 11). Each DGLM is
subject to such automatic monitoring and the ability to adapt the model via flagging
outliers and using temporarily decreased discount factors to more radically adapt to
structural changes. In Fig. 14, it can be seen that this is key in terms of two periods of
abrupt changes in gradient of the local linear trend around the 16 and 22 hour marks,
and then again for a few short periods later in the day when flows are at high levels
but exhibit swings up/down.
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Fig. 14 Posterior summaries for aspects of flows involving two web domain nodes in the Fox News Web
site on September 17, 2015. Nodes i =Games/Online Games and j =Games/Computer &Video Games. a
Posterior trajectory for Poisson levels φi, j ,t for flows i → j ; b Posterior trajectory for the origin (outflow)
process αi,t ; c Posterior trajectory for the destination (inflow) process β j,t ; d Posterior trajectory for the
affinity process γi, j,t . Trajectories are approximate posterior means and 95% credible interval, and the +
symbols indicate empirical values from the raw data

Figure 14 also shows trajectories of imputedDGMprocesses from recoupling-based
emulation. Here, it becomes clear that both the node i origin and node j destination
effect processes vary through the day, with the latter increasing modestly through the
afternoon and evening, and then they each decay at later hours. Since these processes
are multipliers in the Poisson means and centered at 1, both origin and destination
processes represent flow effects above the norm across the network. The figure also
shows the trajectory of the affinity effect process γi, j,t for these two nodes. Now, it
becomes quite clear that the very major temporal pattern is idiosyncratic to these two
nodes; the interaction process boosts very substantially at around the 16-hour mark,
reflecting domain-specific visitors at the online games node aggressively flowing to
the computer and video games node in the evening hours.

6.5 Challenges and opportunities

The summary example above and more in Chen et al. (2019) highlight the utility of
the new models and the decouple/recouple strategies. Critically, DGMs themselves
are simply not amenable to fast and scalable analysis; the recouple/emulation method
enables scalability (at the optimal rate∼I 2) of inferences onwhatmaybe very complex
patterns of interactions in flows among nodes as well as in their origin and destination
main effects. For future applications, the model is open to use of node-specific and
node–node pair covariates in underlying univariate DGLMs when such information
is available. Analysis is also open to the use of feed-forward intervention informa-
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tion (West and Harrison 1989b, 1997, chapt. 11) that may be available to anticipate
upcoming changes that would otherwise have to be signaled by automatic monitoring.
Canonical Poisson DGLMs can be extended to richer andmore flexible forms; without
loss in terms of maintaining faith with the key desiderata of analytic tractability and
computational efficiency, the models in Sect. 5.1 offer potential to improve character-
ization of patterns in network flows via inclusion of dynamic includes random effects
for over-dispersion as well as flexible models for very low or sporadic flows between
certain node pairs. Finally, these models and emulation methods will be of interest in
applications in areas beyond network flow studies.
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