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S.1 Technical proofs

In this supplement, we prove all the lemmas and Propositions 1 and 2.

We often appeal to the standard arguments based on Bernstein’s inequality and reproduce

the inequality from [S5] for reference.

Lemma 7 (Bernstein’s inequality) Let Y1, . . . ,Yn be independent random variables such that

E(Yi) = 0 and E(|Yi|m) ≤ m!Mm−2vi/2 for any positive integer m ≥ 2 and i = 1, . . . , n for some

positive constants M and vi. Then we have

P(|Y1 + · · · + Yn| > x) ≤ 2 exp
{
− x2

2(v + Mx)

}
for v =

∑n
i=1 vi.

We explain here why our Assumption VC in Section 3 allows us to use Bernstein’s in-

equality. Since

E{exp(αT X̆i)|Zi} ≤ exp(‖α‖2σ2/2) and λmin(ΣX(Zi))‖α‖2 ≤ Var(αT X̆i|Zi),

we have

‖α‖2 ≤ CVar(αT X̆i|Zi)

for some positive constant C by Assumptions VC(1)-(2). Recall that X̆i is defined just above

Assumption VC. Hence we can use σ2×the conditional variance instead of ‖α‖2σ2 when we

evaluate the moments necessary for Bernstein’s inequality. Then we can use assumptions and

properties of the conditional variances as well as the conditional means. Note that α can

depend on Zi.

Besides, we state some inequalities related to the Frobenius norm here.

For any matrices A and B for which AB is defined, we have

‖AB‖F ≤ ‖A‖F‖B‖F . (S.1)

This implies that for a k × k symmetric matrix A, we have

|λmin(A)| ∨ |λmax(A)| ≤ ‖A‖F (S.2)
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The first one is well known and a requirement of the matrix norms. (S.2) follows from applying

(S.1) to xT Ax with x ∈ Rk and ‖x‖ = 1.

Proof of Lemma 1) Write

1

n

n∑
i=1

W (l)
i, j (εi + ri) =

1

n

n∑
i=1

Xi, jBl(Zi)εi +
1

n

n∑
i=1

Xi, jBl(Zi)ri � al, j + bl, j. (S.3)

First we evaluate al, j and bl, j defined in (S.3) and then consider (
∑L

l=1 a2
l, j)

1/2 and (
∑L

l=1 b2
l, j)

1/2.

Evaluation of al, j : By Assumption VC and the local support property of the B-spline basis,

we have for some positive constants C1 and C2 that

E{X1, jBl(Z1)ε1} = 0 and E{|X1, jBl(Z1)ε1|m} ≤ C1m!(C2L1/2)m−2

for any positive integer m ≥ 2 uniformly in l and j. By employing the standard argument

based on Bernstein’s inequality, we obtain

|al, j| ≤ C3

√
log n

n
(S.4)

uniformly in l and j with probability tending to 1 for some positive constant C3.

Evaluation of bl, j : By (24) and the non-negativity of the B-spline basis functions, we have

|bl, j| ≤ C1

(log n)1/2

n

n∑
i=1

Bl(Zi)|ri| ≤ C2

log n
nL3

n∑
i=1

Bl(Zi) (S.5)

uniformly in l and j with probability tending to 1 for some positive constants C1 and C2. Since

for some positive constants C3 and C4,

E{Bl(Z1)} ≤ C3L−1/2 and E{Bm
l (Z1)} ≤ C4L(m−2)/2

for any positive integer m ≥ 2 uniformly in l, we can apply the standard argument based on

Bernstein’s inequality and get

1

n

n∑
i=1

Bl(Zi) ≤ C5L−1/2 (S.6)

uniformly in l with probability tending to 1 for some positive constant C5. Therefore by (S.5)

and (S.6), we have for some positive constant C6,

|bl, j| ≤ C6L−1/2 log n
L3

(S.7)

uniformly in l and j with probability tending to 1.

(S.4) and (S.7) yield

( L∑
l=1

a2
l, j

)1/2 ≤ C7

√
L log n

n
and

( L∑
l=1

b2
l, j

)1/2 ≤ C8

log n
L3

(S.8)
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uniformly in j with probability tending to 1 for some positive constants C7 and C8. Hence the

desired results follow from (S.8).

Proof of Lemma 2) Set

δn � max
1≤s,t≤pL

|(̂Σ − Σ)s,t|.

Notice that (̂Σ − Σ)s,t, the (s, t) element of Σ̂ − Σ, is written as

1

n

n∑
i=1

Bl1(Zi)Bl2(Zi)Xi, j1 Xi, j2 − E{Bl1(Z1)Bl2(Z1)X1, j1 X1, j2}.

By Assumption VC and the properties of the B-spline basis, we have uniformly in l1, l2, j1,

and j2,

E{|Bl1(Z1)Bl2(Z1)X1, j1 X1, j2 |} ≤ C1 and

E{|Bl1(Z1)Bl2(Z1)X1, j1 X1, j2 |m} ≤ E{|Bl1(Z1)X1, j1 |2m} + E{|Bl2(Z1)X1, j2 |2m} ≤ C2L(C3L)m−2m!

for any positive integer m ≥ 2 for some positive constants C1, C2, and C3. Thus by applying

the standard argument based on Bernstein’s inequality, we obtain

δn ≤ C4

√
L log n

n
(S.9)

with probability tending to 1 for some positive constant C4.

We evaluate |vT (Σ− Σ̂)v| for v = (vT
1 , . . . , v

T
p )T ∈ Ψ(S0, 3) by employing (S.9). Notice that

‖
p∑

k=1

(̂Σ j,k − Σ j,k)vk‖ ≤
p∑

k=1

‖Σ̂ j,k − Σ j,k‖F‖vk‖ ≤ δnLP1(v).

We used (S.1) and (S.9) here. Then

|vT (Σ − Σ̂)v| ≤ P1(v)P∞((Σ − Σ̂)v) ≤ {P1(v)}2δnL

≤ {P1(vS0
) + P1(vS0

)}2δnL ≤ 16δnL{P1(vS0
)}2 ≤ 16s0δnL‖vS0

‖2.

This implies

vT Σ̂v ≥ vTΣv − 16s0δnL‖vS0
‖2

for v = (vT
1 , . . . , v

T
p )T ∈ Ψ(S0, 3). Hence

vT Σ̂v

‖vS0
‖2
≥ vTΣv

‖vS0
‖2
− 16s0δnL ≥ vTΣv

‖v‖2
− 16s0δnL. (S.10)

The desired result follows from (S.9) and (S.10). Hence the proof of the lemma is complete.
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We will prove Proposition 1 a little more generally than stated in Section 3. We assume we

have some prior knowledge on S0, i.e. we know an index set Sprior ⊂ S0 and we don’t impose

any penalties on Sprior. This means we replace P1(β) with
∑

j∈Sprior
‖β j‖ or P1(βSprior

) in (6).

Proof of Proposition 1) In the proof, we confine ourselves to this intersection of the two sets

:

{P∞(n−1W T (r + ε)) ≤ λ0/2 } ∩ { 2φ2

Σ̂
(S0, 3) ≥ φ2

Σ(S0, 3) }.
The former set is related to the deviation condition and the latter one is related to the RE

condition. According to Lemma 1 and the condition on λ0, the probability of this intersection

tends to 1.

Because of the optimality of β̂, we have

1

n
‖Y −Wβ̂‖2 + 2λ0

∑
j∈Sprior

‖̂β j‖ ≤ 1

n
‖Y −Wβ0‖2 + 2λ0

∑
j∈Sprior

‖β0 j‖. (S.11)

By (S.11) and the deviation condition, we get

1

n
‖W (β̂ − β0)‖2 + 2λ0

∑
j∈Sprior

‖̂β j‖ ≤ λ0P1(β̂ − β0) + 2λ0

∑
j∈Sprior∩S0

‖β0 j‖.

Since Sprior = S0 ∪ (Sprior ∩ S0), the above inequality reduces to

1

n
‖W (β̂ − β0)‖2 + 2λ0

∑
j∈S0

‖̂β j‖ (S.12)

≤ λ0P1(β̂ − β0) − 2λ0

∑
j∈Sprior∩S0

‖̂β j‖ + 2λ0

∑
j∈Sprior∩S0

‖β0 j‖

≤ λ0P1(β̂ − β0) + 2λ0

∑
j∈Sprior∩S0

‖̂β j − β0 j‖

≤ λ0P1(β̂ − β0) + 2λ0P1(β̂S0
− β0S0

).

This (S.12) is equivalent to

1

n
‖W (β̂ − β0)‖2 + 2λ0P1(β̂S0

) ≤ λ0P1(β̂S0
− β0S0

) + λ0P1(β̂S0
) + 2λ0P1(β̂S0

− β0S0
).

The above inequality yields

1

n
‖W (β̂ − β0)‖2 + λ0P1(β̂S0

) ≤ 3λ0P1(β̂S0
− β0S0

) ≤ 3λ0s1/2
0
‖β̂S0

− β0S0
‖. (S.13)

Note that (S.13) implies that β̂−β0 ∈ Ψ(S0, 3) since P1(β̂S0
) = P1(β̂S0

−β0S0
). Thus we recall
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the definition of φ2

Σ̂
(S0, 3) and obtain

1

n
‖W (β̂ − β0)‖2 + λ0P1(β̂S0

)

≤ 3λ0s1/2
0

φΣ̂(S0, 3)
n−1/2‖W (β̂ − β0)‖

≤ 1

2n
‖W (β̂ − β0)‖2 +

9λ2
0s0

2φ2

Σ̂
(S0, 3)

Finally by the RE condition, we have

1

n
‖W (β̂ − β0)‖2 + 2λ0P1(β̂S0

) ≤ 9λ2
0s0

φ2

Σ̂
(S0, 3)

≤ 18λ2
0s0

φ2
Σ
(S0, 3)

. (S.14)

The former half of the proposition follows from (S.14).

Next we verify the latter half. Since β̂ − β0 ∈ Ψ(S0, 3),

P1(β̂S0
) ≤ 3s1/2

0
‖β̂S0

− β0S0
‖.

Thus we have

P1(β̂ − β0) ≤ P1(β̂S0
− β0S0

) + 3s1/2
0
‖β̂S0

− β0S0
‖ ≤ 4s1/2

0
‖β̂S0

− β0S0
‖. (S.15)

By (S.15), the definition of φ2

Σ̂
(S0, 3), (S.14), and the RE condition, we have

P1(β̂ − β0)

≤ 4s1/2
0

φΣ̂(S0, 3)
n−1/2‖W (β̂ − β0)‖ ≤ 12s0λ0

φ2

Σ̂
(S0, 3)

≤ 24s0λ0

φ2
Σ
(S0, 3)

.

This is the latter half of the proposition. Hence the proof of the proposition is complete.

Proof of Lemma 3) First we should evaluate

1

n

n∑
i=1

Xi,kBm(Zi)η
(l)
i, j − E{X1,kBm(Z1)η(l)

1, j}

uniformly in k,m, l, j. Note that E{X1,kBm(Z1)η(l)
1, j} = 0 from the definition of η(l)

1, j. Denote the

conditional mean and variance of X1,kBm(Z1) given Z1 by μ̃k,m(Z1) and σ̃2
k,m(Z1), respectively

and note that ‖μ̃k,m‖∞ ≤ C1L1/2 and ‖σ̃2
k,m‖∞ ≤ C2L uniformly in k and m for some positive

constants C1 and C2 by Assumption VC. Besides, E{̃μ2
k,m(Z1) + σ̃2

k,m(Z1)} is also uniformly

bounded. By Assumptions VC and E, (27), and (28), and some calculations, we have

E{|X1,kBm(Z1)η(l)
1, j|t} ≤ E{|X1,kBm(Z1)|2t} + E{|η(l)

1, j|2t} ≤ C3t!(C4Lt−2)L
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for any positive integer t ≥ 2 for some positive constants C3 and C4. By applying Bernstein’s

inequality with x = C5

√
n−1L log n for some suitable C5, vi = Ln−2, and M = O(L/n), we

follow the standard argument and obtain∣∣∣∣∣∣∣1n
n∑

i=1

Xi,kBm(Zi)η
(l)
i, j

∣∣∣∣∣∣∣ ≤ C6

√
L log n

n
(S.16)

uniformly in k,m, l, j with probability tending to 1 for some positive constant C6 depending

on C5.

(S.16) yields the desired result of the lemma :⎧⎪⎪⎪⎨⎪⎪⎪⎩
L∑

l=1

∣∣∣∣∣∣∣1n
n∑

i=1

Xi,kBm(Zi)η
(l)
i, j

∣∣∣∣∣∣∣
2
⎫⎪⎪⎪⎬⎪⎪⎪⎭

1/2

≤ C6

√
L2 log n

n

uniformly in k,m, j with probability tending to 1. Hence the proof of the lemma is complete.

Proof of Lemma 4) We should just follow that of Lemma 2. Note that we can use the result

on δn there as it is since it does not depend on j or l. We should replace Σ̂, Σ, S0, and s0 with

Σ̂− j,− j, Σ− j,− j, S(l)
j , and s(l)

j , respectively and then modify the definition of Ψ(S0, 3) conformably.

Proof of Proposition 2) We should just apply the standard argument of the Lasso as in the

proof of Proposition 1. Then the results follow from Lemmas 3 and 4. The details are omitted.

Proof of Lemma 5) Write

B̂ j,k =
1

n
ET

j Ek +
1

n
ET

j W−k(Γk − Γ̂k) +
1

n
(Γ j − Γ̂ j)

TW T
− jEk +

1

n
(Γ j − Γ̂ j)

TW T
− jW−k(Γk − Γ̂k)

� D̂1 + D̂2 + D̂3 + D̂4,

where D̂1, D̂2, D̂3, D̂4 are clearly defined in the last line. We evaluate D̂1, D̂2, D̂3, D̂4 uniformly

in j and k. We suppress the subscripts j and k here.

D̂1 : Exactly as in the proof of Lemma 3, we have

max
1≤a,b≤L

|(D̂1 − Bj,k)a,b| ≤ C1

√
L log n

n
(S.17)

uniformly in j and k with probability tending to 1 for some positive constant C1.

D̂2 and D̂3 : Recall the result in Proposition 2. Then the absolute value of the (a, b) element of

D̂2 is bounded from above by

n−1/2‖η(a)
j ‖n−1/2‖W−k(γ̂

(b)

k − γ(b)

k )‖ ≤ C2(s(b)

k )1/2
√

n−1L2 log n (S.18)

uniformly in a, b, j, k with probability tending to 1 for some positive constant C2. We can treat

D̂3 in the same way.
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D̂4 : By Proposition 2, the absolute value of the (a, b) element of D̂4 is bounded from above

by

n−1/2‖W− j(γ̂
(a)
j − γ(a)

j )‖n−1/2‖W−k(γ̂
(b)

k − γ(b)

k )‖ ≤ C3(s(a)
j s(b)

k )1/2n−1L2 log n (S.19)

uniformly in a, b, j, k with probability tending to 1 for some positive constant C3.

By (S.17)-(S.19) and Assumption L(2), we have

L max
1≤a,b≤L

|(B̂ j,k − Bj,k)a,b| → 0

uniformly in j and k with probability tending to 1. This implies the desired result

‖B̂ j,k − Bj,k‖F → 0

uniformly in j and k with probability tending to 1. Hence the proof of the lemma is complete.

Proof of Lemma 6) Write

T 2
j =

1

n
ÊT

j Ê j + Γ̂T
j K jΛ j = B̂ j, j + Â j,

where Â j is defined as Â j � Γ̂T
j K jΛ j. Suppose we have proved ‖Â j‖F → 0 uniformly in j with

probability tending to 1. We will verify this convergence in probability at the end of the proof.

Write the singular value decomposition of T 2
j as T 2

j = UT
j Π jV j, whereΠ j = diag(π1, . . . , πL).

Lemma 5 and (S.1) imply that for any x satisfying ‖x‖ = 1,

λmin(Θ−1
j, j) + o(1) ≤ ‖T 2

j x‖ ≤ λmax(Θ−1
j, j) + o(1) (S.20)

uniformly in j with probability tending to 1. This is because ‖Â jx‖ ≤ ‖Â j‖F . Recall also that

Bj, j = Θ−1
j, j . (S.20) implies that

λ2
min(Θ−1

j, j) + o(1) ≤ min{π2
1, . . . , π

2
L} ≤ max{π2

1, . . . , π
2
L} ≤ λ2

max(Θ−1
j, j) + o(1) (S.21)

uniformly in j with probability tending to 1. (a) follows from (S.21) and (25) since

ρ2(T 2
j ) = max{π2

1, . . . , π
2
L} and ρ2(T−2

j ) = 1/min{π2
1, . . . , π

2
L}.

Next we demonstrate (b). Since

T 2
j − Θ−1

j, j = B̂ j, j − Θ−1
j, j + Â j,

the first result follows from Lemma 5. As for the second result, notice that

T−2
j − Θ−1

j, j = T−2
j (Θ−1

j, j − T 2
j )Θ j, j. (S.22)
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The second result follows from (a), the first one, and (25).

‖Â j‖F : The (a, b) element of Â j is bounded from above by∑
k� j

|λ(b)
j γ̂

(a)T
j,k κ

(b)

j,k | ≤
∑
k� j

λ(b)
j ‖̂γ(a)

j,k ‖ = λ(b)
j P1(γ̂(a)

j ).

Therefore

‖Â j‖F ≤ L max
a,b. j

{λ(b)
j P1(γ̂(a)

j )} ≤ C

√
L4 log n

n
(max

a, j
s(a)

j )1/2 → 0

uniformly in j with probability tending to 1 for some positive constant C. We used Proposition

2, Assumptions S2(1) and L(2), and the fact that P1(γ(a)
j ) ≤ (s(a)

j )1/2‖γ(a)
j ‖. Hence the proof of

the lemma is complete.

S.2 Additional numerical studies

S.2.1 Simulation studies

We present MSE results of our simulation studies here. We compared the oracle estimator, the

original group Lasso, the adaptive group Lasso(ALasso), the group SCAD, and the de-biased

group Lasso in terms of MSE defined below in (S.23). From a theoretical point of view, the

group SCAD has the same asymptotic covariance matrix as the oracle estimator since the

SCAD is selection consistent and a post-selection estimator. Actually the SCAD is almost the

best in MSE among the original group Lasso, the adaptive group Lasso, the group SCAD, and

the de-biased group Lasso. However, we should emphasize again that the de-biased group

Lasso is the estimator without any variable selection and that it is used for statistical inference

under the original high-dimensional model. We are not able to carry out this kind of statistical

inference with the SCAD because it selects covariates.

The models and the parameters such as n and p are the same as in Section 4. We used also

the cv.gglasso function as well as in Section 4. We implemented the group SCAD by using

the R package ‘grpreg’ version 3.2-1 (the cv.grpreg function). It is provided by Prof. Patrick

Breheny. See [S1] for more details. Our weights of the adaptive group Lasso estimator are as

follows:

wj �
1

max{‖̂β j‖, 0.001} .

Let gj be an estimator of gj. Then MSE and AME in tables are defined as

MSE � the average over the repetitions of
1

n

n∑
i=1

f 2
j (Zi), (S.23)
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f j = gj or gj − gj for relevant j ∈ S0 and

AMSE � the average over the repetitions of
1

|S|
∑
j∈S

1

n

n∑
i=1

f 2
j (Zi), f j = gj

for S = {1, 3, 5, 7, 9, 10, 11, 12} (Models 1-2) and {1, 3, 5, 7, 9, 11} (Model 3). The group

SCAD and the adaptive group Lasso selected almost no variable fromS = {1, 3, 5, 7, 9, 10, 11, 12}
(Models 1-2) and {1, 3, 5, 7, 9, 11} (Model 3) and AMSE in the captions is that of the de-biased

group Lasso.

Table S.1: MSE for Model 1 with p = 250 (AMSE = 0.0582)

j 2 4 6 8

gj 7.2448 2.3130 2.0411 2.0981

oracle 0.0758 0.0853 0.0764 0.0766

Lasso 0.2670 0.3371 0.2225 0.1698

ALasso 0.1101 0.2708 0.1829 0.1295

SCAD 0.0659 0.0916 0.0849 0.0852

de-biased 0.0933 0.1233 0.1003 0.1004

Table S.2: MSE for Model 2 with p = 250 (AMSE = 0.0639)

j 2 4 6 8

gj 4.4265 1.8147 2.1168 1.9670

oracle 0.0761 0.0854 0.0764 0.0767

Lasso 0.2408 0.2628 0.1524 0.1653

ALasso 0.0841 0.1458 0.0920 0.0974

SCAD 0.0668 0.0965 0.0861 0.0863

de-biased 0.0916 0.1209 0.0911 0.0962
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Table S.3: MSE for Model 3 with p = 250 (AMSE = 0.0563)

j 2 4 6 8

gj 4.4265 2.3130 2.1168 1.9670 2.0411 1.8147

oracle 0.0810 0.0922 0.0808 0.0885 0.0862 0.0813

Lasso 0.2829 0.3322 0.2262 0.1452 0.1866 0.2529

ALasso 0.0955 0.1685 0.1283 0.0911 0.1049 0.1325

SCAD 0.0723 0.0956 0.0882 0.0944 0.0871 0.0840

de-biased 0.1164 0.1413 0.1126 0.1076 0.1123 0.1314

Table S.4: MSE for Model 1 with p = 350 (AMSE = 0.0410)

j 2 4 6 8

gj 7.0290 2.1115 2.0634 2.1013

oracle 0.0504 0.0532 0.0570 0.0500

Lasso 0.1936 0.2512 0.1615 0.1252

ALasso 0.0926 0.2317 0.1597 0.1027

SCAD 0.0522 0.0562 0.0592 0.0570

de-biased 0.0688 0.0769 0.0696 0.0695

Table S.5: MSE for Model 2 with p = 350 (AMSE = 0.0445)

j 2 4 6 8

gj 4.6034 2.0210 2.0928 2.0379

oracle 0.0508 0.0533 0.0570 0.0500

Lasso 0.1751 0.1857 0.1085 0.1212

ALasso 0.0680 0.1052 0.0720 0.0720

SCAD 0.0526 0.0584 0.0593 0.0576

de-biased 0.0685 0.0721 0.0642 0.0691
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Table S.6: MSE for Model 3 with p = 350 (AMSE = 0.0414)

j 2 4 6 8 10 12

gj 4.6034 2.1115 2.0928 2.0379 2.0634 2.0210

oracle 0.0527 0.0558 0.0599 0.0552 0.0513 0.0538

Lasso 0.1952 0.2393 0.1591 0.1024 0.1260 0.1796

ALasso 0.0760 0.1306 0.0995 0.0653 0.0782 0.1071

SCAD 0.0557 0.0603 0.0610 0.0647 0.0607 0.0562

de-biased 0.0792 0.0855 0.0742 0.0754 0.0714 0.0819
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We also present the results on the other three models, Model 1’, Model 2’ and Model 3’.

We defined them by replacing gj with gj/
√

2 in Models 1-3.

Model 1’(p = 250 and n = 250)

Table S.7: H1 for Model 1’ with p = 250 and n = 250

j 2 4 6 8

α = 0.10 1.00 1.00 1.00 1.00

α = 0.05 1.00 1.00 1.00 1.00

Table S.8: H0 for Model 1’ with p = 250 and n = 250

j 1 3 5 7 9 10 11 12

α = 0.10 0.11 0.06 0.06 0.16 0.10 0.08 0.15 0.10

α = 0.05 0.06 0.01 0.03 0.12 0.06 0.05 0.07 0.06

Table S.9: MSE for Model 1’ with p = 250 (AMSE = 0.0596)

j 2 4 6 8

gj 3.6224 1.1565 1.0206 1.0490

oracle 0.0758 0.0853 0.0764 0.0766

Lasso 0.2574 0.3138 0.2025 0.1526

ALasso 0.0878 0.2178 0.1406 0.1026

SCAD 0.0678 0.1171 0.1107 0.0985

de-biased 0.0873 0.1134 0.0925 0.0940

Model 2’(p = 250 and n = 250)

Table S.10: H1 for Model 2’ with p = 250 and n = 250

j 2 4 6 8

α = 0.10 1.00 1.00 1.00 1.00

α = 0.05 1.00 1.00 1.00 1.00
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Table S.11: H0 for Model 2’ with p = 250 and n = 250

j 1 3 5 7 9 10 11 12

α = 0.10 0.12 0.10 0.16 0.18 0.12 0.08 0.14 0.12

α = 0.05 0.06 0.06 0.10 0.10 0.06 0.04 0.08 0.05

Table S.12: MSE for Model 2’ with p = 250 (AMSE = 0.0641)

j 2 4 6 8

gj 2.2132 0.9073 1.0584 0.9835

oracle 0.0760 0.0853 0.0764 0.0767

Lasso 0.2195 0.2291 0.1354 0.1471

ALasso 0.0722 0.1199 0.0807 0.0829

SCAD 0.0711 0.1225 0.1023 0.1002

de-biased 0.0841 0.1102 0.0858 0.0899

Model 3’(p = 250 and n = 250)

Table S.13: H1 for Model 3’ with p = 250 and n = 250

j 2 4 6 8 10 12

α = 0.10 1.00 1.00 1.00 1.00 1.00 1.00

α = 0.05 1.00 1.00 1.00 1.00 1.00 1.00

Table S.14: H0 for Model 3’ with p = 250 and n = 250

j 1 3 5 7 9 11

α = 0.10 0.14 0.07 0.05 0.20 0.20 0.14

α = 0.05 0.09 0.04 0.02 0.14 0.15 0.09
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Table S.15: MSE for Model 3’ with p = 250 (AMSE = 0.0575)

j 2 4 6 8 10 12

gj 2.2132 1.1565 1.0584 0.9835 1.0206 0.9073

oracle 0.0809 0.0922 0.0808 0.0885 0.0862 0.0812

Lasso 0.2615 0.3005 0.2022 0.1261 0.1614 0.2184

ALasso 0.0837 0.1459 0.1097 0.0830 0.0898 0.1080

SCAD 0.0745 0.1164 0.1078 0.1063 0.1023 0.1018

de-biased 0.1036 0.1250 0.1016 0.0982 0.1000 0.1163

Model 1’(p = 350 and n = 350)

Table S.16: H1 for Model 1’ with p = 350 and n = 350

j 2 4 6 8

α = 0.10 1.00 1.00 1.00 1.00

α = 0.05 1.00 1.00 1.00 1.00

Table S.17: H0 for Model 1’ with p = 350 and n = 350

j 1 3 5 7 9 10 11 12

α = 0.10 0.10 0.03 0.05 0.16 0.10 0.08 0.10 0.08

α = 0.05 0.06 0.02 0.03 0.10 0.06 0.04 0.06 0.05

Table S.18: MSE for Model 1’ with p = 350 (AMSE = 0.0419)

j 2 4 6 8

gj 3.5145 1.0557 1.0317 1.0506

oracle 0.0504 0.0532 0.0570 0.0500

Lasso 0.1874 0.2380 0.1501 0.1154

ALasso 0.0702 0.1602 0.1144 0.0762

SCAD 0.0538 0.0649 0.0707 0.0657

de-biased 0.0658 0.0725 0.0658 0.0664

Model 2’(p = 350 and n = 350)
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Table S.19: H1 for Model 2’ with p = 350 and n = 350

j 2 4 6 8

α = 0.10 1.00 1.00 1.00 1.00

α = 0.05 1.00 1.00 1.00 1.00

Table S.20: H0 for Model 2’ with p = 350 and n = 350

j 1 3 5 7 9 10 11 12

α = 0.10 0.10 0.10 0.11 0.16 0.10 0.06 0.12 0.08

α = 0.05 0.05 0.06 0.06 0.10 0.06 0.04 0.06 0.06

Table S.21: MSE for Model 2’ with p = 350 (AMSE = 0.0449)

j 2 4 6 8

gj 2.3017 1.0105 1.0464 1.0189

oracle 0.0506 0.0532 0.0570 0.0500

Lasso 0.1618 0.1678 0.0987 0.1120

ALasso 0.0564 0.0797 0.0606 0.0597

SCAD 0.0544 0.0718 0.0682 0.0650

de-biased 0.0647 0.0679 0.0614 0.0664

Model 3’(p = 350 and n = 350)

Table S.22: H1 for Model 3’ with p = 350 and n = 350

j 2 4 6 8 10 12

α = 0.10 1.00 1.00 1.00 1.00 1.00 1.00

α = 0.05 1.00 1.00 1.00 1.00 1.00 1.00

Table S.23: H0 for Model 3’ with p = 350 and n = 350

j 1 3 5 7 9 11

α = 0.10 0.09 0.04 0.07 0.22 0.18 0.10

α = 0.05 0.08 0.03 0.03 0.16 0.12 0.06
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Table S.24: MSE for Model 3’ with p = 350 (AMSE = 0.0420)

j 2 4 6 8 10 12

gj 2.3017 1.0557 1.0464 1.0189 1.0317 1.0105

oracle 0.0525 0.0558 0.0599 0.0552 0.0513 0.0537

Lasso 0.1839 0.2241 0.1475 0.0922 0.1127 0.1636

ALasso 0.0632 0.0980 0.0801 0.0584 0.0645 0.0839

SCAD 0.0571 0.0654 0.0689 0.0709 0.0667 0.0676

de-biased 0.0737 0.0786 0.0694 0.0705 0.0661 0.0756
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S.2.2 A real data application

We applied the proposed de-biased group Lasso procedure to the Boston Housing data as in

e.g. [S2] and [S4]. The data set is available in the R package ‘MASS.’ See also [S3] about

the data set. The data set has 14 variables, crim, zn, indus, chas, nox, rm, age, dis, rad, tax,

ptratio, black, lstat, medv, and 506 samples. The details of these variables are given at the end

of this section. We augmented the data set by adding some artificial variables.

In this study, we followed [S2] and [S4] and took Y = medv and lstat as the index variable.

Note that [S2] does not deal with high-dimensional models. As for lstat, we defined Z as

Z = F(lstat), where F(·) is the distribution function of 2× the χ2 distribution with d.f. 6. We

did this transformation to make the distribution of Z close to that of the uniform distribution

on [0, 1]. Note that [S2] and [S4] included only part of the original variables e.g. crim, rm,

tax, and ptratio in their models. We removed only a dummy variable chas since it does seem

to be significant in our preliminary analysis. The conditional number of the covariance matrix

of 11 original variables exceeds 100. This setup is unfavorable to any data analysis procedure.

The conditional number of the covariance matrix of only crim, rm, tax, and ptratio is about 14.

In this section, we present two results : the one with 11 original variables and 89 aug-

mented variables in Table S.25 and the one with only 11 original variables in Table S.26.

We explain our augmented model. Let q be the number of the original variables (q = 11).

Then our augmented model is

Y = g0(Z) +

q∑
j=1

gj(Z)Xj +

p∑
j=q+1

gj(Z)Xj + ε. (S.24)

First we standardized the q original variables so that they have mean 0 and variance 1 and

got X1, . . . , Xq. The details of the artificial variables are as follows:

X′
j+11 = 0.25Xj + 0.75Rj, j = 1, . . . , q,

where Rj, j = 1, . . . , q, are i.i.d. N(0, 1) random variables. Then we standardized X′
q+1, . . . , X

′
2q

as well and defined Xq+1, . . . , X2q from them. X′
2q+1, . . . , X

′
p are i.i.d normal random variables

and we also standardized them to define X2q+1, . . . , Xp.

In the tables, ‖̂bj‖2 and ‖β̃ j‖2 are from the de-biased Lasso and the SCAD, respectively. We

computed p-values in the tables in a similar way to the critical values in Section 4 by using

Theorem 1. We tried p = 100 with L = 5 and the quadratic spline basis. The results of 24

larger ‖̂bj‖2 are given in Table S.25. In [S4], they included only four original variables (rm,

crim, tax, ptratio) and straightforward comparisons are very difficult.

If we compute all b̂ j for a large p, it will take a very long time. Therefore some kind of

screening that chooses rather many covariates and does not miss relevant variables may be
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necessary in practical situations.

In the two tables, the de-biased Lasso and the SCAD show different behaviors. The two

tables also show different results. The original Lasso selected only two variables, rm and

ptratio, in either model. This may be due to the large conditional number larger than 100

among the 11 original variables. Even the SCAD and the Lasso may have difficulty dealing

with such highly correlated data sets. As for the augmented variables, some have p-values less

than 0.05. But most of the augmented variables have larger p-values.
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Table S.25: The model with 11 original variates and 89 augmented variables

Variable black zn rm rad tax dis

‖̂bj‖2/Var(Y) 0.120 0.116 0.114 0.074 0.049 0.049

‖β̃ j‖2/Var(Y) 0.005 0.000 0.082 0.112 0.000 0.062

p-value 0.002 0.000 0.000 0.000 0.000 0.000

Variable crim 14 indus ptratio nox 77

‖̂bj‖2/Var(Y) 0.028 0.026 0.024 0.024 0.017 0.009

‖β̃ j‖2/Var(Y) 0.000 0.000 0.000 0.059 0.06 0.000

p-value 0.015 0.000 0.002 0.000 0.120 0.016

Variable 42 21 37 80 88 59

‖̂bj‖2/Var(Y) 0.009 0.008 0.007 0.006 0.006 0.006

‖β̃ j‖2/Var(Y) 0.001 0.000 0.000 0.001 0.000 0.001

p-value 0.011 0.015 0.034 0.055 0.056 0.062

Variable 97 74 24 53 65 64

‖̂bj‖2/Var(Y) 0.006 0.006 0.006 0.006 0.006 0.006

‖β̃ j‖2/Var(Y) 0.000 0.000 0.000 0.000 0.000 0.000

p-value 0.049 0.052 0.052 0.064 0.084 0.086

Table S.26: The model with only 11 original variates

Variable zn black rm rad tax dis

‖̂bj‖2/Var(Y) 0.128 0.117 0.090 0.075 0.050 0.049

‖β̃ j‖2/Var(Y) 0.000 0.005 0.073 0.264 0.057 0.115

p-value 0.000 0.092 0.000 0.000 0.002 0.000

Variable ptratio crim indus nox age NA

‖̂bj‖2/Var(Y) 0.030 0.030 0.021 0.020 0.006 NA

‖β̃ j‖2/Var(Y) 0.046 0.117 0.043 0.028 0.000 NA

p-value 0.000 0.015 0.026 0.097 0.512 NA

‖̂bj‖2 and p-value are from the de-biased group Lasso and ‖β̃ j‖2 is from the group SCAD.
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We reproduced the details of 14 variables from the R documentation of the R package

‘MASS.’

crim : per capita crime rate by town(We took the logarithm in this section.)

zn : proportion of residential land zoned for lots over 25,000 sq.ft

indus : proportion of non-retail business acres per town

chas : Charles River dummy variable (= 1 if tract bounds river; 0 otherwise).

This is not used in our model.

nox : nitric oxides concentration (parts per 110 million)

rm : average number of rooms per dwelling

age : proportion of owner-occupied units built prior to 1940

dis : weighted distances to five Boston employment centres

rad : index of accessibility to radial highways

tax : full-value property-tax rate per USD 10,000

ptratio : pupil-teacher ratio by town

black : 1000(B - 0.63)ˆ2 where B is the proportion of blacks by town

lstat : lower status of the population

medv : median value of owner-occupied homes in USD 1000’s
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S.2.3 Confidence bands for gj 

We present 8 figures of 95% confidence bands for gj, j=1,…,8,  and they are based on 
Theorem 1. We took one simulated sample for Model 1 with p=n=350. Real and broken lines 
represent ture gj  and estimated gj, respectively. The other two lines are lower and upper 
bands for gj(t), not simultaneous bands on [0,1]. The broken lines look sufficiently close to 
the real lines and the real lines are almost between the lower and upper bands. Therefore 
these figures imply our procedure is very promising. 
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