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Abstract

There has been much attention on the de-biased or de-sparsified Lasso. The Lasso is
very useful in high-dimensional settings. However, it is well known that the Lasso
produces biased estimators. Therefore, several authors proposed the de-biased Lasso
to fix this drawback and carry out statistical inferences based on the de-biased Lasso
estimators. The de-biased Lasso needs desirable estimators of high-dimensional pre-
cision matrices. Thus, the research is almost limited to linear regression models with
some restrictive assumptions, generalized linear models with stringent assumptions,
and the like. To our knowledge, there are a few papers on linear regression models
with group structure, but no result on structured nonparametric regression models such
as varying coefficient models. We apply the de-biased group Lasso to varying coeffi-
cient models and examine the theoretical properties and the effects of approximation
errors involved in nonparametric regression. The results of numerical studies are also
presented.

Keywords High-dimensional data - B-spline - Varying coefficient models - Group
Lasso - Bias correction

1 Introduction

We consider the following high-dimensional varying coefficient model:

p
Yi =) gi(Z)Xi;+ei, (1)
j=1
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where (Y;, X;, Z;), i =1, ..., n, are i.i.d. observations, Y; is a dependent variable,
X, =i, ..., Xi,p)T € R? and Z; € R are random covariates, and an unobserved
error €; follows the normal distribution with mean zero and variance 062 independently
of (X;, Z;). Note that a” is the transpose of a vector or matrix a. In (1), Z; is a key
variable sometimes called an index variable and X; ; satisfies X; 1 = 1. Besides,
Z; takes values on [0, 1] and g;(Z;) j = 1, ..., p, are unknown smooth functions
on [0, 1] to be specified later in Sect. 3. The varying coefficient model is one of the
most popular structured nonparametric regression models. For example, see Fan and
Zhang (2008) for an excellent review on varying coefficient models. Such structured
nonparametric regression models alleviate the curse of dimensionality, but they allow
much more flexibility in modelling and data analysis than linear regression models.

Nowadays alot of high-dimensional datasets are available because of rapid advances
in data collecting technology and it is inevitable to apply structured nonparametric
regression models to such kinds of high-dimensional datasets for more flexible data
analysis. In this paper, we take p = O (n°?) for some positive constant ¢, and this
excludes ultra-high-dimensional cases. This is because the technical conditions and
the proofs are complicated and we give priority to readability. In practice, we have to
pay some cost for nonparametric estimation of coefficient functions and have some
difficulty dealing with ultra-high-dimensional cases. Note that the actual dimension
is pL, where L is the dimension of the spline basis.

In high-dimensional settings, even if p is very large compared to the sample size n,
the number of active or relevant covariates is much smaller than p and we need some
variable selection procedures for high-dimensional datasets like the Lasso (e.g. Tib-
shirani 1996; Bickel et al. 2009), the SCAD (e.g. Fan and Li 2001), feature screening
procedures based on marginal models or some index between the dependent variable
and individual covariates (e.g. Fan and Song 2010), and forward variable selection pro-
cedures (e.g. Wang 2009; Ing and Lai 2011). Liu et al. (2015) is an excellent review
paper of feature screening procedures. The adaptive Lasso and the group Lasso are
important variants of the Lasso. For example, see Zou (2006), Yuan and Lin (2006),
and Lounici et al. (2011). There are too many papers on high-dimensional issues to
mention, and we just name a few books for recent developments, Bithlmann and van
de Geer (2011), Hastie et al. (2015), and van de Geer (2016).

Several authors considered ultra-high-dimensional or high-dimensional varying
coefficient models by employing the group Lasso (e.g. Wei et al. 2011), the group
SCAD (e.g. Cheng et al. 2014), feature screening procedures based on marginal mod-
els and so on (e.g. Fan et al. 2014; Liu et al. 2014), and forward variable selection
procedures (e.g. Cheng et al. 2016). In Honda and Hirdle (2014) and Honda and Yabe
(2017), the authors considered Cox regression models with high-dimensional varying
coefficient structures.

The Lasso is very useful in variable selection and obtaining initial estimators for
other methods like the SCAD in high-dimensional settings. However, it is well known
that the Lasso is not necessarily selection consistent and produces biased estimators.
We need some suitable initial estimators or screening procedures to reduce the num-
ber of covariates when we implement the SCAD. Screening procedures are based on
marginal models or some index between Y; and individual covariates. And the proce-
dures crucially depend on assumptions like the one that marginal models reflect the
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true model faithfully. When we need some reliable estimates maintaining the original
high dimensionality, these procedures may not be very useful. The SCAD has the nice
oracle property, but it gives no information about removed or unselected covariates.
When a covariate of interest is not selected, we have no information other than being
not selected. On the other hand, the de-biased Lasso gives some useful information
such as p values. The SCAD selects covariates and sets the coefficient to be 0 if the
covariate is not selected. Statistical inference under the original model is impossible
for the SCAD.

Several authors (Zhang and Zhang 2014; Javanmard and Montanari 2014; van de
Geer 2014) simultaneously proposed the de-biased Lasso to fix the fore-mentioned
drawbacks of the Lasso and the SCAD. It is also called the de-sparsified Lasso. We can
carry out statistical inferences based on the de-biased Lasso estimators while maintain-
ing the high dimensionality and get information about all the covariates of the original
high-dimensional model. The de-biased Lasso procedures need desirable estimators of
high-dimensional precision matrices for bias correction. Thus, the research is almost
limited to linear regression models with some restrictive assumptions, generalized
linear models with stringent assumptions, and the like. To our knowledge, there are
a few papers on linear regression models with group structure (e.g. Mitra and Zhang
2016; Stucky and van de Geer 2018). The authors of these papers derived interesting
and useful results. But we have found no result on structured nonparametric regression
models such as varying coefficient models. Besides, their assumptions on covariate
variables cannot cover our set-up since we have to deal with W defined in (4), and our
design matrix W has a special structure due to the B-spline basis and {Z;}.

We have to examine the properties carefully by carrying out conditional arguments
on {Z;} and using the properties of the B-spline basis. We also have to take care of
approximation errors to true coefficient functions. Our purpose is to estimate coeffi-
cient functions and different from that of Mitra and Zhang (2016) and Stucky and van
de Geer (2018) does not deal with random design cases. Both of them consider only
linear models. In this paper, we apply the de-biased group Lasso to varying coefficient
models and closely examine the theoretical properties of estimated coefficients and
the effects of approximation errors involved in nonparametric regression.

This paper is organized as follows: In Sect. 2, we describe the de-biased group Lasso
procedure for varying coefficient models. Then, we present our assumptions and main
theoretical results in Sect. 3. Simulation study results are presented in Sect. 4. The
results suggest that the proposed de-biased group Lasso will work well. Additional
numerical results are given in Supplement. We prove the main theoretical results in
Sect. 5. The technical proofs are also relegated to Supplement.

We end this section with some notation used throughout the paper.

In this paper, we write A := B when we define A by B. C, Cq, C», .. ., are generic
positive constants and their values may change from line to line. Note that a, ~ b,
means C1 < a, /b, < C> and that a VvV b and a A b stand for the maximum and the
minimum of a and b, respectively.

In the theory of the group Lasso, index sets often appear and S and |S| stand for the
complement and the number of the elements of an index set S C {1, ..., p}, respec-
tively. When we have two random vectors U and V, U|V stands for the conditional
distribution of U on V. And N (u, %) means the normal distribution with mean w
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6 T.Honda

and variance o2 and we write U ~ N (i, 0'2) when U follows the normal distribution

with mean 1 and variance o2. Convergence in distribution is denoted by ﬁ)

For a vector a, ||a| is the Euclidean norm and ||g||> and ||g|leo stand for the L,
and sup norms of a function g on the unit interval, respectively. We denote the max-
imum and minimum eigenvalues of a symmetric matrix A by Amax(A) and Apin(A),
respectively. For a matrix A, |A||r and p(A) stand for the Frobenius and spectral
norms, respectively. We write (A); ; for the (s, t) element of a matrix A and Iy is the
k-dimensional identity matrix.

2 The de-biased group Lasso estimator

In this section, we define the de-biased group Lasso estimator b from the group Lasso
estimator E Then, we need some desirable estimator of the precision matrix of X
in Assumption S1 below and we denote the estimator by 6. We present O after we
define ﬁ and b.

e Regression spline model We explain our regression spline model for (1).
We denote the L-dimensional equispaced B-spline basis on [0, 1] by B(z) =
(B1(2), ..., BL()T with Z,le Bi(z) = ~/L, not 1. We employ a quadratic or
smoother basis here. The conditions on L and coefficient functions are given in Sect. 3,
e.g. in Assumptions G and L.

By choosing a suitable By; € RL, we can approximate g;(z) by B (z)B; as

gi (@) = BT (2)Boj + 12 (2),

where r;;(z) is a small approximation error. Then, (1) is rewritten as

P
Y; =ZXi,jBT(Zi)ﬂ0j+Vi+€i, @)
j=l
where r; = Y0_,(¢(Z;) — BT (Zi)Boj)Xi,j. Note that we take fo; = 0 € R if

gjz) =0.
Now we define new pL-dimensional covariate vectors and the n x (pL) design
matrix for the regression spline model as

W, :=X,®B(Z)=(X;1B"(Z)..... Xi BT (Z))" e R"", 3)
where ® is the Kronecker product, and

wi
W .= =(W1,...,Wp)’ (4)
wr
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De-biased group Lasso for varying coefficient models 7

where W is an n x (pL) matrix and W; is an n x L matrix. Note that we have n i.i.d.
W, € RPE. We write

wi=w" o ow) and wl=| 1 [eR'fori=1,... L.

Note that W; is a covariate matrix for g;(Z;)X; ; and that Wi(’lj), = X; jBi(Z;) is an
element of W.
By using the above notation, we can represent n observations in a matrix form:

p
Y:ZWj/Soj+r+e:Wﬂo+r+e, where Yizﬂfﬂo—i-ri—i-ei, 5)
j=1

Y = (Y17 AR ] Y)’I)T»r = (rlv AR ] rn)T,E = (Elv IR ] Eﬂ)T’andﬁO = (ﬁ&» AR ] ,ng)T
e RPL,

We state a standard assumption on the design matrix W. This is assumed throughout
this paper.

Assumption S1
Y= EW,W!) and Amn(Z) > C

for some positive constant Cy. Note that X' is a (pL) x (pL) matrix.

Note that ¥ = n'E(WT W) and we usually denote the inverse of X~ by @, not
>~ as in the literature on high-dimensional precision matrices. The sample version
of Xis £ := n~'WTW. When pL is larger than n, we cannot define the inverse of
3. Therefore, we need a reliable substitute of the inverse of S in high-dimensional
set-ups, and we denote our estimator of the inverse @ by ©. We define an n x ( p—1L
matrix W_; by removing W; from W = (Wy, ..., W,). We consider regression of
W; to W_; when we construct our o.

e Group Lasso estimator EWe define the group Lasso estimator Efor (2) and (5) as

~ 1
B=Bl....B))" = argmin =Y —WBI” +200P1(B)}.  (©)
ﬂERI’L n

where B = (B ,..., B))" with g; € R" for j = 1,..., p, Ao is a suitably cho-
sen tuning parameter, and P;(8) := Zl;zl 1B;1l. We also use this P (-) for vectors
of smaller dimension. We describe the properties of this group Lasso estimator in
Proposition 1 for completeness although the proposition is almost known.

The first-order condition of the optimality of Eyields

1 ~
— —WI(Y — WB) + roko = 0 € RPE, (7)
n
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where ko = (K( ;.- )T with Ko € RE for j = 1,...,p, lIko jIl < 1 for
j=1,~--,p,andxo,—ﬂj/llﬂjlllfllﬂjll#0

e De-biased group Lasso estimator b This ;3 is a biased estimator due to the L; penalty
as we mentioned in Sect. 1. Thus, by constructing ® such that O Sis sufficiently close
to I,,L, we define our de-biased group Lasso estimator b= (b1 e AZ)T e RPL
with b j € RE for j =1, ..., p for the varying coefficient model (1) and (5) as

A

=B+ @roko =B+ — OWT(Y WB)

=B+ @fwm—m+;@wfv+@
1 ~~ ~ 1 ~

= Bo+ ;ﬂ@x—-ﬂxm—ﬁy+;@wfv+o

= fo + 16WT6—A1+A2, (8)
n

where we used (7) in the first line,

T I ~o > pL
= (A7}, ',Al,p) ;(OE—IpL)(,B_/BO)ER ,
1~
Ay = (A3, ..., A7 ) == —OWr e RV,
’ n
Al |
A=\ =;@2—@nw—mMRﬂ,
Al,p
Azl |
Ay = : = —OWTr e RPL,
: n
Az,p

and Ay € RL and A, j € RL for j=1, , p. We will prove that A; and A, are
negligible compared to nl!OWTe in Proposmons 3 and 4, respectively, and closely
examine n '@ W7 e in Proposition 5 in Sect. 3.

The evaluation of A requires more smoothness of the coefficient functions g;(z)
than usual as in Assumption G in Sect. 3. This is because it is difficult to evaluate the
effects of approximation errors while maintaining high dimensionality as shown in the
proof of Proposition 3. Any model may have some kind of approximation error, and
it is very important to examine such effects in the de-biased Lasso method closely. If
we are interested in only some of X; 1, ..., X; ,, not all of them, we do not have to
compute the whole b and should concentrate on only the corresponding blocks.

e Construction of © At the end of this section, we construct & by employing the group
Lasso and adapting the idea in van de Geer (2014) to the current group structure. Note
that our construction is different from those of Mitra and Zhang (2016) and Stucky
and van de Geer (2018) and that we can exploit just the standard R package for the
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De-biased group Lasso for varying coefficient models 9

Lasso for computation. We also describe some idea of how to ® in (9)—(11) after the
notation.

We need some more notations before we present our ©. Hereafter, we write ¢®? :=
aa’ for a vector a. We define an L x L matrix Yjk-an L x (p— 1)L matrix X; _;,
a(p— DL x Lmatrix ¥_; j,anda (p — 1)L x (p — 1)L matrix X¥_; _;:

®2 1 T
ik i=E{X1;X1kB(Z1)} = ;E(Wj W)

D= ENX1 i (Xis ey X1 ot X1 jt1s -5 X1,)} ® BO2(Z))]
1 T
T ii= ENX 0, X1ty X1t - X1 ) T2 @ BE2(Z))]

1 T
= EWT,W_))

and ¥_; ; := EZ_ ;- Note that they can be defined also from X' as its submatrices.
Furthermore, we define a (p — 1)L x L matrix I'j as I'j := 2:},_1' X_;,j and write
I = (7/;1), R yj(L)), where y;l) e RP=DL for [ =1, ..., L. We need to estimate
this I'; to define ©. In this paper, we estimate r= E:jl.,_j X = (yl(l), cee yI(L))
columnwise by employing the group Lasso differently from Stucky and van de Geer
(2018). See Remark 1 at the end of this section.

To present an idea on the construction of ®, we give some insightful expressions

such as (10)—(12). Then, we define an n x L matrix £; and its columns n;.[) eR", j=
1,..., L, as

L

Ej=(77;-1),~--77’/; )= W - W_I. ©)

Since ¥_; j — ¥_; ;i =n"'E(W! E;) = 0, we have

1 T 1 T -1 T
;E(W Ey) = ;E{W Wi =W_iI')} =(©,,0,0,...,0)

1 T 1 T 5—1 T
SEWTE) = —E(W!(W; = W_;I})} = (0.€;.0.....0)

lE(WTE)—lE{WT(W —W_,I,)} = 0,0,0; )T (10)
n [’_n P —pip/y— N Y S

where symmetric L x L matrices ®@; ; will be defined shortly. The above equations
imply
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10 T.Honda

o1 00 0
| 0 &, 0 --- 0
’ -1
~E(WI(E,... . Ep}[ 0 0 O35 0 = Ipr. (11)

Recalling that n ' E(WT W) = X and (9), we define o by employing the sample
version of the LHS of (11). Thus, we need to estimate I';, j = 1,..., p. See also
(19) below.

Let ®; x be an L x L submatrix of ® exactly as X'; ; is a submatrix of X. Then,
we have

Ok ‘ -y, x5 -»—lE(E-TE-)—lE(WTE-) (12)
2j.j bml == === = FRI Ty, J

We explain how we estimate I';. Looking at (9) and nlE(WT j E;) = 0 column-
wise, we have

N =wP—w_jyPeRr", I=1.. . Landj=1....p,

(ON

and then we estimate I'; = (y, c yl(l‘)) columnwise by employing the group

Lasso:
A(l) ~(OT ~OT  ~(OT A([)T T
(yjl v V- Vi Yip )
. / l
= argmin {—||W“ WoiyI?+ 28 P, (13)
)/GR(IJ HL X

where Pj(y) is defined as in (6), Aj(,)( eREfork # j,y = (le, ey Vijl’ VjT+1’ ceey
Yp T with y, € RE fork # j, and )L;) is a suitably chosen tuning parameter. We deal

with the theoretical properties of 575.1) in Proposition 2 in Sect. 3.
As in (7), we have

1
;WZJ.(W}” WD)+ =0 e RPDE, (14)
) nr nr nr DT\T @) L .
where «: —("/17'-"‘/11”‘//+1~"f /p) w1th/<j,keR for k # j,

l SOOI
Il <1 fork ;é jrand k' =70 NP0 17 # 0.
Collecting y y K( 3(, and regression residuals into matrices, respectively, we define

(p—1L x L matnces F and K; and an n x L matrix E as

A 1 ~(L 1 L = ~
=0V 99, Kj=w". k), and Ej =W, — W T
15)

@ Springer
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and write
=~ A ~7 ~7 AT T -
Fj_(Fj’l,...,l’j’j_l,l"j’jﬂ,...,Fj’p) , K;
T T T T \T
_(Kj’l,...,Kj’j_l,Kj,Hl,...,Kj’p) , and
~ ~T ~T ~7 ~r T
Ej= W(—Fj,l,...,—Fj’j_l,IL,—Fj,jH,...,—Fj’p) , (16)

where 1/"\]-,1( (k # j)and K i (k # j) are L x L matrices. Then by (14), we have

1 ~

where A; = diag(k(.l), R A(,.L) ). The elements of the RHS of (17) will be small
because of the properties of the group Lasso. Recall that n ' E (sz E;)=0.

We are ready to define 8] by adapting the idea of van de Geer (2014) to the current
set-up. Let sz be our estimator of @)7; and defined later. See also (9), (11), and (16).

I _1’“‘2’] _1’*‘3)1 ..._"p’] T12 00 ...0\ "
~Nay I —Go--—Lpa|| 0T 020
T — | -Tisz —I»3 I - —Ip3 0 0 T32~-- 0 ) (18)
_F]’p _1’*\271] _1’“‘3’1’... I 000 ...Tlg
Hereafter, the second matrix on the RHS will be denoted by diag(sz, e, Tp_ 2y,

Note that Tj_2 stands for the inverse of sz and is an estimator of ©; ;.
(16)—(18) give the following equations if we take Tj2 =n"! WJ.T E j- Compare (11)
and (19), too.

—~ 1 ~ 1 ~ ~
ST = -wlrwely = -wl(E,, ..., E,diag(T; %, ..., T,
n n p

T12 K> 1Ay K3 1A3 --- Kp1Ap
Ki24 T22 K32A3 - przAp

2 . ~ B
Kiadi £o3do I Kpadp fdiag(r, . T2 (19)
KipA1 Ky pAs K3 p Az -+ ng
and
0 Ky 1 AT, * K31 ATy~ - Kp,lApr
K1,2A1T1_2 0 K3,2A3T3—2 vazApr—z
P L, 5 3
Tl —1,, = | K13zl ~ K347, 0 Kijprz Qo)
o S S :
K1, p ATy~ Ko p ATy = K3 p A3Ty " - 0
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12 T.Honda

The elements of the off-diagonal blocks will be small due to the properties of the group
Lasso in (13).
Taking the transpose of (20), we obtain

0 T A KT, 1T KT - T AKT
7,2 ALKT 0 Ty MK 5 - T K
~ —2T T —2T T —2T T
eOX — IpL = T’; A3K3yl T3 A3K3’2 0 s T3 A3K3,p
-2T ) T —2T - T —2T ' T . :
T, ApKY T, 2T ALK T ALK - 0

21

We denote (Ti_z)T by Tj_zT. We will closely examine

M (T
AjKjk

2T T -2T

T2 A K =T, :
(L) (LT
AR

to deal with A; in Proposition 3.
. 2 _ 1w Tp. . -1 _ L oyl
Finally note that T =n""W; Ej, our estimator of @j‘j =X ;=X Z‘fjﬁj
X_j,j,satisfiesmini <<, ,o(sz) > C with probability tending to 1 for some constant

C as proved in Lemma 6 in Sect. 5. See also (12) about this definition of sz.

In Sect. 4, we chose Ao and )»;l) by cross-validation. In the next section, we give
theoretically proper ranges of these tuning parameters. But we have no theory for
tuning parameter selection.

Remark 1 In Stucky and van de Geer (2018), the authors considered fixed design
regression models and estimated all the columns of I'; simultaneously in a single
Lasso-type penalized regression. On the other hand, we estimate I”; columnwise and
we can apply the standard theory and also employ the standard R package to get our
estimator of I';. We can define another estimator of @ just formally even if we estimate
I'j simultaneously. Then, the properties will be different from those of this paper and
we cannot apply the standard Lasso theory and R packages then.

3 Theoretical results

In this section, we state the standard result on the group Lasso estimators E and ?5.1)
in Propositions 1 and 2 together with technical assumptions. Then, we evaluate A
and Ay in (8) and ® £ O7 in Propositions 3-5. Finally, we state the main result on the
de-biased group Lasso estimator b in Theorem 1. We will prove Propositions 3-5 in
Sect. 5. Theorem 1 immediately follows from those propositions. Propositions 1 and 2
will be proved in Supplement since we can prove them by just following the standard

@ Springer



De-biased group Lasso for varying coefficient models 13

arguments in the Lasso literature. The proofs of all the technical lemmas will also be
given in Supplement.

e Basic assumptions We describe some notation and assumptions before we present
the results on the group Lasso estimators. We define the set of active covariates and
the number of active covariates:

So=1jllgila >0} C(L.....p} and s0:=|Sol. (22)

We begin with some definitions to state basic assumptions on the properties of
covariates of our varying coefficient model:

Xi=Xiooo., Xip)h and X, =X, — ux(2Zp),

where ux(Z;) = (ux2(Zi), ..., ux,p(Z,-))T is tEe conditional mean ofX,- given Z;.
\~Ve denote the conditional covariance matrix of X; given Z; by Xx(Z;). We define
X; by removing the first constant element from X; defined in (1).

Assumption VC

(1) E(X;,j)) =0, j =2,...,p. Besides, ||ux,jlloc < Cyforj =2,...,pand
Cr < Amin(Xx(2)) < Amax(Xx(2)) < C3 uniformly in z on [0, 1] for some
positive constants Cy, C, and C3. Recall thate; ~ N(O0, 062) and ¢; is independent
of (X;. Z)).

(2) There is a constant o2 independent of Z; such that E {exp(aTXi)|Zi} <
exp([la||*02/2) for any @ € RP~L,

(3) The index variable Z; has density fz(z) satisfying C4 < fz(z) < Cs on [0, 1]
for some positive constants C4 and Cs.

The second one, the sub-Gaussian design assumption, allows us to use Bernstein’s
inequality. The first two assumptions may look restrictive. However, we need to con-
struct a desirable estimator of a precision matrix and even more restrictive assumptions
such as normality are imposed in van de Geer (2014) and Javanmard and Montanari
(2018). In particular, the arguments in Javanmard and Montanari (2018) crucially
depend on the normality assumption on the design matrix although it has improved
the previous results on the de-biased Lasso. The assumption on {e;} is the standard
one in the literature of the de-biased Lasso. In Caner and Kock (2018), the authors
developed the theory of the de-biased Lasso for linear models without normality or
sub-Gaussian assumption on design matrices, but they need a restrictive assumption
on the order of p such as p < n and other alternative conditions. The third one is a
standard assumption for varying coefficient models.

Next, we state the assumptions on coefficient functions.

Assumption G

(1) gj(2), j=1,..., p, are three times continuously differentiable.
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14 T.Honda

(2) If we choose suitable By; € RL and d i J =1,..., p, the approximation error
ri j defined as r; j = g;(Z;) — BT (Z;)po; satisfies

rijl < CiL™djfori=1,....,nand j € S, Y _d;
Jj€So
<Cp and ) df <C3 (23)
j€So

for some positive constants Cq, Co, and Cs3.

In this paper, Z,le Bi(z) = ~/L. Then, we have for some positive constants C;
and C, that C1 < Anin(£2B) < Amax(£28) < Cp, where 25 = fol B(z)BT (z)dz. See,
for example, Huang et al. (2004) about this fact. We employ a quadratic or smoother
basis. We give a remark on other spline bases in Remark 2 later in this section.

The former half of Assumption G may be a little more restrictive. However, we
need this assumption to evaluate A. If we take d; = [|g;llco + II8]lloc + 187 llco +
I g;?) loo and some suitable By ;, this {d;} satisfies the first one in (23). See, for example,
Corollary 6.26 of Schumaker (2007). This {d;} should satisfy the second and third
ones in (23). Note that we take fy; = 0 for j ¢ Sp and that g§3) (z) is the third-order
derivative of g;(z).

We denote the conditional mean and variance of L3} jes, Mi.jXi,j given Z; by
wr(Z;) and arz(Z,-), respectively. Then under Assumptions VC and G, we have

2
lrlloe < C1, and  flof[loo < C2

for some positive constants C| and C». The above results, the sub-Gaussian design
assumption, and the use of Bernstein’s inequality imply

Iril < C3(logn)'/>L~3 (24)

uniformly in i with probability tending to 1 for some positive constant C3. Recall r;
is defined in (2).

e Results on B\The theoretical results on the Lasso crucially depend on the deviation
condition (Lemma 1) and the restrictive eigenvalue (RE) condition or a similar one
(Lemma 2). If both of the conditions are established, the standard theoretical results
(Proposition 1) follow almost automatically from them.

Lemma 1 Suppose that Assumptions VC and G hold and that (L™3logn +
vVn—1Llogn) — 0. Then for some large constant C, we have

I
Poon™'WTe) < €,/ 222" and P 'WTr) < CL 3 logn
n

with probability tending to 1, where P, (v) := maxi<j<p [|[vj [l forv = (vlT, A v;)T
e RPE withv; e RE forj=1,..., p.
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De-biased group Lasso for varying coefficient models 15

We also use P (+) for vectors of lower dimension as we use P (-).

Some preparations are necessary to define the RE condition. For an index set S C
{1, ..., p} and a positive constant m, we define a subset of R” as in the literature on
the Lasso:

W (S, m):={B € R"" | Pi(Bg) < mPi(Bs) and B # 0},

where Bs consists of {8;};es, Bz consists of {ﬂj}jeg, and P;(-) is conformably

adjusted to the dimension of the arguments. Recall 8; € RZ in this paper. Then, we
define ¢_%2 (S, m) for a nonnegative (pL) X (pL) matrix §2 as

B 2p

$5(S,m) := min .
«“ pewS.m) ||Bsl?

In the theory of the Lasso, ¢>%(So, m) plays a crucial role and the lower bound is
given in Lemma 2.

Lemma 2 Suppose that Assumptions VC and SI hold and that sor/n='L3logn — 0.
Then

26%(50.3) = ¢3(S0.3) = Amin(2)

with probability tending to 1.

Notice that the second inequality is trivial from the definition of q)% (S0, 3) and always
holds.
The next result may be almost known, but we present and prove it for completeness.

Proposition 1 Suppose that Assumptions VC, SI, and G hold and that (so

Vn=1L31logn) v (L 3logn + /n=1Llogn) — 0. Then if Ao = C(L 3 logn +

vn~—YLlogn) for sufficiently large C, we have with probability tending to 1,

L WE = B0l < 1800 and Pi— fo) < 24200
n = (S0, 3) ‘ V=T (S0.3)

We will prove this proposition in Supplement including the case where we have some
prior knowledge on Sp. Note that C in the definition of Aq is from Lemma 1. We will
follow the proof in Caner and Kock (2018), and we can also deal with the weighted
group Lasso as in Caner and Kock (2018) with just conformable changes. Note that
Caner and Kock (2018) considered the adaptive Lasso for linear regression models.
We did not present the adaptively weighted Lasso version since the notation is very
complicated in the current set-up of the group Lasso procedures. If an estimator has
the oracle property, e.g. the SCAD estimator and a kind of suitably weighted Lasso
estimators as in Fan et al. (2014), it is not biased and we do not have to apply the de-
biased procedure to those estimators. However, as we mentioned before, no statistical
inference is possible while maintaining the original high dimensionality.
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16 T.Honda

e Results on '}75.1) for © We consider the properties of another group Lasso estimator

57;.1) defined in (13). We deal with the deviation condition and the RE condition in
Lemmas 3 and 4, respectively. Then, Proposition 2 about the group Lasso estimator

’;75.1) in (13) follows almost automatically from them.

We define the active index set S](.l) cf{l,....j—1,j+1,..., p}of yj(l) in almost

the same way as Sy of By and let s;l) = |S;l) |. We assume S;l) is not empty since we

can include some index in it even 1if it is actually empty.
We need some technical assumptions.

Assumption S2

(1) ||Vj(l)|| < Cy uniformly in/ (1 <1 < L) and j (1 < j < p) for some positive
constant Cj.
(2) Amax(X},j) < Cp uniformly in j (1 < j < p) for some positive constant Cs.

Assumptions S1 and S2(2) imply

. 1 .
C3 < nin(O] ) = ————— < nx(O] ) = Cy (29

_ <

)hmax(@j,j) - )\min(@j,j) -
uniformly in j for some positive constants C3 and Cjy.

We give some comments on the implications of Assumptions VC, S1, and S2 to

consider the properties of the group Lasso estimator of yj(l) in (13). Then, we write

1 l 1
nﬁ) =(ni,)j,...,n,(,

are i.i.d., we have

)j)T e R". Since ¥'_; ; — X¥_; _;I'; = 0 and our observations

s

EW, m")y=0eRPDE i=1 .. nl=1..Ladj=1...p,
(26)

where define Ei,_/ by removing X; ;B(Z;) from W, and W_; = (El,—/’ e,
’ ‘ .
Enifj) .
We denote the conditional mean and variance of nl(li given Z; by uff’)j(Z,») and

02

%n.j

(Z;), respectively. Under Assumption S2(2), we have

Em"?) = ELu® 20 + o221 = 0(1) 27)

uniformly in/ (1 <! < L) and j (1 < j < p). Besides, Assumptions VC and S2(1)
and the properties of the B-spline basis suggest

N2

pj oo = O(L) (28)

llo

uniformly in / and j. Assumption S1 is closely related to Assumption S2(1) since
r; = E:}y_jz,j,j.
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De-biased group Lasso for varying coefficient models 17

We need an assumption on M( ) (z) similar to (28) to deal with the deviation con-
dition. We give a comment on thls assumption in Remark 3 at the end of this section.

Assumption E Under Assumption VC, we have uniformly in/ (1 </ < L) and j
1=j=<p,

!
Iy oo = OG/L).
Next we state Assumptions on the dimension of the B-spline basis L, so, and sj.l).
We allow them to depend on n as long as they satisfy the assumptions.
Assumption L

€))] n_ls;l)2L3logn — Quniformlyin/ (1 </ <L)and j (1 <j < p).
2) n—lsj.’)L“ logn — O uniformlyin/ (1 </ < L)and j (1 < j < p).
3) rfls(%L“(logn)2 — 0.

Lemma 3 Suppose that Assumptions VC, S2, and E hold and that n='L*logn — 0.
Then for some large constant C, we have

L21
Poc W 1) < € [ 25
n

uniformly inl (1 <1 < L) and j (1 < j < p) with probability tending to 1.

The convergence rate is worse than that in Lemma 1. This is due to the structure of W,
(28), and Assumption E. There may be possibility of improvement in this convergence
rate. See Remark 4 at the end of this section.

Lemma4 Define f,j,,j as f,j,,j = %WZjW,j. Then suppose that Assumptions
VC, S1, and L(1) hold. Then

2% S)D=05, SP3) = knin(D)

uniformly inl (1 <1 < L) and j (1 < j < p) with probability tending to 1.

Proposition 2 Suppose that Assumptions VC, S1, S2, E, and L(1) hold and take )»E.l) =
C/n=1L2logn for sufficiently large C. Then we have
)L(l)2 (O] A([) O]
- ||W_, @V —yIP<18L—L and PGV -y <2411
Amin (2) Amin (2)
uniformly inl (1 <1 < L) and j (1 < j < p) with probability tending to 1.

Actually C in Proposition 2 can depend on / and j if it belongs to some suitable
interval. Note that C in the definition of )LE.I) is from Lemma 3.

@ Springer



18 T.Honda

o Results on' b We present Propositions 3-5. Hereafter, we assume the conditions on
the tuning parameters Ao and )Ly) in Propositions 1 and 2.

Proposition 3 Suppose that Assumptions VC, G, SI, S2, E, and L(1)—(3) hold. Then
we have

soL?logn

1
”Al,j” <Cm n]/2

uniformly in j (1 < j < p) with probability tending to 1 for sufficiently large C.

Proposition 4 Suppose that Assumptions VC, G, S1, S2, E, and L(1)(2) hold. Then we
have

L
1,2
A2l < C - L_3(Zs(l)) logn < CL™/? logn(ma’xs(.l))l/2
= J 1,j J

uniformly in j (1 < j < p) with probability tending to 1 for sufficiently large C.

We give a comment on possibility of some improvements on Proposition 4 in
Remark 5 at the end of this section. It is just a conjecture that we have not proved yet.

We introduce some more notation before Proposition 5. We denote the residual
vectors from the group Lasso in (13) by ﬁy) =W; - wT j’}?y) € R” and note that
E/ = (77\;1), . ,ﬁ;L)), where E/ is an n x L matrix. Besides, we set

—~ ~ o~ 1 ~ —~
Q=037 =-—owlwe’
n
. _ -~ 1 ~ ~ ~ ~ . _ B
= {diag(T{ >, .... T, 2)}T;(E1,...,Ep)T(E1,...,E,,)dlag(Tl LT
(29)

and define its submatrix £ .k in the same way as X ; and ®; ; are defined as sub-
matrices of X' and @, respectively. We used (16) and (18) in the last line. Note that
Qisa (pL) x (pL) matrix and it is the conditional variance matrix of n12ewWTe.
Recall diag(Tl_2, v Ty 2 is the second matrix on the RHS of (18).

Proposition 5 Suppose that Assumptions VC, G, S1, S2, E, and L(1)(2) hold and fix a

positive integer m. For any {j1, ..., jm} C {1, ..., p}, we define a symmetric matrix
Aas
i 2 Opj o Ojim
A= : : -1 : :
Qjmvjl T Qjmajm @/mv/l e @jm»jm

Then we have

[Amin (A)| V [Amax (A)] — O
uniformly in {j1, ..., jm} with probability tending to 1.
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De-biased group Lasso for varying coefficient models 19

Our main result, Theorem 1, immediately follows from Propositions 3-5. Recall
that A; = (AlTJ, e A{p)T and Ay = (A2TJ, e AZT’p)T. We give a comment on
spline bases in Remark 2.

Theorem 1 Suppose that Assumptions VC, G, S1, S2, E, and L(1)—(3) hold. Then the
de-biased estimator is represented as

o~

1 ~
b—Po=-O0OWe— A1+ Ay
n

and we have

A1l = 0,(n~"?) and ||As] < Clogn - L—S/Z(n?a_xs](.”)l/2
sJ

uniformly in j (1 < j < p) with probability tendmg to 1 for sufficiently large C.
Besides, we have n_l/z@ Wle| {X;. Zi}'_, ~N(,o0 .Q) and converges in prob-
ability to ® blockwise as defined in Proposition 5.

Remark 2 This remark concerns other spline bases. We can take another spline basis
B'(z) satisfying B'(z) = AB(z) and C; < Amin(AAT) < Amax(AAT) < C; for
some positive constants C| and C;. For example, an orthonormal basis B’(z) satisfy-
ing f B'(2)(B'(2))Tdz = I. This is because we deal with and evaluate everything
blockwise. We use the desirable properties of the B-spline basis in the proofs, and
then, we should apply the conformable linear transformation blockwise.

We consider applications of Theorem 1. Recall we have max s, Il g; —BT8, illoo =
O(L~3) by Assumption G.

e Statistical inference under the original high-dimensional model
(1) llgjll2: Suppose we use a spline basis satisfying the orthonormal property in
Remark 2. Then ||b || is the estimator of ||g;||>. We can also deal with ||g; — gk |2, and
then, ||b — bk || is the estimator. Recall again that the SCAD gives no information of
llgjll2 when this j is not selected. Most of screening procedures rely on an assumption
like the one that marginal models faithfully reflect the true model. It is important to
have a de-biased estimator of | g;||> for any j based on the initial and original high-
dimensional varying coefficient model (1).

Theorem 1 suggests that for any fixed j,

15 — Bojll = 0,,(\/%)

if Vn=1L/{logn-L=>/%(max, ; (l))l/z} — o0. This reduces to L°/{n(log n)*> max; ;

(l)} — 00. Note that || Bo; | — llg;ll2 = O(L ™) uniformly in j under Assumption G

and this approximation error is negligible compared to (L/n)!/2.

In addition to point estimation of ||g;|l2, we can carry out hypothesis testing of
Hoy : llgjll = O vs. Hi : |igjll2 # O for any j. Then we can approximate the
distribution of ||l;;- || by bootstrap for j ¢ Sp to compute the critical value as we did in

the simulation studies.
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(2) gj(z): We estimate g;(z) with BT(Z)Bj. Since BT(z),Boj —gjz) = O(L7)
under Assumption G, this approximation error is negligible compared to the effect
of Ay and (L/n)'/2. Note that {n~' BT (2)R2; jB(2)}'/* ~ (L/n)'/* in probability.
Therefore for any fixed j, we have

n'2BT (2)(B; — poj)/1BT (2)2; i B()}'* % N0, 02) (30)

if vVn=1L/{logn - L~%(max;,; sj.l))l/z} — oo. This reduces to L3/{n(logn)*> max; ;
s(l)} — oo. This condition may be a little restrictive. However, a smaller L may
work practically from Remarks 4 and 5. See Subsection S.2.3 in Supplement for some
numerical examples of confidence bands for g (z).

We state some remarks here. Those remarks are about possible improvements of

our assumptions, and we have not proved them yet.

Remark 3 This remark is about Assumption E. First we consider the case of [ = 1 for

(1).2(2,-), i=1,...,n,are written as

simplicity of notation. For/ = 1, Mfyl)} (Z;) and oy

wi(Zi) = a M ux (Z) @ Bz} and o) 2(Z) = " [Zx(Z) ® {B(Z)}®al".

wherea!" == (1,0,....0, —y{"")T € R*L and |a}" || = O(1) uniformly in j from
Assumption S2. (28) easily follows from the local support property of B(z). This holds
for the other /. On the other hand, M;l,)j (Z;) is rewritten for general [ as

! nT ! !
W (Zi) = ux j(ZOBI(Zi) — Y uxo(ZobT B(Z) and Y 612 = [y )2,

SES;D SES;D

D . I ! I . . .
where bi)j is part of y; ) If ZSES;.I) ||b§’)j | < Cor s](.) < C uniformly in / and j for

some positive constant C, Assumption E holds because of the local support property
of the B-spline basis. Besides since only a finite number of elements of B(z) are not
zero for any z due to its local support property, Assumption E seems to be a reasonable
one.

Remark 4 This remark refers to possible improvement on Lemma 3. In Lemma 3, we
should evaluate the expression inside the expectation on the LHS of (31).

L n L
1 n 12 1 1 L 1
E[ 3 i@y} ] = Ef i) Y B2z} < e - E(cam!))
m=1 i=l1 m=1
C|L
< =S E(IX P E () Py (31)

for some positive constant Cy and (p1, p») satisfying 1/p1 4+ 1/p2 = 1. Note that we
used Assumption VC and the fact for some positive constant C3, Z,I;lzl B,%l(Z 1) <
C3L uniformly in Z; here. If we take p; = 4 and p, = 4/3, we have (31)=
O(L3/? /n), and this suggests there may be possibility of improvement in convergence
rate up to /n—'L3/2log n. We have not proved this conjecture yet.
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Remark 5 This remark is about possible improvement on Proposition 4. Note that

T I, —Dhy - =Ty
A L s ,\IJ,
2,1 1, —Iip Iy - —Tpn . o L
: =—-r'Ww . . ) . diag(T| ,...,Tp )
A n : : IR
2P —fl,p _E,p e L

1 ~
—rT(E\. ..., Epdiag(T %, ..., T, %)
n

and

Lo 1o, ! Aa) 1)
;r 77./' :;r 77j +; ( Vj ).

Recall the definition of E, in (15) and E/ = (ﬁ;l), ... ,ﬁ;L)). Since

A ! - - = 1
n -1 Tw_/( () V]())| < 1”}"”2)1/2(}’1 1||W j( () y]())||2)1/2

[L21
<CL™ 3(10gn)1/2(maxs(l))l/2 STogR
n

uniformly in j with probability tending to 1 for some positive constant C, this

is small enough. Hence, we have only to evaluate n_err;;l). Recalling r; =

Y jes Xi.j(8j(Zi) — BT (Zi)poj) and 0" = Wi — W_ ;. we conjecture that
JE€O0 J

n~lr Tnﬁ) is much smaller than O, (L™ 3) given in the proof of the proposition. We

have not proved this conjecture yet.

4 Numerical studies

In this section, we present the results of simulation studies. The proposed de-biased
group Lasso estimator may look complicated. However, it worked well in the simu-
lation studies, and the results imply that this de-biased group Lasso estimator is quite
promising.

In the studies, we present the results on hypothesis testing of whether || gl = 0
or not for j = 1, ..., 12 in Models 1-3 defined below. We also present some more
simulation results and a real data application in Section S.2 in Supplement.

We used the cv.gglasso function of the R package ‘gglasso’ version 1.4 on R x64
3.5.0. The package is provided by Profs Yi Yang and Hui Zou. See Yang and Zou
(2017) for more details. We chose tuning parameters by using the CV procedure of
the cv.gglasso function. First, we computed ﬁ by using the CV procedure and then
corrected the bias of it to get b. We also used the CV procedure when we computed
©. We did not optimize b with respect to Ao because it took too much of time even
for one repetition. We used an orthonormal spline basis which is constructed from the
quadratic equispaced B-spline basis.
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In the three models, Z; follows the uniform distribution on [0, 1] X; 1 = 1,
and {Xi,j}j.’:2 follows a stationary Gaussian AR(1) process with p = 0.5. We
took E{X;2} = 0 and E{X%z} = 1 and Z; and {X,-,j};’:2 are mutually inde-
pendent. As for the error term, we took ¢; ~ N(0,3). We tried two cases,
(L, p, n, Repetition number) = (5, 250, 250, 200) and (5, 350, 350, 200). Note that
the actual dimension is pL = 1250 and 1750. Besides, the tuning parameters were
determined by the data and one iteration needs 61 runs of the group Lasso with very
many covariates. Therefore, it took a long time for only one case of each model.

In Model 1, we set

€2(2) =2+ 2sin(wz), g4(z) =22z — 1)? —
96(z) = 1.8log(z + 1.718282), g5(z) = 2.5(1 — 2).

All the other functions are set to be 0 and irrelevant.
In Model 2, we set

exp(l + z)
34

1.8
22(2) =2+2Qz—1)°, ga(z) =2cos(r2), g6(x) = ——. ()=

14z

All the other functions are set to be 0 and irrelevant.
In Model 3, we set

1.8
2(2) =2+ 2sin(w2), (x) =2Q2z— 1> =2, g()=——,
1+z
exp(l +
gs(z) = % g10(z) = 1.8log(z + 1.718282), g12(z) = 2cos(mz).

All the other functions are set to be 0 and irrelevant.
We considered hypothesis testing of

Ho: lgjll2=0 vs. Hi:llgjll2>0 (32)

for j = 1,...,12 in Models 1-3. We computed the critical values from the result
that Jn (b — ﬂo j) is approximately distributed as N (0, Q; j,j) in Theorem 1. Then,
||b 12 is the estimator of [|g;||> since we used an orthonormal B-spline basis here. We
compared ||b |? and the simulated critical values. The nominal significance levels are
0.05 and 0.10.

In Tables 1, 2, 3,4,5,6,7,8,9, 10, 11 and 12, each entry is the rate of rejecting
Hp. Tables 1, 3,5,7,9, and 11 are for relevant j (H; is true) and Tables 2, 4, 6, 8, 10,
and 12 are for irrelevant j (Hy is true).

As shown in Tables for relevant covariates (Hj), the rejection rate is 1.00 for any
case. As for irrelevant covariates (Hy), the actual significance levels are close to the
nominal ones except for j = 7 in Models 1 and 2 and j = 7,9 in Model 3. Note
that the standard errors are 0.022(«v = 0.10) and 0.016(c = 0.05) since the repetition
number is 200 due to the long computational time. We also tried six more cases where
every g;(z) is replaced with g;(z) /+/2. There is no significant differences and the
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Table 1 H; for Model 1 with
p =250and n =250 2 4 6 8
a=0.10 1.00 1.00 1.00 1.00
a =0.05 1.00 1.00 1.00 1.00
Table2 Hj for Model 1 with p = 250 and n = 250
j 1 3 5 7 9 11 12
a=0.10 0.10 0.06 0.06 0.18 0.12 0.08 0.15 0.08
a =0.05 0.06 0.02 0.02 0.13 0.06 0.04 0.08 0.06
Table 3 H; for Model 2 with .
2 4
p =250 and n = 250 / 6 8
a=0.10 1.00 1.00 1.00 1.00
a =0.05 1.00 1.00 1.00 1.00
Table4 H for Model 2 with p = 250 and n = 250
j 1 3 5 7 9 11 12
o =0.10 0.11 0.11 0.18 0.18 0.12 0.08 0.14 0.12
a=0.05 0.06 0.06 0.10 0.11 0.06 0.04 0.08 0.05
Table5 H; for Model 3 with
2 4 1 12
p =250and n = 250 6 8 0
a=0.10 1.00 1.00 1.00 1.00 1.00 1.00
a =0.05 1.00 1.00 1.00 1.00 1.00 1.00
Table 6 H( for Model 3 with
1 3 5 7 9 11
p =250and n = 250
a=0.10 0.12 0.07 0.05 0.22 0.22 0.15
a = 0.05 0.07 0.04 0.03 0.14 0.16 0.10
Table 7 H; for Model 1 with
2 4 6 8
p =350and n = 350
a=0.10 1.00 1.00 1.00 1.00
a =0.05 1.00 1.00 1.00 1.00

results of the six cases are presented in Supplement. These simulation results imply
that our de-biased Lasso procedure is very promising for statistical inference under the
original high-dimensional model, i.e. statistical inference without variable selection.
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Table 8 Hj for Model 1 with p = 350 and n = 350

j 1 3 5 7 9 10 11 12
a=0.10 0.10 0.03 0.05 0.16 0.11 0.07 0.10 0.08
o = 0.05 0.06 0.02 0.02 0.12 0.06 0.05 0.06 0.05
Table9 H; for Model 2 with .
2 4 6 8

p =350 and n = 350 /

a=0.10 1.00 1.00 1.00 1.00

o = 0.05 1.00 1.00 1.00 1.00
Table 10 Hj for Model 2 with p = 350 and n = 350
j 1 3 5 7 9 10 11 12
a=0.10 0.09 0.10 0.10 0.16 0.11 0.06 0.11 0.08
a =0.05 0.04 0.04 0.06 0.10 0.06 0.04 0.06 0.05
Table 11 H; for Model 3 with .

2 4 6 8 10 12

p =350 and n = 350 /

a=0.10 1.00 1.00 1.00 1.00 1.00 1.00

a =0.05 1.00 1.00 1.00 1.00 1.00 1.00
Table 12 H( for Model 3 with

1 3 5 7 9 11

p =350and n = 350

a=0.10 0.09 0.05 0.07 0.22 0.20 0.10

o =0.05 0.07 0.03 0.02 0.17 0.14 0.07

5 Proofs of theoretical results

In this section, we prove Propositions 3—5. We state two technical lemmas before we

prove the propositions. These lemmas will be verified in Supplement.

We define L x L matrices Ej,k and Bjforj=1,...,pandk=1,..., pas

o~

I ~r =~ 1 T
Bj k ::;Ej E; and Bjj := ;E(El Ep).

See (15) and (9) for the definitions of E j and E;. Note that and

—y. . _y. .yl =L
Bj =2 Z‘J’_JZL].’?J,Z‘_J,]_OJ.J and
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)]
M, j

. 1 L
Bis=E{| + oDt (33)
(L)
M. j

We establish the convergence of B ik 10 Bj ;in Lemma 5.

Lemma5 Suppose that Assumptions VC, S1, S2, E, and L(1)(2) hold. Then ||§j,k —
Bj kllF = O uniformly in j (1 < j < p) and k (1 < k < p) with probability tending
to .

In the next lemma, we establish the desirable properties of Tj2. Recall that p(A) is
the spectral norm of a matrix A.

Lemma 6 Suppose that Assumptions VC, S1, S2, E, and L(1)(2) hold. Then, we have
(a) and (b).

(a) For some positive constants C1 and C, we have Cy < p(sz) = ,o(TjZT) <

and 1/C < ,o(Tj_z) = ,O(Tj_ZT) < 1/Cy uniformly in j (1 < j < p) with
probability tending to 1.

(b) ||Tj2 - @;}HF — 0 and sup = ||(TJ._2 — ©; x| = 0 uniformly in j (1 <
Jj < p) with probability tending to 1.

Now we begin to prove Propositions 3-5.
Proof of Proposition 3 Since (21) and the properties of '}, below (14) imply
Ay =T;7TA; Y KT (B — Bor)
k£
and
1 DT 5 )
25 D il (Br— Bow)| < max 2. Py (B — o).
k#j ’

we have uniformly in j,

1411l < max 2 p(T72)LY2PL(B — o). (34)

Recall that max,_j, AP — o(/nTL? log n) in Proposition 2. By (34), Lemma 6, and
the bound of P (8 — Bo) from Proposition 1, we have

L3logn
| A1l < Choso, ng (35)

uniformly in j with probability tending to 1 for some positive constant C.
The desired result follows from (35) and the condition on Ag in Proposition 1.
Hence, the proof of the proposition is complete. O
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Proof of Proposition 4 Write

(A%,.....AL )= 'winTe”

Iy D —1},1 _:p,l
_1’:1’2 I,é —Gy - ~Tpa
= winl | —Ts =123 I - =Dho diag(Tl‘z,...,Tp’z).
_f'l’p _1"\'2”” _1"\'371, )

The above expression implies that the absolute value of the / th element of T].ZTAg, j
is bounded from above by

Poo(n ' WTr)(PLPY) + 1) = CL P W)Y 2y P+ 1) (36)

uniformly in/ and j with probability tending to 1 for some positive constant C. Note
that the difference between Pl(y( )) and P; (y( )) is negligible by Proposition 2 and

that P1(y ) < )12y D).
Thus by Assumption S2(1), (36) and Lemma 6, we have

L
1/2
1421 = CaPosn™ WTr) (351" (37)
=1

uniformly in j with probability tending to 1 for some positive constant C>.
(37) and Lemma 1 yield the desired result. The proof of the proposition is complete.
]

Proof of Proposition 5 The desired result follows from (a) and (b) below, which will
be verified later in the proof.

(a) Forany x € RL and y € RE satisfying ||x|| = 1 and ||y|| = 1,
xT(2jk — 0.1 Bj kOkx)yl = 0
uniformly in x, y, j, and k with probability tending to 1.
(b) O}, jBj Ok =0Ojk

Actually (a) and (b) imply that for any x € R™F satisfying ||x| = 1, xT Ax — 0
uniformly in x and {ji, ..., j;,} with probability tending to 1.

Now we demonstrate (a) and (b).
(a) Recall that §j,k = TJ_ZTﬁj,ka in(29)and Bj; = O; 1 . Then note that

(24— 0B xOc0)y = (T (177 = @j,,,)T}E,,ka—Zy
+xT@j,J~(§j,k — Bj,k)Tk_zy
+x70; ;B (T, = Oy} (38)
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By Lemmas 5 and 6, we have with probability tending to 1,
||§j,k — Bj «llF — O uniformly in j and k 39)
and
||(ij2 — ©; x| — 0 uniformly in j and x, (40)
where x € RL and ||x|| = 1.

Besides, by Lemmas 5 and 6, Assumptions S1 and S2 (see (25)), (33), and the
Cauchy—Schwarz inequality, we have

p(T7) < C (41)
" Bjyl < 7O 0P GT O < Callxllllyll (42)
xTB; iyl < 7B i) 2 (3" Beay)'? < Galix|lllyl 43)

uniformly j and k with probability tending to 1 for some positive constants Cq, Ca,
and Cs.

We can evaluate the first term on the RHS of (38) uniformly by using (40), (41),
and (43). We can treat the other two terms on the RHS of (38) similarly. We use (S.1)
in Supplement for the second term to show that the absolute value is less than or equal
to ||(~)jT’jx|| ||§j,k — Bj’k||F||Tk72y||. Hence, we have established (a).

(b) When j = k, the equation is trivial. First we consider the case of p = 2. Take two
L-dimensional random vectors U; and U, satisfying

Ui Ty,T X1 X
E U; U =23 = ’ ).
{<U2>( 10 31 20
We have
-1
-1 O11 012) _ (211 212
©21 O2 31 2o ’
and consider Uy —I'f U, and U, — I} Uy, where I'l = 21,222_,; and I} = 22)121_)11.
Then we have

O11 = [E{(U; — I U)(U; — I U»)T)7" and
Orn = [E{(Uy — TS U W, — I UL

In addition,

Bio = E{(U1 — I U)(Us = I UN} = = 21255} (822 — £ 51 Z12) =
—X1235,05,. (44)
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Then (44) and (A-74) in Greene (2012) yield

O11B12022 = —01 1 X125, = O (45)

Hence we have verified (b) for p = 2.
Next we deal with the cases of p > 2. We can consider the case of j = 1 and

k = 2 without loss of generality. Take p L-dimensional random vectors Uy, ..., Up
satisfying
Ui
E |l Uy =2
Up

We define a set of @11, @12, @2, By s for this X by using Uy, ..., Up.

Next take the orthogonal projections of U; and U to the linear space spanned by
Us, ..., Up and denote them by U; and U, respectively. We define the residuals U 1
and U2 as U1 =U, —U; and U2 = U, — U,. Then by (A-74) in Greene (2012), we

have
=~ -1
O1,1 O12) _ U\ srpr
(Grror) =[] (5) @ron] 46)

This means that we can define another set of @; 1, @12, @22, By 2 by using ﬁl and
ﬁz These two sets of ©1,1, @12, ®2 2 are equal to each other. This is because the
matrix in (46) is the same submatrix of X ~!. As for B 1.2, the residual of U Ui from the
orthogonal projection of Uy to Ua, ..., U, is the same as the residual of U, from the
orthogonal projection of U 1 to Uz ThlS also holds for U, and U2 Thus, two Bj 7 are
equal to each other.

The result for p = 2 implies that

O1,1B1,2022 = Oq .

Hence, the proof of (b) is complete. O
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